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Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions
between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six
ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts
and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically intercorrelated, forming 241
transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific
expression and transcription factor binding sites. The high degree of transcriptional connectivity allows us to infer genetic
networks and the function of predicted genes from annotations of other genes in the network. Regressions of organismal
phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful
correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provide insight
into the molecular basis of pleiotropy between complex traits.

Natural populations harbor a wide range of phenotypic variation
for all aspects of morphology, physiology, behaviors and disease
susceptibility. Knowledge of the genetic basis of this variation is
important for understanding adaptive evolution, deriving elite
domestic crop and animal strains and improving human health.
However, determining the genetic architecture of natural pheno-
typic variation is challenging because most phenotypic variation is
attributable to segregating alleles at many interacting genes with
environmentally sensitive effects1,2.
Recent genome-wide association studies in human populations

have reported that diseases and quantitative traits are associated
with loci with small effects, which together account for a few percent
of the phenotypic variance for that trait3. These findings suggest that
the bulk of genetic variation for complex traits may be due to alleles
with small and possibly context-dependent effects. Further, the
reported associated variants are often found in genes with no a priori
expected relationship to the trait, in computationally predicted genes,
or in gene deserts. In Drosophila, quantitative analyses of new
mutations have revealed large numbers of loci affecting quantitative
traits4, as have high-resolution maps of segregating quantitative trait
loci (QTLs) in Drosophila4 and mice5. Single alleles often have
pleiotropic effects on multiple traits, epistatic interactions among
loci affecting the same trait are common, and allelic effects can be
conditional on sex and the environment4.

Our understanding of the genetic architecture of quantitative traits
in model systems, and ultimately humans, will benefit from inter-
rogating a single resource population for variation in DNA sequence,
transcript abundance, proteins and metabolites; for multiple organis-
mal phenotypes; and in multiple environments. This ‘systems genetics’
approach will yield a detailed map of genetic variants associated with
each organismal phenotype in each environment, provide a functional
context for interpreting the phenotypes, elucidate the genetic under-
pinnings that govern the interdependence of multiple phenotypes, and
address the long-standing question of the genetic basis of genotype by
environment interaction6–8.
Here we report the first step of a systems-genetics analysis of the

genetic basis of complex traits in Drosophila. We demonstrate ubiqui-
tous variation in transcript abundance among inbred Drosophila

strains recently derived from the wild, and show that the variable
transcripts can be grouped into coherent modules of intercorrelated
genes. These lines harbor substantial genetic variation for ecologi-
cally relevant complex traits, and variation for hundreds of transcripts
is associated with variation for each of the organismal traits.
Transcripts associated with each trait form correlated transcriptional
modules from which we can construct networks of interacting
genes with plausible biological relationships to each other and
the traits. These genetic networks provide additional func-
tional annotation of the Drosophila genome, and an integrated
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context in which to frame predictions of the behavior of the
system following genetic or environmental perturbations.

RESULTS
Natural variation in transcript abundance
We derived 40 highly inbred lines from the natural population of
Raleigh, North Carolina, USA. These lines are a living library of
common polymorphisms affecting complex traits. We assessed whole-
genome variation in transcript abundance for young males and
females of each of these lines using Affymetrix Drosophila 2.0 arrays.
We standardized the raw array data by median centering and used a
statistical approach to identify outlier probes in each perfect-match
probe set that contained single feature polymorphisms (SFPs) between
the wild-derived lines and the reference strain sequence used to design
the array. We used the median log2 signal intensity of the remaining
perfect-match probes in each probe set as the measure of expression.
Of the 18,800 transcripts on the array, 14,840 (78.9%) were expressed
in young adults (Supplementary Table 1 online). Many genes that
have been characterized for their role in early development are also
expressed in adults, and may affect adult phenotypes that cannot be
predicted from their prior developmental functions9,10. We used
analysis of variance (ANOVA) to partition variation in expression
between sexes, among lines, and the sex � line interaction for each
expressed transcript.
The sex term was significant at a conservative false discovery rate

