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ABSTRACT | In this paper, we review technologies for auto-

nomous ground vehicles and their present capabilities in

research and in the automotive market. We outline technology

requirements for enhanced functions and for infrastructure

development. Since the recent Grand Challenge competition is

a major force to advance technology in this field, we

specifically refer to our experiences in developing a partici-

pating vehicle. We present a multisensor platform that has

been proven in an off-road environment. It combines different

sensing modalities that inherently yield uncertain information.

Finite-state machines are formulated to generate rule-based

autonomous behavior that enables fully autonomous off-road

driving. Overall, the intent of the paper is to evaluate

approaches and technologies used in the two Grand Chal-

lenges as they contribute to the needs of autonomous cars on

the road.
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I . INTRODUCTION

A. Background in Autonomy in Cars
One of the most fascinating trends in automotive

technology is the introduction of capabilities to provide

autonomous behavior to cars. It is expected that this will

not only show quantitative effects on traffic, but in the

long term will provide a new quality of traffic operation

including concerted navigation for safe, comfortable, and

efficient driving.

We define Bautonomy[ in a car as the car making driving
decisions without intervention of a human. As such, auto-
nomy exists in various aspects of a car today: Bcruise

control[ and BAntilock Brake Systems[ (ABS) are prime

examples of systems exhibiting autonomous behavior.

Additional systems already exist in a few models, including

advanced cruise control, lane keeping support, lane change

warning, and obstacle avoidance systems, all of which

expand the range of autonomous behavior. Near-term de-

velopments that we anticipate, some first appearing as

warning devices, include intersection collision warning,

backup parking, parallel parking aids, and bus precision

docking, show either autonomous behavior or can be

totally autonomous with the addition of actuation. Finally,

truck convoys and driverless busses in enclosed areas have

seen limited operational deployment.

Studies in autonomous behavior for cars, concentrating

on sensing, perception and control, have been ongoing for

a number of years. One can list a number of capabilities,

beyond basic speed regulation, that are key to autonomous

behavior. These will all affect the cars of the future.

• Car following/convoying.

• Lane keeping/lane change.

• Emergency stopping.
• Collision mitigation/obstacle avoidance.

• Routing and traffic control capabilities.
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In each of the above operations, the car is expected to do
self-sensing (basically speed and acceleration), sensing

with respect to some absolute coordinate system (usually

using global positioning system (GPS) augmented with

inertial or dead reckoning sensors and possibly the help of

a map data base) and sensing with respect to the imme-

diate environment (with respect to lane markings, special

indicators on the road, obstacles, other vehicles, traffic

signs, and signals, etc.) We shall be discussing some of the
relevant technologies.

Large public demonstrations, challenges, and races

serve two purposes. The first is to provide an impetus for

rapid advances in the development and integration of

research and related technologies; the second is to focus

public attention and ultimately lead to acceptance of and

support for such technologies.

The DARPA Grand Challenges of 2004 and 2005
certainly served the second purpose, in providing a stage

for media attention, illustrating the technologies and even

providing a certain amount of color and drama.

In this paper, we shall concentrate on the first aspect

by attempting to review where the Grand Challenges fell in

the general development of autonomous vehicle technol-

ogies. We shall review briefly the state-of-the-art and

trends in related vehicle technologies. Our exposure will
be inevitably weighed towards our own vehicle in GC’05.

Although our platform was not a standard car, the tech-

nologies and approaches used were fairly representative.

The remainder of this paper is organized as follows.

After recalling several public demonstrations of the status

of research, we provide an overview of autonomous

systems that have already entered the automotive market.

Section II outlines technology requirements for en-
hanced functions and for infrastructure development.

The Grand Challenge competition outlined in Section III

has been an impetus to advance technology in this field.

Sections IV and V will outline sensing and control strat-

egies of our Grand Challenge vehicle ION, respectively,

while Section VI concludes with lessons learned and

implications for future automobiles.

B. Background in Autonomous Driving
Demonstrations

Through the years, many demonstrations have been

held showing the capabilities of autonomous vehicles, and

by extension, the underlining sensor capabilities. One of

the most comprehensive highway-based demonstrations

was held in 1997 on I-15 in San Diego, CA, and showed the

capabilities of cars, busses, and trucks in various automat-
ed highway scenarios. This demonstration (called

Demo’97) was organized by the National Automated

Highway Systems Consortium (see, e.g., [34], [35], and

[41]). The key technologies were lane-following using

roadway embedded magnets, roadway laid radar-reflective

stripes, or existing visible lane markers detected with

vehicle mounted cameras; car following using laser or

radar, with or without the help of intervehicle communi-

cation; and the management of multiple vehicles to carry

out a specific scenario. Scenario maintenance was

accomplished either by an entirely timed and scripted

program, by GPS and location-based triggering, or by
situation-based triggering (e.g. Fig. 1).

Demo’97 was followed by a number of demonstrations

around the world, notably in Japan, Holland, France, and

the U.S. In each case, not only were state-of-the-art tech-

nologies demonstrated, but the public was informed about

what to expect in future cars (see, e.g., [1], [4], and [17]).

The DARPA Grand Challenge, which was held in

March 2004 and October 2005, stressed the nonstructured
environment of off-road desert driving. Although some

aspects of the technical problems addressed were differ-

ent, the technology set utilized was very similar to that

used for autonomous highway or urban driving. It was also

another step in raising public awareness and expectations

for future cars.

