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Abstract

Cellular metabolic fluxes are determined by enzyme activities and metabolite abundances. 
Biochemical approaches reveal the impact of specific substrates or regulators on enzyme kinetics, 
but do not capture the extent to which metabolite and enzyme concentrations vary across 
physiological states, and therefore how cellular reactions are regulated. We measured enzyme and 
metabolite concentrations and metabolic fluxes across 25 steady-state yeast cultures. We then 
assessed the extent to which flux can be explained by a Michaelis-Menten relationship between 
enzyme, substrate, product, and potential regulator concentrations. This revealed three new 
instances of cross-pathway regulation, which we biochemically verified. These included inhibition 
of pyruvate kinase by citrate, which accumulated and thereby curtailed glycolytic outflow in 
nitrogen-limited yeast. Overall, substrate concentrations were the strongest driver of the net rates 
of cellular metabolic reactions, with metabolite concentrations collectively having more than 
double the physiological impact of enzymes.

Introduction

A crowning achievement of twentieth century biochemistry was determining the enzymatic 
reactions by which organisms convert diverse nutrients into energy and biomass (1). Despite 
the extensive knowledge of metabolic reaction networks that resulted, the means by which 
metabolic reaction rates (fluxes) are controlled remain incompletely understood, even in 
highly studied model microbes. Most metabolic regulatory mechanisms were derived from 
studying the kinetics of isolated enzymes in vitro. Although powerful for discovering 
specific regulatory interactions, this reductionist approach has been less effective at 
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revealing the impact of regulation in the intact cell. Metabolic regulation in vivo depends not 
only on enzyme kinetics, but also on how much the concentrations of substrates and 
products change across physiological states, and how enzymes respond in the presence of 
physiologic concentrations of other metabolites (2-4).

One framework for systematically and quantitatively investigating metabolic flux control in 
cells is metabolic control analysis. In this approach, the impact of enzyme activities on 

pathway fluxes is captured by their flux control coefficients ( ), which reflect the 
fractional change in pathway flux (J) in response to a fractional change in enzyme activity 

(E):  (2). While mathematically elegant, experimental assignment of 
flux control has proven difficult. The most straightforward approach involves modulating 
enzyme activities on a one-by-one basis, which is taxing, especially because flux control 
may also reside in distal cellular reactions, rather than pathway enzymes themselves (3, 5-7). 
For example, the rate of glycolytic flux may be determined by total cellular ATP demand 
rather than by glycolytic enzyme expression (8).

To take advantage of growing systems-level data, an alternative approach is differential 
equation modeling of metabolic dynamics. Through fitting experimental metabolic 
concentration data, such an approach can identify quantitative kinetic parameters (e.g., kcat, 
Km, Ki), as well as regulatory interactions (4, 9-12). The difficulty is that parameter and 
regulator identification requires a global, non-linear search in high-dimensional space and 
accordingly works poorly when metabolic networks are either large or incomplete. 
Therefore, there is a need for robust and scalable new approaches (13).

We developed a method that we term Systematic Identification of Meaningful Metabolic 
Enzyme Regulation (SIMMER). By combining steady-state proteomic, metabolomic, and 
fluxomic data, SIMMER quantitatively evaluates the physiological mechanisms underlying 
flux control on a reaction-by-reaction basis. Specifically, given measurements of fluxes, 
metabolites, and enzymes across multiple steady states, SIMMER tests whether the observed 
fluxes through an individual reaction can be explained by a Michaelis-Menten relationship 
between substrate, product, and enzyme concentrations (Fig. 1A). When a misfit is 
observed, it then searches for potential regulators that significantly rectify the discrepancy 
(Fig. 1B). Because parameters and regulators are identified one reaction at a time, the 
approach is scalable. The resulting regulatory insights are local: they describe the factors 
determining individual reaction fluxes (net reaction rate), not overall control of pathway 
flux. To apply SIMMER, we analyzed the metabolome, proteome, and fluxome of yeast 
growing in 25 different steady-state conditions. SIMMER recapitulated much of known 
yeast metabolic regulation and revealed previously unrecognized regulation. It also revealed 
the quantitative contribution of substrate, product, enzyme, and allosteric effector 
concentrations to control of cellular metabolic reaction rates, with small molecule 
metabolites collectively playing a predominant role in determining flux.
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Results

Metabolite and enzyme concentrations and metabolic fluxes in nutrient-limited yeast

Yeast were grown at five different specific growth rates in chemostats in which amounts of 
carbon (glucose), nitrogen (ammonia), or phosphorus (phosphate), or (in appropriate 
auxotrophs) leucine or uracil were limited. Replicate experimental measurements were made 
from single chemostats (14). To determine fluxes, we used flux balance analysis constrained 
by experimental measurements of nutrient uptake, waste excretion, and biomass generation, 
including detailed analysis of biomass composition, which varied significantly across 
conditions. For example, nucleic acid content (mainly in the form of ribosomal RNA) was 
higher at fast specific growth rates (15, 16), whereas fat and polyphosphate accumulated 
when nitrogen was limited (Fig. S1). With some important exceptions, such as more amino 
acid biosynthesis when leucine was limited and less glycolytic flux when glucose was 
limited, flux correlated strongly with specific growth rate. The range of fluxes that were 
equally compatible with the experimental observations was determined by flux variability 
analysis (17, 18), providing fluxes with error estimates for 233 metabolic reactions (Fig. S2). 
We refer to the fluxes determined by experimentally-constrained flux balance and variability 
analysis as the “measured fluxes,” to differentiate them from subsequent flux predictions 
based on metabolite and enzyme concentrations. These measured fluxes agree well with 
recent literature using 13C-tracers to determine fluxes in carbon limited yeast (Fig. S3 and 
S4) (19, 20).

The relative concentrations of 106 metabolites were previously measured across these 
chemostat conditions by LC-MS/MS (21). We augmented these observations by determining 
absolute metabolite concentrations by an isotope ratio-based approach (22). Overall, 
metabolite abundances depended strongly on the limiting nutrient (Fig. S5). Products 
derived from the limiting nutrient, such as nucleotide triphosphates in phosphorous 
limitation, were depleted at slow specific growth rates, whereas related metabolites lacking 
the limiting element, such as nucleosides in phosphorous limitation, accumulated.

We also used an isotope ratio-based LC-MS/MS approach to analyze the proteome. To 
determine relative protein abundances across conditions, we compared each experimental 
sample to a common 15N-labeled internal reference sample (23, 24). Quantitative data with 
good reproducibility was obtained for over 20,000 peptides representing 1,187 proteins (Fig. 
S6). Unlike metabolites, the abundances of many proteins, especially that of ribosomal 
proteins, depended primarily on specific growth rate irrespective of the limiting nutrient 
(Fig. S7). Quantitatively, the fraction of concentration variation explained by specific growth 
rate alone for the proteome was greater than that for the metabolome, but less than that for 
the transcriptome (Fig. S8) (25). The measured proteins included 370 metabolic enzymes 
representing over 90% of those covered using selected reaction monitoring (SRM) based 
approaches tailored for enzyme quantitation (Table S1) (26, 27). Much like metabolite 
abundances, amounts of metabolic enzymes varied strongly depending on the limiting 
nutrient. Compared to proteins overall, metabolic enzymes depended less on the specific 
growth rate and more upon which nutrient was limiting growth (Fig. S8). Notable nutrient-
specific trends included down-regulation of glycolytic enzymes and up-regulation of TCA 
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ones in carbon limitation, and increased levels of amino acid biosynthetic enzymes in 
leucine limitation (Fig. S9). Thus, relative to transcripts or proteins overall, the abundances 
of metabolites and metabolic enzymes are tied more strongly to the particular nutrient 
environment. In the case of metabolites, this may directly reflect mass action, whereas for 
metabolic enzymes it may reflect regulation designed to maintain appropriate flux as 
amounts of nutrients and thus metabolites change.

Integration of concentration and flux data through SIMMER

In total, we obtained the requisite data for SIMMER analysis (flux, enzyme concentration, 
substrate concentrations, and optionally product concentrations) for 56 reactions. For all 
reactions, we applied a reversible Michaelis-Menten rate law that assumes random-order 
enzyme mechanism and competitive binding of substrates and products (4, 28, 29). Kinetic 
parameters were identified by non-linear optimization to maximize the consistency of the 
Michaelis-Menten output (based on the measured enzyme and metabolite concentrations) 
and measured flux. For 50% of the reactions, Michaelis-Menten kinetics explained much of 
the physiological flux variation (R2 > 0.35). As an illustrative example, consider the triose-
phosphate isomerase (Tpi1) reaction in glycolysis which converts dihydroxyacetone 
phosphate (DHAP) into glyceraldehyde 3-phosophate (GAP). Triose-phosphate isomerase 
reaction flux was lowest when carbon was limited but otherwise correlated with specific 
growth rate, and this was explained by lower enzyme amounts when carbon was limited and 
higher substrate concentration in fast-growing cells (Fig. 2, A and B).

In the case of triose-phosphate isomerase, although the fit was not perfect, it was not 
improved significantly, based on the likelihood ratio test with q-value based false discovery 
rate (FDR) correction (30), by including biochemically annotated inhibitors of the enzyme, 
such as ATP or phosphoenolpyruvate, as reaction regulators (31). For other reactions, 
however, inclusion of regulators enhanced the fit. For example, for the first committed step 
of purine biosynthesis, amidophosphoribosyltransferase (Ade4), our metabolite 
measurements included one putative regulator from yeast and eight from other organisms. 
Among these, inhibition by adenosine monophosphate (AMP), which generally accumulates 
during slow growth, significantly improved the fit (p < 0.00003; q < 0.02) (Fig. 2, C through 
E); all other putative regulators were not statistically supported (p > 0.05 for each). 
Inhibition of the first committed step of purine biosynthesis by AMP is a prototypical 
feedback circuit in yeast (32, 33). Thus, from a set of candidates based on prior knowledge 
of metabolism, SIMMER identified physiologically relevant regulation of yeast purine 
biosynthesis.

We were interested in see if this approach could also identify previously unrecognized 
regulation. In principle, every measured metabolite can be tested as a potential activator or 
inhibitor of every reaction. The major potential difficulty of this approach, however, is 
generating false positives due to correlation between metabolites. To explore this issue, we 
reviewed the literature to identify known physiological metabolic regulatory events. We 
identified 20 such “gold standard” regulators, occurring across 16 different reactions 
(33-35). Comprehensive testing of all metabolites as both activators and inhibitors of these 
reactions identified an average of 49 regulators per reaction that significantly improved the 
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flux fit (q < 0.1 by likelihood ratio test). The identified regulation included 10 of the 20 gold 
standard regulatory events (50%), which were substantially enriched compared to other 
previously reported biochemical regulation of these enzymes (24%) and all other 
metabolites tested as activators and inhibitors (24%) (p < 0.02; Fishers exact test). 
Nevertheless, the specificity of the predictions was low.

Because the quantitative influence of many metabolites cannot be distinguished, we focused 
on putative reaction regulators, irrespective of organism, drawn from the BRENDA database 
(31). This allowed us to capitalize on prior knowledge while identifying regulation that was 
previously unrecognized in S. cerevisiae. To integrate prior knowledge with our new data, 
we used a Bayesian approach, trained by the 20 instances of gold standard regulation 
(33-35). Specifically, we used Bayes’ theorem to determine the probability of each 
regulatory interaction, in light of the experimental data, based on (i) its ability to account for 
the measured fluxes, Pr(Data ∣ Regulation) and (ii) its prior probability, Pr(Regulation). A 
penalty for the additional parameters introduced by regulation was also included based on 
Akaike information criteria (AICc) (Fig. 3) (36). Due to the small number of gold standard 
regulatory events relative to all regulation listed in BRENDA, Pr(Regulation) is low (median 
~0.03), reflecting that, among putative regulators in BRENDA, physiologically meaningful 
regulation is a priori rare.