(FDR)11 of 0.001 for 13, 086 (88.2%) of the expressed transcripts
(Fig. 1a and Supplementary Table 1), indicating pervasive sexual
dimorphism for gene expression. A total of 3,255 transcripts had
twofold or greater differences in expression between the sexes: 1,690

with female-biased expression, and 1,565 with
male-biased expression. Previous studies
reported largely male-biased expression in
D. melanogaster12,13. Our observation of
nearly equal numbers of transcripts with
strong male and female expression bias is
likely attributable to our greater power to
detect smaller sex-biased effects, as the abso-
lute magnitude of the difference in expression
between the sexes is less for female-biased

than for male-biased transcripts (Fig. 1a). Gene ontology analysis14

showed that both male- and female-biased transcripts were enriched
for genes affecting reproduction and gametogenesis. The female-
biased transcripts were also enriched for genes affecting basic cellular
processes, and the male-biased transcripts for genes involved in
reproductive behavior and physiology, mitochondrial energy metabo-
lism and intermediary metabolism (Supplementary Table 2 online).
The line term was significant at an FDRo 0.001 for 10,096 (68.0%)

of the expressed transcripts, indicating considerable genetic variation
in gene expression (Supplementary Table 1). Estimates of broad-sense
heritability (H2) for significant transcripts ranged from E0.3–1.0
(Fig 1b). Transcripts with high levels of genetic variation (H2 4

0.8) were enriched for genes involved with responses to the environ-
ment, whereas transcripts with low levels of genetic variation (H2

o

0.2) were enriched for genes affecting processes essential for survival
(Supplementary Table 2). The overall correlation (r) between H2 and
mean expression was low, although statistically significant (r ¼ 0.078,
P ¼ 3.13 � 10�21). The high level of genetic variation in gene
expression is partly attributable to the doubling of the additive genetic
variation of an outbred population in a population of fully inbred
lines, and inflation of broad-sense heritability estimates by any
nonadditive genetic variance1. Significant heritability of abundance
of a particular transcript does not necessarily mean that cis-acting
genetic polymorphisms cause the variation; it could be due to trans

regulation by another genetically variable transcript6–8.
A significant sex � line interaction indicates genetic variation in the

magnitude of the sex dimorphism among the lines, or equivalently, a
significant departure of the cross-sex genetic correlation (rMF) from
unity. The sex � line interaction was significant for 4,108 (40.7%) of
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Figure 1 Variation in transcript abundance among

40 wild-derived inbred lines. (a) Sex bias for gene

expression. Blue and red dots represent genes

showing a twofold difference in gene expression

between males and females, respectively.

(b) Distribution of broad-sense heritabilities (H2).

Dark green denotes significant H2 estimates (line

FDR o 0.001) and grey indicates nonsignificant

H2 estimates. (c) Distribution of cross-sex genetic

correlations for transcripts showing significant

variation in sexual dimorphism (significant sex �

line interaction variance at FDR o 0.001).

(d) Bivariate plot of H 2 estimates in males and

females. Orange dots indicate significant line-

by-sex interaction variance. (e) Chromosomal

distribution of sex-biased gene expression. The

dark blue and red bars are observed male and

female counts, respectively, and the light blue

and red bars are the expected numbers of male

and female transcripts, respectively. Asterisks

indicate significant deviation of observed from

expected values (P o 0.001).
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the expressed transcripts at an FDR o 0.001 (Supplementary

Table 1). The average cross-sex genetic correlation of the transcripts
showing genetic variation in sexual dimorphism was quite low (rMF ¼
0.234), with a mode at rMF ¼ 0 (Fig. 1c). Variation in expression of
many transcripts among the lines was uncorrelated between males and
females, arguing for caution when extrapolating inferences about
variation in gene expression from expression profiles drawn from
one sex to the other sex. These data also reveal great potential for rapid
evolution of sex-biased gene expression, as observed when different
Drosophila species are compared13. Low cross-sex genetic correlations

were only partly attributable to transcripts
that were expressed and variable in only one
sex. Many of the transcripts showing varia-
tion in sex dimorphism in expression were
actually expressed in both sexes, but had
much higher heritabilities in one sex com-
pared to the other (Fig. 1d). Transcripts with
low cross-sex genetic correlations (rMF o 0.2)
were enriched for the same gene ontology
categories as sex-biased genes, indicating that
sex-biased transcripts are also genetically vari-
able in the sex in which they are highly

expressed (Supplementary Table 2).
The patterning of genetic variation within a population depends on

effective population size, recombination rate and the selection coeffi-
cient of new mutations1. These factors vary among chromosomes:
X chromosomes have smaller effective population sizes than auto-
somes and are hemizygous in males, and recombination is severely
reduced on the Drosophila fourth chromosome. Therefore, we asked
whether there were differences among chromosomes in mean level
and genetic variance of transcript abundance. Consistent with pre-
vious studies12,15, we found that male-biased transcripts were strongly
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Figure 3 Biology of transcriptional modules. (a) Distribution of tissue-

specific expression in modules 7, 18, 23, 66, 91. Module 7 is enriched for

male-biased transcripts and expression in the testes and accessory glands.