C. Development in the Automotive Market
We are currently witnessing driver assistance systems

with environmental sensing capabilities entering the

automotive market. For many reasons, including market

acceptance and liability, those innovations are frequently

first introduced into Japanese models before they appear in

upper class models of the European and American

automotive industry. The following nonexhaustive over-

view shows the ongoing search for the most suitable sensor
technology and appropriate functions that can be intro-

duced despite today’s technical limitations.

Starting with the Mitsubishi Diamante in 1995 and

followed by Toyota in 1996, Adaptive Cruise Control

(ACC) Systems employed automotive lidar or radar

sensors to measure the distance, velocity, and heading

angle of preceding vehicles. This information is used to

Fig. 1. Two autonomous cars from The Ohio State University team in

Demo’97 performing a vehicle pass without infrastructure aids.
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improve on the longitudinal control of conventional
Cruise Control systems. When a free roadway is detected

the system behaves like a conventional Cruise Control.

When a slower preceding vehicle is detected, the ACC

system follows at a safe driving distance until the situation

changes, e.g., due to a lane change maneuver of either

vehicle. The system works well on highways or in similar

operation conditions. It is designed as a comfort

enhancing system, i.e., it neither primarily aims to, nor
possesses sufficient sensor performance to provide safe

longitudinal control by itself. The responsibility is kept

with the driver, and hence the operational domain is

restricted to highway speeds and to a comfortable maxi-

mum deceleration, for example 2,5 m/s2. In European

cars, the Mercedes S-Class introduced ACC (called

Distronic) in 1999 followed by Jaguar’s XKR the same

year and BMW’s 7-series in early 2000. Despite initial and
some remaining deficiencies, which mainly stem from the

sensors, ACC systems have since become widely accepted

in upper class vehicles. Function enhancements that allow

seamless operation from highway cruising to stop-and-go

traffic are under development [45].

Video sensors were first introduced for lane departure

warning (LDW) systems. These systems observe the white

lane markings on the road and warn the driver when an
unintended lane departure is detected. Market introduc-

tion has first focused on trucks such as the Mercedes or

MAN flagships. In America, the market was first ap-

proached by the small company AssistWare (http://www.

assistware.com) that was later acquired by Cognex.

Night vision systems assist the driver in bad visibility

conditions such as night driving by displaying an image as

observed by a sensor that can cope with such conditions.
GM first introduced night vision in its Lincoln Navigator

employing a far infrared (FIR) spectrum camera. The

BMW 7-series followed in 2005 almost immediately with

an alternative near infrared (NIR) concept and the

Mercedes S-Class employed a CMOS camera and NIR

high beam headlamps.

In 2002, Honda introduced a lane keeping assist system

called the Honda intelligent driver support system (HIDS)
to the Japanese market [20], [39]. It combines ACC with

lane keeping support. Based on lane detection by a video

sensor, an auxiliary supportive momentum is added to the

driver’s action. With the collision mitigation system

(CMS), Honda has followed an escalation strategy to

mitigate collisions. Beginning with activation of a warning

signal when the headway of the vehicle becomes small

CMS enhances its intervention to moderate braking
deceleration that subsequently increases to about 6 m/s2

as the danger of a collision increases. Should the driver

react in this situation, but his reaction is insufficient to

avoid the accident, the system enhances his action during

all phases. Even though the system cannot avoid accidents

completely, the support of the driver and the speed

reduction will reduce collision severity [24].

Since 2005, a radar-based active brake assistance
system that supports the driver to avoid or mitigate frontal

collisions by autonomous braking is also available in the

Mercedes S-class.

Blind spot information systems have been introduced

in 2006 into several Volvo cars based on video cameras and

in Audi based on short-range radar.

II . SOME TECHNOLOGY NEEDS IN
FUTURE CARS

A. Functional Needs
Despite the tremendous achievements of research in

driver assistance systems over the past decades, the auto-

matic control capabilities of vehicles are still far behind the

capabilities of human drivers. The previous section has
listed some driver assistance functions that have been

introduced to the market. However, the current contribu-

tion of driver assistance systems to road safety falls behind

many optimistic expectations. A major cause for the slower

than expected pace is that driver assistance systems require

interdisciplinary work in many different fields including

sensor technology, machine perception, control engineer-

ing, artificial intelligence, driver psychology, human
machine interaction, market acceptance, and legal issues

and liability. While the long-term perspective of safe

driving is convincing from any point of view, low hanging

fruits are difficult to find. The identification of interme-

diate functions that can cope with the deficiencies of

today’s perception capabilities and produce transparent

and predictable system behavior that improves driving

safety is an ongoing challenge. The few advantages of
current automated cognition over human cognition include

the capability of immediate action within a few milli-

seconds and the indefatigable awareness of machines and

nighttime perception. It is interesting to note that today’s

driver assistance systems are arranged just in these niches.

