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Abstract

Background: The human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to

neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often used as a cellular

model for Parkinson’s disease, the relevance of this cellular model in the context of Parkinson’s disease (PD) and

other neurodegenerative diseases has not yet been systematically evaluated.

Results: We have used a systems genomics approach to characterize the SH-SY5Y cell line using whole-genome

sequencing to determine the genetic content of the cell line and used transcriptomics and proteomics data to

determine molecular correlations. Further, we integrated genomic variants using a network analysis approach to

evaluate the suitability of the SH-SY5Y cell line for perturbation experiments in the context of neurodegenerative

diseases, including PD.

Conclusions: The systems genomics approach showed consistency across different biological levels (DNA, RNA and

protein concentrations). Most of the genes belonging to the major Parkinson’s disease pathways and modules

were intact in the SH-SY5Y genome. Specifically, each analysed gene related to PD has at least one intact copy in

SH-SY5Y. The disease-specific network analysis approach ranked the genetic integrity of SH-SY5Y as higher for PD

than for Alzheimer’s disease but lower than for Huntington’s disease and Amyotrophic Lateral Sclerosis for loss of

function perturbation experiments.

Keywords: SH-SY5Y, Cell line, Whole genome sequencing, RNA-seq, Proteomics, Cell line suitability evaluation,

Parkinson’s disease

Background
Cell lines are widely used for perturbation experiments

that aim to understand disease mechanisms at a cellular

level. Cells used in such experiments are only rarely an

inherent biological model for the disease of interest.

Most commonly, genetic or environmental perturbations

are required to create cellular responses, which can then

serve as an experimental disease model. It is known that

many cell lines carry major genetic variations, which

would be lethal for humans at the stage of prenatal de-

velopment. The main advantage of highly proliferative

cell lines relative to primary cells and induced pluripo-

tent stem cells is a significantly greater capacity for

experiments that require large amounts of clonal cells

with identical genetic background, such as needed in

state-of-the-art high-throughput screening, especially in

proteomics or metabolomics. The availability of clonal

cells allows the possibility for comparative perturbation

experiments aiming to compare phenotypic outputs
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derived from a set of single node perturbations [1]. In

addition, using cell lines avoids the ethical concerns aris-

ing out of human primary neuronal cell culture. The

human neuroblastoma cell line SH-SY5Y first described

in [2], is a commonly used cell line in studies related to

neuroblastoma and neurodegenerative disease. The cell

line is a sub-clone of the parent cell line SK-N-SH which

was originally established from a bone marrow biopsy of

a neuroblastoma patient [3]. The three human diseases

most frequently mentioned in literature for SH-SY5Y

were neuroblastoma, Alzheimer’s disease (AD), and

Parkinson’s disease (PD) (Additional file 1). A complete

genomic characterization of SH-SY5Y would thus eluci-

date the applicability and possible limits for modelling

these disease-specific processes in the context of this

cell line.

Undifferentiated SH-SY5Y cells have been extensively

used as an in vitro model for research in neuroscience

[4]. The cell line shows biochemical properties of imma-

ture catecholaminergic neurons [2]. Studies have found

that undifferentiated SH-SY5Y express only immature

neuronal markers and lack mature neuronal markers

[2,5]. Thus, undifferentiated SH-SY5Y cell line might not

represent an appropriate model for diseases such as PD,

which primarily affect differentiated dopaminergic neu-

rons [6]. Further, Xie et al. [4] reviewed 60 articles on

SH-SY5Y cell as in vitro model for PD research and

found that differentiation of SH-SY5Y under a certain

treatment results in a more dopaminergic neuronal

phenotype, which could be extremely useful for model-

ling selective dopaminergic cell death in PD. However,

they point out that an optimally differentiated SH-SY5Y

dopaminergic cell model requires further research. A

systems genomics analysis could thoroughly assess the

genetic mutations in all neuronal markers and therefore

place limits on how closely differentiation can model a

dopaminergic cell.

Furthermore, treatment with differentiation-inducing

agents enable SH-SY5Y cells to become morphologically

similar to mature primary neurons [7], and the different

treatment agents (e.g. retinoic acid, phorbol esters, dibu-

tryl cyclic adenosine monophosphate) result in a variety

of neuronal phenotypes (e.g. cholinergic, dopaminergic,

noradrenergic) [8]. Genomic mutations may, however,

impose limitations on the possible phenotypes to which

SH-SY5Y can differentiate. Therefore, a complete gen-

omic characterisation of the SH-SY5Y cell line can in-

form the limitations on the possible phenotypes imposed

by the genome.

Systems genomics aims to integrate genomic variation,

copy number and structural variation with high-throughput

gene expression, metabolomics and proteomic data to

explore the genetic architecture of complex traits and

multi-factorial diseases. For characterizing the SH-SY5Y

cell line we integrated information from whole genome

sequencing, transcriptomics, and proteomics experi-

ments (Figure 1). Firstly, whole-genome sequencing is

used to determine the genetic background of the cell

line. Secondly, transcriptomics and proteomics data is

used to study correlation across biological levels. Finally,

we integrate genomic variants using a network analysis

approach to evaluate the suitability of the SH-SY5Y cell

Figure 1 Systems genomics approach to assess SH-SY5Y as a disease model.
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line as an in vitro model to study various neurodegener-

ative diseases, including PD.

Results
Whole genome sequencing

The whole genome of SH-SY5Y cell line was re-

sequenced using two different sequencing platforms,

those from Complete Genomics (CG) and Illumina (IL)

HiSeq2000, to generate a high-quality list of variants.

An earlier study has shown the utility of combining in-

formation from both platforms and although they show

high concordance, each platform alone failed to detect a

significant number of exonic variants spread over 1,676

genes [9].

For the SH-SY5Y cell line, DNA sequencing by CG

[10] and IL [11] produced a genome-wide coverage of

57× and 49× respectively. (Additional file 2: Table S2)

More than 90% of the genome was covered by a minimum

read depth of 20 (Additional file 2: Figure S1 and S2).

Further, more than 95% of the exome was called with

minimum required confidence set by each of the

proprietary genotype-calling procedures of the two re-

spective sequencing platforms. The two genome-

sequencing platforms – CG and IL – produced a total

union of 3,896,055 single nucleotide variations (SNVs)

with 84% concordance between both platforms. Filtering

them based on criteria defined in Reumers et al. [12] re-

sulted in 2,314,627 SNVs with 99% concordance be-

tween both platforms. Out of these high quality variants

96% were previously reported by dbSNP build 137 [13]

and 98.4% by 1000 Genomes Project [14,15]. 4,336

SNVs and small indels were earlier reported by the

Catalogue of Somatic Mutations in Cancer (COSMIC)

[16] version 64. The total number of SNVs and the per-

centage of SNVs found in 1000 Genomes Project are

similar to controls (mean number of SNVs = 4,178,701

and 87.7% of them were found in 1000 Genomes Project,

see Additional file 2: Table S7) in another study [17] taken

from the Human Genome Diversity Project [18]. Among

the high confidence set of mutations in SH-SY5Y, 23 were

confirmed as somatic in the COSMIC database and were

also rare in the general population (see Table 1).

Table 1 High-confidence mutations in SH-SY5Y that were rare in the population and also confirmed as somatic in the

COSMIC database

Chromosome:begin-end COSMIC ID (tissue type) Genes (or adjacent genes)

2:174118525-174118526 140009 (skin) MLK7-AS1

3:3965330-3965331 146267 (haematopoietic_and_lymphoid_tissue) LRRN1(dist = 75944), SETMAR(dist = 379657)

3:97631173-97631174 166940 (large_intestine) ARL6(dist = 113801), MINA(dist = 29487)

3:97680355-97680356 166941 (large_intestine) MINA

3:195017896-195017897 212624 (breast) ACAP2

4:62000660-62000661 200267 (large_intestine) LOC255130 (dist = 3929195), LPHN3(dist = 362178)

5:40086690-40086691 145684 (haematopoietic_and_lymphoid_tissue) DAB2(dist = 661356),PTGER4(dist = 593341)

6:35837057-35837058 167752 (large_intestine) SRPK1

6:152632032-152632033 167911 (large_intestine) SYNE1

6:168431497-168431498 85018 (pancreas) KIF25

7:127075991-127075992 200565 (large_intestine) ZNF800(dist = 43225), GCC1(dist = 144690)

8:27913552-27913553 1098826, 1098827 (endometrium) C8orf80

8:38006195-38006196 187133 (large_intestine) STAR

9:6254465-6254466 1109518 (endometrium) IL33

11:57734912-57734913 146001 (haematopoietic_and_lymphoid_tissue, large_intestine) TMX2-CTNND1(dist = 148261), OR9Q1(dist = 56440)

12:7585976-7585977 179792 (large_intestine) CD163L1

12:11905442-11905443 180918 (large_intestine) ETV6

12:88344608-88344609 433706 (breast) MKRN9P(dist = 166121), C12orf50(dist = 29207)

14:72128130-72128131 195414 (large_intestine) SIPA1L1

16:12798881-12798882 1202185 (large_intestine) CPPED1

19:11134250-11134251 1161250, 1161251 (haematopoietic_and_lymphoid_tissue) SMARCA4

X:47039372-47039373 1121715 (endometrium) RBM10

X:104440586-104440587 487453 (kidney) IL1RAPL2

Rare mutations are SNVs and small indels that were found in less than 5% of the samples in 1000 Genomes Project, Exome Sequencing Project and Complete

Genomics baseline genomes. In the genes column, when distances are given, the mutations are found in intergenic regions and the first gene precedes the

mutation whereas the second gene succeeds the mutation.
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The number of private protein-altering (PPA) SNVs

and indels, i.e. protein-altering variants not found in 1000

Genome Project or the Exome Sequencing Project [19]

were 75 and 34 respectively (1,598 SNVs and 305 indels

before filtering), whereas the corresponding numbers for

controls were 390.9 and 17.5. The set of control genomes

refers to 11 genomes used in another study [17] taken

from the Human Genome Diversity Project [18]. The rea-

son for the discrepancy between the number of PPA SNVs

between SH-SY5Y and the control genomes is mainly due

to our strict filtering strategy as well as the different se-

quencing platforms that were used (See Additional file 2 –

section S6 for further details). The overlap between PPA

variants and the variants in the Catalogue of Somatic Mu-

tations in Cancer (COSMIC) was 36 and 8.7 for SH-SY5Y

and control genomes respectively. The overlap between

genes containing PPA SNVs and indels and the Sanger

Cancer Gene Census (SCGC) [16] was 7, similar to con-

trols (mean n = 5).