Module 18 is enriched for female-biased transcripts and expression in

ovaries. Module 23 is enriched for transcripts affecting reproduction and

gametogenesis that are highly expressed in ovaries and male accessory

glands. Module 66 is enriched for transcripts in the Notch signaling

pathway and nervous system development expressed in the midgut. Module

91 is enriched for transcripts affecting the function of the nervous system with high expression in the brain. (b) Modules 23 and 91 are, respectively,

enriched for the Abd-b (P ¼ 0.004) and Adf-1 (P ¼ 0.001) transcription factor binding motifs. Abd-b has been implicated in genital disc development47

and Adf-1 in memory and synaptogenesis48, consistent with the inferred function of genes in these modules. (c) Network representation of module 164,

emphasizing the genetic correlations between adult transcripts for three transcription factors that interact during embryonic and larval development.

(d) Putative functional annotation of CG15065 as a gene encoding an immune-induced molecule. Ranking all genetically variable transcripts according to

their correlation to CG15065 shows that IM1 is the strongest transcriptional correlate (r ¼ 0.74) and IM2 is the fifth strongest (r ¼ 0.63). The protein

alignments of CG15065, IM1 and IM2 are highly conserved.

Figure 2 Correlated transcriptional modules.

(a) Distribution of connectivity (average |r |) for

the 10,096 genetically variable transcripts

(line FDR o 0.001). (b) Clustering of the

genetically variable transcripts into 241 modules.

(c) Relationship between transcript H2 and ave-

rage connectivity. Error bars, s.e.m. (d) Correlated

transcriptional modules for genes in the amino

sugars metabolism and Notch pathway KEGG

ontologies. The colors on the off-diagonal

represent the average cross-module correlations.
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underrepresented on the X chromosome (and overrepresented on
chromosome 2L). In contrast, female-biased transcripts were strongly
overrepresented on the X chromosome (Fig. 1e). Possibly the X

chromosome is a hospitable location for female- but not male-biased
genes because mutations with X-linked deleterious effects on male
fitness are quickly purged from populations, but mutations with
recessive X-linked deleterious effects on female fitness can achieve
higher frequencies because they are protected from natural selection
when they are rare. We found differences in overall transcript
abundance among the chromosomes for both sexes (P o 0.0001),
with chromosome 4 having the highest mean expression and the X

chromosome the lowest mean expression (data not shown). We
also found differences in H2 of transcript abundance between the
chromosomes (P o 0.0001), largely attributable to reduced genetic
variation on the X and fourth chromosomes (data not shown).

Modules of correlated transcripts
We assessed the extent to which the 10,096 variable transcripts were
genetically correlated among the lines (Fig. 2). We computed pairwise
genetic correlations among all the variable transcripts, and
computed the mean absolute value of the pairwise genetic correlations
of each transcript with all other transcripts as a measure of average
connectivity (|r|, Supplementary Table 1). The distribution of |r| was
strongly skewed towards high values, with a mode at 0.6 (Fig. 2a).
Thus, the genome as a whole is highly genetically correlated at the
transcriptional level, which imposes constraints on the evolution of
transcriptional genetic networks. There is a strong inverse correlation
(r ¼ �0.263, P ¼ 1.08 � 10�159) between transcript heritability and
average connectivity—the most highly heritable transcripts have low
mean values of |r| (Fig. 2c) and are therefore presumably less
evolutionarily constrained. Indeed, there is a significant positive
correlation between heritability of transcript abundance and o, the

ratio of nonsynonymous to synonymous substitutions, among single-
copy genes with orthologs in six melanogaster group species16 (r ¼
0.132, P ¼ 7.56 � 10�25). Genes encoding transcripts with lower
heritabilities experience stronger purifying selection than do genes
encoding transcripts with high heritabilities. Although high heritabil-
ities are expected for genes under mutation-drift equilibrium1, it is not
likely that this mechanism accounts for the observed high heritabilities
of transcript abundance, as the estimates of o for these loci are much
less than the neutral expectation of unity. In addition, the high
heritability transcripts are predominantly for genes affecting responses
to the environment, which have been associated with responses to
artificial selection for multiple traits17–20. Therefore, the high herit-
abilities for these transcripts could be the result of more complex
evolutionary dynamics.
We grouped the genetically variable transcripts into modules using