We used the above strategy to assess each of 729 candidate literature regulators of the 56 
reactions for which we had sufficient data. For reactions in which one or more regulators 
were individually supported, we tested also cooperative binding of regulators and the 
inclusion of a secondary regulator. For 17 reactions, generalized Michaelis-Menten kinetics 
fit the data reasonably well (R2 > 0.35), and was supported over any regulation. We 
additionally identified 29 reactions for which physiologically-relevant regulation was 
supported, including six reactions best described by two physiological regulators and one 
reaction with cooperative regulation, for a total of 35 regulatory interactions (Fig. 4 and 
Table S2). Additionally, we identified 22 alternative regulators that were also supported 
(lower AICc than unregulated; note that each of these individually significantly improves fit 
with p < 0.01). The distinction between top and secondary predictions was generally modest, 
but unlikely to be due to noisy measurement of regulators (Fig. S10). Both the best-
supported regulators and the alternative regulators were highly enriched for gold standard 
regulatory interactions, each containing 5 of the 20 total (p < 0.002 by Fishers exact test), 
validating the overall SIMMER approach (Tables S3, S4, and S5). For each substrate and 
each instance of regulation, the Michaelis-Menten fit determined metabolite affinity 
(Km/i/a) based solely on the cellular data. These cellular affinity constants correlated with 
corresponding values from biochemical literature (Fig. S11), providing further validation 
(31). In addition to five instances of gold standard yeast regulation (33-35), the 35 best-
supported regulatory interactions encompassed four regulators with strong in vitro support in 
yeast, but no previous evidence for their physiological importance (37-40). A majority of the 
predicted regulation had not been previously proposed in S. cerevisiae.
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Biochemical confirmation of three previously unrecognized instances of yeast allosteric 

regulation

To evaluate the power of SIMMER for finding new yeast regulatory interactions, we tested 
biochemically 10 of the best-supported predictions, verifying three: inhibition of ornithine 
transcarbamylase (Arg3) by alanine, pyruvate decarboxylase (Pdc1) by phenylpyruvate, and 
pyruvate kinase (Cdc19) by citrate. This relatively low validation rate is due in part to the 
fact that true regulatory interactions are rare (the false positive rate of our top predictions 
was only 3%) (Tables S6 and S7). It further reflects the difficulty of selecting the correct true 
regulator from correlated metabolites. For example, we incorrectly predict phenylpyruvate as 
a regulator of DAHP synthase; the true regulator, phenylalanine, correlates with 
phenylpyruvate and was predicted as an alternative (Table S4).

Ornithine transcarbamylase sits at the branchpoint between carbamoyl phosphate 
assimilation into arginine versus pyrimidines. Although Arg3 activity is thought to be 
regulated through expression (33), SIMMER predicted that alanine is a physiological 
inhibitor, and we biochemically confirmed inhibition with a Ki of 15 mM, which is below 
the typical cellular concentration of alanine in yeast (Fig. S12). Alanine concentrations are 
increased under nutrient conditions where amino acids are more abundant than nucleotides 
(such as stringent limitation for phosphorus or uracil). Thus, alanine inhibition of Arg3 
serves to dampen arginine synthesis when pyrimidines are needed instead.

Pyruvate decarboxylase (Pdc; Pdc1,5,6) shunts pyruvate towards ethanol during yeast 
fermentation. Although pyruvate sits at one of the most critical branch points in central 
metabolism, little is known about physiologic regulation of pyruvate of decarboxylase. In Z. 
bisporus, a spoilage yeast in the Saccharomycetaceae family, phenylpyruvate is an 
alternative substrate for pyruvate decarboxylase, whose presence inhibits pyruvate 
decarboxylation (Ki ~5 mM) (41). We confirmed that similarly to Z. bisporus Pdc, S. 
cerevisiae Pdc1 can make phenylacetaldehyde from phenylpyruvate, which also inhibits the 
canonical reaction with pyruvate with a Ki of between 1 and 4 mM (Fig. S13). Such 
inhibition was not shared by the structurally related metabolites phenylalanine or α-
ketoglutarate. The downstream phenylacetaldehyde product, phenylethanol, is excreted as a 
quorum-sensing molecule that promotes foraging behavior in nitrogen-limited yeast (42). 
Phenylpyruvate concentrations are high under conditions in which nitrogen or leucine are 
limited and its inhibition of Pdc1 apparently serves to limit carbon wasting. Thus, SIMMER 
revealed a new means of coordinating carbon and nitrogen metabolism in yeast.

SIMMER also identified citrate as a candidate inhibitor of pyruvate production through the 
terminal glycolytic enzyme, pyruvate kinase (Cdc19; Pyk2 is a minor isozyme in glucose-
fed cells). Due to its role in glycolytic regulation and the switch to a fetal isoform, Pkm2, in 
human cancer, pyruvate kinase is among the most heavily studied metabolic enzymes. Both 
human Pkm2 and yeast Cdc19 are strongly activated by fructose 1,6-bisphosphate (FBP) 
(43, 44). In yeast, upon glucose removal, FBP concentrations drop dramatically, shutting off 
pyruvate kinase and thereby preparing cells for gluconeogenesis. At the higher FBP 
concentrations found in glucose-fed cells, however, we observed only moderate sensitivity 
of Cdc19 to FBP concentrations (Fig. 5, A and B). This suggested that an alternative mode 
of regulation might control pyruvate kinase flux, with SIMMER pointing to citrate (or 
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equivalently, isocitrate, which co-eluted in our metabolomics method). Citrate is more 
abundant than isocitrate in cells, and also proved to be the more potent Cdc19 inhibitor with 
a Ki of ~5 mM (Fig. 5C). Citrate concentrations are high when amounts of phosphate, 
nitrogen, or leucine are limited. When phosphate was limited, across specific growth rates, 
abundance of pyruvate kinase was high and counterbalanced by high concentrations of 
citrate, with flux increasing with specific growth rate primarily because of increased 
amounts of FBP (Fig. 5D). In contrast, when nitrogen or leucine were limited, flux increased 
with specific growth rate primarily due to decreasing amounts of citrate (Fig. 5D). Thus 
inhibition of pyruvate kinase by citrate works in concert with control of abundance of 
pyruvate kinase and FBP to coordinate glucose catabolism with the availability of other 
essential elemental nutrients.

A common feature of the above three new physiological regulatory interactions is that each 
spans pathways. This contrasts with the nine instances of known yeast regulation that were 
reconfirmed by SIMMER, each of which was “local” (involving interactions of metabolites 
and enzymes within the same pathway, including five instances of standard feedback 
inhibition). Thus, beyond their individual significance, collectively these new discoveries 
raise the possibility that cross-pathway regulation may be more common and important than 
currently appreciated.

Quantitative analysis of physiological flux control

In addition to revealing reaction regulators, SIMMER yields quantitative rate laws that can 
be analyzed to evaluate the mechanisms controlling the rates of cellular metabolic reactions. 
To assess the impact of physiological variation in enzyme and metabolite concentrations on 
reaction flux, we can partition the total variability in flux across conditions into the 
contributions of individual biochemical players. Specifically, the impact of any given 
biochemical species (substrate, product, enzyme, allosteric regulator) depends on the 
variance in its concentration across physiological conditions and the sensitivity of net 

reaction rate to its concentration ( ). Normalization to the sum across all players gives 
the fractional contribution of the species to control of net reaction rate. We term this 
normalized partitioning of physiological reaction-rate control, “metabolic leverage:”

For each of the 29 metabolic reactions best described by reaction equations lacking 
regulation or involving regulation which was biochemically verified in S. cerevisiae, the 
relative metabolic leverage of substrate and product concentrations, allosteric effector levels, 
and enzyme abundances is shown in Fig. 6A (for similar analysis involving all of the best-
supported SIMMER predictions, see Fig. S14). The observed distributions of metabolic 
leverage are robust across all well-fitting parameter sets (Fig. S15 and Table S8). For 
reactions that can change net direction as a function of environmental conditions (“reversible 
reactions”), metabolic leverage was divided between substrates, products, and enzymes with 

Hackett et al. Page 7

Science. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



no contribution from allosteric regulation and a majority of leverage residing in substrates 
alone (Fig. 6, B and C). For reactions that do not change net direction but are somewhat 
reversible, allostery made a small contribution, which increased for strongly forward-driven 
reactions (ΔrG°’ < -5 kJ/mol) (45), with enzymes, substrates and allosteric regulators each 
playing a major role (Fig. 6, B and C). Overall, the combined impact of metabolites 
(substrates, products, allosteric effectors) was more than double that of enzymes.

Discussion

As systems-level measurement technologies steadily improve, there is an increasing need for 
methods that yield concrete regulatory insights from large-scale data. Previous attempts to 
infer metabolic regulation from metabolomics data have typically fit dynamic metabolite 
concentration changes with systems of differential equations. Although this approach works 
well for small networks, it scales poorly, as inaccurate description of a single reaction leads 
to global errors. By measuring flux, rather than inferring it based on changing metabolite 
concentrations, regulation can be evaluated on a reaction-by-reaction basis independent of 
the scale of the total system. Independent evaluation of each reaction equation enables rapid 
parameter identification and facilitates discovery of regulatory interactions. Because reaction 
rates are measured in cells, the approach is well-positioned to identify regulation that 
depends on the presence of physiological concentrations of other metabolites. We used this 
approach to identify physiologically relevant regulation, finding three previously 
unrecognized instances of S. cerevisiae cross-pathway metabolic regulation.

These included new ways of regulating pyruvate flux: both pyruvate production and 
consumption were inhibited by metabolites that rise during nitrogen limitation, with the 
main pyruvate kinase isozyme Cdc19 inhibited by citrate and pyruvate decarboxylase 
inhibited by the phenylpyruvate, the α-ketoacid analogue of phenylalanine. In E. coli, α-
ketoacids including α-ketoglutarate inhibit carbon catabolism under low nitrogen conditions, 
in part by direct inhibition of Enzyme I (46,47). Such inhibition simultaneously cuts off flow 
into upper glycolysis and out of lower glycolysis, enabling adjustment of glycolytic flux 
with only modest changes in intermediate concentrations (46). We find that related 
regulatory mechanisms operate in yeast to help balance upper and lower glycolysis (43, 48), 
with citrate inhibiting both FBP production (49) and PEP consumption (Fig. 5). Citrate, but 
not phenylpyruvate, is also abundant when amounts of phosphate are limited, suggesting a 
common bottlenecking of glycolysis when either nutrient is limiting, but differential 
regulation of the fate of the pyruvate that is formed. Beyond their specific importance to 
understand metabolic control, these new regulatory interactions also suggest some general 
principles: the importance of long-range feedback interactions (involving metabolites 
outside of the immediate pathway being regulated) and of context-dependent shifts in 
physiological regulators, such as a switch from FBP as the predominant regulator of 
pyruvate kinase when carbon is limited (50) to citrate when nitrogen is limited.

In addition to identifying new regulatory interactions, we evaluated the overall mechanisms 
controlling the physiological rates of individual metabolic reactions in yeast, revealing a 
predominant role for metabolite concentrations, especially substrate concentrations. This 
observation builds on previous work in yeast and other microbes which has found that 
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changes in the transcriptome and proteome are insufficient to account for flux changes 
(51-54). It is in agreement with recent findings that changes in substrate concentrations are a 
major contributor to overall changes in flux (53, 55).