We also performed a Gene Ontology (GO) enrichment

analysis on the 121 genes containing filtered PPA SNVs

and indels and also on the 1,365 genes using unfiltered

PPA SNVs and indels. However, no GO term was signifi-

cantly enriched (see Additional file 3).

We judged the overall quality of the variant calls and

also compared them between the two genome sequen-

cing platforms - CG and IL. Then, we integrated variant

calls from both these platforms by using the filtering cri-

teria provided by an earlier study [12] that compared

these two platforms (See section S2 for an overview of the

comparison between CG and IL sequencing platforms).

Validation of SNVs and small indels

Validation was performed using the Illumina Omni-1

Quad microarray, which assays loci from HapMap Phase

1–3 [20] and 1000 Genomes Project. Out of 248,538

heterogeneous SNVs that were queried by genotyping,

99.0% were concordant, which increased to 99.5% for

the filtered variants (Additional file 2: Table S11).

Functional prediction of SNVs and small indels

The functional effect of SNVs and small indels were pre-

dicted using ANNOVAR [21] by annotation with labels

for genomic regions (intergenic, exonic, intronic, un-

translated regions, upstream and downstream close to a

gene) and coding effects (SNVs - synonymous, missense,

stop-gain, stop-loss - and indels - frameshift and non-

frameshift). The annotation was performed by taking a

consensus across four databases (RefSeq refgene release

55 [22], UCSC knowngene [23], Ensembl ensgene v65

[24] and GENCODE V4 [25]) based on choosing the

most damaging effect predicted in order to aim for sen-

sitivity (Additional file 2: Figures S4–S9). In general, the

association of SNVs to genomic regions for platform-

specific and concordant SNVs did not show any signifi-

cant differences. The association of SNVs with exonic,

intronic and intergenic regions was 1%, 26–36% and 46–

50% respectively, similar to the results in Lam et al. [9]

(Additional file 2: Figure S4 and S5). The functional

prediction found 366 genes with rare non-synonymous

SNVs, indels or substitutions (<5% frequency in 1000

Genome Project, 6500 Exome Sequencing Project and CG

Baseline Genome Dataset).

Neuroblastoma-relevant genes

The genome sequencing of SH-SY5Y found 27 genes

with rare non-synonymous SNVs, indels or substitutions

that overlapped with the list of 586 genes containing

somatic mutations in the complete genome sequence of

87 untreated primary neuroblastoma tumours [26] (See

Additional file 2: Table S12). Using the hyper-geometric

test, genes with rare non-synonymous SNVs and indels

were found to be significantly enriched among the genes

with somatic mutations in primary neuroblastoma tu-

mours (p-value = 6.80 × 10−13). Out of these 27 genes, only

mutations in 15 genes were predicted as damaging by

Sorting Intolerant From Tolerant (SIFT) [27].

Furthermore, only 3 genes with rare non-synonymous

SNVs, indels and substitutions overlapped with the 118

genes associated with neuroblastoma in the literature

(see Methods section) and therefore were not signifi-

cantly enriched (p-value = 0.072). However, genes with

non-synonymous SNVs, indels and substitutions, copy

number variations, and structural variations (n = 3611)

were significantly enriched among the 118 genes extracted

for neuroblastoma from literature with an overlap of 28

genes (p-value = 1.59 × 10−7).

We also compared genomic mutations in SH-SY5Y to

other genomic sequencing studies of primary neuroblast-

oma from patients. Among the seven genes mutated at a

significant frequency in a study of 240 matched tumour

-normal samples [28], none of the genes carried a rare

amino-acid changing mutation. Among the rare germ-

line variants predisposing to neuroblastoma identified by

the TARGET study, PALB2 contained two rare non-

synonymous mutations in SH-SY5Y. Among the 5,291

coding somatic mutations found in an aggregate of 240

matched tumour/normal samples, we found 26 overlap-

ping variants (Additional file 3) in SH-SY5Y inside 24

genes among which 9 were rare amino-acid changing

mutations inside 7 genes (ALK, FOXD4L1, HLA-DRB1,

NBPF10, NBPF14, PABPC3, TEKT4).

The Pediatric Cancer Genome Project (PCGP) con-

ducted a study of 40 patients with metastatic neuroblast-

oma and found mutations in ATRX and ALK in 22% and

14% of the patients correspondingly [29]. However, SH-

SY5Y contained no rare amino-acid-changing mutations

in these genes.
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Structural Variations (SV) and Mobile Element Insertions

(MEI)

Structural variation events consist of large deletions (>200

base-pairs), duplications (distal or tandem), inversions,

translocations and complex variations - other combina-

tions of such chromosomal rearrangements. The majority

of SV events in the SH-SY5Y cell line found by CG were

deletions (Additional file 2: Table S12 and S13).

Around 2–3% of cancers show chromothripsis [30],

where tens to hundreds of genomic rearrangements

occur in a cellular crisis event. In a certain region, a high

density of genomic rearrangements (or breakpoints)

combined with frequent oscillations between two copy

number states [30] and frequent occurrences of runs of

homozygosity constitute the hallmark of chromothripsis.

Cytogenetic methods confirm a high density of genomic

breakpoints in single cells and indicate that these break-

points are not a result of parallel rearrangements in

different sub-clones [30].

However, for SH-SY5Y, DNA sequencing found little

to no evidence of chromothripsis. Most notably, no os-

cillations between copy number states of 100-kb binned

read depth were observed except for some on chromo-

somes 9, 10, 16 and X (Additional file 4). In all of these

four chromosomes, the regions with oscillating copy

number were near the centromeres (9, 10, 16) or the telo-

mere (16, X). Even though all of these regions have at least

six junctions, these regions consist of highly repetitive

DNA [31] and are therefore prone to mapping errors.

We filtered the SVs based on their frequency in the

CG baseline genome set [32] and extracted high-

confidence calls with a frequency of less than 10% in

the baseline. The CG baseline set comprises of 52

genomes of healthy, disease-free individuals, which

could be used to filter technical artifacts and variations

common in the population. After filtering, the high-

confidence deletions overlapped with 26 genes including

the following cancer-related genes - PTEN (phosphatase

and tensin homolog), which is a key tumour suppressor

gene [33], CTNNA3 (catenin alpha 3), which is a cell

contact inhibition gene whose mutation can promote

cancer development and formation, MCC (mutated in

colorectal cancers) and MTUS1 (microtubule associated

tumour suppressor 1).

Mobile element insertions (MEI) refer to insertion of se-

quences that can change their position within the genome.

3,271 MEI events were detected in the CG data (Additional

file 2: Table S14) and the majority of those were Alu events

(n = 2,057) and L1 retro-transposons (n = 2,057).

Copy number variation (CNV)

CG identifies discrete coverage levels corresponding to

ploidy levels using the distribution of observed normal-

ized coverage values and then uses a hidden Markov

model to assign copy number levels (Complete Genom-

ics Data File Formats Standard Pipeline 2.4 [34]). Since

CG essentially uses the relative coverage as a proxy for

copy number, it cannot directly infer the absolute copy

number levels. However, M-FISH (multiplexed fluores-

cent in-situ hybridization) experiments have demon-

strated that diploidy dominates the copy number level in

the SH-SY5Y genome [35]. Therefore, we calculated the

absolute copy number levels assuming that the most

commonly found copy number level is 2.

We compared the copy number levels found by CG

with an earlier measurement using comparative genomic

hybridization (CGH) arrays [36]. The CGH arrays used

had a lower limit one million base pairs to their reso-

lution, a drawback not found in second-generation se-

quencing technologies such as CG and IL. To achieve

even higher resolutions and reduce false positive and

false negative copy number determinations, we normal-

ized the coverage levels to those observed in a reference

set of 590 in-house genomes also sequenced by CG. A

visual illustration of the copy number levels (Figure 2,

Additional file 2: Figure S21) confirms key features of

the cell line described previously such as partial trisomy

of chromosome 1, gain of chromosome 7, 2p, 17q, and

loss of 1p, 14q and 22q. Among the large-scale copy

number features identified in the PCGP project, the gain

of 17q (90%) was common with SH-SY5Y. The remaining

CNVs that were reported with a lower frequency in

PCGP - loss of 1p (43%) or loss of 11q (43%) were not

found in SH-SY5Y.