Fig. 2 depicts a potential evolution of functions to-

gether with their sensor requirements. These emerge from

existing functions for vehicle dynamic stabilization that
require sensing of vehicle internal quantities, for example,

the velocity of the individual wheels, acceleration, or yaw

rate. These signals allow functions that stabilize the

vehicle in extreme driving situations, such ABS, electronic

stability program (ESP), or anti-skid control (ASC).1

The availability of environment sensing by sonar, radar,

lidar, or video opens up new information and comfort

functions, but due to the associated sensor uncertainty, the
final responsibility has to stay with the driver. Prominent

examples for such functions are parking assistance systems

that signal the driver the distance to rearwards obstacles or

display an image of a rear view camera, while leaving

1While ABS and ASC control individual wheel slip under braking and
acceleration, respectively, ESP controls yaw rate of the vehicle.
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vehicle control with the driver. Longitudinal control
assistance systems require information on obstacles in

the vehicles path. The limited braking capabilities of ACC

are a tribute to the remaining uncertainty of lidar and

radar sensors. Likewise, lateral control systems require

information on the road geometry ahead and the vehicles’

pose relative to the road. This information may stem from

video sensors or may be acquired with the help of a

dedicated infrastructure (see Section II-B). Again, fully
automated steering necessitates sensor reliability under all

circumstances.

It may not be possible to resolve the uncertainty of a

single sensor to a sufficient degree for safety functions,

such as emergency braking or collision avoidance, in the

near future. Hence, multisensor systems are under devel-

opment employing information fusion strategies to exploit

the diversity of different sensor technologies. Information
fusion techniques (see e.g., [25] for an overview) not only

combine the fields of view of different sensors but may also

allow the system to maintain functionality in case of a

failure or a missed detection of any single sensor [37].

While multiple sensor systems provide physical diversity at

a particularly strong level, cost considerations restrict the

implementation of a multitude of sensor systems in many

practical applications.
As the equipment rate of vehicles with capabilities for

environmental sensing increases, it becomes likely that a

vehicle possesses information about the environment that

is relevant to others. This gives rise to the introduction of

vehicle-to-vehicle or vehicle-to-infrastructure communica-

tion into future cars [2], [26]. Rearward traffic may, thus,

enhance its Brange of view[ via telematics, enabling timely

reaction to congestions and other traffic irregularities [30].
A motivation for a rather local exchange of sensor infor-

mation is illustrated by the specific scenario of a street

crossing shown in Fig. 3. The environment information

perceived by the upper vehicle may not only enhance the

reliability of object perception for the leftmost vehicle in

the overlapping area, but is indispensable for its object
detection in areas that are outside the field of perception

due to limited field of view or occlusions. In those areas,

cooperative perception of multiple vehicles that commu-

nicate their information provides another attractive grade

of diversity. It is worth noting from the figure that

cooperative sensing does not require a 100% equipment

rate, but provides benefit even at moderate rates. Multi-

sensor platforms or sensor networks that connect vehicles
may evolve to achieve a certainty level of environment

perception that allows for automatic and cooperative

vehicle control to mitigate or avoid collisions in future cars

[27], [29], [38].

Preliminary experiments with cooperative perception

between vehicles have recently been reported in [40]. An

important issue in this context is the spatiotemporal reg-

istration of data transmitted in the coordinate system of
other vehicles. Since the uncertainty of the spatiotemporal

alignment adds itself to the intrinsic uncertainty of the

sensor information, this alignment must be conducted

with high precision. It is shown that an alignment strategy

that combines the coarse localization information of a GPS

system with the sensor output of the video sensor itself

yields good results for the envisaged application.

Clearly, improvements of machine perception by fusion
of sensor information should be accompanied by enhance-

ment of the individual sensor capabilities. Temporal track-

ing is shown to improve performance significantly [3], [12].

Furthermore, feature diversity may strongly contribute to

the robustness of sensors. In particular, video sensors offer

a wide spectrum of diverse features. Fusion of disparity and

motion, shape, appearance, edges, symmetry, and otherFig. 2. Potential road map of driver assistance functions.

Fig. 3. Sensor network to improve perception.
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features are reported in literature, e.g., [9], [13], [15], [18],

and [46]. Lidar-based simultaneous localization and

mapping has been reported to yield a detailed geometric

scene representation accounting for the needs of complex

urban environments [44].

On the cognitive level, the achievement of situation
awareness is considered an important open issue by many

researchers [28]. Vehicular sensing should not be restrict-

ed to conventional metrology that acquires a couple of

parameters from the scene, such as position and speed of

other vehicles. Instead, a transition to consistent scene

understanding is desirable. This requires a consistent

propagation of knowledge and measures for its confidence

throughout the perception chain, as depicted in Fig. 4. The
ambitious goal is to expressively formulate at every level

the ambiguity of knowledge that might stem from (sensor)

noise, the signal interpretation process, or the ambiguity of

previous levels. Thus, safety measures can be assigned to

any potential behavior at the control level considering all

previous processing. In the reverse direction, selective

information can be required from previous processing

units, e.g., sensor attention may be directed towards the
most relevant objects in the scene. The numerous closed

loops in this structure may motivate concerns and require

a theory on perception stability.

B. Infrastructure Development
In the previous section, we have mentioned vehicle-to-

vehicle and vehicle-to-infrastructure communication as

providing enhancements to the sensing capabilities of an
individual vehicle. One other route for sensing enhancement
is having the environment cooperate as a sensed entity.

A number of infrastructure aids have been, and are
being considered for autonomous driving. Through a

number of years, and most notably during Demo’97, a

series of magnets were placed in the middle of a highway

lane to help orient the vehicles along the lane and, to a

lesser extent, provide information on upcoming curves.

This was primarily advocated by PATH [47] and used by a

number of other research organizations. Another technol-

ogy used for the same purpose was a radar-reflective stripe
placed on the lane, which the vehicle could straddle. The

radar reflective stripe [35] developed by The Ohio State

University was also shown in Demo’97. Through the years,

other technologies have been introduced and demonstrat-

ed by different organizations.