Pathway-level flux control depends both on how individual reaction rates are determined, as 
is assessed by metabolic leverage, and on how reactions interact, as is assessed by flux 
control coefficients (2,3,56). For highly reversible reactions, net flux is sensitive to small 
shifts in substrate to product ratios. Such reactions respond to other reactions, rather than 
themselves exerting control over pathway flux (3), with substrate and product concentrations 
dominating metabolic leverage. In contrast, strongly thermodynamically forward-driven 
reactions have greater pathway flux control and are major targets of allosteric regulators. We 
find that substrate concentration also plays an important role in determining flux through 
these reactions, with the role of metabolites (substrates, products and allosteric effectors) 
collectively double that of enzymes.

An important question regards the generality of our observation that metabolite 
concentrations exert more metabolic leverage than enzymes. This observation was made 
across steady-state yeast cultures differing in terms of their nutrient environment. By 
working at steady state, we should in principle favor slow regulatory events, like modulation 
of enzyme concentrations, and thus it is particularly striking that metabolite concentrations 
play a larger role. This indicates substantial inefficiency in enzyme utilization: If enzymes 
were running near Vmax in all conditions, the only way to control flux would be through 
enzyme concentrations. Instead of prioritizing enzyme efficiency (57), it appears that 
nutrient-limited yeast overexpress enzymes (51, 52), perhaps so that they can grow quickly 
when nutrient conditions improve (58). This excess enzyme capacity imparts a plasticity to 
metabolism (7, 57, 58), shifting metabolic leverage onto substrates, products, and allosteric 
effectors. It is likely that enzyme efficiency is more important in rich nutrient conditions, 
and that the metabolic leverage of enzymes is greater in such environments. In cases where 
metabolic variation occurs without variation in environmental nutrient conditions (such as 
across organs in mammals, which are all fed by the same nutrients carried in the blood 
stream), enzymes concentrations are likely to play a yet larger role. Nevertheless, even in 
such settings, many reactions rates may be determined largely by metabolite concentrations, 
as this allows for proper fluxes to be achieved without fine-grained control of enzyme 
concentrations. Indeed, mechanisms regulating yeast enzyme concentrations often work at 
the relatively coarse levels of whole pathways (such as Arg80, Arg81 and Arg82) and even 
multiple pathways (such as Gcn4) (33, 55, 59, 60). This may reflect an evolutionary 
prioritization of robustness and flexibility over enzyme efficiency. Alternatively, it could 
reflect that making some excess enzyme is “cheaper” than building the machinery to more 
precisely control individual enzyme concentrations.

While we provide a relatively comprehensive metabolic dataset and leverage this data to 
both confirm canonical regulation and predict regulation that was previously unrecognized 
in yeast, the majority of SIMMER predictions were invalidated. Predicting regulation is 
difficult because most metabolites are not physiological regulators of a given enzyme and 
erroneous predictions can readily occur due to either unmeasured or incorrectly measured 
variables or an inability to discriminate between potential regulators. More accurate flux 
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measurement through stable isotope labeling experiments (19, 20, 61), deeper metabolome 
coverage, and evaluation of enzyme post-translational regulation and sub-cellular 
localization (62-64) should enable more complete understanding of flux regulatory 
mechanisms. Moreover, extending the conditions studied to additional nutrients (e.g., other 
carbon sources) and genetic perturbations (e.g. gene knockouts) holds the potential for 
breaking down correlations between metabolites, and thereby allowing regulators to be more 
reliably discriminated. With sufficient additional data, rather than relying on candidates from 
BRENDA, it should be possible to treat all metabolites as potential regulators.

The SIMMER approach can be applied to any pseudo-steady-state metabolic system where 
metabolite and enzyme concentrations and fluxes can be measured under many conditions. 
This may allow identification of metabolic regulatory mechanisms in less well-studied 
microbes. Due to the lack of requirements for organism-specific prior knowledge, SIMMER 
should be applicable to most microbes that can be cultivated in chemostats. In the meantime, 
due to the importance of S. cerevisiae as an industrial organism, our quantitative insights 
into its metabolic regulatory mechanisms may be of immediate utility in metabolic 
engineering.

Materials and Methods

Overview of SIMMER

Systematic Identification of Meaningful Metabolic Enzyme Regulation (SIMMER) uses 
‘omic-scale data to investigate the kinetics of individual metabolic reactions. The four 
primary steps constituting the SIMMER method are:

1. Measure the relative concentrations of metabolites (M), enzymes (E), and fluxes 
(jF) across diverse conditions. Metabolites and enzymes can be directly measured 
by mass spectrometry; fluxes cannot be directly measured and accordingly are 
inferred from other experimental data and the known metabolic network 
stoichiometry.

2. For each reaction of interest, generate one or more reaction equations that relate 
measured metabolites (M: substrates, products and putative regulators), enzymes 
(E) and kinetic parameters (Ω) to reaction flux (jP = g(M,E,Ω)). In this study, 
reaction equations (g) are based on Michaelis-Menten kinetics and differ in terms 
of inclusion of regulators.

3. Fit each reaction equation to determine how well each reaction equation’s 
prediction (ĵp) agrees with measured flux (jF).

4. Compare alternative reaction equations to identify which model is best 
supported. Prior literature is used to assess the plausibility of each model such 
that models that are less likely a priori will require stronger quantitative evidence 
to achieve the same overall support.
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Strains and culture conditions

FY derivative strains of Saccharomyces cerevisiae were grown at 25 distinct steady states in 
chemostats by simultaneously modulating both limiting nutrient and dilution rate, as per 
Boer et al. 2010 (21). Based on previous work showing that technical variability 
substantially exceeds biological variability for ‘omic analyses of yeast chemostats (14), each 
‘omic analysis was based on technical replicates derived from a single biological culture, 
with proteomics and fluxomics from one culture and metabolomics from a prior culture. For 
each nutrient condition, the five dilution rates were ~ 0.05, 0.11, 0.16, 0.22, and 0.3 h-1. The 
strains were prototrophic with the exception of uracil limitation (MATa ura3-52) and leucine 
limitation (MATa leu241). Each culture was maintained at pH 5 throughout. Culture density 
was routinely measured using a Klett Colorimeter. Cultures reached steady-state, as 
determined by stable density over 24 h, after ~5 to 7 days. Intracellular volume per culture 
volume was determined by directly measuring the volume of packed cells in 5-10 mL of 
culture (PCV Packed Cell Volume Tube 87005, TPP, Trasadingen, Switzerland).

Strategy for inferring metabolism-wide fluxes in chemostat cultures

Our general approach for estimating metabolism-wide fluxes was to measure the major 
inputs into metabolism and the major outputs from metabolism (boundary fluxes) in each 
condition and to use these fluxes as constraints for flux balance analysis. Isotopic labeling 
was not used in this study to probe internal fluxes due to limitations related to cost and time. 
Nevertheless, our inferred fluxes agree well with those that have previously been found 
using 13C-based metabolic flux analysis (MFA) of carbon-limited yeast cultures (19, 20). 
The generally good agreement can be understood in terms of the sufficiency of boundary 
fluxes for constraining many fluxes of interest. For example, glucose uptake rate and ethanol 
excretion rate are generally sufficient to determine glycolytic flux. In contrast, certain 
branched internal pathways, such as the pentose phosphate pathway, are less well 
constrained in the absence of isotope tracer measurements. Accordingly, perhaps 
unsurprisingly, our successful regulation discoveries occur in glycolysis and in anabolic 
pathways whose fluxes are reliably constrained based boundary fluxes, including the rate of 
biomass synthesis which constrains the anabolic fluxes.

Determining metabolite uptake and excretion rates through 1H-NMR

Media samples for 1H-NMR analysis were prepared from each of the 25 chemostats by 
filtering 10 mL of culture through a 0.45 μm HNWP filter (HNWP02500, Millipore, 
Billerica, MA). The concentration of metabolites in the flow-through (spent media) was 
analyzed by 1H-NMR, with 2 independent 10 mL samples analyzed per chemostat. D2O, 
sodium azide, and 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) were added to final 
concentrations of 10%, 500 μM, and 500 μM, respectively. Using a 500 MHz Advance III 
(Bruker), 1H-NMR spectra were collected using the following acquisition parameters: TD = 
65536, NS = 32, D1 = 10s, SW = 16, O1P = 4.68, P1 = 7.2, P12 = 2400, SPW1 = 0.0009, 
SPNAM1 = Gaus1 180r.1000. NMR peaks were quantitated using rNMR (65), by choosing 
the cleanest peak of each metabolite and normalizing this peak’s height relative to the 500 
μM DSS internal standard. Absolute quantification was possible through comparison to 
external standards that were similarly normalized with respect to an internal DSS standard. 
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From the steady state concentration of metabolites in spent media and the culture dilution 
rate, the rate of excretion (of metabolites not present in the original media) is given by:

(2)

The rate of uptake of supplied nutrients can be found analogously by comparing the final 
concentration of nutrients to their concentration in formulated media:

(3)

Limitation-dependence of yeast biomass composition

Because the composition of yeast cells strongly influences the steady-state metabolic fluxes 
required to support biomass synthesis, the abundances of major biomass constituents (16) 
were measured for each of the 25 chemostat conditions. For each chemostat, ~200 mL of 
culture was collected on ice. Yeast were separated from the culture media by centrifugation 
at 2,600g at 4°C for 30 minutes, the pellet was resuspended in water to remove all 
extracellular salts, and yeast were again pelleted (1600g at 4°C for 5 min). The resulting 
pellets were stored at -80°C.

For dry weight, carbohydrate, protein, and phosphate measurement, homogenized cells were 
prepared as follows: Frozen cell pellets were dehydrated for 24 hours at 60°C using a 
vacuum concentrator and weighted. Approximately 30 mg of dry yeast was resuspended in 1 
mL of homogenization buffer (0.01 M KH2PO4, 1 mM EDTA, pH 7.4) with 0.5% Triton-X, 
mechanically homogenized (Mini-Beadbeater-16; Biospec Products, Bartlesville, OK), and 
aliquoted into 96-well assay plates (20 μL homogenized yeast per well) for 
spectrophotometric measurements. Sample preparation for determination of other biomass 
components is described in the relevant subsections.

Total carbohydrate—Phenol-sulfuric assay for total carbohydrates was used to assess the 
total amount of trehalose, glycogen, mannan and glucans found in 96-well plates of 
homogenized yeast (66). Trehalose concentration, as determined by mass spectrometry (see 
below), was subtracted from total carbohydrate, leaving a total polysaccharide fraction of 
dry weight.

Total protein—BCA assay (Pierce BCA Protein Assay Kit; Thermo Fisher Scientific, 
Waltham, MA) was used to determine the relative amounts of protein across the chemostat 
conditions, with previous measurements of yeast composition in identical carbon or 
nitrogen-limited chemostats used as an absolute reference (15, 16).
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Total inorganic phosphate—A colorimetric assay (K410-500; BioVision, Milpitas, CA) 
was used to measure inorganic phosphate. Analysis of polyphosphate standards confirmed 
that sample preparation steps had already hydrolyzed polyphosphates to monomers; thus, 
measured phosphate was a combination of inorganic monophosphate and polyphosphates.

RNA—Frozen pellets as above were thawed on ice, and RNA was extracted using phenol-
chloroform. The relative abundance of RNA in each sample was measured using a 
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA), with previous measurements of 
yeast composition in identical carbon or nitrogen-limited chemostats used as an absolute 
reference (15, 16).