Interestingly, the strongest clinical marker of neuro-

blastoma that also determines the aggressiveness of

neuroblastoma [36] - gain of the gene MYCN (myelocy-

tomatosis viral-related) – actually had a relative coverage

of only 3. However, more recently, [35] confirmed the

finding that the MYCN gene is not strongly amplified in

SH-SY5Y. Also, among the 104 patients sequenced in

the PCGP project, only 23% carried an amplification

of MYCN, which was defined as >10 copies detect by

quantitative-PCR.

Transcriptome analysis

To characterize the SH-SY5Y cell line gene expression,

we sequenced poly-adenylated RNA from undifferenti-

ated SH-SY5Y cells using a stranded RNA-seq protocol.

We used the GRCh37 human genome version together

with the Ensembl release 66 [24] gene annotation. We

generated about 100 million paired-end reads of lengths

50 nt. The raw reads are available in the European

Nucleotide Archive (ENA) database [37] under the study

accession PRJEB7313. In total, 94 million paired-end

reads and 4.6 million singleton reads could be mapped

after quality control (QC) filtering and trimming to either

the genome or the transcriptome annotation. This yields
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in 95% mappable reads to either genome or cDNA

sequences.

For RNA-seq, we called SNVs and small indels using

both SAMTools [38] and the Genome Analysis Toolkit

(GATK) [39]. We retained the intersection of the two

outputs and those caller-specific variants supported with

a read depth greater than or equal to 10. As a recent

study has shown low concordance between multiple

variant-calling pipelines [40], we decided to increase the

level of confidence by using two variant-calling pipelines.

Consequently for RNA-seq, out of 95,173 SNVs and

small indels detected, 70.2% were concordant with unfil-

tered variants from at least one DNA sequencing plat-

form, either CG or IL (Additional file 2: Table S17). The

RNA-seq also showed high sensitivity as 95.1% of the

3,500 filtered exonic variants found through DNA se-

quencing in genes with FPKM > 5 were also detected by

RNA-seq. FPKM refers to Fragments Per Kilobase of

exon per Million fragments mapped, which is a measure

of gene expression. This sensitivity of RNA-seq for

variant detection was higher than that achieved by a

recent approach for SNV calling in RNA-seq data [41]

but the absolute number of detected exonic variants

(n = 3,300) was slightly lower than theirs (n = 4,000),

which might be due to our strict quality filtering of

the DNA sequencing data. As for neuroblastoma-relevant

genes from the 87 neuroblastoma primary tumours, out of

the 30 rare, amino-acid changing mutations (in 27 genes),

10 of them were detected by RNA-seq with the same zy-

gosity. The remaining 20 were likely not detected because

of low gene expression as all mutations detected by RNA-

seq were in genes with FPKM> 3.1 and all mutations not

found by RNA-seq were in genes with FPKM< 0.57.

Genetic copy number vs. gene expression

We compared genes that were always expressed in SH-

SY5Y across 247 different conditions (Additional file 5)

from the GEO (Gene Expression Omnibus) database

[42] to those that were never expressed, whenever the

corresponding probe was present. Here, the threshold

Figure 2 CNVs detected by whole genome sequencing and array-based CGH by Do et al. [36]. The results from whole genome sequencing

were from Complete Genomics and are given in the left half of the chromosomes. The results from the array-based CGH are on the right half of the

chromosomes. Regions are highlighted for copy number gain (red) and loss (blue). The major events partial trisomy of chromosome 1 and 2,

complete trisomy of chromosome 7, gain in 17q and loss in 22q were confirmed. (Generated using http://db.systemsbiology.net/gestalt/

cgi-pub/genomeMapBlocks.pl).
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used to determine whether genes were always expressed

in the GEO dataset was that the expression values of the

corresponding transcripts were always greater than the

median for all the transcripts in each microarray experi-

ment. Similarly, the threshold for genes never expressed

in the GEO dataset was that the expression values were

always less than the median for all the transcripts in

each microarray experiment. The frequency of mutations

per 100 kilo-base-pair region in genes that were never

expressed was 165.36, which decreased to 131.31 for

genes, which were always expressed. Similarly, the aver-

age copy number for genes always expressed was 2.18,

which was lowered to 2.09 for genes never expressed

(Additional file 2: Table S22). The distribution of expres-

sion of genes with copy number greater than 2 was sig-

nificantly greater (Welch’s t-test p-value = 2.2 × 10−16)

than expression of genes with copy number lower than

or equal to 2 (Additional file 2 – section S27).

Further, we compared the genetic copy number and the

RNA-Seq data of the same SH-SY5Y sample. The copy

number and the logarithm of Fragments per kilo-base of

transcripts per million mapped reads (FPKM) showed a

positive correlation (Additional file 2: Figure S24).

Proteome analysis

In order to confirm and correlate the biological expres-

sion of the identified genes, the analysis of genomic data

was integrated with the analysis of proteomics data ana-

lysis of SH-SY5Y cell lysates (see Methods section for

complete details). Proteins isolated from whole SH-SY5Y

cell lysates were fractionated by SDS-PAGE, in-gel di-

gested using trypsin, and the recovered peptides ana-

lysed by LC-ESI MS/MS. The spectra were analysed by

MaxQuant against a combinatorial human protein data-

base. This database contained the human genome refer-

ence hg19 protein entries combined with the sequence

variants found from the DNA sequencing done here.

Specifically, the coding sequences of Ensembl genes

were modified using all the homozygous exonic variants

(unfiltered).

In total, out of 334,065 acquired MS/MS spectra,

165,494 were matched to a peptide that could be mapped

to a total of 1,410 protein identifiers (Additional file 2:

Table S21). From these, 1,944 protein groups correspond-

ing to 1,355 proteins were identified in the human gen-

ome reference hg19 protein annotation. Further, 45

proteins were identified using sequence variants found

from the DNA sequencing done here. See Additional

file 6 for the abundances of proteins detected.

To increase peptide spectrum matches, we extended

the human genome reference hg19 protein database by

inserting reference sequences containing the homozy-

gous SNVs and indels in the exonic regions identified in

this study. The peptides that were additionally mapped

to the extended protein database were then used for val-

idation of genetic variants (Additional file 2 – section

S24). This approach validated 104 SNVs, 4 indels and 1

block substitution.

Gene expression vs. protein expression

Gene expression levels from RNA-seq and the corre-

sponding protein abundance were compared to detect

correlation. We plotted the logarithm of FPKM against

the logarithm of intensity–based absolute quantification

(iBAQ) [43] score of 1,307 genes (Additional file 2: Figure

S25 and Table S25), which were detected in both RNA-

seq and proteomics, which equals 93% of 1,410 proteins

detected by proteomics. As expected, the correlation was

weakly positive (correlation coefficient = 0.2784, p = 10−27,

see Additional file 2: Figure S26).

Network-based analysis of suitability of SH-SY5Y cell line

as in vitro model

In order to evaluate the suitability of SH-SY5Y as in vitro

model we adopted a framework described in [44] that

integrated genetic sequence information, and topology

analysis of either disease or process-specific networks.

We applied betweenness-centrality ratio (BC-ratio), a

metric that allowed us to quantitatively assess the im-

pact of genes mutated in the cell line on the disease or

process network. BC-ratio is normalized to lie between

0.0 and 1.0. It indicates how much the information flow

in the network might be altered by changes in the cell

line: the higher BC-ratio, the greater the impact of the

mutations, the lower the genetic integrity (or suitability)

of the cell line in the context of a specific network. (See

Methods section for a detailed discussion of the ap-

proach). The BC-ratio metric applied to four neuro-

degenerative diseases (Table 2) ranked Alzheimer’s (AD)

as highest BC-ratio = 0.246, pBC-value = 0.04), followed by

Parkinson’s disease (BC-ratio = 0.186, pBC-value 0.168),

Huntington disease (BC-ratio = 0.146, pBC value = 0.472),

and Amyothrophic Lateral Sclerosis (BC-ratio = 0.084,

pBC-value = 0.922 ). To investigate the appropriateness

of the cell line for perturbation experiments in the

context of PD, we also scored the different processes

corresponding to the hallmarks of PD (Table 3). See

Figure 3 for a protein-protein interaction network

resulting in the cell line suitability scores for neuro-

blastoma and ALS and Figure 4 for the network for

glycolysis and reactive oxygen species (ROS) metabol-

ism in PD. Additional file 7 contains network visualiza-

tions for each disease and each module in PD. The role

of the visualization is to give an idea of how damaged

genes are distributed in the network, to which genes

they are connected and how they could alter processes

of interest.
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Discussion
The complete system-wide omics analysis of the undif-

ferentiated SH-SY5Y cell line provided many opportun-

ities for studying concordance across biological levels

(DNA, RNA, protein). Firstly, protein-altering variants,

copy number variations and structural variations show

consistency with the expression level of genes in the

RNA-seq data. For instance, variant calling from RNA-

seq data showed 95.1% sensitivity for the 3,500 filtered

variants detected from DNA-seq in genes with an

FPKM > 5. Secondly, sequencing both the DNA and the

RNA showed a high degree of concordant SNVs and

indels (95.1% for genes with FPKM > 5 were detected by

RNA-seq) and served as further validation of DNA se-

quencing results and our filtering procedure for genomic

variants. Finally, the knowledge of genomic variants en-

hanced protein identification in proteomics experiments

where it increased the number of proteins detected from

1,365 to 1,410.

A comparison of the two whole genome sequencing

platforms – Complete Genomics (CG) and Illumina (IL) –

confirmed a significant number of variants that were dis-

cordant, either due to regions, which were not called by

one of the platforms or due to platform-specific errors.