One can mention other infrastructure-based technol-

ogies that can aid in autonomous driving, albeit indirectly.

These are RFID tags that can be placed on roadways,
intersections, traffic signs, bus stops, etc., or other wireless

broadcast capabilities that can provide information about

intersections, road clearance, vehicle approach, and loca-

tion in general.

Off-road driving, of course, does not utilize any infra-

structure aids. In fact, the Grand Challenge event forbade

any wireless contact with the racing vehicles. However, for

future applications on the roadway, it is clear that such
communication would be helpful.

III . THE DARPA GRAND CHALLENGE

A. Background
In July 2002, the Defense Advanced Research Projects

Agency (DARPA) announced a Grand Challenge for
unmanned and autonomous off-road ground vehicle de-

velopment. Vehicles and development teams were to be

entirely self funded. The vehicles should be able to navi-

gate a course of several hundred miles of off-road terrain

in the desert southwest region of the United States,

following a path defined by a series of waypoints unknown

to the teams until immediately before the race, and

negotiating natural and manmade obstacles and terrain
features without outside intervention. Once the race

began, no contact or communication with the vehicle or its

systems was allowed.

DARPA conducted the first Grand Challenge event in

March 2004. The course, defined by over 2000 waypoints,

would take the vehicle across approximately 175 miles,

beginning at Barstow, CA, and ending at Primm, NV. A

prize of $1 million (U.S.) would be awarded to the fastest
vehicle that completed the course in less than ten hours.

Nobody wonVin fact; the furthest distance traveled was

7.2 miles.

The second Grand Challenge event was held in

October 2005. A 150-mile course defined by almost

3000 waypoints began and ended at Primm, NV. This

time, five teams finished the course (four within the

Fig. 4. Bidirectional propagation through the perception chain.
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allowed ten hours), and the vehicle Stanley, developed by

the Stanford Racing Team, took the $2 million (U.S.)

prize by completing the course in 6 hours and 53 minutes,

with an average speed of 19.1 mph. (http://www.darpa.

mil/grandchallenge05/).
The Grand Challenge involved a number of severe

challenges.

• Sensing of vehicle environment and state in a

complicated, semistructured environment.

• Long-term autonomy and control over an unknown

course and terrain.

• Long term robustness of both hardware and

software in a bumpy, dusty, hot, and occasionally
wet environment.

• Insuring safe performance of the vehicle in the

absence of an on-board human driver.

• Functionality on 100% of the path.

• Significant testing and validation.

For the 2004 Grand Challenge. our team, in partner-

ship with Oshkosh Truck Corporation, developed Terra-

max’04, an Oshkosh Truck Corporation Medium Tactical
Vehicle Replacement (MTVR) six-wheeled heavy duty

vehicle as our autonomous off-road vehicle entry. Of 106

applicants, it traveled sixth furthest (see Fig. 5).

In 2005, our BDesert Buckeyes[ team outfitted

ION: the Intelligent Off-Road Navigator, based on the

(much smaller) 6 � 6 Polaris Ranger utility vehicle [6]. As

in 2004, we provided drive-by-wire capability to control

steering, throttle, brakes, and transmission. Various sen-
sors, including GPS, inertial measurement units, multiple

digital cameras and image processing systems, LIDARS,

radars, and other sensors were integrated. Additional

electrical power generation, equipment enclosure and

cooling, and safety systems were also implemented. Of

the 196 applicants, ION traveled 29 miles and tenth

furthest.

B. Off-Road Versus Highway and City Driving
Of course, there are many differences between off-

road, fully autonomous desert racing and on-road highway

and urban driving, but a number of parallel challenges can

also be identified.
Robustness and safe performance of hardware and soft-

ware is obviously required for both off-road driving and

production automobiles. Certain problems are mitigated

when a system is designed for a passenger vehicle environ-

ment. Nevertheless, business concerns including market-

ing and liability protection demand a high level of

robustness.

Sensing challenges remain, although systems can be
tailored to the intended driving environment. Highway

driving is a much more structured environment than off-

road racing, and that structure can be exploited in sensor

and control system design [33], [43]. On the other hand,

the urban environment, which may consist of irregular and

changing road networks and vehicles and pedestrians

behaving unpredictably, is much less structured than

highway driving and may require significantly more
sensing capability [13], [22], [23]. Redundancy of sensing

modalities is required, especially in a less structured, more

uncertain environment, but the cost of many of the sensors

used on Grand Challenge entries would be prohibitive for a

passenger vehicle application.

The level of autonomy is also a significant design issue

in a passenger vehicle system. The driver is to be part of

the sensing and control loop, which means that driver
attention and situation awareness, human-machine inter-

face and driver workload considerations, and driver state

considerations must be addressed.

The availability of a priori data, from the various terrain

and digital elevation map and satellite imagery datasets

that might be considered useful for fully autonomous off-

road route planning and navigation, to the road map

Fig. 5. TerraMax before GC’04 and ION before GC’05.
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datasets, traffic condition reports, and road maintenance
activity schedules that would be useful for passenger ve-

hicle driving enhancements is also a significant issue [42].

Error correction and real-time updates, not allowed in the

Grand Challenge event, are obviously useful and necessary

for future vehicle systems.

Finally, as outlined in Section II-A, vehicle-to-vehicle

and vehicle-to-infrastructure communication capabilities

will almost certainly be involved in future vehicle systems,
opening the potential for traffic cooperativity and facili-

tating applications from navigation and routing systems to

traffic control systems to driver warning and collision

avoidance systems.

