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Abstract
From the early 1990s to the middle of the last decade, the search for genes influencing
osteoporosis proved difficult with few successes. However, over the last 5 years this has begun to
change with the introduction of genome-wide association (GWA) studies. In this short period of
time, GWA studies have significantly accelerated the pace of gene discovery, leading to the
identification of nearly 100 independent associations for osteoporosis-related traits. However,
GWA does not specifically pinpoint causal genes or provide functional context for associations.
Thus, there is a need for approaches that provide systems-level insight on how associated variants
influence cellular function, downstream gene networks, and ultimately disease. In this review we
discuss the emerging field of “systems genetics” and how it is being used in combination with and
independent of GWA to improve our understanding of the molecular mechanisms involved in
bone fragility.
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Introduction
Osteoporosis is a disease of weak and fracture-prone bones affecting approximately 200
million people worldwide [1]. It is characterized by low bone mineral density (BMD) and
the microarchitectural deterioration of bone, which together significantly increase the risk of
fracture [2]. As a result of its high prevalence, osteoporosis is directly responsible for ~1.5
million fractures annually, with an estimated health care cost of $17 billion in the United
States alone [3].

Many intrinsic characteristics of the skeleton contribute to its strength including the mass,
size, morphology, and material properties of bone [4]. Each of these traits is determined by a
complex combination of environmental and genetic factors. However, heritability (percent
of total variance due to genetics) estimates for osteoporosis-related quantitative traits
generally exceed 50%, indicating that most of the variation in risk of fracture is determined
by genetics [5]. For example, a number of epidemiological studies have shown that the
heritability of BMD is between 60% and 80% [5]. The fact that complex bone phenotypes
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are highly heritable indicates that a thorough understanding of osteoporosis necessitates the
comprehensive genetic dissection of its component traits.

From the mid 1990s to 2007, numerous attempts were made to identify the individual genes
that explained the heritable component of osteoporosis [6]. These early gene discovery
attempts relied on linkage analyses in families (or experimental crosses in rodents) and
candidate gene association studies. Genes underlying the quantitative trait loci (QTL)
identified by linkage proved difficult, if not impossible, to positionally clone, while the
reproducibility of candidate gene associations was low. As a result, very few osteoporosis
genes were discovered [6].

This began to change in 2007 with publication of the first genome-wide association (GWA)
study for BMD and bone morphology traits in the Framingham Osteoporosis Study [7••]. In
a GWA, hundreds of thousands of common single nucleotide polymorphisms (SNPs) are
genotyped in tens of thousands of individuals and then tested for their effect on quantitative
phenotypes, such as BMD, or for differences in allele frequencies between disease cases (eg,
osteoporotic individuals) and controls (eg, non-osteoporotic individuals) [8]. Since this
initial paper, there have been over 25 GWA studies for osteoporosis-related phenotypes that
have identified nearly 100 independent associations [9-13]. An up-to-date summary of
GWA results for BMD and other osteoporosis-related traits can be found by searching the
“Catalog of Published Genome-Wide Association Studies”
(http://www.genome.gov/gwastudies/).

GWA is designed to identify high-resolution associations across the genome in an unbiased
fashion. However, GWA does not intrinsically identify individual causal genes, nor does it
provide functional information. This is an important point since translating genetic
discoveries into new therapies relies on both gene discovery and the elucidation of their
function. In addition, it is clear that complex bone phenotypes, such as BMD, are not
exclusively determined by the cumulative effects of individual genetic influences, but
instead are the result of emergent properties of biological networks [14]. This makes it
necessary for new approaches that can extend, complement, and enhance GWA by
generating a systems-level view of disease [15, 16]. Systems genetics is one such approach
and below we discuss examples of how it is being used to advance our understanding of
osteoporosis.