Considering that 1% (n = 4,321) of these platform-specific

variants residing in 2,348 genes were associated with ex-

onic regions, using both platforms would increase the

detection of potentially functionally important SNVs. Also

only 75–80% of platform-specific variants were found in

the known list of variants (in dbSNP, 1000 Genomes

Project or 6500 Exome Sequencing Project), indicating

that a significant number of mutations are somatic muta-

tions or sequencing errors that need further investigation.

Further, the larger platform-specific biases for small indels

and structural variations also strengthened the argument

for using both platforms for greater sequencing accuracy.

Neuroblastoma-relevant genetic variations

Without the genome sequence of the healthy cells from

the patient, the difficulty of identifying somatic muta-

tions in SH-SY5Y precludes any direct comparison to

the somatic mutations in primary neuroblastoma tu-

mours. Thus, we compared rare mutations in SH-SY5Y

with the somatic mutations found in 87 primary neuro-

blastoma tumours. The union of genes from 87 different

patient samples resulted in a list of 586 genes, which we

considered as relevant to neuroblastoma. The result that

only 15 genes with rare amino-acid changing mutations

predicted as damaging in SH-SY5Y overlapped with

the list of 586 genes with somatic amino-acid changing

Table 2 Network statistics and cell line scoring of the neurodegenrative diseases and neuroblastoma

Disease name Nodes Edges Network centralization
(Betweenness)

Cell line suitability based on centrality metrics pBC-value

Total Damaged Intact Degree Closeness BC-ratio Flow BC

NB 63 15 48 192 .650 .362 .248 .591 .430 .010

AD 248 40 208 929 .405 .208 .161 .246 .215* .040

PD 358 55 33 1862 .246 .156 .153 .186 .176* .168

HD 63 10 53 153 .624 .183 .163 .146 .162 .472

ALS 178 22 156 371 .399 .116 .171 .084 .126* .922

Flow BC stands for flow betweenness centrality. The PBC-value refers to the network randomization test described in the Methods section. Flow Betwenness is

defined for connected networks. If the entire network is not connected, Flow betweenness is computed for connected components. In the table the flow

betweenness centrality of the largest connected component is given and marked by *. NB – Neuroblastoma; AD – Alzheimer’s disease; PD – Parkinson’s disease;

HD – Huntington’s disease; ALS – Amyotrophic Lateral Sclerosis.

Table 3 Network statistics and cell line scoring of the Parkinson’s disease modules

Module name Nodes Edges Network centra-lization
(Bet-weeness)

Cell line suitability based on centrality metrics pBC-value

Total Damaged Intact Degree Closeness BC-ratio Flow BC

Glycolysis 23 6 17 59 .321 .262 .256 .310 .253 .330

Mitochondria 259 32 227 4752 .127 .135 .137 .155 .128* .297

Calcium signalling 125 17 108 561 .160 .163 .132 .149 .095* .296

Apoptosis 122 15 107 250 .334 .080 .117 .146 .098* .279

Dopamine 54 8 46 175 .030 .174 .179 .115 .224* .448

Ubiquitin
protease system

55 7 48 809 .070 .150 .153 .044 .133* .340

ROS metabolism 58 3 55 121 .922 .012 .051 .000 .000 .375

Flow BC stands for flow betweenness centrality.The PBC-value refers to the network randomization test described in the Methods section. Flow Betwenness is

defined for connected networks. If the entire network is not connected, Flow betweenness is computed for connected components. In the table the flow

betweenness centrality value of the largest connected component is given and marked by *.
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mutations in primary neuroblastoma was expected as

there was considerable heterogeneity among the different

tumour samples themselves. Specifically, the sequencing

of 87 neuroblastoma primary tumours found few recur-

rent genes with amino-acid changing mutations - only 24

genes contained amino-acid changing mutations in more

than 1 tumour sample and only three genes in more than

two tumour samples. In this context, an overlap of 15

genes with rare amino-acid changing mutations suggests

that SH-SY5Y includes elements of the genetic architec-

ture of a variety of neuroblastoma tumours. Therefore, it

might offer opportunities to investigate traits arising from

amino-acid changing mutations found in different kinds

of neuroblastoma tumours.

As for structural variations, recurrently occurring

structural alterations in the neuroblastoma primary tu-

mours in PTPRD, ODZ3 and CSMD1 were not found

among high-confidence rare structural alterations in SH-

SY5Y. Finally, chromothripsis, which was earlier identi-

fied in 18% of primary neuroblastoma, was not detected

in SH-SY5Y. Therefore, SH-SY5Y would not serve as an

appropriate model for neuroblastoma tumours suffering

from chromothripsis.

Suitability of SH-SY5Y as an in vitro model for

neurodegenerative diseases

The BC-ratio relies on the network betweennness cen-

trality to quantify genetic changes in the cell line. It is

Figure 3 Protein-protein interaction network for two diseases – neuroblastoma (A) and for ALS (B). Red nodes refer to OMIM-derived

genes mutated in the cell line. Orange nodes refer to the OMIM-derived genes which are intact in the cell line. Dark green nodes represent genes

coming from the network expansion, which are mutated in the cell line. Light green nodes represent genes coming from the network expansion,

which are intact in the cell line. Nodes are scaled to the magnitude of their betweenness centralities. Blue edges show connections between pairs

of nodes in which at least one was damaged in the cell line. For neuroblastoma, mutations in the central genes – NME1 and ALK contribute to

the high BC-ratio. For the ALS network, mutations occur in genes with lower betweenness centrality which results in the lower BC-ratio.

Figure 4 Protein-protein interaction network for two PD map modules - glycolysis (A) and ROS metabolism (B). Red nodes refer to genes

mutated in the cell line. Orange nodes refer to genes which are intact in the cell line. Nodes are scaled to the magnitude of their betweenness

centralities. Blue edges show connections between pairs of nodes in which at least one was damaged in the cell line. For glycolysis, mutations in the

central genes lead to the high BC-ratio. Mutated genes lie on the periphery of the ROS metabolism network resulting in a low BC-ratio.
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important to consider that the BC-ratio does not aim to

interpret the functional effects of these mutations. In-

deed, mutations could cause a loss, gain, change or no

change in the function. However, such interpretations

require assumptions. In the case of neuroblastoma, we

know that the SH-SY5Y cell line was derived from a

neuroblastoma patient. Hence, it can be assumed that

many genetic mutations, which were observed in the

neuroblastoma network (BC-ratio = 0.591, pBC-value 0.01),

are indeed typical neuroblastoma mutations. Specifically,

copy number variations in the central neuroblastoma

genes NME1 and ALK (Figure 3A), both of which are

found to be mutated in neuroblastoma as well support this

reasoning. Briefly, it can be assumed that SH-SY5Y cells

are a good model for neuroblastoma cells and a high BC-

ratio (Table 2) was expected.

However, this case where a neuroblastoma cell line is

expected to model neuroblastoma is a special case. This

interpretation is similar to the approach of Domcke

et al. [45] of choosing the ‘most suitable models’ for

ovarian tumour among ovarian cancer cell lines based

on genomic and mRNA expression profiles. Typically, in

contrast, experimentalists use cell culture models to

study processes lacking such ideal identity matching.

Routinely, perturbation experiments are used to cause

controllable genetic defects in networks, which are over-

all assumed to be intact [46]. However, potential genetic

changes, which are ignored, can introduce errors into

the interpretation of results. The main scope of the BC-

ratio is to provide distances between networks of interest

in a cell line and their ideal reference networks. A BC-

ratio of 0.0 indicates an unchanged network representing

an ideal reference for perturbation experiments. The pBC
value evaluates if a BC-ratio > 0.0 was due to chance or

it resulted from strong correlation between the nodes

with high betweenness centrality and genes mutated in

the cell line. Note that a non-significant pBC-value does

not exclude any functional effects of network changes

and it is strongly recommended to collect additional

information for evaluating potential functional effects.

While our aim was not to predict functional effects

related to RNA or protein abundance, we are convinced

that the provided data will support case-specific inter-

pretations of functional network integrity.

A central question of our investigation was whether

context (i.e. disease or process)-specific networks are

overall changed in SH-SY5Y. The absence of network

changes was considered as ideal case for controllable

perturbation experiments. In the following paragraphs,

we first discuss the integrity of disease-specific networks

in SH-SY5Y and secondly, focus on PD in more detail.

The cell line suitability (BC-ratio) metric applied to

four neurodegenerative diseases ranked them from those

with the largest to the smallest changes in the network.

Alzheimer’s disease (AD) was ranked as the highest,

followed by Parkinson’s disease (PD), Huntington’s dis-

ease (HD) and, finally, Amyotrophic Lateral Sclerosis

(ALS). BC-ratios in combination with the pBC-values tell

us that genes mutated in the cell line are more likely to

be involved in the information flow control in AD (pBC <

0.05) network than the same type of genes is in the net-

works of other diseases . Overall, except for the neuro-

blastoma, BC-ratios were rather low (max BC-ratio =

0.246), and pBC-values were not significant for all but

neuroblastoma and Alzheimer’s disease. These results

indicate that the networks related to PD, HD and ALS

are largely intact in the SH-SY5Y cell line and the latter

can be considered a suitable model for perturbation ex-

periments targeting these diseases, while AD might re-

quire a special caution. It is also important to bear in

mind that none of these disease-specific networks were

perfectly intact. Indeed, the BC-ratio for each network

was computed as greater than 0.0, which indicates that

changes in these networks were detected. A prediction

of potential functional effects of these network changes,

including a classification in gain or loss of function goes

beyond the scope of the BC-ratio but the provided

data on RNA and protein abundances can support such

interpretations.