Fatty acids—The concentration of fatty acids was assessed through absolute quantification 
of the most abundant fatty acid tails (67). Frozen cells were resuspensed in 0.1 M HCl/
MeOH (50/50) and extracted with 0.5 mL cold (-20°C) chloroform. After removing the 
solvent under N2 flow, 1 mL of 90% methanol, 0.3 M KOH was added and samples were 
heated for one hour at 80°C to saponify lipids. Uniformly 13C-labelled C16-0, C16-1, 
C18-0, C18-1 were added as internal standards. After acidification with 100 μL glacial 
formic acid, saponified fatty acids were extracted twice with 1 mL of hexane. Samples were 
dried under N2 gas and resuspended in chloroform/methanol/H2O (1/1/0.3) to a final 
concentration of 2 μL cell volume per mL. Fatty acids were quantified by LC-MS as 
previously described (68), except using a Q-TOF 6550 (Agilent Technologies, Santa Clara, 
CA) instead of an orbitrap mass analyzer, with absolute concentrations determined by 
comparing the endogenous unlabeled peaks to the isotope-labeled standard peaks.

DNA—The average DNA content of each cell was inferred from a previously determined 
relationship between chemostat dilution rate and the fraction of budded cells (fraction 
budded = 0.936 - 1.971DR) (25). As budded cells are diploid and unbudded cells are 
haploid, deoxyribonucleotide content could be calculated from genome size, GC content and 
the number of cells per culture volume.

Soluble metabolites—Intracellular pools of the 20 metabolites with a median 
concentration of greater than 1 mM were considered in defining biomass composition. For 
analytical methods for soluble metabolites, see below.

Effluxes to biomass

In a chemostat culture, continual yeast growth (and associated biomass synthesis) is 
balanced by the loss of yeast cells through dilution:

(4)

To relate jsynthesis to metabolic fluxes, we assumed that the relative proportions of monomers 
(in protein, RNA, etc) were invariant across the chemostats conditions with the following 
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proportions: Amino acids % by weight: A: 8.8%; C: 0.17%; D: 8.42%; E: 9.45%; F: 4.74%; 
G: 4.67%; H: 2.2%; I: 5.42%; K: 9.03%; L: 8.33%; M: 1.62%; N: 2.88%; P: 4.06%; Q: 
3.3%; R: 6.03%; S: 4.18%; T: 4.89%; V: 6.64%; W: 1.24%; Y: 3.96% (18); Ribonucleotides: 
% by weight: AMP: 24%; CMP: 22%, GMP: 25%; UMP: 29% (18); Polysaccharides: % by 
weight: β-glucan: 46%; glycogen: 21%; mannan: 33% (18).

Synthesis of each macromolecule pool was represented as a single reaction, consuming 
monomers in the proportions above, along with polymerization costs (69, 70). For example, 
the RNA consumption reaction removes ATP, CTP, GTP, and UTP and liberates two 
phosphates per nucleotide assimilated. This formalism allows a single reaction to represent 
each biomass component, including the measured uncertainty in its abundance and thereby 
in the associated biosynthetic flux.

Inferring metabolism-wide fluxes using a constraints-based approach

The stoichiometry and directionality of yeast reactions were taken from a modified version 
of the YEASTNET 7 Saccharomyces cerevisiae genome-scale model (18). Reactions were 
added to allow for polyphosphate synthesis (polyphosphate kinase: (ATP + (PO3)n → ADP 
+ (PO3)n+1) and orotate excretion, which we observed experimentally. ATP consumption 
occurred via three routes: i) a minimal ATP maintenance flux proportional to cell mass (1 
mmole per gDW/h) (71), ii) growth-related reactions, iii) an unconstrained and unproductive 
ATP hydrolysis reaction which was manually added to the model. Reactions that never 
carried flux under our experimental conditions were removed. This resulted in 2,787 
reactions involving 1,843 metabolites that could carry non-zero flux. This count includes 
equivalent reactions and identical metabolites duplicated across different compartments. The 
stoichiometry of the 2,787 reactions is defined by the stoichiometric matrix (S).

To determine metabolism-wide fluxes for each experimental chemostat condition, we 
determined the balanced flux distribution (j such that Sj = 0) that conforms to our 

experimentally determined boundary fluxes (ĵ) as closely as possible (i.e. min ) 
(72). Because individual boundary fluxes were measured with variable accuracy, 
analogously to weighted least squares regression, we weighted squared residuals, (ĵ–j)2 by 
the experimental precision (σ-2) of that measurement. To minimize unproductive metabolic 

cycles, absolute fluxes |j| were penalized by a scalar value c(1) or c(2) (i.e. 
for each reaction k). c(1) was used for high flux reactions (glycolysis, TCA cycle, boundary 
fluxes and associated transport reactions and the unproductive ATP hydrolysis reaction) and 

c(2) (which was larger than c(1)) was used for all other reactions.  was small 
relative to the primary penalty for misfitting of the experimental measurements. The optimal 
vector j can be found using quadratic programming:

(5)
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Because there may be multiple optimal solutions {j}, we used flux variability analysis (17) 
to determine the range of fluxes through each reaction (i), which give an identical minimal 
cost (θ) in Equation 5. This range was taken as the experimentally observed flux range. This 
approach involves separately minimizing and maximizing the flux through each reaction, 
treating θ as a constraint:

(6)

Both optimization problems were implemented using the Gurobi Optimizer (73). Code to 
reproduce flux estimation is available on GitHub.

A total of 233 reactions both carried non-zero flux under at least some conditions and were 
well constrained based on flux variability analysis with median across conditions of (FVA 
range) / (midpoint of FVA range) < 0.3. These 233 reactions were treated as candidates for 
further kinetic analysis.

Proteomics

To quantify the relative levels of proteins across 25 chemostats, each experimental sample 
was paired to an internal 15N-labelled reference sample and analyzed in triplicate.

Protein extraction—Yeast from 300 mL of culture volume were collected by rapid 
filtration onto a 0.8 μm cellulose acetate filter (CA089025, Sterlitech, Kent, WA). The filter 
containing the yeast cake was folded and placed into a 50 mL conical vial, which was 
immediately frozen by immersion in liquid nitrogen, followed by storage at -80°C. 
Complete yeast particle disruption was accomplished by placing each cryofrozen yeast-
laden filter into a 50 mL canister of a Retsch CryoMill (Haan, Germany) precooled on dry 
ice and pulverizing the total material into a fine powder by cryogenic ball milling at -196°C. 
Yeast protein was extracted from the powder by resuspension in an 80°C solution of 4% 
SDS, 100 mM Tris pH 8, 1 mM DTT, and Halt Protease and Phosphatase Inhibitors 
(ThermoFisher Scientific, MA), followed by boiling for 20 min with periodic agitation. 
Insoluble material, including filter material, was removed from the samples by 
centrifugation at 24,000g for 20 minutes. The concentration of extracted protein was 
determined using the Pierce BCA Protein Assay Kit (ThermoFisher, MA). Experimental 
samples were mixed 1:1 with an equal protein content of 15N-labeled reference protein 
solution. The protein reference was yeast cultured in phosphate-limited chemostats (N = 2, 
mixed together) growing at a dilution rate of 0.05 h-1 in which (15NH4)2SO4 was the sole 
nitrogen-source.

LC-MS data acquisition—Each experimental sample was subject to buffer-exchange into 
a urea-based solution, thiol reduction and alkylation, and trypsin digestion using the FASP 
procedure (74). Peptides were diluted from the digestion solution directly into isoelectric 
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focusing (IEF) buffer, placed above pH 3-10 IPG strips, and subject to IEF using the OffGel 
apparatus and its reagent kits (Agilent Technologies, Santa Clara, CA). Twenty-four 
fractions were collected for each sample and each fraction was directly analyzed by nano-
LC-MS/MS three times: once using an Agilent 6538 Q-TOF platform and twice using an 
Agilent 6550 Q-TOF platform. Both Q-TOF platforms were equipped with Agilent 1260 
nano-flow HPLC systems and an Agilent ChipCube LC/ion source interface. Large capacity 
Chip (II) units (150 mm 300 Å Zorbax C18 chip with a 160 nL trap column) were utilized 
on the 6538 platform, while Polaris-HR-Chip 3C18 units (150 mm 180 Å 3 μm Polaris C18 
chip with a 360 nL trap column) were employed on the 6550 system. MS was collected 
using the high resolution setting (40k resolving power) at 500 ms acquisition time; MS/MS 
was collected on the top 3 most abundant multiply charged species, at 250 ms acquisition 
time per spectrum. Raw data was converted from the Agilent .dat format into mzXML 
format using the software Trapper (Seattle Proteome Center, Trans-proteomic Pipeline) for 
downstream data analysis.

Peptide identification and quantification—Each mzXML file was analyzed using 
Mascot (version 2.2.07, Matrix Science, London, UK) with 0.01 Da parent and fragment 
mass tolerance, methionine oxidation as a variable modification, cysteine 
carbamidomethylation as a fixed modification, and 15N Metabolic Quantitation. The Mascot 
results files were processed through Scaffold (version 3.6.0, Proteome Software Inc., 
Portland, OR) with XTandem (version 2007.01.01.1, The GPM, Alberta, Canada) to confirm 
peptide identities and report peptides with at least 95% identification confidence in proteins 
with at least 99% identification confidence and at least 2 peptides identified. The ion counts 
for the observed peptide mass spectra, which represent the sum of the experimental (light) 
and reference (heavy) forms of each identified peptide, were fit to theoretical isotopologue 
distribution (based on the natural abundance of isotopes and the isotopic purity of 
(15NH4)2SO4) for the experimental and reference peptides to determine their relative 
abundances and associated error estimates. Using the co-elution probability of every pair of 
identified peptides, the elution time was predicted for peptides identified in only a subset of 
the samples. The ion counts for the experimental and reference forms of these peptides were 
also added together over the elution periods of the peptide in samples without explicit MS2 
identifications. When a peptide was identified in multiple fractions, the ion currents from 
each fraction were summed to achieve a sample-level summary of experimental and 
reference ion current. 13,135 peptides, where both the experimental and reference ion was 
quantifiable in at least 15 samples, were chosen for further analysis. For each peptide, i, and 
condition, c, the log2-ratio of the experimental to reference peptide ion current integrated 

areas was treated as the peptide relative abundance, .

Protein quantification—To infer the relative abundance of a protein from its 
corresponding peptides, we need to aggregate multiple noisy estimates into a single 
consensus. The relative abundance of each peptide was taken as the geometric mean of 
technical replicates. To downweight noisier peptides, each peptide’s variance was estimated 
as the mean squared error over technical replicates. The relative abundance (and variance) of 
a protein in each condition was found by weighting the peptide relative abundances (x) 
according to their inverse variance:

Hackett et al. Page 16

Science. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

The relative abundance of proteins with no measured peptides in a condition (4.8% of all 
measurements and only 0.3% of enzymes catalyzing the 56 reactions of interest) was 
determined using knn-imputation (75).

Metabolomics

The relative concentrations of 106 metabolites were previously measured across our 25 
experimental conditions (21). We further determined: i) absolute concentrations of 56 
metabolites, so that growth-associated dilution of large metabolite pools could be accounted 
for and so that metabolite affinities could be biochemically interpreted, ii) uncertainty of 
metabolite concentrations (see below).