IV. SENSING AND SENSOR FUSION

A. The Sensors and Sensor Fusion on ION
The ambitious goal of the sensing and sensor fusion

module for the 2005 ION was to provide 360� coverage

around the vehicle, while operating in an entirely

unknown environment with unreliable sensors attached

to a moving vehicle platform. Budget constraints required

that this be accomplished without significantly expanding

the sensing hardware used in the previous year. Consid-
ering the many different kinds of targets that needed to be

detected and registered, the lack of high-quality a priori
information about the environment, and the presence of

sensor disturbances such as dust and debris, the approach

we adopted was to provide a diversified system with as

many different sensors modalities as possible.

The chosen sensor suite is shown in Fig. 6. The

effective range of each sensor is also indicated. Three SICK
LMS-221 180� scanning laser rangefinders were mounted

at three different heights: the first at 25 cm above the

ground and scanning parallel to the vehicle body, the

second at 1.0 m about the ground and scanning in a plane

that intersected the ground approximately 30 m ahead of

the vehicle, and the third at 2.0 m above the ground with

the scanning plane intersecting the ground approximately

50 m ahead of the vehicle. The use of three lasers allowed a
rough estimate of object height to be computed as the

vehicle approached an obstacle. A fourth laser, not shown

in the figure, is mounted at 2.0 m above the ground and

scans in a vertical plane. This laser allows the estimate of

the ground profile directly ahead of the vehicle, which is

crucial in order to eliminate ground clutter and the effects

of vehicle pitching and bouncing motions.

An Eaton-Vorad EV300 automotive radar with a 12�

scanning azimuth and 80–100 m range was also mounted

parallel to the vehicle body. A stereo pair of monochrome

Firewire cameras and an image processing system,

described below, was also installed on the vehicle. It was

rigidly mounted in solid housings and included devices for

system ventilation and windscreen cleaning. Finally, eight

Massa M-5000/95 ultrasonic rangefinders were mounted

around the vehicle to provide side sensing for narrow

passages (including tunnels and bridges) and rear sensing

for the vehicle, while driving in reverse. Two additional

ultrasonic rangefinders were mounted high on the vehicle

and angled downward at approximately 45� to detect drop

offs and cliff faces near the vehicle.

In addition to the sensors that monitor the external
environment, localization, and orientation sensors, in-

cluding a Novatel ProPak-LB-L1/L2 GPS using the

Omnistar HP wide-area differential correction service, a

Crossbow VG700 fiber-optic-based vertical gyroscope, a

Honeywell digital compass, and wheel speed sensors on

the front and back wheels were installed, validated in real-

time, and fused using an extended Kalman filter to provide

position, angular orientation, and speed information to
both the sensor fusion and vehicle control modules.

A block diagram of the sensor fusion model is shown in

Fig. 7. After sensor functionality and data integrity

validation, the data from each sensor must be processed

to remove any suspect or erroneous information. For the

laser rangefinders, this processing includes the removal of

ground clutter by culling points whose estimated heights

are below the estimated ground profile. The vision system,
which produces a height above ground map, is similarly

processed, and areas that are marked as indeterminate are

also removed from the data stream. The radar used was not

observed to return ground clutter. A series of carefully

constructed coordinate transformations then placed the

sensor data into a unified frame of reference, while helping

to insure that the fusion results from multiple sensors did

not smear an object. The fused LADAR data and the vision

Fig. 6. Sensing system components and effective ranges.
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data were used both to detect obstacles and detect empty
space. In order to properly handle empty space detection

and avoid eliminating previously detected objects, the

height of previously detected objects as well as the height

of the scanning plane must be considered, and an efficient

ray-tracing algorithm must be utilized.

The result of the sensor fusion modules was a cell-

based internal map, 160 m on a side, composed of 640 000

cells each 20 cm on a side. Each cell contained three
classes of confidence data: cell occupied confidence, cell

empty confidence, and cell unknown confidence, as well as

estimated height for an object within that cell. Placing

sensor data into this map consisted of updating the three

confidence measures by increasing or decreasing as ap-

propriate, and the obstacle height estimate. The final step

was generating a smaller, local map for use by the vehicle

control modules by evaluating the three confidence
measures and the height information. This output map

includes only classified status information for each cell.

Some sample results are shown in Fig. 8(a)–(c). They

show the sensor map on the left, the raw sensor data on the

right, and below that a visual image of the scene. Fig. 8(a)

shows the vehicle approaching a gate, Fig. 8(b) shows the

vehicle approaching a tunnel, and Fig. 8(c) shows the
vehicle in the tunnel.

The use of similar sensor fusion approaches for auto-

nomous vehicles in the future is anticipated. Travel on

somewhat smoother highways or city roads may not

require as extensive care in establishing a Bvirtual hori-

zontal plane[ as was needed for the off-road terrain. Yet,

versions of similar occupancy maps or extensions thereof

are expected. Indeed, the possibility of multiple moving
Bobstacles[ ahead (in highway driving), or all around (in

urban driving) will make this topic even more important.

Both ACC and recent advances in obstacle avoidance for

highway driving have considered multiple moving

Btargets[ ahead of the car, in the same lane or neighboring

lanes. Yet, highways are somewhat more structured

environments where specialized approaches may be

used. Further advances in the unstructured environment
of general urban driving, will require approaches more

similar to those tested in the Grand Challenges.