Systems Genetics Defined
Systems genetics is an emerging approach that can be used to investigate cell function and
disease from a systems-level perspective (Fig. 1) [16]. Systems genetics relies on the
principles and methods of systems biology, but focuses on determining how naturally
occurring genetic variation perturbs cellular systems and ultimately disease [15]. In a
systems genetics study, data are collected from multiple biological “components” [17].
Components include the genome, transcriptome, proteome, metabolome, and phenome,
among many others. The components can be assayed in a high-throughput and massively
parallel manner with technologies such as microarrays (genomes, epigenomes, and
transcriptomes), next-generation sequencing (genomes, epigenomes, and transcriptomes),
mass spectrometry (proteomes and metabolomes), and clinical imaging (phenome) [17].
These data are analyzed using a suite of analytical approaches that include GWA, expression
quantitative trait locus (eQTL) discovery, causality modeling, and network analysis [17].

To illustrate the multifaceted nature of a systems genetics analysis consider the following
human dataset: 500 individuals with microarray gene expression profiles generated from
bone biopsies, genotype information on 1 million SNPs and BMD levels. In terms of the
analysis, one could begin by identifying eQTLs regulating the transcript levels of genes
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expressed in bone. This list of eQTL SNPs could then be cross-referenced with a list of
BMD GWA SNPs from prior GWA studies. SNPs found in this list would implicate a
specific gene in the regulation of BMD (the gene whose expression it regulated) as well as
its mechanism of action (difference in expression). The relationships between these SNPs,
gene expression, and BMD could also be formally tested using modeling approaches such as
causality prediction. This would be especially useful to identify BMD-associated SNPs that
were suggestive (eg, P<0.001) in a GWA, but did not reach genome-wide significance.
Additionally, the transcriptomic data could be used to reconstruct a coexpression network
for bone. The network could then be mined to identify groups of interacting genes that were
associated with changes in BMD or for changes in network connections between individuals
with low and high BMD. Together, these analyses would provide a much more
comprehensive systems-level perspective on BMD than GWA alone.

Systems genetics is a novel approach that is only starting to be applied to complex diseases
and this is particularly true in the bone field where there have only been a small number of
studies performed to date. In addition, the vast majority of studies involve the integration of
transcriptomic data and not any other type of molecular data. Here, we attempt to summarize
this work. We specifically focus on systems genetics studies that identify and utilize eQTL,
causality modeling, and network analysis in the context of complex bone phenotypes.

Using eQTL Data to Enhance GWAS
Gene expression can be measured in large populations of humans or rodents using genome-
wide gene expression microarrays or RNA-seq [18-20]. Both techniques have their
advantages and disadvantages. Microarrays are relatively cheap, provide coverage of most
major transcript isoforms, and are high-throughput [17]; however, they have a low dynamic
range, are prone to artifacts due to overlapping SNPs [21], and do not provide
comprehensive quantitation of entire transcriptomes. In contrast, RNA-seq provides a digital
readout of gene expression and comprehensive quantitative information on isoform
abundance; however, it is currently costly and requires significant computational expertise
and infrastructure for data analysis [22]. Independent of the technique used, however,
quantitative measures of transcript or isoform expression can be mapped using association
[23]. Genetic loci that regulate the transcript levels of a particular gene are referred to as
eQTL [17, 23, 24]. Associated SNPs within an eQTL are referred to as expression SNPs
(eSNPs). There are two types of eQTL, local and distant (the terms cis and trans have also
been used in the eQTL literature) [17, 23]. Local eQTLs are located in close proximity to the
gene they regulate. A number of different mechanisms can manifest as a local eQTL,
including promoter polymorphisms altering gene transcription in an allele-specific manner
or polymorphisms that alter mRNA stability. In contrast, distant eQTLs are typically not
located close to the gene they regulate (often on a separate chromosome). An example of a
distant eQTL would be a polymorphic transcription factor located on chromosome 3
affecting the transcription of a gene located on chromosome 10.