Metabolite absolute concentrations—Absolute concentrations of 56 of the 
metabolites measured in Boer et al. 2010 were determined by comparison to commercial 
standards. The approach depended on whether the metabolite contained nitrogen. For 
nitrogen-containing metabolites, including amino acids, unlabelled standards of known 
concentration were added into 15N-labeled phosphate-limited chemostat samples. These 
samples were CBZ-derivatized and analyzed by LC-MS in negative ionization mode, as per 
Boer et al. 2010 (21), with absolute concentrations of the metabolites in the phosphate-
limited chemostat samples determined based on ratios of the unlabeled and labeled peaks 
(22). For metabolites that do not contain nitrogen, their relative concentrations in a fast-
specific growth rate (DR = 0.30) carbon-limited chemostat were compared to a 
contemporaneous batch culture containing glucose as a carbon source, for which absolute 
concentrations have been previously determined by comparison to commercial standards 
(76). Samples were analyzed by LC-MS in negative mode, as per Xu et al. 2012 (43).

Variance of metabolite relative abundances—The variance of metabolite 
measurements (in log2 space) was determined from four technical replicates per chemostat. 
Residuals across chemically similar metabolites were often highly correlated (for example, 
within amino acids or within nucleotides). Such correlations impact the error estimates for 
reaction fluxes derived by plugging the concentrations into a Michaelis-Menten reaction 
equation. For example, if errors in [ATP] and [ADP] measurement are positively correlated, 
the error in the ratio ([ATP]/[ADP]) is less than that based on standard propagation of error, 
whereas the error in [ATP]*[ADP] would be greater than that based on standard propagation 
of error. To enable more accurate propagation of error from metabolite concentrations into 
the Michaelis-Menten fluxes, the residual covariance across all metabolites was estimated 
(77).

Since all ‘omic measurements rely only on technical (and not biological) replicates, 
variances are underestimated, but only modestly as biological variability is less than 
technical variability (14). Because subsequent analyses are based on finding trends across a 
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continuum of conditions (rather than looking for differences between conditions), 
underestimation of random biological error does not create a systematic bias in favor of false 
discoveries.

Summary of integrative ‘omics data

Overall, we determined the relative abundances of 106 metabolites and 304 enzymes and 
measured flux through 233 reactions. For 56 reactions, fluxes were determined, at least one 
isoenzyme was measured through proteomics, and major substrates were quantified using 
metabolomics (Table S9). For 46 of these reactions, ‘omic measurements from all conditions 
(N = 25) were used to assess kinetic parameters and identify regulation. For the remaining 
10 reactions, data in one auxotrophic limitation differed greatly (> 5-fold) from all of the 
native limitations and from the other auxotrophic limitation. For example, orotate 
phosphoribosyltransferase (OPRTase) flux is zero under uracil limitation due to the ura3 
auxotrophy, and inclusion of uracil limitation data would inappropriately skew the SIMMER 
results for the OPRTase reaction. Based on a 5-fold difference criterion (relative to the most 
similar native limitation data), leucine limitation data were excluded for 6 reactions (ALS, 
AGK, ASL, ASS, LEUT, OTCase) and uracil limitation data for 4 reactions (ATCase, CPS, 
OPRTase, ODCase). In these 10 cases, SIMMER analysis was conducted using data from 
the other four limiting nutrients (total of 20 rather than 25 experimental conditions).

Reaction equations

For each reaction, an equation with no small molecule regulation (generalized Michaelis-
Menten kinetics) was generated, as were alternative equations involving one or more 
previously reported metabolite activators or inhibitors. Possible regulators of each reaction 
were queried based on E.C. number. Using the BRENDA database SOAP API, we drew on 
both S. cerevisiae specific regulation and non-yeast regulation (31). All putative regulators 
were matched to ChEBI compounds (78) and their synonyms to determine if they were 
experimentally measured. Each model of reaction kinetics was translated into a Michaelis-
Menten reaction form using an extended form of the convenience kinetics rate law (28, 29), 
which assumes a random-order mechanism with explicit grouping of metabolites based on 
binding sites:

(8)

E1, E2, … are the concentrations of isoenzymes that catalyze the reaction. Substrates (A) 
and products (B), together denoted as reactants (R), were assigned to binding sites (Γ) based 
on structural atom-pair similarity using ChEBI structures (78, 79) and assignments were 
manually verified. Stoichiometric coefficients of substrates, products and reactants are given 
by α, β and γ and respectively. Previous work has shown that this reaction form can 
accurately reproduce bi-bi ping-pong and sequential mechanisms (29). To generate reaction 
forms containing a potential allosteric regulator D, a pre-multiplier was applied to the 
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Michaelis-Menten equation: for allosteric activation, D/(D + Ka), and for inhibition: 1/(1 + 
D/Ki). All affinity constants (Ki, Ka, Kd) are treated equivalently when fitting reaction 
equations and therefore we use Kd to represent any affinity constant in subsequent sections.

Fitting reaction equations to experimental data

Each reaction equation g (Equation 8) is an algebraic relationship that translates enzyme (E) 
and metabolite (M) abundances and kinetic parameters (Ω = (Kd, kcat, Keq); |Ω| = # 
metabolites + # enzymes + 1) into predicted flux, jP = g(M, E, Ω). To determine the support 
for g, we must find a set of kinetic parameters that best approximates FBA-determined flux 
(jF) with jP. In doing this, we want both an optimal parameter set (e.g. the maximum-
likelihood estimator (MLE) or maximum a posteriori probability (MAP) estimator of Ω,Ω̂) 
and a measure of parameter uncertainty. All parameters (Kd; kcat; Keq) were inferred rather 
than taken from literature. This approach was chosen due to lack of absolute quantitation for 
one or more substrates or products of most reactions thereby precluding comparison to 
literature Keq values, the lack of reliable literature values for many kinetic parameters, and 
potential for systematic differences between biochemical and in vivo parameters. If we 
constrained the kinetic parameters based on biochemical literature, such systematic 
differences could result in over-fitting of regulation to correct for erroneous parameter 
values.

We assume that deviations between jP and jF are independent and identically distributed (iid) 
and follow a Normal distribution with common variance, given by the mean squared error. 
The most popular method of fitting relationships of the form y = g(X, Ω) + ε, is non-linear 
least squares (NLS) regression which aims to estimate a set of unknown parameters that 
minimizes the least squares departures between y and g(X, Ω). While widely used, this 
method is poorly suited to enzyme kinetics for three reasons: i) NLS may become trapped in 
local minima (80); we found this to be a particularly severe problem for the reaction 
equations used in this study, ii) NLS may underestimate parameter standard errors because 
of the non-linear relationships between parameters (80), iii) NLS does not readily allow for 
uncertainty in the response variable, which in our case is flux. This latter issue is particularly 
critical for SIMMER, as the measured fluxes span the interval determined by flux variability 
analysis.

To avoid the limitations of non-linear regression, we employed a Bayesian approach to 
estimate the kinetic parameters Ω:

(9)

The posterior distribution of Ω was estimated using Markov Chain Monte-Carlo. Each round 
of the algorithm involves: i) proposing a set of kinetic parameters (Ω) drawn from the 
proposal distribution, ii) evaluating jP = g(M, E, Ωproposed), iii) determining how well jP 

agrees with jF (i.e. the likelihood of Ωproposed), iv) evaluating the posterior probability of 
Ωproposed (Equation 9) to determine whether Ωproposed should be accepted or rejected.
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Prior and proposal distribution on Ω—The prior and proposal distributions for each 
kinetic coefficient were equivalent and constructed to appropriately reflect reaction 
chemistry.

Since each disassociation constant (Kd) reflects the affinity of an enzyme for a metabolite 
(M), the value of Kd is only meaningful when compared to this metabolite’s concentration: 

. To symmetrically span 
the extremes of near unsaturation and near saturation, the prior on each metabolite’s Kd was 
a Log-Uniform distribution centered about the metabolite’s median log concentration:

(10)

The range of this distribution was chosen such that near unsaturation or saturation could be 
achieved across all conditions even when metabolite concentrations varied greatly across 
conditions.

Similarly to Kd, the value of Keq is meaningful only when compared to the reaction quotient 
Qr. The disequilibrium ratio (Qr/Keq) equals one when the reaction is at equilibrium and 
approaches zero when the reaction is far from equilibrium (in the forward direction). To 
symmetrically span meaningful values of free energy (about thermodynamic equilibrium), 
the prior on Keq was a Log-Uniform distribution centered about the log of the median 
reaction quotient:

(11)

The range of this distribution was chosen such that near irreversibility could be achieved 
across all conditions even when the reaction quotient varied greatly across conditions.

For numerical reasons, kcat parameters were not drawn from a proposal distribution, but 
were instead optimized based on the current values of Kds and Keq. Their prior probability 
can be considered as an improper Uniform prior over the non-negative real numbers: 
Pr(kcat)~ Unif[0,∞).

Evaluating g(M, E, Ωproposed): Every reaction equation, g(M, E, Ω), can be represented as 
the product of a non-linear equation, f(M, Kd, Keq), and a linear equation, h(E, kcat), where 
g = fh. For the simplest case of Michaelis-Menten kinetics: f = [S]/([S] + KM) and h =kcat[E] 
(i.e. Vmax).

Once values of Kds and Keq have been drawn from the proposal distribution, the fraction of 
maximum activity of each condition (o = f(M, Kd, Keq)) can be found. This fraction of 
maximum activity, scaled by the measured enzyme concentration and kcat, approximates 
measured flux (i.e. jF = kcat[E]o + ε). To find the value of kcat (or multiple kcats if isozymes 
are measured) that minimizes the residual squared error, we can use linear regression to 
solve for kcat, treating [E]o as predictors. To enforce that kcat values are strictly nonnegative, 
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kcat parameters are found using non-negative least squares (NNLS). Once all coefficients in 
Ω have either been drawn from the proposal distribution, or directly estimated in the case of 
kcats, jP = g(M, E, Ωproposed) can be evaluated. Metabolites that were not experimentally 
measured were treated as having invariant concentrations.

Determining the likelihood of Ω—As is the case for NLS, we assume that deviations 
between jP and jF follow a Normal distribution with variance given by the mean squared 

error. If measured fluxes ( ) are point estimates, the log-likelihood of a proposed 
parameter set, Ω, l(Ω∣ M, E, jF) would be:

(12)

Here, ϕ is the Normal probability density function (pdf). Since we are accounting for 
experimental uncertainty in fluxes through flux variability analysis, Equation 12 must be 

modified to represent  as a uniform density between some lower ( ) and upper bound 

( ). This log-likelihood function reflects the equivalent likelihood of jP falling anywhere 
within the interval determined by flux variability analysis:

(13)

Evaluating the posterior probability of proposed—Due to the component-wise 
Uniform/Log-Uniform priors on Ω (Equations 10 and 11), the posterior probability of Ω, 
Pr(Ω∣ M, E, jF), is proportional to the likelihood (natural exponential of Equation 13):

(14)

Algorithm for calculating posterior distribution of Ω—For a single reaction with K 

non-linear kinetic parameters ( ) tracked over the course of I sets 
of metropolis updates, the joint values of these kinetic parameters can be optimized using 
Algorithm 1.

To obtain distributions of parameter values that appropriately reflect the true distribution, 
Pr(Ω∣ M, E, jF), the Markov algorithm was implemented as follows: i) the first 8,000 
samples from the Markov chain were discarded (as the initial values are determined by the 
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starting assumptions regarding the parameter distribution, not the experimental data fit), ii) 
thereafter, only every 300th parameter set of the Markov chain was recorded as an element of 
Ω (as values from nearby iterations of the chain are inappropriately highly correlated) until a 
total of 200 Markov samples had been generated, iii) the algorithm was run 10 times from 
different initial conditions. By comparing the 10 Markov chains from each model using the 
multivariate potential scale reduction factor (MPSRF) (81), we verified that in all cases the 
distinct initial conditions had converged to equivalent posterior distributions.