a novel method to identify separable clusters of highly interconnected
genes (E.A.S. and J.F.A. unpublished data). The 10,096 transcripts fell
into 241 modules (Fig. 2b and Supplementary Table 1). The two
largest modules (7 and 18) consisted of 1,765 and 4,128 transcripts,
with average absolute intramodule correlations of 0.89 and 0.77,
respectively. Moreover, the expression of genes in these two modules
was strongly negatively correlated among the lines (Fig. 2b). We
carried out gene ontology enrichment analyses14 and found that
module 7 was enriched for the same functional categories as male-
biased transcripts, and module 18 was enriched for the same func-
tional categories as female-biased transcripts. We found significant
overrepresentations of male-biased genes in module 7 (1,241 of 1,565
male-biased genes, w1

2 ¼ 4,910; P E 0) and of female-biased genes in
module 18 (1,381 of 1,690 female-biased genes, w1

2 ¼ 1,400; P E 0).
Thus, the negative correlation between modules 7 and 18 is attribu-
table to higher expression of genes in module 7 in males than females,
and higher expression of genes in module 18 in females than males.
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There are strong correlations among transcripts in the same func-
tional pathways (for example, amino sugars metabolism and the Notch
signaling pathway, Fig. 2d). Genes within a module often show similar
tissue-specific expression patterns21, which suggests a common biolo-
gical function, genetic variation in organ size or both (Fig. 3a). Many
modules are enriched for known transcription factor binding sites
(Fig. 3b and Supplementary Table 3 online,). The high degree of
connectivity among transcript variation in a natural population allows
us to infer potential interacting partners of focal genes in networks for
functional studies. For example, disco, disco-r and tsh interact during
embryonic and larval development22, and have genetically intercorre-
lated transcripts in adults in module 161 (Supplementary Table 1 and
Fig. 3c). These genes are expressed in the adult nervous system21, and
are correlated with three other genes in this module (unc-5, drl, argos )
that are involved in nervous system development and axon guidance23

(Fig. 3c). Transcriptional correlation also enables functional annota-
tion of computationally predicted genes based on known annotations
of other genes in the network. CG15065 is a putative immune-induced
molecule (IM) gene, judging from its strong transcriptional correla-
tions with IM1 (r¼ 0.74), IM2 (r¼ 0.63) and IM3 (r¼ 0.67), physical
location adjacent to these genes, and notable protein sequence simi-
larity to IM1 and IM2 (Fig. 3d).

Associations with organismal phenotypes
We quantified variation among the 40 Raleigh inbred lines for several
ecologically relevant traits (resistance to starvation stress, time to
recover from a chill-induced coma, life span, a startle-induced loco-
motor response and mating speed) as well as a measure of competitive
fitness. We found substantial genetic variation for all traits, with
estimates of H2 between 0.25–0.58 (Fig. 4a–f and Supplementary

Table 4 online). The range of variation among these lines is compar-
able to the difference in mean phenotype between lines subjected to
long-term divergent artificial selection for these traits17,19. We observed
significant sex � line interactions for starvation stress resistance, life
span and chill coma recovery time (Supplementary Table 4). Esti-
mates of rMF (± s.e.m.) were high for organismal phenotypes (0.72 ±
0.11, 0.73 ± 0.11 and 0.87 ± 0.08 for starvation stress resistance, life
span and chill coma recovery, respectively), in contrast to the low
cross-sex genetic correlations observed at the level of transcripts.