Genes from which the networks for the neurodegener-

ative diseases and neuroblastoma have been grown, were

derived from the OMIM databse where they have been

classified as having disease causative effect (See Methods

for the details). We also calculated the BC-ratios of the

respective networks assuming that only these seed genes

have had been damaged in the cell line. In all cases the

number of mutated genes decreased while the BC-ratios

of the cell lines increased for all but neuroblastoma

(Table 4). Note that in the case of neuroblastoma, the

main actors which contributed to the high BC-ratio

computed on the real data, already were OMIM genes,

damaged in the cell line. Therefore a lower BC-ratio

Table 4 BC-ratios of the neurodegenerative diseases and

neurobalstoma computed under assumption, that only

OMIM-derived seed genes have been mutated

Disease name Nodes Mutated
(OMIM genes)

Intact BC-ratio pBC-value

Huntington’s
disease

63 2 61 0.536 <0.001

Alzheimer’s
disease

248 13 235 0.495 < 0.001

Neuroblastoma 63 3 60 0.480 0.002

Amyotrophic
lateral sclerosis

178 17 161 0.409 < 0.001

Parkinsons’s
disease

358 15 343 0.379 < 0.001
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for neuroblastoma was expected in the absence of any

other damaged genes. The BC-ratio of the Huntington’s

disease increased considerably. This is mostly due to the

gene HTT followed by PRNP, which have the highest

betweenness centrality in the HD network. Alzheimer’s

disease scores next with APP gene making the main con-

tribution to the magnitude of the BC-ratio, being the first

on the list of all genes. It is immediately followed by 6

more OMIM-derived genes while their betweenness cen-

trality is more than two times smaller. Similar effect can

be observed in the case of Amyotrophic Lateral Sclerosis:

SOD1 has the highest betweenness centrality, followed by

VCP and DCTN1 with almost twice as much lower be-

tweenness. In this experiment, Parkinson’s disease had the

lowest BC-ratio although the list was dominated by 5

OMIM-derived genes. The explanation might lie in the

low betweenness centralization of the network (Table 2).

Network centralization [47] reflects how much variation is

there in the centrality scores (in our case, betweenness

centrality) among the nodes. The value of 0.246 indicates

that the scores are rather equally distributed among the

nodes and there are no nodes with apparent brokering

role. Therefore changing the node labels from intact to

damaged in such network produces smaller effect than in

the remaining diseases.

The increase in the BC-ratios of all neurodegenerative

diseases with the causative OMIM genes being consid-

ered as damaged, suggests that the genes which indeed

are mutated in the cell line have smaller positional ad-

vantages than OMIM genes in the corresponding net-

works and therefore might less be involved in the

information flow control. We believe that this observa-

tion supports our conclusion about the overall SH-SY5Y

cell line suitability for the experimental studies of the

neurodegenerative diseases.

To further analyse the suitability of the cell line as an

in vitro model for PD, we studied the integrity of disease

related sub-networks including mitochondrial dysfunc-

tion, reactive oxygen species (ROS) accumulation and

calcium homeostasis [48]. Fujita et al. [48] recently pro-

vided a comprehensive PD map, which integrates meta-

bolic reactions, gene regulation and signalling processes

in this complex network. The network consists of sub-

networks (also referred to as modules), which correspond

to pathways and processes. In these networks, nodes

represent genes, proteins or small molecules, and edges

represent molecular interactions.

We selected seven modules corresponding to hallmarks

of PD [49] from the PD map and scored them according to

the BC-ratio metric. The idea was to segregate PD-related

modules as more suitable for studying gain or loss of func-

tion of a module. In descending order of BC-ratio, the

modules were glycolysis, mitochondria, calcium signalling,

apoptosis, dopamine metabolism, ubiquitin proteasome

system and reactive oxygen species (ROS) metabolism

(Table 3). The PBC values indicated no significant changes

in these networks. However, we found that the gly-

colysis module (Figure 4A) is the most impacted (BC-

ratio = 0.31), which suggests that information flow

through this module could be significantly altered by

the genetic background of SH-SY5Y. One explanation

for glycolysis being highly impacted could come from

the fact that SH-SY5Y is a cancer cell line. It has

been shown that glycolytic rates are higher in cancer cells

than healthy ones [50,51], known as the Warburg effect

[51], which has been suggested to confer a proliferative

advantage to tumour cells.

Conversely, the ROS metabolism module (Figure 4B)

was the least impacted (BC-ratio = 0.0), which would

indicate that the genes, mutated in the cell line do not

compromise the information flow in this network.

For the functional interpretation beyond the BC-ratio,

it is important to consider that most of the genetic varia-

tions found in the PD modules do not carry mutations,

but almost exclusively copy number gains. Indeed, this

gain of copy numbers is expected because of the partial

trisomy of chromosomes 1, 2, and 17 and the full tri-

somy of chromosome 3. However, variations that alter

the protein sequence occur in very few genes. Among all

the damaged genes found in the seven modules from the

PD-map, only four contained non-synonymous SNVs.

The Sorting Intolerant From Tolerant (SIFT) [52] tool

predicted only 3 (MYO6, HADH and GZMB) as dam-

aging (SIFT score < 0.05). The gene MYO6, found in the

calcium signalling module and involved in intracellular

vesicle transport, contains a heterozygous non-synonymous

mutation with a SIFT score of 0.01. It also plays an import-

ant role in trafficking and activity-dependent recruitment of

AMPA receptors to synapses [53]. The gene HADH, found

in the mitochondria module and which catalyses several

reactions in beta-oxidation, also contains a heterozygous

non-synonymous mutation with a SIFT score of 0. The

gene GZMB, found in the apoptosis module and which

codes for a serine protease that is used by activated cyto-

toxic T lymphocytes to induce cell apoptosis [54], contains

a rare non-synonymous SNV with a SIFT score of 0.01.

However, in each of these three genes, only one copy of

the gene contains such rare non-synonymous mutations.

Further, four genes (NDUFA6, TOMM22, ATP5L2) in the

mitochondria module and one gene (XRCC6) in the apop-

tosis module had a copy number of one, leaving only a

single working copy. NDUFA6 has been shown to have a

high degree of nitration and be associated with the oxida-

tive damage to mitochondrial complex I [55]. TOMM22

plays an important role in mitochondrial clearance con-

trolled by PINK1 –PARK2 pathways [56]. ATP5L2 is

involved in hydrogen ion trans-membrane transport

activity [57]. XRCC6 codes for the Ku70 protein, which
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repairs double bond breakage of DNA through the non-

homologous end-joining pathway. Therefore, one should

consider the damage to these genes when designing loss

of function perturbation experiments. Indeed, it is import-

ant to test if the mutations per se cause a loss of function

and to keep in mind that a function which is already lost

cannot be lost a second time. Except for the 7 genes dis-

cussed above, all the genes in the modules of the PD map

were free of translated mutations in SH-SY5Y.

Genes related to dopamine metabolism in SH-SY5Y

In summary, all the genes involved in the dopamine

metabolism pathway (Figure 5) except CYP2D6, ADH1B

and UGT1A10 were expressed with or without specific

treatments. Further, CYP2D6, which contributes to dopa-

mine biosynthesis through an alternative cytochrome

P450-mediated pathway shown to exist in rats [58,59], has

a copy number of one, which may contribute to the lower

expression. Among the genes in the dopamine metabolism

Figure 5 Dopamine biosynthesis and degradation and the genes coding key enzymes. This metabolic pathway is a modified version of a

figure from Meiser et al. [60]. In addition to the enzymes involved, the genes coding for those enzymes have been added using the HumanCyc [61].

The mutations in SH-SY5Y affecting enzyme-encoding genes have been annotated only if they were rare protein-altering SNVs or indels, CNVs, or SVs.
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pathway that were expressed with or without specific treat-

ments, only ADH1C and DBH contained a rare protein-

altering mutation and DDC and AKR1B1 had a copy

number of three. Only the mutation in ADH1C was pre-

dicted as damaging by SIFT. Therefore, the large major-

ity of genes involved in dopamine metabolism contains

no genetic damage and can be expressed under certain

treatments.

Conclusions
In summary, we provide here the first whole genome ana-

lysis of the SH-SY5Y cell line, which is widely used as a

model for various neurological diseases. We characterise

the different types of biological information of SH-SY5Y –

genomics, transcriptomics and proteomics - and compare

the relationships between them in terms of expression

levels and variants. The data related to the genome se-

quencing, RNA sequencing and proteomics can be found

at the following URL - http://systemsbiology.uni.lu/shsy5y.