From the 10 runs of Algorithm 1, for each reaction equation, we generated 2,000 samples 
from the posterior distribution of Ω. For purposes of model comparison, we calculated the 
MAP of each model and the corresponding MAP estimate of parameters:

(15)

(16)

When estimates of Ω using non-linear least squares were possible (for most reaction 
equations NLS failed to converge from over 100 initial conditions), the MAP likelihood was 
either indistinguishable from the NLS fit or substantially higher (due to NLS not reaching a 
global least squares minima).

Allowing for cooperativity of regulator binding—Cooperative binding of regulators 
was assessed for each literature-informed allosteric activator or inhibitor by adding an 

appropriate Hill coefficient (n) to the pre-multiplier; for activation  and for 
inhibition 1/(1+(D/ki)n). Parameters for models with cooperativity were inferred as above, 
with the inclusion of an additional proposal distribution for the Hill coefficient. The prior 
and proposal distributions on Hill coefficients were distributed as Log-Uniform: Pr(log2n) ~ 
Unif(-3, 3). This distribution provides symmetry of negative cooperativity (n < 1) and 
positive cooperativity (n > 1) about non-cooperativity (n = 1).

Code to apply the MCMC-NNLS algorithm to reaction-level data for the 56 studied 
reactions is available on GitHub.

Evaluating how well reaction forms fit given experimental uncertainty

To determine whether discrepancies between measured fluxes and Michaelis-Menten 
predictions can be accounted for by inaccurate measurements of reaction species, the 
uncertainty of the Michaelis-Menten prediction based on the collective error of all reaction 
species was calculated using the multivariate delta method (82):

(17)
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Here, s is the set of all measured enzymes and metabolites involved in a reaction. j refer to 
pathway fluxes, while v are reaction-level fluxes. Σ is a square residual covariance matrix (if 
4 measured metabolites and 2 proteins = 6 × 6 matrix). Diagonal entries are the variance of 
species in condition c, and off-diagonal entries are covariances between species (i.e. how 
correlated is the measurement error of two species weighted by their residual uncertainty). 
Covariances between proteins were unknown and assumed to be zero, while covariances 
between metabolites were calculated as above.

Assessing regulator significance

Our general strategy was to first identify all putative regulators that significantly (after FDR 
correction) improved the fit. We then used a Bayesian approach to assess the plausibility of 
each regulator. This incorporated how well-fit a model was in terms of its maximum a 
posteriori probability (Equation 16), the model’s a priori plausibility based on literature 
evidence, and the model’s complexity. Bayesian integration of these factors allowed us to 
identify the most likely model.

Determining regulators that significantly improve fit—Each reaction equation 
containing regulation was compared to the unregulated Michaelis-Menten fit for the same 
reaction to determine if the improvement in fit due to regulation was significant given the 
increased number of fitted parameters. Because we are comparing nested models with 
differing numbers of degrees of freedom, a likelihood ratio test was used (because of 
Uniform priors, the posterior probability of each model is proportional to the likelihood: 
Equation 14). An increased likelihood (Equation 16) indicates better fit. The expected 

increase in fit (2 Δ l) due to an irrelevant parameter will follow a  distribution with p 
equaling the number of additional parameters. By this approach, a p-value was determined 
for each regulator. Regulators that were not significant at a FDR of 0.1 (30) were removed 
from further consideration to yield a set of candidate regulators. Models involving multiple 
regulators were built in a step-wise fashion from individual significant regulators, with a 
more complex model accepted only when it was significantly superior to all simpler models.

Integrating quantitative support and prior knowledge to compare alternative 

models of reaction kinetics—The above approach facilitates the quantitative evaluation 
of many reaction mechanisms without regards to their plausibility.

To integrate our data and prior literature knowledge, we took a Bayesian approach, aiming to 
maximize Pr(Model ∣ Data), where “Model” is a Michaelis-Menten equation including 
regulation and “Model” is “True” if the regulation is physiologically meaningful. Using 
Bayes theorem:

(18)

Pr(Data ∣ Model) accounts for how well concentrations predict fluxes and is directly 
assessed by Equation 16. Pr(Data) is independent of the choice of the model, thus:
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(19)

After empirically estimating Pr(Model) and accounting for differences in model complexity 
(see below), alternative models of kinetics for each reaction can be simultaneously compared 
balancing each model’s plausibility and quantitative support.

Literature support for regulation, Pr(Model): to carryout the above strategy, we needed to 
estimate the a priori probability that each tested regulator is physiologically meaningful in 
yeast: Pr(Model). From literature reviews and recent primary literature (33-35), 20 reported 
physiological regulators of 16 reactions were assembled. This gold standard list was initially 
treated as a priori true regulation. We also constructed a list of 186 BRENDA regulators of 
the 16 gold standard reactions (31); we assume that the vast majority of regulation in this list 
is non-physiological. Accordingly, all members (except for the 20 members of the gold 
standard list) were initially treated as a priori false regulation.

Using BRENDA, for each regulator, i, we determined how many times it has been reported 

in S. cerevisiae ( ), and in other species ( ). We also determined the total number of 
regulators that are tested for the reaction corresponding to i (Ni). The log (base 2) of this 

number was treated as a third covariate ( ). Treating gold standard regulation as 
true regulation (yi = 1) and other BRENDA regulators as false regulation (yi = 0), the 
predictive power of xsce, xother, and xn were determined using logistic regression:

(20)

The effect of yeast annotations (β̂sce = 0:84) and non-yeast annotations (βôther= 0:08) were 
both significantly positive (p < 0.001), while the effect of a higher number of total regulators 
(βn̂= -0.91) was significantly negative (p < 0.005). The output of the logistic regression 
(i.e.p̂) was applied across all regulators to determine the a priori Pr(Model). The prior 
probabilities for models with multiple regulators were the product of individual regulator 
prior probabilities. For models without any regulation, we used a prior probability of 1. This 
equals the maximum prior probability that could exist for any model including regulation.

Predicting the most likely reaction form for each reaction based on Pr(Model ∣ 
Data)—For each reaction, Michaelis-Menten kinetics and all regulatory reaction forms that 
significantly improve fit of simpler models (q < 0.1) were simultaneously considered. The 
quantitative support for each model, Pr(Data ∣ Model) (Equation 16), and literature support 
for each regulatory mechanism, Pr(Model) (Equation 20), were combined to estimate each 
model’s total support, Pr(Model ∣ Data) (Equation 19). The relative support for each model 
was corrected for overparameterization by using the Akaike Information Criterion with 
correction (AICc) (36):
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(21)

Here, n is the number of conditions and k is the number of fitted parameters. The reaction 
form with the lowest AICc was considered most plausible. Alternative significant regulators 
are reported in Table S4.

Experimental verification of predicted regulation

Ten regulators of seven reactions (ATP-PRTase: His1, DAHP Synthase: Aro3,4, G6PD: 
Zwf1, 6PGD: Gnd1, OTCase: Arg3, PYK: Cdc19 (Pyk1),Pyk2, PDC: Pdc1,5,6), predicted 
by SIMMER, were tested using in vitro biochemistry (Table S2). For the PYK and PDC 
reactions, while minor isozymes exist (Pyk2, Pdc5,6), Pyk1 and Pdc1 are the predominant 
isozymes in glucose, where all of our experimental data were collected.

Purified S. cerevisiae enzymes were commercially available for G6PD, 6PGD and PDC 
(10127655001, P4553, P9474; Sigma-Aldrich, MO). Using proteomics, we confirmed that 
commercial PDC was primarily composed of Pdc1 (total spectral counts from Pdc1 were 
more than three times higher than those from Pdc5 or Pdc6). A strain containing an N-
terminal 6-His affinity tagged version of S. cerevisiae Cdc19 was obtained from Xu et al. 
2012 (43). For Arg3, Aro3, Aro4, and His1, a C-terminal 6-His affinity tag was attached to 
the native gene using PCR (amplified from BY4742 genomic DNA) and incorporated into a 
p426GAL plasmid (high-copy plasmid, URA3 selectable, gene products are galactose-
inducible). This plasmid was transformed into DBY12045 (MATa, HAP1+ ura3DΔ0) to 
generate strains expressing Arg3-His6, Aro3-His6, Aro4-His6 and His1-His6. Protein 
expression of all pGal-His6-tagged strains was induced by first growing overnight cultures 
until an OD600 of 0.6 on SC - URA media + 2% Raffinose, followed by 12 hours of 
induction on SC - URA media + 2% Galactose. Total protein was extracted through 
mechanical homogenization in the presence of Y-PER reagent (Thermo Scientific, MA) 
containing 10 μL/mL EDTA-free HALT protease inhibitors (Thermo Scientific, MA) and 2 
mM PMSF. Tagged enzymes were purified using HisPur Cobalt Spin Columns (Thermo 
Scientific, MA), and successful purification was confirmed by SDS-PAGE.

Activities of G6PD (ZWF1), 6PGD (Gnd1), ATP-PRTase (His1), and DAHP synthase 
(Aro3,4) were assessed using previously published kinetic spectrophotometric assays 
(83-85). Assays used to identify or confirm previously unrecognized regulation are detailed 
below. Putative regulators of each enzyme were adjusted to the pH of the reaction buffer.

Spectrophotometric (NADH-coupled) analysis of pyruvate kinase (PYK: 

Cdc19) activity—Production of pyruvate by Cdc19 was coupled to NADH oxidation via 
lactate dehydrogenase (LDH) (86). Initial concentrations were 0.15 or 0.8 mM PEP (as 
indicated), 0.2 mM ADP, 0.2 mM NADH, and 4.3 unit/mL LDH (L2500, Sigma-Aldrich) in 
50 mM Tris, 4 mM MgCl2, 75 mM KCl, pH 7.5 buffer. Reaction progress was tracked in 
real time at 340 nm and 30°C for one hour. Initial reaction velocities were fitted and blank 
(Cdc19-free) activity was subtracted.
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Spectrophotometric (direct) confirmation of pyruvate kinase regulation—The 
stoichiometric conversion of PEP (ɛ232 = 2.84 mM-1cm-1) to pyruvate (ɛ232 = 0.6 
mM-1cm-1) as the reaction progressed was tracked by capitalizing on the difference in molar 
absorptivity at 232 nm between these two species (86). Initial concentrations were 0.15 and 
0.4 mM PEP, 0.2 mM ADP in 50 mM Tris, 4 mM MgCl2, 75 mM KCl, pH 7.5 buffer. 
Reaction progress was tracked in real time at 232 nm and 30°C for one hour. Initial reaction 
velocities were fitted and blank (Cdc19-free) activity was subtracted.

Spectrophotometric (NADH-coupled) analysis of pyruvate decarboxylase 

(PDC: Pdc1) activity—Production of acetaldehyde by Pdc1 was coupled to NADH 
oxidation via alcohol dehydrogenase (ADH). Initial concentrations were 0.1-30 mM 
pyruvate, 0.1 mM NADH, 3 unit/mL ADH (A7011, Sigma-Aldrich) in 200 mM citric acid, 
pH 6.0 buffer. Reaction progress was tracked in real time at 340 nm and 30°C for one hour. 
Initial reaction velocities were fitted and blank (Pdc1-free) activity was subtracted.

NMR-based confirmation of pyruvate decarboxylase (PDC: Pdc1) regulation—

Acetaldehyde accumulation by PDC was directly detected using 1H-NMR. PDC was 
incubated at 30°C for one hour in 10 mM pyruvate, 200 mM citric acid, pH 6.0 buffer. At 
the end of incubation, the reaction was stopped by a five-minute incubation at 98°C. 
Acetaldehyde was quantified by 1H-NMR as above (see “Determining metabolite uptake and 
excretion rates through 1H-NMR”).