We asked whether there were significant genetic correlations among
these traits, as would occur if segregating alleles have pleiotropic effects
on two traits in the same direction1,2. Only five genetic correlations
showed a significant association (Supplementary Table 4). There is a
tendency for lines that recover from chill coma quickly to have high
competitive fitness and mate rapidly, but at the expense of surviving
starvation stress. Lines that are resistant to starvation stress tend to
have longer life spans, but reduced competitive fitness. Thus, there is a
trade-off between genetic variants affecting recovery from different
environmental stresses. We do not observe high positive correlations
between all traits with each other and with fitness, as would be the case
if variation among the lines was attributable to the fixation of
deleterious alleles.
We observed 3,316 probes containing SFPs, and assessed associa-

tions of SFPs with organismal phenotypes. We found 119, 118, 141,
217, 245 and 195 SFPs associated with starvation stress resistance,
chill-coma recovery time, life span, locomotor behavior, mating speed
and fitness, respectively (P o 0.01, Supplementary Table 5 online).
Although some SFPs were associated with more than one trait
(Supplementary Table 5), the number of SFPs associated with
multiple traits did not exceed that expected by chance. Because we
can estimate the frequency of SFPs with significant phenotype
associations, as well as the homozygous effect of the SFPs, we can
evaluate the distribution of allelic effects. The homozygous effects
follow an exponential distribution for all traits, with larger effects
associated with the rarer SFPs, and smaller effects with the common
SFPs (Fig. 5), as previously predicted24.
We used regression models to identify transcripts that were

associated with each organismal phenotype. At a P value of 0.01, we

–1 –0.8 –0.6 –0.4 –0.2

0.1

0.2

0.3

0.4

0.5

0.6

0

Effect size (a)

M
in

o
r 

a
lle

le
 f

re
q
u
e
n
c
y

0.2 0.4 0.6 0.8

Figure 5 Distribution of SFP effects. The x axis is the SFP allele effect,

a/sG, where a is one half the difference in trait mean between the SFP

alleles and sG is the genetic standard deviations of each trait. The y axis is

the minor allele frequency. The traits are color-coded: chill coma recovery

(dark blue), starvation resistance (red), fitness (green), lifespan (purple),

locomotor reactivity (turquoise) and copulation latency (orange).

8a

b c

7

6

5

4

3

2

1

0

E
ff
e
c
t 
(m

in
)

C
G
1
4
6
9
6

–
/–

b
in
3

–
/–

G
s
tS
1

–
/–

R
o
c
2

–
/–

fs
(1
)h

–
/–

T
s
p
2
6
A

–
/–

e
c
la
ir

–
/–

L
k
6

–
/–

K
a
rl

–
/–

C
G
1
0
4
9
6

–
/–

C
G
3
4
4
8

–
/–

lo
la

–
/–

E
ip
7
5
B

–
/–

fr
z

–
/–

C
G
9
9
3
2

–
/–

fr
z
2

–
/–

M
E
S
R
3

–
/–

G
s
tS
1

–
/–

M
y
o
3
1
D
F

–
/–

fs
(1
)h

–
/–

C
G
1
6
7
0
8

–
/–

s
d

–
/–

fa
s

–
/–

4
E
H
P

–
/–

C
s
p

–
/–

T
ra
p
1

–
/–

C
G
3
3
1
5
8

–
/–

jim
–

/–

C
G
1
3
5
1
2

–
/–

C
G
3
2
1
3
7

–
/–

P
k
6
1
C

–
/–

L
k
6

–
/–

C
G
7
8
3
2

–
/–

C
G
1
8
4
9
0

–
/–

C
G
3
3
9
6
7

–
/–

s
a
lm

–
/–

jim
–

/–

fz
2

–
/–

e
m
c

–
/–

–1

–2

–3

–4

2

E
ff
e
c
t 
(h

)

0
–2
–4
–6
–8

–10
–12

E
ff
e
c
t 
(s

)

0
–3
–6
–9

–12
–15
–18
–21

Figure 6 Effects of P-element mutations in candidate genes affecting

quantitative traits. Mutational effects are given as deviations from the

co-isogenic control line. Red and blue bars represent males and females,

respectively. Mutations in all genes shown have significant effects in one

or both sexes (Supplementary Table 7). Error bars, s.e.m. (a) Chill coma

recovery time. (b) Starvation stress resistance. (c) Locomotor reactivity (data

from ref. 27).