Additionally, we also compare the SH-SY5Y genome using

two widely used whole genome sequencing platforms and

show that using the two platform-specific coverages and

sensitivities to different indel sizes supplements each

other. Finally, our analysis based on context-specific

network integrity ranked the integrity of SH-SY5Y for

Parkinson’s disease as higher than for Alzheimer’s dis-

ease but lower than for Amyotrophic Lateral Sclerosis

and Huntington’s disease. In the context of different PD

related sub-systems, the same approach ranked ROS

metabolism as the most intact followed by the ubiquitin

proteasome system, dopamine metabolism, calcium sig-

nalling, mitochondria and glycolysis. Overall, most of

the genes belonging to the major Parkinson’s disease

pathways and modules were intact in the SH-SY5Y gen-

ome. Particularly, each analysed gene related to PD has

at least one intact copy in SH-SY5Y. Therefore, somatic

mutations do not significantly alter PD-related pathways

in SH-SY5Y. Importantly, the systems genomics analysis

was performed on the undifferentiated cell line although

differentiated cell lines are considered better suited as

in vitro models for PD. Our novel BC-ratio method for

cell line scoring integrates a genomic characterisation of

the cell line, core set of disease or process-related genes

and a protein-protein interaction network. This method

is not restricted to a specific cell line or disease and can

be broadly applied. Furthermore, if multiple sequenced

cell lines are available, the BC-ratio scores can also be

used as a guide to select the cell line best suited for

studying a particular disease.

Methods
SH-SY5Y cell culture

SH-SY5Y cells were cultured from a passage 23 (P23) vial,

purchased directly from ATCC (CRL-2266) (Figure 3). In

the first step the cells were amplified during 4 passages for

preparing passage 27 (P27) freezing stocks. The cells were

furthermore amplified during 5 passages for preparing

passage 33 (P33) samples for omics analysis. DNA was

extracted with the High Pure PCR Template Preparation

Kit (Cat. #11796828001, Roche). The samples sequenced

by Complete Genomics and Illumina platforms were of

equal passage and derived from the same frozen cell stock.

For RNA analysis the cells were lysed in Qiazol buffer and

were frozen at −80°C. RNA extraction was performed

using the miRNeasy Kit (Qiagen). For protein analysis the

cells were washed two times with DPBS and for inhibition

of proteases the cells were covered with complete (Roche)

solution in ddH2O and were frozen at −80°C.

DNA-Seq library preparation

Identical passage samples were derived from the same

freezing stock and have been sequenced by Complete

Genomics and Illumina platforms. DNA extraction

was performed on P33 cells using the High Pure PCR

Template Preparation Kit (Cat. #11796828001, Roche).

1 μg of input DNA was sheared using the Covaris to

an insert size of 100–900 bp. Sheared DNA was end-

repaired by adding End Repair Mix (Illumina) and incu-

bated at 30°C for 30 min. Following end-repair, AMPure

XP Beads (Agencourt) were diluted with water and

mixed with the DNA samples. The samples were incu-

bated at room temperature for 15 min then placed on a

magnetic stand for 15 min. The supernatant was re-

moved and discarded. The beads were washed with 80%

ethanol twice, then allowed to air-dry for 15 min. The

dried pellet was resuspended in Resuspension Buffer

to elute the DNA. The 3′ ends were Adenylated by

adding A-Tailing Mix (Illumina) and incubated at 37°C

for 30 min. Ligation Mix and a barcoded DNA Adapter

was added to each sample and incubated at 30°C for

10 min. The reaction was stopped by adding Stop

Ligation Buffer. The ligated DNA was cleaned up twice

using undiluted AMPure XP Beads and eluted in Resus-

pension Buffer. PCR Primer Cocktail and PCR Master

Mix were added to the ligated DNA and PCR was per-

formed with the following settings: 98°C for 30 s incuba-

tion followed by 10 cycles of 98°C for 10 s, 60°C for

30 s, 72°C for 30 s, final incubation at 72°C for 5 min,

hold at 10°C. The PCR reaction was cleaned up with

AMPure XP Beads and the library was resuspended in

Resuspension Buffer.

The genomic DNA was sequenced by Illumina using

the Illumina Fast Track Services (FTS) methodology:

1. gDNA Quantitation.

Genomic DNA is quantified prior to library construc-

tion using PicoGreen (Quant-iT™ PicoGreen dsDNA
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Reagent, Invitrogen, Catalog #: P11496). Quants are read

with Spectromax Gemini XPS (Molecular Devices).

2. Library Construction—PCR-Free.

Paired-end libraries are manually generated from

500 ng–1ug of gDNA using the Illumina TruSeq DNA

Sample Preparation Kit (Catalog #: FC-121-2001), based

on the protocol in the TruSeq DNA PCR-Free Sample

Preparation Guide. Pre-fragmentation gDNA cleanup is

performed using paramagnetic sample purification beads

(Agencourt AMPure XP reagents, Beckman Coulter).

Samples are fragmented and libraries are size selected

following fragmentation and end-repair using paramag-

netic sample purification beads, targeting 300 bp inserts.

Final libraries are quality controlled for size using a gel

electrophoretic separation system and are quantified.

3. Clustering and Sequencing—v3 Chemistry.

Following library quantitation, DNA libraries are dena-

tured, diluted, and clustered onto v3 flow cells using the

Illumina cBot™ system. cBot runs are performed based

on the cBot User Guide, using the reagents provided in

Illumina TruSeq Cluster Kit v3. Clustered v3 flow cells

are loaded onto HiSeq 2000 instruments and sequenced

on 100 bp paired-end, non-indexed runs. All samples

are sequenced on independent lanes. Sequencing runs

are performed based on the HiSeq 2000 User Guide,

using Illumina TruSeq SBS v3 Reagents. Illumina HiSeq

Control Software (HCS) and Real-Time Analysis (RTA)

used on HiSeq 2000 sequencing runs for real-time image

analysis and base calling.

RNA extraction

P33 cells were detached using Trypsin (Cat. #25300,

Gibco) and after centrifugation, the cell pellet was lysed

in QIAzol buffer and frozen at −80°C. The cell pellet in

QIAzol was thawed. Chloroform was added and the

sample was centrifuged at 12000 g for 15 min at 4°C.

The upper aqueous layer was removed and 1.5 times the

volume of the aqueous layer of ethanol was added. RNA

in the aqueous layer was bound to an RNeasy Mini col-

umn by loading the aqueous layer + ethanol to the top of

the column and spinning at 8000 g for 15 s at room

temperature. The column was washed once with Buffer

RWT, then twice with Buffer RPE. RNA was eluted from

the column with 2 washes of 30 μL of water.

Strand-specific RNA-Seq library preparation

PolyA RNA was isolated from 500 ng of input RNA

using oligo(dT)25 Dynabeads (Invitrogen) by binding the

RNA to the Dynabeads, collecting the beads with a mag-

netic rack, and removing the supernatant containing

non-polyA RNA. The Dynabeads were washed in wash-

ing buffer then the mRNA was eluted in TE buffer. The

binding and washing steps were repeated to remove

remaining non-polyA RNA. After the binding and wash-

ing, the Dynabeads were resuspended in 2× Superscript

III first-strand buffer with 10 mM DTT and incubated at

94°C for 6 min to fragment the mRNA then immediately

cooled on ice. The Dynabeads were collected on a mag-

netic stand and the fragment mRNA was moved to a

new tube.

Fragmented mRNA in 2× RT buffer, random hexam-

ers, and RNasin Plus was heated at 50°C for 1 min to de-

nature the RNA then placed immediately on ice. To this,

water, Actinomycin D, DTT, dNTPs, and SuperScript III

(Invitrogen) were added and reverse transcription was

performed by incubating the mixture at 25°C for 10 min

then at 50°C for 50 min. RNAClean XP beads (Agencourt)

were added to the mixture and incubated on ice for

15 min. The beads were collected on a magnetic stand,

washed twice with 75% ethanol then air-dried for 5 min.

The RNA/cDNA hybrid was eluted in water.

A second strand reaction master mix including either

10× Blue Buffer or NEBuffer 2, dNTP (with dATP,

dCTP, dGTP, and dUTP), RNase H, DNA polymerase I

(Enzymatics), and water was added to each sample and

incubated at 16°C for 2.5 h. Double-stranded DNA

was purified using 1.8 volumes of AMPure XP beads

(Agencourt) and eluted in water.

The DNA was dA-tailed by adding either 10× Blue

Buffer or NEBuffer 2, dATP, water, and Klenow 3′-5′

exo (Enzymatics) and incubated at 37°C for 30 min. The

dsDNA was purified using AMPure XP beads, and eluted

in water. To each sample, a specific barcode adapter was

added, along with Rapid Ligation Buffer and T4 DNA

Ligase HC (Enzymatics). The Y-shape adapter ligation was

performed by incubating at room temperature for 15 min.

DNA was purified and size selected by cleaning up

with AMPure XP beads 3 consecutive times and eluting

in TE buffer. The first cleanup was performed with 1

volume of AMPure XP beads, the second with 1.4 vol-

umes, and the last with 1 volume incubated at room

temperature for 5 min without washing to perform size

selection. The supernatant was transferred to a tube with

half of the new volume of AMPure XP beads and incu-

bated at room temperature for 15 min. The beads were

collected on a magnetic stand and washed twice with

75% ethanol. The DNA was eluted in water.

The second strand of DNA was digested with Uracil

DNA Glycosylase (Enzymatics) at 37°C for 15 min. The

PCR reaction was set up containing UDG-digested

DNA, primer A and B, Phusion HF Buffer, dNTP, water,

and Phusion II (New England Biolabs). The reaction was

incubated at 94°C for 2 min, followed by 10–12 cycles of

amplification (98°C for 10 s, 65°C for 30 s, 72°C for
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30 s). The DNA libraries were purified with 1.4 volumes

of AMPure XP beads and eluted in TE buffer.

Proteomics library preparation

P33 cells were washed twice with DBPS and covered

with a 1× complete protease inhibitor cocktail diluted in

ddH2O and frozen at −80°C. Refer to Additional file 8

for complete details on the proteomic sample preparation

and liquid chromatography – mass spectrometry (LC-MS/

MS) analysis.