Mass spectrometry based detection of acetaldehyde and phenylacetaldehyde 

produced by pyruvate decarboxylase (PDC: Pdc1)—PDC was incubated at 30°C 
for one hour with either 10 mM pyruvate or 10 mM phenylpyruvate in 200 mM citric acid, 
pH 6.0 buffer. An equal volume of acetonitrile was added to quench the reactions. 
Acetaldehyde and phenylacetaldehyde were TSH (p-Toluenesulfonyl hydrazide) derivatized 
and quantified by LC-MS in positive ionization mode, as per Boer et al. 2010 (21).

Spectrophotometric (NADP-coupled) analysis of ornithine transcarbamylase 

(OTCase: Arg3) activity—OTCase activity was tracked by coupling the loss of phosphate 
from carbamoyl phosphate to glycogen phosphorylase and ultimately NADP reduction (87). 
Initial concentrations were 5 mM ornithine, 100 μM carbamoyl phosphate, 0.8 mg/mL 
glycogen, 0.6 mM NADP+, 0.5 unit/mL glycogen phosphorylase a (P1261, Sigma-Aldrich), 
0.24 unit/mL phosphoglucomutase (P3397, Sigma-Aldrich), 0.85 unit/mL glucose 6-
phosphate dehydrogenase (G7877, Sigma-Aldrich), 2 μM glucose 1,6-bisphosphate, 20 μM 
AMP in 10 mM Tris, 10 mM Bis-Tris, 10 mM CAPS, 4 mM DTT, 0.4 mM MgCl2, pH 7.0 
buffer. Because this approach tracks phosphate liberated from carbamoyl phosphate, it was 
necessary to minimize both the amount of contaminating phosphorous and the amount of 
non-enzymatic phosphate released through the spontaneous breakdown of carbamoyl 
phosphate. Before quantification, all reagents except carbamoyl phosphate were combined 
and incubated for one hour at room temperature to consume contaminating phosphate. 
Freshly prepared carbamoyl phosphate was added to initiate the assay. Reaction progress 
was tracked in real time at 340 nm and 30°C for one hour. The signal from non-enzymatic 
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breakdown of carbamoyl phosphate was accounted for using Arg3p-free blanks whose 
predictable baseline could be reliably subtracted from assays including Arg3p.

Mass spectrometry based confirmation of ornithine transcarbamylase 

regulation—Citrulline accumulation by OTCase was directly detected using LC-MS. 
Arg3p was incubated at 30°C for two hours in 5 mM ornithine, 100 μM carbamoyl 
phosphate, 10 mM Tris, 10 mM Bis-Tris, 10 mM CAPS, 4 mM DTT, 0.4 mM MgCl2, pH 
7.0.The reaction was stopped by the addition of -20°C extraction solvent 
(acetonitrile:methanol:water, 40:40:20). Citrulline was quantified by LC-MS in positive 
ionization mode, as per Boer et al. 2010 (21).

Metabolic leverage

The concept of metabolic leverage is to partition the cause of flux changes across conditions 
(at the individual reaction level) into underlying changes in the concentrations of enzymes, 
substrates, products, and allosteric effectors. This concept can be formulated as partitioning 
the environmental-driven variance in flux across conditions into the contributions from the 
concentrations of the relevant molecular players. Mathematically, this is the inverse of 
propagation of uncertainty. For example, to determine the uncertainty in a flux calculation 
via a Michaelis-Menten expression, one would classically propagate uncertainty from the 
technical variation in individual species measurements (see section “Evaluating how well 
reaction forms fit given experimental uncertainty”). To determine metabolic leverage, 
instead, we decompose the overall environmental variance in flux into the variance 
contributed by individual reaction species:

(22)

Here, Vare(vF) is the variance in measured flux across chemostats. To focus on 
physiologically relevant variation in flux, only the 15 prototrophic chemostats limited by an 

elemental nutrient were considered.  are sensitivities that describe how the reaction 
equations output (vP) responds to changes in the mean concentration (across chemostats) of 
each reaction species. Sensitivities were evaluated at the mean concentration of all other 
reaction species using the best-supported kinetic parameters. Σe is the environmental 
covariance matrix describing how all reaction species covary across the chemostat 
conditions. Diagonal entries are the environmental variance of each reaction species 

. In order to determine the individual contributions of 
each species i, we make the simplifying assumption that environmental covariances between 
species are negligible and therefore Σe is diagonal:

(23)
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The fractional contribution of each reaction species k to overall flux changes is its metabolic 
leverage (ψk), which is calculated by normalizing each term in Equation 23 relative to their 
sum such that these metabolic leverages sum to one across all reaction species:

(24)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Data described in the paper are presented in Table S9. This research was supported by grants from the U.S. DOE 
(DE-SC0012461), NIH (R01CA16359-01A1), and Agilent Technologies (Thought Leader Award) to J.D.R., NIH 
(R01HG002913) to J.D.S., NIH (GM046406, GM071508), and Agilent Technologies (Thought Leader Award) to 
D.B., and a DOE SCGF fellowship (DE-AC05-06OR23100) to S.R.H.

References

1. Caspi R, et al. Nucleic acids research. 2014; 42:D459. [PubMed: 24225315] 
2. Kacser H, Burns JA. Symposia of the Society for Experimental Biology. 1973; 27:65. [PubMed: 

4148886] 
3. Fell, D. Understanding the control of metabolism. Portland Press Ltd; 1997. 
4. Tummler K, Lubitz T, Schelker M, Klipp E. The FEBS journal. 2014; 281:549. [PubMed: 

24034816] 
5. Hauf J, Zimmermann FK, Muller S. Enzyme and microbial technology. 2000; 26:688. [PubMed: 

10862874] 
6. Kochanowski K, Sauer U, Chubukov V. Current Opinion in Biotechnology. 2013; 24:987. [PubMed: 

23571096] 
7. Cornish-Bowden A, Hofmeyr JHS, Cardenas ML. Bioorganic Chemistry. 1995; 23:439.
8. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. Journal of bacteriology. 2002; 

184:3909. [PubMed: 12081962] 
9. Rizzi M, Baltes M, Theobald U, Reuss M. Biotechnology and bioengineering. 1997; 55:592. 

[PubMed: 18636570] 
10. Teusink B, et al. European Journal of Biochemistry. 2000; 267:5313. [PubMed: 10951190] 
11. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M. Biotechnology and 

bioengineering. 2002; 79:53. [PubMed: 17590932] 
12. Link H, Kochanowski K, Sauer U. Nature Biotechnology. 2013; 31:357.
13. Gerosa L, Sauer U. Current Opinion in Biotechnology. 2011; 22:566. [PubMed: 21600757] 
14. Robinson DG, Wang JY, Storey JD. Nucleic acids research. 2015; 43:e131. [PubMed: 26130709] 
15. Schulze, U. Ph D thesis. Department of Biotechnology, Techinical University of Denmark; 1995. 

Anaerobic Physiology of Saccharomyces cerevisae. 
16. Lange HC, Heijnen JJ. Biotechnology and bioengineering. 2001; 75:334. [PubMed: 11590606] 
17. Mahadevan R, Schilling CH. Metabolic engineering. 2003; 5:264. [PubMed: 14642354] 
18. Aung HW, Henry SA, Walker LP. Industrial Biochemistry. 2013; 9:215.
19. Frick O, Wittmann C. Microbial cell factories. 2005; 4:30. [PubMed: 16269086] 
20. Jouhten P, et al. BMC Systems Biology. 2008; 2:60. [PubMed: 18613954] 

Hackett et al. Page 28

Science. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD. Molecular biology of the cell. 
2010; 21:198. [PubMed: 19889834] 

22. Bennett BD, Yuan J, Kimball EH, Rabinowitz JD. Nature Protocols. 2008; 3:1299. [PubMed: 
18714298] 

23. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Proceedings of the National Academy of 
Sciences of the United States of America. 1999; 96:6591. [PubMed: 10359756] 

24. Ong S-E, et al. Molecular & cellular proteomics : MCP. 2002; 1:376. [PubMed: 12118079] 
25. Brauer MJ, et al. Molecular biology of the cell. 2008; 19:352. [PubMed: 17959824] 
26. Costenoble R, et al. Molecular Systems Biology. 2011; 7:464. [PubMed: 21283140] 
27. Zampar GG, et al. Molecular Systems Biology. 2013; 9:651. [PubMed: 23549479] 
28. Liebermeister W, Klipp E. Theoretical biology & medical modelling. 2006; 3:41. [PubMed: 

17173669] 
29. Rohwer, J., Hanekom, AJ., Hofmeyr, JHS. Proc 2nd Int Symp on Experimental Standard 

Conditions of Enzyme Characterizations (ESEC 2006); 2007. 
30. Storey JD, Tibshirani R. Proceedings of the National Academy of Sciences of the United States of 

America. 2003; 100:9440. [PubMed: 12883005] 
31. Scheer M, et al. Nucleic acids research. 2011; 39:D670. [PubMed: 21062828] 
32. Wyngaarden JB, Ashton DM. Nature. 1959; 183:747. [PubMed: 13644178] 
33. Jones EW, Fink GR. Cold Spring Harbor Monograph Archive. 1982; 11B:181.
34. Sekine T, Kawaguchi A, Hamano Y, Takagi H. Applied and environmental microbiology. 2007; 

73:4011. [PubMed: 17449694] 
35. Fraenkel, DG. Yeast intermediary metabolism. Cold Spring Harbor Laboratory Press; 2011. 
36. Hurvich CM, Tsai C-l. Biometrika. 1989; 76:297.
37. Li Y, Zhang Y, Yan H. Journal of Biological Chemistry. 1996; 271:28038. [PubMed: 8910414] 
38. Khoo JC, Russell PJ. Journal of Biological Chemistry. 1970; 245:4163. [PubMed: 5503259] 
39. Majtan T, et al. PloS one. 2014; 9:e105290. [PubMed: 25122507] 
40. Vandercammen A, Francois J, Hers HG. European Journal of Biochemistry. 1989; 182:613. 

[PubMed: 2546763] 
41. Neuser F, Zorn H, Richter U, Berger RG. Biological Chemistry. 2000; 381:349. [PubMed: 

10839465] 
42. Chen H, Fink GR. Genes & development. 2006; 20:1150. [PubMed: 16618799] 
43. Xu Y, et al. Molecular cell. 2012; 48:52. [PubMed: 22902555] 
44. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Nature. 2008; 452:181. 

[PubMed: 18337815] 
45. Noor E, Haraldsd′ottir HS, Milo R, Fleming RMT. PLoS Computational Biology. 2013; 

9:e1003098. [PubMed: 23874165] 
46. Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD. Nature Chemical Biology. 2011; 7:894. 