A series of recent papers by Grundberg et al. [25••] and Kwan et al. [26] nicely demonstrate
how eQTLs can inform BMD GWA studies. For this work, high-density genotyping and
microarray-based gene expression data were generated on primary human osteoblasts
(hOBs). In the first study, the authors identified several hundred genes regulated by local
eSNPs in hOBs (N=95) [25••]. They then cross-referenced the list of eSNPs with the top
SNPs identified in a separate BMD GWA [10]. Two key observations were made. First,
there was a significant enrichment of hOB eSNPs among those that were also associated
with BMD. A parallel analysis using lymphoblastoid cell lines (LCLs) did not reveal this
enrichment. Although somewhat obvious, this suggested that it is advantageous to use
primary bone cells (or bone tissue) for systems genetic studies of osteoporosis compared to
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the more assessable cells or cells lines such as LCLs. Second, of the top 10 local eSNPs that
were correlated with BMD, a variant in the serine racemase (SRR) gene was found to be
associated with BMD in two independent studies, providing strong support for the
hypothesis that differences in its expression lead to alterations in BMD. A similar approach
was used in a second study of hOBs (N=60) that were profiled using Affymetrix exon arrays
[26]. Instead of probing the expression of a gene with one or a small number of probes, exon
arrays consist of probes for the majority of characterized exons in the human genome [27].
Having data on all exons allows one to identify differentially expressed transcript isoforms.
In this particular study, the data were used to identify a novel transcript isoform of the
FAM118A gene whose expression was regulated by a local eSNP [26]. This eSNP was also
found to be associated with BMD in two independent studies. Together, these two analyses
demonstrate how eQTL discovery can be used to identify novel BMD genes that were not
detected by GWA alone. In addition, gene discovery in this way also identified the
functional mechanism (ie, alteration in expression) through which the associated variants are
influencing BMD.

It is also possible to perform the reciprocal experiment in which GWA SNPs are queried to
determine if they are also eSNPs. A number of osteoporosis GWA studies have used this
approach. For example, Richards et al. [12] identified a SNP (rs4355801) located upstream
of tumor necrosis factor receptor superfamily, member 11b (TNFRSF11B; Osteoprotegerin)
that was associated with BMD and risk of osteoporosis. Using microarray data from LCLs
from 55 unrelated HapMap individuals, it was determined that rs4355801 was also a local
eSNP regulating the expression of TNFRSF11B. These data are consistent with the
observation that perturbing the expression of TNFRSF11B in knockout and transgenic mice
alters bone mass [28, 29]. Similarly, in a large meta-analysis of five BMD GWA studies,
Rivadeneira et al. [9] identified 20 loci affecting BMD, of which 13 were newly identified.
Using microarray data on primary hOBs, SNPs within 3 of the 13 novel loci were found to
regulate the expression of the genes (G protein-coupled receptor 177 [GPR177], myocyte
enhancer factor 2C [MEF2C], and forkhead box C2 [FOXC2]) nearest the most significant
SNPs. Kung et al. [30] used quantitative real-time polymerase chain reaction to determine
that the SNP rs2273061, which was strongly associated with BMD and located in the third
intron of the JAG1 gene, regulated the expression of JAG1 in human-derived bone cells and
peripheral mononuclear blood cells. Additionally, Hsu et al. [31••] recently identified seven
loci affecting BMD and/or femoral neck geometry. Three of the top seven SNPs were also
found to be eSNPs that regulated the genes (RAS-related protein-1a [RAP1A], TBC1
domain family, member 8 [with GRAM domain] [TBC1D8] and TNFRSF11B) nearest the
trait associated SNPs. As demonstrated by these studies, the identification of GWA SNPs
that are also eSNPs provides two key pieces of information, 1) it assists in identifying the
causal gene(s) responsible for a specific association, and 2) it defines how the associated
variants are influencing the trait.