NATURE GENETICS VOLUME 41 [ NUMBER 3 [ MARCH 2009 303

ART I C LES

 

©
2
0
0
9
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.



found 355, 1,128, 295, 231, 691 and 414 transcripts associated
with starvation stress resistance, chill-coma recovery time, life span,
locomotor behavior, mating speed and fitness, respectively (Supple-
mentary Table 6 online). There was little overlap between associations
of variation in transcripts and SFPs for the same phenotypes, further
increasing the number of candidate genes potentially associated with
each trait.
Transcripts that are significantly associated with organismal phe-

notypes are candidate genes affecting the phenotype25. We compared
phenotypes of P-element insertional mutations in or near candidate
genes with that of their co-isogenic control lines9,10. Seven of ten
mutations near candidate genes for resistance to starvation stress
indeed affected starvation resistance, and 29 of 39 mutations near

candidate genes for chill coma recovery time affected this trait
(Fig. 6a,b and Supplementary Table 7 online). Six of nine mutations
in candidate genes affecting locomotor reactivity have been shown
previously to affect this trait26 (Fig. 6c).

Transcriptional networks associated with complex traits
Most transcripts associated with phenotypes were either unexpected
based on prior mutational analyses of the traits, or from computa-
tionally predicted genes. To gain insight about functional relation-
ships among transcripts associated with each trait, we used the
residuals of the significant regressions of organismal phenotypes on
gene expression to quantify modules of transcripts with coordi-
nated patterns of expression across the 40 lines (Fig. 7 and
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Supplementary Table 6). Transcripts with spurious association to a
phenotype are unlikely to correlate with biologically relevant tran-
scripts after removal of the source of the association; conversely,
transcripts under coordinated control are likely to show correlated
expression patterns even after removal of the effect of their common
relationship to a phenotype. Each of the correlated transcript
modules associated with a trait can be represented as an interaction
network, with edges between transcripts in the network determined
by genetic correlations in transcript abundance exceeding a thresh-
old value (Fig. 7). We identified 26 modules of correlated transcripts
associated with chill coma recovery time, 20 associated with fitness,
11 with starvation stress resistance, 10 with life span and 9 each with
locomotor reactivity and copulation latency (Fig. 7 and Supple-

mentary Table 6).
We evaluated the biological significance of these networks by

asking whether genes within each module were enriched for
gene ontology categories (Supplementary Table 8 online), expression
in particular tissues, known protein–protein interactions or shared
domains. As expected, transcripts associated with variation for
fitness are enriched for genes that mediate immune response (modules
6 and 11), visual perception and function of the nervous
system (module 17) and chemosensation (module 20), and for sex-
specific transcripts (modules 7, 8 and 9) (Fig. 7 and Supplementary

Table 8). Variation for fitness can be maintained if there are
negative genetic correlations between fitness components1. Transcripts
in modules 7 and 9, which have female-biased expression, are
positively genetically correlated with each other but negatively
genetically correlated with transcripts in module 8, which have
male-biased expression. The genes of module 8 encode proteins that
are transferred to females on mating, are thought to benefit male
fitness27,28, and that evolve rapidly29,30, but which impose a fitness cost
on females31. The molecular basis of the female response to this
sexual conflict is not known, and could plausibly lie in the module 7
and 9 transcripts.
Transcripts associated with variation in starvation resistance are

enriched for genes that mediate antimicrobial response (module 4),
transcription (module 6) and proteolysis (module 9) (Supplementary

Table 8). One of the most highly connected genes in module 6, raptor,
is a member of the TOR (Target Of Rapamycin) pathway, which has a
key role in nutrient-sensitive signaling, regulates cell growth and
cellular mass32 and the use of alternative energy resources under
starvation conditions33.
As gene ontology enrichment analysis14 revealed similarities between

modules of correlated transcripts for the six traits (Supplementary

Table 8), we tested whether there was more overlap of common genes
between modules for the different traits than expected by chance, and
uncovered substantial modular pleiotropy (Fig. 8). For example, genes
affecting the mitochondrial ribosome are in common between chill
coma recovery module 17 and copulation latency module 3 (P ¼ 4.74
� 10�4), chill coma recovery module 17 and starvation resistance
module 8 (P ¼ 1.17 � 10�3), and starvation resistance module 8 and
copulation latency module 5 (P ¼ 7.53 � 10�4); whereas genes
affecting defense response to bacteria are in common between starva-
tion resistance module 4 and fitness module 11 (4.57 � 10�9) (Fig. 8
and Supplementary Table 6). These results give insights to the
molecular basis of pleiotropy between complex traits.