B. Vision on ION
The structure of the video sensor platform for ION is

depicted in Fig. 9, see [19]. In a preprocessing step, the

Fig. 7. Sensor fusion on ION.
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signal of a stereoscopic camera system is compensated for
lens distortion and its images are rectified, i.e., the signal

is compensated for imperfect co-planarity of the two

imagers.

In order to achieve a high degree of robustness against

variable environmental conditions, diversity of the fea-

tures is exploited by the subsequent processing step. The

following three features are computed.

1) Disparity.
2) Color homogeneity.

3) Orientation.

The disparity feature allows a fast and robust compu-

tation of the ground plane parameters. Similar to estima-

tion in Hough space, the v-disparity technique searches for

a linear decreasing disparity along the columns [10].

Disparity is a reliable clue for depth in well-textured

regions near the stereo camera. In contrast, it is highly
unreliable in regions of homogeneous color. Humans pos-

sess the ability to interpolate over such regions. We aim to

mimic this capability by segmenting a monoscopic image

into nonoverlapping regions that include a homogeneous

color. Hence, large deviations in color may only occur

across region boundaries. In the absence of other cues, we

then assume that either all or no points of each homo-

geneous region belong to the road.
Texture orientation is another clue that is used for road

recognition. The eigenvector associated to the largest

eigenvalue of the structural tensor M serves as a measure
for orientation of an image g at position x [21]

MðxÞ ¼ rgðxÞrTgðxÞ:

Fig. 8. (a)–(c) Three situations in the GC’05 qualifications, as seen by cameras and shown by sensor data and cell-based map.

Fig. 9. ION’s stereo video platform.
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The path p ¼ ðp0;p1; . . . ;pNÞ for given features y is
finally estimated as the best sequence of path elements pi

in a Bayesian paradigm [14]

p̂ ¼ arg max
p

pðP ¼ pjY ¼ yÞ

¼ arg max
p

pðY ¼ yjP ¼ pÞpðP ¼ pÞP
p pðY ¼ yjP ¼ pÞpðP ¼ pÞ

where the a priori probability pðP ¼ pÞ of a path is

modeled as a Markov chain of the individual path elements

that favors straight composition of the individual path

elements (see Fig. 10).

The likelihood pðY ¼ yjP ¼ pÞ expresses the proba-

bility for the observed feature sequence y ¼ ðy1; . . . ; ykÞ of
length K for a known path p. In our model, we assume

local features, i.e., each feature yk is influenced by the

presence or absence of a single path element only. As-

suming conditional independency among the features one

can write

pðY ¼ yjP ¼ pÞ ¼
YK

k¼1

pðYk ¼ ykjP ¼ pÞ

¼
YK

k¼1
p62Ck

p0ðykÞ
YK

k¼1
p2Ck

p1ðykÞ:

In this equation, Ck denotes the set of all paths that include

the path element pk that impacts feature yk. p0 and p1

denote distributions of the selected features off and on the

road, respectively.
The path with maximum a posteriori probability is

selected in a greedy procedure using a search tree that
guarantees to find a global optimum. Fig. 11 displays a left
image of the stereo camera with the resulting path super-
imposed taken in an urban environment.

V. CONTROL

A. High-Level Control
BHigh-level control[ in any autonomous driving system

is based on a classification of the environment. The
Bsituation[ is understood, and a Bbehavior[ is selected.
The behavior leads to the selection of the Bcontrol[ to be
pursued. These levels have been shown abstractly in Fig. 4.
The situation/behavior/control relationships can be mod-
eled in terms of a finite-state machine.

Fig. 12 shows the general logic of the so-called high-
level control developed for ION and is fairly self
explanatory.

Maximum speed setpoints are established a priori based
on GIS map and satellite imagery information, limits im-
posed by the race organizers, and self-imposed limits based
on our understanding of the vehicle’s behavior in specific
conditions. Speed setpoints are modified (reduced) in real-
time based on situational awareness, including perceived
obstacles, identified special circumstances, for example, a
tunnel or other very narrow situation, and the current
quality of the vehicle position estimates.

B. Path Planning
The DARPA race route was defined by a series of

waypoints provided in the Road Data Definition File

(RDDF) file format, which specified a central line and aFig. 10. Composition of the path from its elements.

Fig. 11. Path proposed by video platform.
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lateral boundary width for each segment confining the

vehicle trajectory to a corridor between waypoints, see

Fig. 13. There were 2586 and 2935 points in the DGC 2004

and 2005 waypoint files, respectively.

Mobile mapping systems (MMSs) developed a decade
ago and now widely used [5] seem to provide adequate

mapping technology for the job. However, existing systems

are not set up to operate in real-time.

The mapping support for the OSU DGC team included

two major components: 1) providing geospatial data for

automatic path planning prior to the race and 2) tools for

interactive path planning in the two hours prior to the

race. Automatic path planning, if needed, could have been
based on the A
 algorithm, which is a generic graph search

algorithm based on optimizing some cost function such as

distance traveled, slope grade, negative bias for roads,

higher cost for vegetated areas, and so on. The implemen-

tation and experiences of using the A
 algorithm is not

discussed here, for details see, for example, [36].