Whole genome sequencing

SH-SY5Y paired-end whole genome sequencing was

done at Illumina and Complete Genomics (CG), Inc

(Mountain View, CA) (CG). Whole-genome sequencing

was performed (CG) using their proprietary sequencing-

by-ligation technology [10]. CG performed primary data

analysis using CGAtools v2.0.2.10 including image ana-

lysis, base calling, alignment and variant calling. Illumina

primary data analysis was performed using CASAVA pipe-

line v1.8. For both sequencings reads were mapped against

the human reference genome (hg19, NCBI build 37).

For CG data, coverage statistics were derived from

coverage and coverageRefScore files for each chromo-

some. Coverage at every base was assessed directly from

these files. The depth of coverage roughly follows a nor-

mal distribution with significant low and high tails, and

has very high sequence-specific local fluctuation. This

fluctuation mainly relates to G + C content and is con-

sistent among genomes analyzed with similar versions of

CGAtools. We corrected the sequencing coverage ob-

served in CG data by comparing to the coverage observed

in 590 genomes available internally at the Institute for Sys-

tems Biology, produced with comparable versions of the

same technology. To do this, we computed the average

coverage level in each 1 kb bin in the 590 reference

genomes, after scaling each genome to the geometric aver-

age of total autosomal coverage, stratified by G + C con-

tent. We then normalised the coverage levels in each 1 kb

window of SH-SY5Y to the corresponding median value

observed in the reference genome set. For Illumina, cover-

age information was extracted directly from BAM (binary

sequence alignment format) files. To compare CNVs

detected with results in literature, CNV measurements of

SH-SY5Y using CGH arrays [36] were converted from

hg17 to hg19 coordinates (Additional file 3) using the

LiftOver tool [62].

For CG, SNVs were derived from the var file. For Illu-

mina, SNVs were extracted from CASAVA output files.

SNVs from both platforms were combined into CG test-

variant format and compared using custom perl/python

scripts. ANNOVAR [21] was used to annotate the SNVs

with gene annotations downloaded from the UCSC

browser [23] (http://www.genome.ucsc.edu/).

Small insertions and deletions were derived for CG from

the VAR file. Indels for Illumina were obtained from

CASAVA output files. Copy number variation (CNV)

events were taken from cnvSegmentsNondiploidBeta-* file

and high-confidence structural variation (SV) events were

taken from /highConfidenceSvEventsBeta-* file. The mo-

bile element insertion (MEI) regions were found from

mobileElementInsertionsBeta-* file.

Transcriptome analysis

RNA-Seq FASTQ files were quality trimmed using the

novoalign (http://www.novocraft.com) tool with the –a

parameter. Sequencing reads were aligned to the UCSC

Homo sapiens reference genome hg19 using TopHat

v2.0.8 [63,64], which is integrated with Bowtie v2.0.5

[65] as mapping tool. TopHat removes a small number

of reads based on read quality and then maps the reads

to a provided reference genome sequence. The pre-built

UCSC H. sapiens hg19 bowtie2 index as well as the

Ensembl GRCg37 were downloaded from the TopHat

Illumina iGenomes site (http://ccb.jhu.edu/software/

tophat/igenomes.shtml). TopHat were run with default

settings: maximal 40 alignments per read were allowed,

with up to 2 mismatches per alignment. Additionally,

the flags ‘no-novel-juncs’ with library-type ‘fr-firststrand’

were used to suppress the prediction of new junction sites

and to ensure stranded alignments, respectively. The

resulting aligned reads in BAM format were analysed fur-

ther by Cufflinks v2.0.2 [64] in several ways. Cufflinks as-

sembled the aligned reads into transcripts using the

Ensembl gene annotation and reported the expression of

those transcripts in Fragments Per Kilobase of exon per

Million fragments mapped (FPKM). FPKM is an expres-

sion of the relative abundance of transcripts. Small vari-

ants (SNPs and indels) were called using SAMtools [38]

and BEDtools [66]. Using the BAM file generated with

TopHat samtools mpileup (−u –q10), bcftools (view –g)

and vcfutils.pl (varFilter) from the SAMtools software

suite as well as awk (‘($6 > = 50)’) is used to produce a

VCF (Variant Call Format) file filtered for minimum qual-

ity score of 50. The resulting VCF file is further filtered for

falsely called SNPs near splice sites using the BEDtools

package to filter out SNPs within a 5 nt window around

known splice site junctions.

Proteomics analysis

A FASTA protein sequence database was created by

combining two FASTA databases – (i) protein sequences

from the human genome reference hg19 and (ii) protein

sequences modified by genomic variants - SNVs, short

indels and block substitutions. To merge the two FASTA

files, both have been concatenated and redundance has

been reduced by cd-hit (parameters: −c 1 –I 0 –G 1 –p

1 –I 6 –d 200 –S 0 –M 16000). If a protein sequence
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occurred repeatedly, their names were grouped and

assigned with a “#” symbol as separator. This approach

allowed to track if an identified protein by MaxQuant [67]

is solely based on the additional genomic information.

Secondly, the acquired LC-ESI MS/MS data were

searched with MaxQuant (v. 1.3.0.5) against the com-

bined FASTA protein database. Default parameters on

MaxQuant for unlabelled data were used. Oxidation (M)

and N-acetylating have been considered as variable mod-

ifications as well as carbamidomethylation on cysteine as

a fixed modification. Two missed cleavage sites (Trypsin/

P) were allowed and a mass tolerance of 20 ppm of HCD

spectra as well as 0.5 Da for CID spectra has been allowed.

MS1 precursor mass tolerance was also left at 20 ppm for

the first search and 6 ppm for the main search.

The iBAQ [43] method has been used to roughly esti-

mate the absolute quantities of the identified proteins.

Since we did not use any spike-in, iBAQ was run with-

out the “log fit” option and the resulting values will just

reflect the ordering of the amounts of (and the relative

difference between two different proteins in the same

run) rather than the absolute quantities in an analytical

meaning.

Diseases related to SH-SY5Y using text mining

The goal of literature analysis was to identify diseases

that have been studied using the cell line and or its de-

rivatives. For the purpose of corpus construction we first

searched the PubMed collection of abstracts from MED-

LINE (http://www.ncbi.nlm.nih.gov/pubmed), PubMed

Central (PMC), which is a free full-text archive of bio-

medical and life sciences journals (http://www.ncbi.nlm.

nih.gov/pmc/), and Elsevier repository for articles that

mentioned SH-SY5Y cell line (case and dash insensitive)

or its spelling variations (e.g., “sh-sy5y cells”) Next, we

selected the publications that mentioned the cell line in

the title, abstract, list of keywords, section headings, or

table/figure captions. These are cues that help to identify

principle aspects of article’s content [68,69]. We exe-

cuted the above searches with Biopython tools [70]

which allowed accessing and querying of PubMed re-

pository, and PMC online facilities to search through

the PMC collection. In addition, we implemented a full

text parser of the Elsevier articles using the lxml.etree

library [71].

After removal of duplicates, items without either title

or authors, and items with less than six full sentences

(an approximate length of title and abstract), we ob-

tained a collection of 5,353 abstracts and full text articles

that dealt with SH-SY5Y cell line. We used Reflect anno-

tation software [72] to identify disease names in the text.

Applying heuristic rules described above, we labelled ar-

ticles with the corresponding disease name, and ranked

diseases by their collection frequency.

Generation of disease networks

Our approach to the cell line evaluation as in vitro

model relies on the understanding of diseases as genetic

network perturbations [73,74], which requires consider-

ing not only single genes of interest but also their role in

a complex pathogenic process. For this reason, we repre-

sent diseases and process of interest as networks in

which nodes are genes (or proteins) and edges are

protein-protein interactions. Note that when we scored

SH-SY5Y with regard to the Parkinson’s disease mod-

ules, we extracted relevant sub-networks directly from

the PD map. Alternatively, disease-related networks

were built using Online Mendelian Inheritance in Man

(OMIM) [75]– a catalogue of human genes and genetic

disorders; and STRING – a state-of-the-art database of

known and predicted protein-protein interactions [76]

version 9.0, from which we extracted human-related un-

directed network with 18600 nodes and 1640707 edges. In

the experiments described here we considered interactions

of all types, provided their confidence score was > = 0.7,

classified as “high” by the database authors. (See [44] for

more details about interactions in STRING.) This reduced

the network size to 14688 nodes and 170570 edges. The

procedure of disease-related network construction con-

sists of selecting genes described in OMIM as having mu-

tations with causative effect on the disorder; mapping

them on the human network, derived from STRING;

forming the final network by expanding the core genes

with their neighbours at distance one. The choice of the

expansion radius is explained by the high average node

degree (23.22) of our background STRING–derived net-

work. See Additional file 9 for the list of genes in the net-

work constructed for each disease and module and the list

of genes taken as damaged in SH-SY5Y.

Description of the cell line suitability scoring: BC-ratio

Perturbations applied to the networks affected by the

genes mutated in the cell line may produce different

phenotypic outputs than the same perturbations applied

to the intact networks. Therefore we evaluated the ad-

equacy of the cell line by estimating the impact of the

mutated genes on the network that represented the

process under study. This analysis aims to first evaluate

the node’s importance in the network, and next extend

the node-wise information to the entire cell line.