eQTL and Causality Modeling Enhances Gene Discovery in the Mouse
Since the work of Beamer et al. [32] demonstrating that inbred strains of mice displayed
strikingly different BMD, mice have played a major role in the genetic analysis of
osteoporosis [33]. Mice also have a number of advantages for systems genetics, including
the ability to control the environment and access to tissues that would be difficult to obtain
in large human cohorts [34]. High-resolution GWA approaches are only starting to be used
in mouse populations [35, 36••, 37]. As a result, most studies have used linkage analysis in
experimental crosses to map BMD QTL [38••]. Similar to human QTL, it has proven
difficult to positionally clone the underlying genes [34]. However, there have been a number
of recent studies demonstrating that in this setting the use of systems genetics techniques can
significantly assist in gene discovery. Mehrabian et al. [39] provided one of the first
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successful examples of this approach for BMD. In this study, the authors mapped a QTL
affecting a number of metabolic traits (obesity, plasma lipid levels, etc.) and BMD to
chromosome (Chr.) 6 in an F2 cross between the C57BL6/J and DBA/2J mouse strains [39].
Using microarray data from F2 mice, it was found that this locus also regulated the
expression of over ~2000 transcripts (identified as distant eQTL linked to the Chr. 6 QTL).
These data suggested that the underlying gene affected BMD and the metabolic traits
through a major impact on the transcriptome. Of the 172 positional candidates within the
Chr. 6 BMD locus, none were regulated by local eQTL that might explain the association
and 5-lipoxygenase (Alox5) was the only gene that harbored a missense mutation between
the two strains. The list of ~2000 genes with distant eQTL mapping to this locus was then
cross-referred with genes showing a significant difference in expression between mice
deficient in Alox5 (Alox5-/-) and controls. There was a highly significant (P=3.3 × 10-17)
overlap between the two gene lists. This suggested that the Alox5 missense mutation
disrupted the expression of a network of genes, which in turn perturbed a wide range of
physiological systems including bone. Consistent with this hypothesis, it was shown that
mice deficient in Alox5 (Alox5-/-) have reduced BMD [39, 40].

Systems genetics can also be used to identify candidate genes for BMD in mice on a
genome-wide scale. We recently reported the genome-wide systems genetics analysis of
BMD in an F2 cross between the C57BL6/J and C3H/HeJ mouse strains [38••]. A total of
nine BMD QTL were identified. We used microarray data from adipose on all ~300 F2 mice
to identify genes that were regulated by local eQTL that overlapped one of the nine BMD
QTL. We did this to identify likely candidates under the assumption that local eQTLs would
be responsible for a subset of BMD QTL. Although we did not have access to bone-relevant
expression data, it has been shown that local eQTLs are generally conserved across tissues
[41]. This analysis identified 148 genes whose expression was regulated by local eQTL and
correlated with BMD. We then used a causality prediction method to formally “orient” the
relationships between the most significantly linked SNP at each QTL, the expression of
eQTL genes overlapping each locus and BMD. To illustrate how causality prediction works
consider the example of a SNP that is associated with both differences in a gene’s
expression and BMD. We know that the flow of information has to begin with the SNP (ie,
genetic variation can alter a gene’s expression and/or BMD, but changes in expression or
BMD do not alter primary DNA sequences); therefore, the possible relationships can be
modeled as: 1) causal (SNP→Gene→BMD), 2) reactive (SNP→BMD→Gene), 3)
independent (Gene←SNP→BMD), or 4) confounded (SNP→Gene←BMD or
SNP→BMD←Gene). Probabilities for each model can be calculated using likelihood-based
approaches or structural equation models [42, 43]. Hypotheses are then drawn based on
relative model probabilities. Typically, the causal model is the one we are most interested in
because it links a gene’s expression to a change in a clinical trait; however, the approach can
also be used to identify “reactive” genes downstream of other genes, such as key
transcriptional regulators [43]. Using this approach, 18 of the 148 genes with eQTL were
predicted to be associated with variation in BMD. Four of the 18 (Twist2, Mmp14, Grem2,
and Wnt9a), have been previously implicated in skeletal development or bone cell activities
[44-48].