[PubMed: 22002719] 
47. You C, et al. Nature. 2013; 500:7462.
48. van Heerden JH, et al. Science. 2014; 343:1245114. [PubMed: 24436182] 
49. Mlakar T, Legisa M. Applied and environmental microbiology. 2006; 72:4515. [PubMed: 

16820438] 
50. Huberts DHEW, Niebel B, Heinemann M. FEMS yeast research. 2012; 12:118. [PubMed: 

22129078] 
51. Daran-Lapujade P, et al. Journal of Biological Chemistry. 2004; 279:9125. [PubMed: 14630934] 
52. Daran-Lapujade P, et al. Proceedings of the National Academy of Sciences of the United States of 

America. 2007; 104:15753. [PubMed: 17898166] 
53. Chubukov V, et al. Molecular Systems Biology. 2013; 9:709. [PubMed: 24281055] 
54. Valgepea K, Adamberg K, Seiman A, Vilu R. Molecular bioSystems. 2013; 9:2344. [PubMed: 

23824091] 
55. Gerosa L, et al. Cell systems. 2015; 1:270. [PubMed: 27136056] 

Hackett et al. Page 29

Science. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



56. Liao JC, Delgado J. Biotechnology Progress. 1993; 9:221.
57. Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R. Proceedings of the National Academy 

of Sciences of the United States of America. 2013; 110:10039. [PubMed: 23630264] 
58. Fendt S-M, et al. Molecular Systems Biology. 2010; 6:356. [PubMed: 20393576] 
59. Natarajan K, et al. Molecular and cellular biology. 2001; 21:4347. [PubMed: 11390663] 
60. Zhu J, et al. PLoS Biology. 2012; 10:e1001301. [PubMed: 22509135] 
61. Yuan J, Bennett BD, Rabinowitz JD. Nature Protocols. 2008; 3:1328. [PubMed: 18714301] 
62. Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y. Journal of bacteriology. 1988; 170:2683. 

[PubMed: 3131304] 
63. Fiedler D, et al. Cell. 2009; 136:952. [PubMed: 19269370] 
64. Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U. Science signaling. 2014; 7:rs6. 

[PubMed: 25429078] 
65. Lewis IA, Schommer SC, Markley JL. Magnetic resonance in chemistry : MRC. 2009; 47(Suppl 

1):S123. [PubMed: 19821464] 
66. Masuko T, et al. Analytical Biochemistry. 2005; 339:69. [PubMed: 15766712] 
67. Pramanik J, Keasling JD. Biotechnology and bioengineering. 1997; 56:398. [PubMed: 18642243] 
68. Kamphorst JJ, Fan J, Lu W, White E, Rabinowitz JD. Analytical Chemistry. 2011; 83:9114. 

[PubMed: 22004349] 
69. Berg, JM., Tymoczko, JL., Stryer, L. Biochemistry. 6. W H Freeman; 2006. 
70. Ramanagoudr-Bhojappa R, et al. Journal of Biological Chemistry. 2013; 288:16185. [PubMed: 

23596008] 
71. Famili I, Forster J, Nielsen J, Palsson BØ. Proceedings of the National Academy of Sciences of the 

United States of America. 2003; 100:13134. [PubMed: 14578455] 
72. Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T. Bioinformatics. 2010; 26:i255. 

[PubMed: 20529914] 
73. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. 2015
74. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Nature methods. 2009; 6:359. [PubMed: 

19377485] 
75. Troyanskaya O, et al. Bioinformatics. 2001; 17:520. [PubMed: 11395428] 
76. Park JO, et al. Nature Chemical Biology. 2016
77. Schaefer J, Opgen-Rhein R, Strimmer K. R package version. 2010:15.
78. Degtyarenko K, et al. Nucleic acids research. 2008; 36:D344. [PubMed: 17932057] 
79. Cao Y, Charisi A, Cheng LC, Jiang T, Girke T. Bioinformatics. 2008; 24:1733. [PubMed: 

18596077] 
80. Johnson KA. FEBS letters. 2013; 587:2753. [PubMed: 23850893] 
81. Brooks SP, Gelman A. Journal of computational and graphical statistics. 1997; 7:434.
82. Lynch, M., Walsh, B. Genetics and analysis of quantitative traits. first edn. Sinauer Associates; 

1998. 
83. Furdui C, Zhou L, Woodard RW, Anderson KS. Journal of Biological Chemistry. 2004; 279:45618. 

[PubMed: 15326172] 
84. Pedreño S, Pisco JP, Larrouy-Maumus G, Kelly G, de Carvalho LPS. Biochemistry. 2012; 51:8027. 

[PubMed: 22989207] 
85. Greenberg AJ, Hackett SR, Harshman LG, Clark AG. Molecular Systems Biology. 2011; 7:563. 

[PubMed: 22186737] 
86. Pon NG, Bondar RJL. Analytical Biochemistry. 1967; 19:272. [PubMed: 4292753] 
87. Foote J, Lipscomb WN. Journal of Biological Chemistry. 1981; 256:11428. [PubMed: 7028733] 

Hackett et al. Page 30

Science. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1

MCMC-NNLS inference of kinetic parameters

Input: Metabolite concentrations (M), enzyme concentrations (E), measured flux (jF) 
and a reaction equation (jP = g(M, E, Ω)).

Output: Posterior distribution of kinetic parameters (Ω).

Initialization:

begin

• for k ← 1 to K do

▪  drawn from Log-Uniform prior

• Calculate ocurrent = f(M, Ωcurrent) using reaction form

• Find kcat parameters using NNLS

• Update lcurrent = l(Ωcurrent∣ M, E, jF)

Iteration:

• for i ← 1 to I do

▪ for k ← 1 to K do

○  drawn from Log-Uniform prior

○ Calculate oproposed and kcat values

○ lproposed = l(Ωproposed∣ M, E, jF)

○ draw d from Unif(0, 1)

○ if lproposed < lcurrent or : then

– Ωcurrent = Ωproposed

– lcurrent = lproposed

▪ 

return Ωtrack
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Figure 1. 

Integrative analysis of fluxes and metabolite and enzyme concentrations via SIMMER. (A) 

Measured flux (determined by flux balance analysis constrained with uptake, excretion, and 
biomass composition data) is related, on a reaction-by-reaction basis, to enzyme and 
metabolite concentrations via a Michaelis-Menten equation. The extent to which variation in 
flux across experimental conditions can be explained by enzyme and metabolite abundances 
is assessed. Heatmaps reflect the measured fluxes, enzyme abundances, and metabolite 
abundances. Each heatmap contains 5 columns grouped together for each limiting nutrient, 
arranged from slower to faster growth. The groups of 5 columns are arranged in the order of 
phosphorus, carbon, nitrogen, leucine, and uracil limitation. For expanded heatmaps, see 
Fig. S2, S5, and S9. Scenario 1 shows the glycolytic reaction catalyzed by triose phosphate 
isomerase (see also Fig. 2) and Scenario 2 pyruvate kinase (see also Fig. 5). Each panel 
compares measured flux (red dots) to the Michaelis-Menten predictions (blue dots) across 
the 25 nutrient conditions. (B) Identification of allosteric regulators. When a simple 
Michaelis-Menten expression did not account for the observed fluxes, the impact of adding 
allosteric regulation by measured metabolites was tested. Physiologically important 
regulation significantly enhances the fit to the fluxes. Scenario 1 shows regulation of 
pyruvate kinase by fructose 1,6-bisphosphate and citrate and Scenario 2 shows the lack of 
regulation of pyruvate kinase by fructose 6-phosphate.
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Figure 2. 

Analysis of flux control through triose-phosphate isomerase and PRPP amidotransferase. 
(A) Substrate, product, and enzyme concentrations for the triose-phosphate isomerase 
reaction in glycolysis. The 25 experimental conditions are laid out across the X-axis as per 
Fig. 1. (B) Michaelis-Menten equation relating concentrations to flux and extent of 
agreement between measured fluxes (red) and the best Michaelis-Menten fit (blue). (C) 

Substrate, product, and enzyme concentrations for the PRPP aminotransferase reaction, the 
committed step of purine biosynthesis. (D) Michaelis-Menten equation relating 
concentrations to flux and extent of agreement between measured fluxes and the best 
Michaelis-Menten fit. (E) Concentrations of the reaction inhibitor AMP and extent of 
agreement between measured fluxes and the best Michaelis-Menten fit after including AMP 
as a regulator. DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phosphate; 
PRPP, phosphoribosyl pyrophosphate.
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Figure 3. 

Integration of experimental data and literature knowledge to predict physiological regulators 
of yeast metabolism. Candidate reaction equations with and without regulation follow a 
standard Michaelis-Menten form, with substrate, product, and enzyme taken from standard 
metabolic reconstructions and regulators selected based on reported regulators in the 
BRENDA database of the reaction in any organism (in the Michaelis-Menten equation, R = 
1 implies no regulation). A list of 20 gold standard instances of physiological yeast 
metabolic regulation was assembled based on prior literature, and used to determine the 
prior probability of a candidate regulator i being a physiological regulator, Pr(Regulationi). 
On average, Pr(Regulationi) is low, consistent with physiological regulation being rare. The 
extent of fit between the measured fluxes and those predicted by candidate reaction equation 
determines Pr(Data ∣ Regulationi). By Bayes’ theorem, the product of these two probabilities 
is Pr(Regulationi ∣ Data), the probability that regulatory event i is physiologically 
meaningful. A penalty for the additional parameters introduced by regulation was also 
included, to yield a final determination of whether the regulatory event is supported. Best 
supported refers to the lowest AICc. Other supported refers to any alternative regulators that 
improve upon the unregulated model (AICc < AICcnoreg).
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Figure 4. 

Consistency between measured flux and Michaelis-Menten fits for 56 cellular metabolic 
reactions. For 29 reactions, inclusion of regulation by a measured metabolite was 
statistically supported. R2 was determined by Pearson correlation of measured flux with the 
output of the Michaelis-Menten equation across the 25 experimental conditions. Reaction 
abbreviations can be found in Table S4.
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Figure 5. 

Pyruvate kinase regulation by fructose 1,6-bisphosphate (FBP) and citrate. (A) Substrate, 
product, enzyme, and regulator concentrations for the pyruvate kinase reaction that controls 
exit from glycolysis. (B) Extent of agreement between measured fluxes and the best 
Michaelis-Menten fit, with and without including FBP, citrate, or both as regulators. The 
improvement in fit due to both regulators was significant (p < 10-4). FBP is a classical 
activator of pyruvate kinase, whereas citrate had not been described as an inhibitor. (C) 

Biochemical confirmation that physiological citrate concentrations inhibit the dominant 
yeast pyruvate kinase isozyme (Cdc19) across the physiologically relevant range of 
phosphoenolpyruvate (PEP) and FBP concentrations. (D) Impact of cellular FBP and citrate 
concentrations across the 25 experimental conditions on Cdc19 activity. Pyruvate kinase 
activity (per enzyme and assuming fixed substrate concentrations of 0.8 mM PEP and 0.2 
mM ADP) was determined by interpolation of the biochemical data shown in Panel C. Each 
data point reflects a single experimental condition, with the size of the point corresponding 
to the specific growth rate. Increasing flux with faster specific growth rate is accomplished 
in phosphorous, carbon, and uracil limitation through increasing concentrations of FBP, 
whereas in nitrogen and leucine limitation it is achieved through decreasing concentration of 
citrate.
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Figure 6. 

The primary determinant of net cellular metabolic reaction rates is metabolite 
concentrations. To capture the impact of metabolite and enzyme concentrations on flux 
through individual reactions, we determined the metabolic leverage of each species: the 
fraction of flux variability across experimental conditions that is explained by variation in 
each species’ concentration, as determined by the sensitivity of the reaction rate to the 
species and the variance of the species’ concentration across the physiological conditions. 
(A) Ternary plot displaying breakdown of metabolic leverage into substrates and products 
(sum of leverage of all such species), enzyme, and regulators. Metabolic reactions 
containing either no regulation or validated yeast-specific regulation are included (N = 29). 
(B) The reactions in panel A are grouped according to reversibility. Reactions were 
classified as reversible or not, based on whether the direction of net flux changes across 
physiological conditions (18); they were subsequently divided into strongly forward driven 
versus net forward based on the standard free energy (cutoff -5 kJ/mol) (45). (C) Pie charts 
displaying the average metabolic leverage of substrate, product, regulator, and enzyme 
concentrations. Less reversible reactions are subject to greater allosteric regulation.
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