Node’s importance is related to positional advantage it

has in the network, and is expressed in terms of “cen-

trality”. Different centrality types reflect different pos-

itional properties of a node. Node degree is associated

with the node’s visibility and its ability to directly com-

municate with the other nodes [47]. It does not consider

indirect connections of a node and therefore can be con-

sidered as the measure of its local importance. Closeness

is the reciprocal of mean shortest-path distance between
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a node and all other nodes that can be reached from it.

It is interpreted in terms of how fast a node can com-

municate with the others [77]. Betweenness centrality

measures the extent to which a vertex lies on the paths

between the others and, as a consequence, the extent to

which the node influences the information flow in the

network [78]. In yet another view, node’s centrality is a

function of centrality of its neighbours [79] so called

power centrality. It is close to eigenvector centrality,

which is seen as an attempt to identify important nodes

with regard to the overall or global structure of the net-

work. Among this wide variety of centrality metrics we

choose betweenness centrality for its emphasis of the

nodes ability to alter the information flow in a network.

Betweenness centrality of a node expresses how much

information flows through that node. Betweenness cen-

trality g of node v in the network G is given by Equation 1,

g vð Þ ¼
X

s≠v≠t

σ st vð Þ
σst

ð1Þ

where σst is the total number of shortest paths between

the nodes s, t ∈G, and σst(v) is the number of shortest

path that go through v.

In order to quantitatively assess the cell line suitability,

we extended the metric from individual node character-

istic to the characteristic of node types. First of all we

mapped the genes mutated in the cell line onto the

network under study and labelled all the nodes as

“Damaged” or “Intact”. A gene was labelled as “damaged”

if it contained a rare non-synonymous or splice-site SNV,

indel or block substitution or if it was found inside a

region affected by a CNV or a rare SV. A rare SNV, indel

or block substitution occurred with less than 5% fre-

quency in 1000 Genomes Project, 6500 Exome Sequen-

cing Project and Complete Genomics 69 Baseline

Genomes dataset. A rare SV was one that was never found

in the Complete Genomics Baseline Genome dataset.

Next we tried to assess the impact of the damaged nodes

on the network. We achieved this by comparing the over-

all betweenness centrality scores of the damaged and in-

tact nodes. We called this metric BC-ratio μ, which was

formally defined as follows:

μ NDiseasejcell lineð Þ ¼

X
v ∈Damaged

g vð Þ
X

v∈Damaged
g vð Þ þ

X
v∈Intact

g vð Þ

ð2Þ

The value of μ is in range [0:1]. The higher is the BC-

ratio value the more is the impact of nodes corresponding

to the genes mutated in the cell line on the information

flow in the network. The PBC values indicate the probabil-

ity that the calculated BC-ratio resulted from a random

distribution of mutated genes in the network.

To test the metric we generated, for each disease and

process, 1000 alternative networks for which we pre-

served the original topology and counts of damaged/in-

tact nodes but randomized label assignments. We scored

each randomized network and calculated pBC-value –

the probability of obtaining higher BC-ratio with the

randomized networks than the one we have obtained

with the actual data. PBC-value > 0.05 indicates that

nodes with high betweenness-centrality in the disease/

process network do not significantly correlate with the

genes mutated in the cell line –null hypothesis. On the

contrary, pBC-value < 0.05 indicates that nodes with high

betweenness-centrality in the disease network do signifi-

cantly correlate with the genes mutated in the cell line –

alternative hypothesis. Validity of the null hypothesis

gives us more ground to assume that from the genetic

perspective the cell line is an acceptable candidate for

modelling of the disease or process. Based on the pBC-

values for various diseases and processes (Table 2,

Table 3), we cannot confidently reject the null hypoth-

eses for all but two diseases, which are neuroblastoma

and Alzheimer’s disease.

In addition to the BC-ratio which is based on the

betweenness centrality of the nodes, we calculated the

SH-SY5Y integrity with the diseases and process in

question using degree, closeness and flow (also known

as “random walk”) betweenness centralities [78,80]. The

difference between the latter and the betweenness cen-

trality we have been using so far is that it considers con-

tributions from all paths in the network, not only the

shortest, although the latter still counts for more. It has

been shown that protein-protein interaction networks can

efficiently be modelled with the random walk betweenness

centrality [81] so we were interested to compare the two

measures in our experimental setting. Alternative cell line

scoring implied substitution of the shortest path between-

ness centrality of the nodes with one of the selected cen-

trality types. Otherwise the procedure remained the same

as specified in Equation 2.

Results of the cell line suitability computations using

various centrality metrics are given in Tables 2 and 3.

Instead of comparing the cell line scoring values directly

we compare centrality values of the individual nodes

given by the various metrics. We believe that this infor-

mation lets us get more insight into the agreement be-

tween the centrality types. Table 5 shows correlation

between the centrality metrics averaged across diseases

and processes. Betweenness only moderately correlated

with the degree (0.593) and less so with closeness cen-

trality (0.463) while flow betweenness showed relatively

high agreement with the degree (0.7). Degree and close-

ness showed higher intercorrelation than with the be-

tweenness (0.622). Among all metrics, betweenness

and flow betweenness centralities showed the highest
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correlation (0.955). It suggests that in our experi-

ments either metric could have been used for the cell

line suitability evaluation. However the absolute

values of the cell line suitability would have not been

identical (see Tables 2 and 3, columns “BC-ratio” and

“Flow BC”) due to the ability of the flow betweenness

centrality to highlight nodes which, although not lying

on the shortest paths or occurring on more than one

of them (hence, having shortest path betweenness

centrality equal or close to 0.0), still contribute to the

information flow. Table 6 shows gene ranking in the

Mitochondria module of the Parkinson’s disease map

in various centrality measures. It can be seen that gene’s

rank in both betweenness metrics are very close or even

identical while much less so with respect to the degree

and closeness centrality. Ranking of PARK2 and PINK1

tells us that nodes which do not have high degree or close-

ness may still play an important role in information flow

in the network. Alternatively, positions of PDHA1 and to

some less extent that of DLD suggest that having high

degree and closeness does not necessarily mean to be a

broker. Yet, in some other cases all centrality metrics may

agree on the node’s importance as can be seen on SNCA

and CYCS. Overall we would conclude that various met-

rics should not be regarded as mutually exchangeable.

Rather one could choose the metric taking into account

the positional advantage it emphasizes. Our approach to

the cell line scoring was motivated by the assumption that

changes in one gene may affect the entire disease or

process network. To model this phenomenon, we were

looking for a measure that would reflect node’s role in in-

formation transmission over the network. This is the rea-

son why we choose betweenness centrality.

Additional files

Additional file 1: Co-occurrences of disease terms with the SH-SY5Y

cell line in literature. The first column contains the Human Disease

Ontology (HDO) code of the disease, the second column has the disease

name and the third column has the number of articles where the disease

was mentioned along with the SH-SY5Y cell line.

Additional file 2: Supplementary information.

Additional file 3: Gene ontology enrichment analysis for private

protein-altering SNVs and indels using Biocompendium [82];

somatic coding mutations in the TARGET study [28] overlapping

with mutations in SH-SY5Y.

Additional file 4: Circos plots for each chromosome of the SH-SY5Y

genome. For each chromosome, tracks represent (from outside to inside)

karyotype for each chromosome, copy number variation (red > 2,

green = 2, black < 2), density of small variants (bin size = 1 Mb),

homozygous small variant percentage (bin size = 1 Mb). Arcs represent

chromosomal breakpoints (red = rare breakpoints not found in Complete

Genomics Baseline dataset [32]).

Additional file 5: Description of 247 different conditions of

SH-SY5Y from the GEO database [42] for gene expression

measurements.

Additional file 6: Abundance of proteins found in the

undifferentiated SH-SY5Y cell line. The first column contains the

protein identifiers (both UCSC and Ensembl formats) identified by

MaxQuant using the modified reference database and the second

column, the iBAQ score, gives protein abundance as a mean of three

different replicates.

Additional file 7: Network visualization of mutated genes in

pathways related to Parkinson’s disease. Each node is a gene and

each edge indicates that there is an interaction between them (gene

regulatory, protein-protein, metabolic, and signal transduction interac-

tions). Genes annotated with a dark red colour have an exonic mutation,

copy number variation or structural variation whereas genes annotated

with a light red colour do not have such mutations.

Additional file 8: Materials and methods for proteome analysis.

Additional file 9: List of genes with rare non-synonymous SNVs,

indels, substitutions, copy number variations or structural variations

in SH-SY5Y and lists of genes used to construct the networks for

cell line suitability scoring.
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Table 5 Correlation between various centrality metrics

Centrality

Degree Closeness Betweenness Flow betweenness

Degree 0.622 0.593 0.700

Closeness 0.463 0.592

Betweenness 0.969

Flow
betweenness

The correlation between the different measures of node centrality was

calculated for each network. The correlation scores were then averaged over

all the networks corresponding to the different diseases and PD modules.

Table 6 Gene scoring agreement across various centrality

metrics

Gene name Rank according to a centrality metric

Degree Closeness Betweenness Flow betweenness

PARK2 24 17 1 1

SNCA 4 4 2 3

PINK1 25 32 3 2

CYCS 3 3 4 4

DLD 1 1 5 5

VDAC1 32 12 6 6

PDHA1 2 2 7 8

SLC25A4 18 5 8 7

BCL2 43 50 9 9

BECN1 42 64 10 13

We show top ten genes from the Mitochondria module of the Parkinson’s.

Disease map, ordered according to the Betweenness centrality rank.
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