It is also possible to use causality prediction methods in the mouse to prioritize genes
located within human GWA signals. In the BMD and bone morphology GWA by Hsu et al.
[31••] discussed above, four genome-wide significant and 16 suggestive BMD/morphology
associations were identified. For the four genome-wide significant hits, causality prediction
in an F2 mouse cross was able to identify at least one putatively causal gene for three of the
four associations. Additionally, the gene nearest the most significant SNP for 12 of the 16
suggestive GWA signals was predicted to be causal in mice, suggesting that many of these
associations represent true signals.
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Generating a Systems-Level View of Osteoporosis Using Network Analysis
Complex traits, such as BMD, are influenced by thousands of functionally polymorphic
genes, which act in concert with environmental stimuli to generate specific network “states”
[14]. Network states are defined as the entire set of interactions between molecular
components within cells and across cells and tissues at a particular time [49••]. The network
state of an individual determines where on the spectrum of quantitative variation that
individual lies. In the case of BMD, a network state that leads to high values protects against
fracture, whereas a network state that leads to values at the opposite end of the distribution
will promote fracture. Given that complex non-additive interactions are responsible for
setting a specific network state, it is unlikely that states can be inferred based solely on the
knowledge of all the individual genetic variants that contribute to a trait or disease.
Therefore, it is not feasible for a reductionist approach, such as GWA, to provide a
comprehensive view of the genetic basis of variation in osteoporosis-related traits. On the
contrary, systems genetics-based network analysis can begin to identify and characterize
these interactions by determining how genetic information is coordinated, processed, and
transmitted through cellular networks [15].

Networks consist of nodes connected by edges. In a biological network nodes are the entities
of cellular components, such as transcripts, proteins, and metabolites. The edges are any one
of several different types of interactions including genetic, transcription-factor binding,
protein-protein, and coexpression [50]. In systems genetics research, coexpression networks
are the most common and are generated using global expression data (generated using
microarrays or RNA-seq) collected across many genetically unique individuals [51]. The
patterns of gene expression that result from each unique genetic background are then used to
quantify correlational relationships among genes on a transcriptome-wide scale. The edges
then reflect the strength of the correlation between two transcripts. As with most types of
networks, coexpression networks are highly modular with distinct modules representing
dense clusters of highly correlated and connected nodes [52]. Coexpression modules can be
associated with a particular phenotype by determining their enrichment for genes predicted
to be causal [49••] or correlating their behavior with the phenotype [53]. Modules have been
shown to typically be enriched for genes sharing a similar function [54-58]. Thus, the
identification of modules associated with disease provides insight into the pathways that are
important for that disease and module membership can be used to predict the function of
novel genes [36••]. One of the most popular algorithms for the generation of coexpression
networks is Weighted Gene Co-expression Network Analysis (WGCNA) [59]. WGNCA
networks can be easily created using an R package [60].

In the first systems genetics analysis of chondrocytes, Suwanwela et al. [61••] generated a
WGCNA gene coexpression network consisting of 14 modules. The network was generated
using microarray data from chondrocytes isolated from 27 mouse strains from two
recombinant inbred panels, C57BL6/J and DBA/2J (BXD) and C57BL6/J × C3H/HeJ
(BXH). One of the coexpression modules was correlated with bone morphology and BMD
in the strains. Twenty-eight of the most highly connected genes from this module were
knocked down using RNA interference in the ATDC5 chondrogenic cell line. Knockdown
of five (Hspd1, Cdkn1a, Bhlhb9, Cugbp1, and Spcs3) of the 28 significantly altered
chondrocyte differentiation. This systems genetic study identified five new regulators of
chondrogenesis and suggested that the module of genes they belonged to played an
important role in cartilage and/or bone development.