The mapping effort to provide data for path planning

included identifying publicly available data, assessing the

costs and benefits of committing dedicated surveys, and

collecting/organizing data in a format that would effec-

tively support the path planning algorithm. Foe example,

Digital Elevation Map (DEM) data at 10-m resolution are

widely available from the United States Geological
Surveys (USGS) National Elevation Dataset (NED) for

most of the continental U.S. Unfortunately, the DGC area

is one of the regions where only 30-m resolution DEM

exists, which provides for only a very coarse terrain de-

scription, not meeting the resolution and accuracy require-

ments of autonomous vehicle navigation. In overcoming

this issue, for example, the Red Team from Carnegie

Mellon University [8] created a massive geospatial data-
base covering about 50 000 sq. miles. However, since the

waypoints provided were quite dense, such exercises

turned out to be unnecessary. The only need was for low-

level path planning.

As implemented on ION during the race, the Bpath

planning[ module in the high-level controller provides the

low-level controller a local path (section) to follow, which

consists of a series of GPS coordinates, called path points.

Fig. 12. Situation/behavior/control for ION.
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ION maintained ten points in each section. If the DARPA

provided waypoints are too far from each other, then the
Bpath planning[ module should densify the waypoints to

provide the low-level controller with an adequate waypoint

distribution. The Bpath planning[ module checks the

status of the existing local path at 10 Hz. If the path en-

counters some obstacles, or ION has reached the fifth

point of the local path, or the Bsection planner[ indicates

that ION is getting into a new section, the Bpath planner[
module then generates a new local path in two steps.

A smooth path, whose curvature is continuous, is gen-

erated to connect the waypoints. Four points (P0, P1, P2,

P3) are provided by the Bsection planning[ module. ION

stays in the section connecting (P1, P2), P0 is the waypoint

before P1 and P3 is the waypoint after P2. A cubic spline is

used to generate the path. The path planning module

selects the path points on the part of P(t) between the

position of ION and P2. (The distance between the path
points is constant, say 3 m). For details, see [7].

In localities where autonomous vehicles are expected

to run on roadways, much finer resolution map data will be

available. Thus, the Grand Challenge terrain was not rep-

resentative in either resolution or in not being constrained

to road topology. On the other hand, the smooth trajectory

generation issues for short distances, probably do have

relevance in urban driving situations.

C. Stopping and Swerving
A number of issues related to constraints in sensing and

control have been addressed through the years. One report

that summarizes such constraints is [11].

Assuring that a vehicle has the ability to come to a

complete stop in reaction to a given obstacle is one of the

first criteria required to assure safe performance. The
actual equation used to determine the required look ahead

distance can be obtained from simple physics, and as-

suming no braking (Fig. 14), is given as

D ¼ v2

2ðu cos�� sin�ÞGc
þ treact � v þ B:

The value D, is the look-ahead or stop distance required

to assure that the vehicle can come to a complete stop

before reaching the obstacle ahead. The variables in this

equation are
v velocity of the vehicle;

u coefficient of friction;

GC gravity;

� terrain slope angle;

tReact time required for the vehicle to react to an

obstacle in sensor range;

B addition buffer space included in calculations.

Fig. 13. DARPA waypoint corridor definition.

Fig. 14. Swerving around an obstacle.
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A second criterion to check is the capability to swerve
around an obstacle. These calculations can help indicate

items such as the maximum safe turn rate and required

look-ahead distance to assure avoidance without rollover.

The equations can again be generated using simple

physics (see [11] for similar developments)

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðR � XÞ2

q
þ V � treact þ B

Where R ¼ maximum value of Rmin;Rroll; or Rslide

RRoll ¼
V2 � 2h

Gc � w

Rslide ¼
V2

Gc � u
:

These equations involve many critical variables because

of the large number of environmental and vehicle factors
that effect the swerving abilities of a vehicle. The variables

used in these equations are:

h the height of the center of gravity;

tReact time required for the vehicle to react to an

obstacle in sensor range;

B Addition buffer space included in calculations;

W 1/2 width of obstacle;

R min minimum turning radius of vehicle.

If a vehicle has braking capability, stopping distance
calculations are obviously different.

A related issue for cars on roadways would be in

changing lanes. For details of smooth lane-change,

see [16].

One other safety related constraint that would limit the

speed is consideration of rollover. Indeed, this constraint

did affect us in speed selection during the GC’05.

D. Obstacle Avoidance and Road Following
One of the key problems in off-road driving is obstacle

avoidance beyond simply swerving. Indeed, the major
activity that our vehicle ION was involved in was in short-
distance path planning, or said another way, real-time path
adjustment to avoid the multiple obstacles on its way

(Fig. 15). A somewhat generic chart outlining this

operation is given in Fig. 16. Such an activity assumes

that a sensor module indicating possible feasible direc-

tions, or an occupancy map is available to form the basis

for the selection of motion directions. Although this
problem has been addressed by many researchers in

robotic path planning, the off-road domain provides many

three-dimensional problems and the race environment

imposes serious time constraints.

It could be claimed that off-road driving would not

require lane following capability. However, the routes in

both the GC’04 and GC’05 were set up such that a major

portion, indeed almost all, of the race was held on dirt
roads. This fact implied that lane detection capability for

Fig. 15. ION swerving around ‘‘obstacles’’ at the GC’05 qualifier.
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a dirt road would be useful and indeed could be used in

much the same way that lane following is being ad-

vocated for Automated Highway Systems (AHS). As
such, the lane following control approach used would be

similar to those utilized with vision (as described in

Section II-B.) or radar-reflective stripe technologies [32],

and would have a Blook-ahead[ point and command

steering based directly or indirectly depending on road

curvature or offset at the look-ahead point.