DISCUSSION
Our quantitative genetic analysis of whole-genome variation in
transcript abundance among a wild-derived population of Drosophila
inbred lines has revealed surprising features of the genetic architecture
of transcription. Nearly 80% of the genome is expressed in adult flies,
and approximately 90% of the expressed transcripts have sex-biased
expression at a stringent false discovery rate. Two-thirds of the
expressed transcripts are genetically variable in this sample of
lines—a much greater extent of genetic variation than indicated in
previous studies34–43. Over 40% of the genetically variable transcripts
also show genetic variation in sex dimorphism. Notably, the whole
transcriptome is highly genetically intercorrelated, with 60% of the
variable transcripts belonging to two large modules with high positive
genetic correlations within modules, and high negative correlations
between modules. One of the large modules is enriched for male-
biased transcripts and the other for female-biased transcripts. The
genetically correlated transcriptional modules are biologically plausi-
ble, with enrichments for transcripts in common pathways, gene
ontology categories, tissue-specific expression and transcription factor
binding sites. The high transcriptional connectivity at the level of
genetic correlation of natural variation in gene expression allows us to
infer genetic networks from the transcriptional networks, and the
function of computationally predicted genes based on known annota-
tions of other genes in the network.
Several hundred transcripts and SFPs are associated with phenotypic

variation in each quantitative trait, and 70% of P-element insertional
mutations tested in these candidate genes indeed significantly affect the
traits. The transcripts associated with each trait group into biologically
plausible modules of correlated transcripts, which are in turn correlated
between traits, providing insight into the molecular basis of genetic
correlations. Variation in transcript abundance in young adults reared
under standard culture conditions predicts candidate genes and
modules of correlated transcripts associated with variation in stress
responses, behaviors and life span. The lines and transcript data are
therefore a valuable resource for the Drosophila community,
enabling similar analyses for any complex phenotype that can be
quantified. Future integration of whole-genome DNA sequence
variation with variation in transcript abundance and phenotypes will
allow us to disentangle causal from consequential associations, and
determine the frequency of causal alleles. Further, the lines can be
crossed to interrogate heterozygous effects and degrees of dominance

Fitness

Locomotor

reactivity

Chill coma

recovery

Lifespan

Starvation

resistance

Copulation

latency

Figure 8 Pleiotropy between phenotypic modules. Grey lines connect

modules with a significant overlap of greater than four genes between gene

lists, as determined by Fisher’s exact tests.
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of alleles affecting transcriptional and organismal variation44. Knowl-
edge of allele frequencies and homozygous and heterozygous
effects will yield unprecedented insight into the nature of evolutionary
forces maintaining segregating variation for complex traits in
natural populations.

METHODS
Drosophila lines. We derived inbred lines from the Raleigh, USA population

by 20 generations of full-sib mating. We used the C(2L)RM-P1, b1; C(2R)RM-

SKIA, cn1 bw1 compound autosome (CA) stock for fitness assays. P-element

mutations and co-isogenic control lines were a gift of H. Bellen (Howard

Hughes Medical Institute, Baylor College of Medicine). We reared flies on

cornmeal-molasses-agar medium at 25 1C, 60–75% relative humidity and a 12-
h light-dark cycle unless otherwise specified.

Gene expression. We used Affymetrix Drosophila 2.0 arrays to assess transcript
profiles of 3- to 5-d-old flies from the inbred lines. All samples were frozen

between 1 and 3 pm. We extracted RNA from two independent pools (25 flies/

sex/line), and hybridized 10 mg fragmented cRNA to each array. We rando-

mized RNA extraction, labeling and array hybridization across all
samples, and normalized the raw array data across sexes and lines using a

median standardization.

Each transcript is represented by 14 perfect-match 25-bp oligonucleotides. To
identify perfect-match probes with SFPs between the wild-derived lines and the

strain used to design the array, we quantified the maximal degree to which the

variation between lines could be reduced by partitioning the lines into two allelic

classes. We computed the sum of squared deviations from each class mean and
expressed their sum as a fraction of the total sum of squares. The smallest

fraction across all bipartitions was used to score each probe. We identified 3,136

candidate SFPs with scores r0.1 (a tenfold reduction in the sum of squares).

We validated polymorphisms in 20 of 21 of these SFPs by designing primers
flanking the SFP and sequencing the PCR products (data not shown).

Our measure of expression for each probe set was the median log2 signal

intensity of perfect-match probes without SFPs. We used negative control

probes to estimate the background intensity, and removed probes below
this threshold.