We also recently generated a coexpression network for circulating monocytes from
individuals with low (BMD Z-score of -1.72 ± 0.60) and high (BMD Z-score of 1.57 ± 0.57)
BMD [55]. The network consisted of 11 coexpression modules. One module, referred to as
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module 9, was found to be more highly expressed in individuals with high BMD, relative to
the low BMD group. This module was significantly (P=7.6 × 10−11) enriched in genes that
were involved in the immune response. This included a large number of genes that were
induced by the pro-resorptive cytokine interferon-γ [62]. Importantly, it was found that the
most highly connected “hub” genes in the network were more likely to be genetically
associated with BMD in two independent GWA studies [7••, 10], than genes that were more
lowly connected [55].

One of the other ways network analysis can be used is to provide information on gene
function. This was highlighted in a recent mouse systems genetics study in which GWAS
was used in a new genetic reference population referred to as the Hybrid Mouse Diversity
Panel (HMDP) to identify BMD associations [36••]. The HMDP consists of ~100 inbred
strains that have been genotyped at high density (actual or imputed genotypes for millions of
SNPs are available on the HMDP) [35]. We identified an association on Chr. 12, which
harbored six genes. Of the six, none were regulated by local eQTL. However, the most
significant association was with a non-synonymous SNP in the additional sex combs-like 2
(Asxl2) gene that was predicted to have deleterious effects on protein function. BMD in
Asxl2 knockout (Asxl2-/-) mice was found to be lower, indicating that Asxl2 was a regulator
of BMD. The GWAS had identified Asxl2 as a regulator of BMD; however, it was unclear
how Asxl2 altered BMD. To begin to uncover its function we generated a WGCNA bone
coexpression network using microarray data from the HMDP. In the network, Asxl2 was the
most closely connected to genes involved in myeloid cell differentiation. In bone,
osteoclasts are bone-resorbing cells of myeloid origin [63]. Additionally, in a human
protein–protein interaction network, ASXL2 interacted with TRAF6, a key component of
the major signaling pathway regulating osteoclastogenesis [63]. Thus, we predicted that
Asxl2 was involved in the differentiation of osteoclasts. Consistent with this hypothesis, an
~50% knockdown of Asxl2 in osteoclast precursors significantly inhibited their ability to
form mature osteoclasts. These data suggested that Asxl2 influences BMD, at least in part,
through its regulation of osteoclastogenesis. This study demonstrates the utility of
coexpression networks to provide functional context for genes associated with complex bone
phenotypes.

Conclusions
Approaches such as GWA are rapidly improving our ability to develop lists of genes that
influence traits such as BMD; however, it is unlikely that strictly correlating genotype with
phenotype will provide a complete picture of osteoporosis. Systems genetics is an approach
that has the potential to complement and enhance GWA through techniques such as eQTL
identification, multivariable modeling, and network reconstruction. These studies improve
gene discovery, and more importantly, they allow one to approach disease genetics from a
systems perspective instead of through the eyes of reductionism. It is expected that in the
years to come systems genetics will provide a much clearer understanding of the nature and
composition of the genetic architecture of osteoporosis.
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Figure 1.
Systems genetics schema for the investigation of complex osteoporosis-related phenotypes.
The approach begins by collecting clinical, global gene expression, and genotype data from
family- or population-based samples. QTL or association analysis, depending on the
population type, can be used to identify correlations between genotype and clinical/gene
expression traits. These data can then be used to prioritize genes based on coincidence
between gene expression and clinical QTL or associations and causality modeling.
Additionally, network data on highly connected genes or genes belonging to a module
correlated with a clinical trait can also be used to screen candidates. High priority genes and
pathways can be validated in large populations using association analysis and/or in animal
models using transgenic mice. QTL—quantitative trait loci; SNP—single nucleotide
polymorphism.
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