VI. CONCLUSION

A. Lessons Learned
Despite the need to enhance sensor technology and

algorithms beyond the state-of-the-art, the practical per-

formance of today’s autonomous vehicles is governed by
robustness and improvements due to significant on-terrain

testing of hardware and algorithms. The successful teams

have mainly employed well-tested hardware and software

achieved by sound engineering.

Furthermore, the successful teams in the Grand

Challenge were those that had more time and experience

in testing. The DARPA Grand Challenge was an
experimental program, yet three of the four finishing

teams had the full support of professional vehicle manu-

facturing operations and extensive testing capabilities.

These capabilities were used both at the component and

the integrated system level. It is this capability that

should reassure the public of the safety of future tech-

nologies in cars.

B. Contributions to Future Cars
A number of technologies and approaches were

evaluated in the DARPA Grand Challenges of 2004

and 2005.

• Identifying lanes with sensors was already on its

way to maturity. Here, the newer aspect was
identifying and evading obstacles, reliably and fast.

• Use of GPS and map data in real-time and reliably

was also evaluated. Loss of GPS signals, and re-

taining driving capability was an important feature

of the successful vehicles. We shall see more of this

in future cars.

• Although autonomous roadway driving will prob-

ably be on fairly smooth surfaces, techniques from
the Grand Challenge developed for off-road driving

will come in useful in possible bumpy situations on

regular roads.

• Full Bsurround sensing[ is still fairly new. Starting

from experiences in the Grand Challenge, much

work needs to be done for eventual utilization in

autonomous urban driving scenarios.

A key issue for autonomous vehicles is perceptual
reliability. It is expected that utilization of diversity across

multiple levels will contribute to environment perception

at a level of reliability that allows realization of safety

functions. While the cooperative exploitation of diverse

features as well as of information from diverse sensors has

frequently been addressed in literature, little work has

been reported so far on cooperative sensing between ve-

hicles in mixed traffic.
A change of paradigm is needed in metrology for

vehicles: rather then estimating a couple of parameters

(like position and speed of obstacles), scene understanding

is a requirement for future functions.

Very few innovations can be expected to have as high

an impact on future cars as the capability to perceive the

environment and to plan and conduct appropriate driving

behavior. We expect that the recently announced DARPA
Urban Challenge (http://www.darpa.mil/grandchallenge)

will provide abundant advances in the technologies re-

viewed in this paper. h
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Dr. Özgüner was the first President of the IEEE ITS Council in 1999 and

reelected in 2000. He has also served the IEEE Control Society in many

positions, and was an elected member of its Board of Governors (1999–

2001). He participated in the organization of many conferences (including

the IFAC Congress) and has been the General Chair of the 2002 CDC. He

was the Program Chair for the 1997 IEEE ITS Conference, which he helped

initiate, and served as the General Chair for the 2003 Intelligent Vehicles

Symposium.

Christoph Stiller (Senior Member, IEEE) received

the Diplom degree in electrical engineering

(M.Sc.E.E.) and the Dr.-Ing. degree (Ph.D.) with dis-

tinction from the Aachen University of Technology,

Aachen, Germany, in 1988 and 1994, respectively,

where he was a Scientific Assistant. He conducted

a Postdoctoral year at INRS-Telecommunications,

Montreal, QC, Canada.

From 1987 to 1988, he visited the Norwegian

University of Technology, Trondheim, Norway. In

1995, he joined the Corporate Research and Advanced Development of

Robert Bosch GmbH, Hildesheim, Germany, where he was responsible for

BComputer Vision for Automotive Applications.[ Since 2001, he has been

a Full Professor and Head of the Institute for Measurement and Control

Engineering, Karlsruhe University, Germany. He is speaker of the

Karlsruhe-Munich Transregional Collaborative Research Center

BCognitive Automobiles.[ His present interest covers sensor signal

analysis, visual inspection, video sensing, information fusion, and real-

time applications thereof.

Dr. Stiller is Vice President of Member Activities of the IEEE Intelligent

Transportation Systems Society. He served two terms as Associate Editor

for the IEEE TRANSACTIONS ON IMAGE PROCESSING from 1999 to 2003 and

since 2004 serves as Associate Editor for the IEEE TRANSACTIONS ON

INTELLIGENT TRANSPORTATION SYSTEMS. He serves as Chapter Chair for

Measurement in Production in the German Electrical Engineering

Association (VDE).

Keith Redmill (Member, IEEE) received the

B.S.E.E. and B.A. Mathematics degrees from Duke

University, Durham NC, in 1989, and the M.S. and

Ph.D. degrees from The Ohio State University,

Columbus, in 1991 and 1998, respectively.

He has been a Research Scientist in the Depart-

ment of Electrical and Computer Engineering, The

Ohio State University, since 1998. He is actively

involved in research involving autonomous

ground and aerial vehicles, and traffic and trans-

portation systems. Recently, he led the integration of autonomous off-

road vehicles for the 2004 and 2005 DARPA Grand Challenges. His areas

of research interest include control and systems theory, intelligent

transportation systems, autonomous vehicle and robotic systems, real-

time embedded systems, GPS and inertial positioning and navigation,

transit and traffic monitoring, image processing, wireless digital com-

munication for vehicles, sensor technologies, decentralized multiagent

hierarchical and hybrid systems, and numerical analysis and scientific

computing.

Dr. Redmill is a member of the the Society for Industrial and Applied

Mathematics (SIAM).
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