Organismal phenotypes. For the starvation stress resistance group, we placed
ten same-sex, 2-d-old flies in vials containing 1.5% agar and 5 ml water, and

scored survival every eight hours (N ¼ 5 vials/sex/line). For the chill coma

recovery group, we placed 3- to 7-d-old flies in empty vials on ice for three

hours, and recorded the time for each individual to right itself after transfer to
room temperature (N ¼ 20 flies/sex/line). For longevity, we placed five 1- to

2-d-old same-sex virgin flies into vials containing 5 ml medium, and recorded

survival every two days (N ¼ 5 vials/sex/line). For locomotor reactivity, we

placed single 3- to 7-d-old flies into vials containing 5 ml medium. The
following day, between 8 am and 12 pm, we mechanically disturbed each fly19,

and recorded the total activity in the 45 s immediately following the

disturbance. We obtained two replicate measurements of 20 flies/sex/repli-
cate/line. For the copulation latency group, we aspirated pairs of 3- to 7-d-old

virgin flies into vials containing 5 ml medium between 8 am and 12 pm, and

recorded the number of minutes until initiation of copulation, for a maximum

of 120 min (N ¼ 24 pairs/line). For the reproductive fitness group, we used the
competitive index technique45,46. We reared all wild-type and CA parents in

constant density (10 pairs) vials. We placed six 3- to 4-d-old virgin CA males

and females and three 3- to 4-d-old wild-type males and females in a vial

containing 10 ml medium, discarding the flies after 7 d. The competitive index
was the ratio of the number of wild type to the total number of progeny

emerging by day 17 (N ¼ 20 replicate vials/line).

Quantitative genetic analyses. We used ANOVA to partition phenotypic

variation between sexes (S, fixed), lines (L, random), the S � L interaction

(random) and the error variance (e). We also carried out reduced ANOVAs by

sex. We estimated broad-sense heritabilities (H2) as H2 ¼ (sL
2 + sSL

2 )/(sL
2 + sSL

2

+ sE
2), where sL

2, sSL
2 , and sE

2 are the among-line, sex � line and within-line

variance components, respectively. For the analyses by sex, H2 ¼ sL
2/(sL

2 + sE
2).

We estimated cross-trait (cross-sex) genetic correlations as rG ¼ covij/sisj,

where covij is the covariance of line means between traits i and j (males and

females), and si and sj are the square roots of the among line variance

components for the two traits (males and females).

Transcriptional modules. To identify modules of genetically correlated tran-

scripts, we computed the correlation rij between all pairs of significant

transcripts i and j. The absolute correlationsr |rij| were transformed to define

edge weights e
jrij j�1

s2 in a graph of genes indexed by the free parameter s. We

determined the clustering P ¼ {V1, y., Vk} and value of s that jointly
maximize the modularity function

QðP;sÞ ¼
X

k

c¼1

AsðVc;VcÞ

AsðV ;VÞ
�

AsðVc;VÞ

AsðV ;VÞ

� �2
" #

where As(X,Y) denotes the total edge weight in the graph indexed by s

that connects any vertex in set X to a vertex in set Y. The optimal partition
P ¼ {V1, y., Vk} defines k transcriptional modules V1, y., Vk.

Transcript-phenotype associations.We used regression models (Y¼ m + S + T

+ S�T + e, where S denotes sex and T the trait covariate) to identify transcripts

significantly (P o 0.01) associated with organismal phenotypic variation in
both sexes. We used the residuals from regression models (Y ¼ m + E + S +

S�E + e, where E is the covariate median log2 expression level) to compute

genetic correlations between transcripts significantly associated with each

phenotype for module construction.

Pleiotropic modules. To identify transcriptional modules common to more

than one phenotype, we considered pairs of phenotypes, comparing the lists of

significant transcripts for each module from the first phenotype to each module

from the second. We used Fisher’s exact test to quantify the extent that the
overlap between the two modules exceeded the chance expectation.

Transcription factor motifs. We scored 5 UTR sequences of each D. melano-

gaster transcript against position weight matrices for 56 transcription factors;
100 permutations of each sequence were used to generate an empirical

distribution of scores for each motif. ‘Present’ motifs had scores within the

top 5% of the permutation distribution. We determined the genome-wide

proportion of genes for which each motif was present, and compared the
proportion of genes within a gene list or module for which a motif was present

to the genome-wide proportion using a one-sided binomial test.

Accession codes. ArrayExpress: microarray data have been deposited under

accession number E-MEXP-1594.

Note: Supplementary information is available on the Nature Genetics website.
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