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Abstract

Background and hypothesis: Chronic Obstructive Pulmonary Disease (COPD) patients are characterized by
heterogeneous clinical manifestations and patterns of disease progression. Two major factors that can be used to
identify COPD subtypes are muscle dysfunction/wasting and co-morbidity patterns. We hypothesized that COPD
heterogeneity is in part the result of complex interactions between several genes and pathways. We explored the
possibility of using a Systems Medicine approach to identify such pathways, as well as to generate predictive
computational models that may be used in clinic practice.

Objective and method: Our overarching goal is to generate clinically applicable predictive models that
characterize COPD heterogeneity through a Systems Medicine approach. To this end we have developed a general
framework, consisting of three steps/objectives: (1) feature identification, (2) model generation and statistical
validation, and (3) application and validation of the predictive models in the clinical scenario. We used muscle
dysfunction and co-morbidity as test cases for this framework.

Results: In the study of muscle wasting we identified relevant features (genes) by a network analysis and
generated predictive models that integrate mechanistic and probabilistic models. This allowed us to characterize
muscle wasting as a general de-regulation of pathway interactions. In the co-morbidity analysis we identified
relevant features (genes/pathways) by the integration of gene-disease and disease-disease associations. We further
present a detailed characterization of co-morbidities in COPD patients that was implemented into a predictive
model. In both use cases we were able to achieve predictive modeling but we also identified several key
challenges, the most pressing being the validation and implementation into actual clinical practice.

Conclusions: The results confirm the potential of the Systems Medicine approach to study complex diseases and
generate clinically relevant predictive models. Our study also highlights important obstacles and bottlenecks for
such approaches (e.g. data availability and normalization of frameworks among others) and suggests specific
proposals to overcome them.
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Introduction
Recent years have seen a paradigm shift in Life Sciences:

“from a fragmented to a systems approach, linear to non-

linear methodology and from genome to physiome based

analysis” [1]. Systems Medicine, as an adaptation and

extension of Systems Biology, embraces this paradigm

and is becoming a cornerstone in the study of complex

diseases. A general introduction to Systems Medicine is

provided in [2]. In this article, part of a Supplement

dedicated to the Synergy-COPD project [2], we review

and assess the Synergy-COPD’s Systems Medicine

approach to study Chronic Obstructive Pulmonary Dis-

ease (COPD), both a chronic and a complex disease.

While the characterization of COPD has been exten-

sively investigated and there is a continuous refinement of

guidelines (e.g. GOLD), there is yet no consensus on a

phenotypic definition of the term “COPD patient”. For

instance in [3] several sub-types of COPD patients were

identified; see also [4] within this Supplement for further

details on the heterogeneity in COPD. Briefly, within

Synergy-COPD we aim to characterize two sources of het-

erogeneity: first we investigated the systemic effects asso-

ciated with skeletal muscle dysfunction in COPD patients

(MusclDYS). Second, we aimed to characterize co-morbid-

ity patterns of COPD patients (CoMorb). Finally, we also

investigated the interplay between the different heteroge-

neities, which may provide a novel description of COPD

as being driven by the interaction between several factors.

Using COPD as a case-study we explore the notion that

Systems Medicine provides tools to investigate and charac-

terize disease heterogeneity. To this end our analyses

follow a general three-step procedure: (1) first, we need to

identify the relevant biomarkers (or more generally

features of interest, FoI) for each case of heterogeneity; (2)

in a second step, predictive models with the potential to

be applied in the clinic are developed and validated statis-

tically. Third and final, (3) the usefulness of the models in

a clinical scenario has to be validated. To achieve this goal

we integrated a wide variety of available resources, such as

prior domain knowledge, relevant data-bases and existing

probabilistic and mechanistic models.

The rest of this article is organized as follows: the next

section details the Systems Medicine framework used in

Synergy-COPD. The third and fourth sections describe

the application of this framework in the characterization

of MusclDYS and CoMorb. These sections include a

brief description of the questions, the obtained results

and the limitations of the proposed methodology. The

final section provides the conclusions and summarizes

the identified remaining challenges.

The Synergy-COPD’s systems medicine approach
Systems Medicine provides a comprehensive and general

framework to investigate the complex interactions

implicated in human disease in an integrated fashion.

Consequently, there is no single defined set of meth-

odologies associated with Systems Medicine. Instead,

any methodology useful to investigate the question

under study “as a system” can be considered as relevant

to explore and validate. While the concrete focus of

Synergy-COPD lay on COPD, we aimed at developing a

more general framework that may also be applicable to

other complex diseases. We therefore started by defining

a generic three-step objective plan that sets the goals in

our studies of MusclDys and CoMorb (Figure 1). The

plan was then concretized and adapted to each question

accordingly.

Our final goal was a characterization of the disease

heterogeneities that can be transferred to clinical prac-

tice (Figure 1, Objective 3), in particular by implement-

ing it into a Clinical Decision Support system (CDSS,

[5]). The first step (Objective 1) towards this goal is to

identify the relevant, i.e. most predictive, biological fea-

tures among the large amount of available data, e.g.

genes, metabolites and clinical variables, among many

others. The second step (Objective 2) is to integrate

these features into predictive models and to validate

them. In the following we briefly review each objective

for the two case studies MusclDys and CoMorb and

introduce the respective different resources and meth-

odologies that were used.

Objective 1, (Biomarker identification): having defined

a question of interest (e.g. MusclDys) we first need to iden-

tify the relevant associated features. The core of this

Objective is formed by publicly available data-sets and

knowledge (e.g. Gene Omnibus [6]) that were integrated

into a user-friendly knowledge-base [7]. The different

methodologies for MusclDys and CoMorb are detailed in

two separate sections.

Objective 2 (Predictive modeling): the identified fea-

tures are now used in predictive models that may provide

insights into the question of interest. For instance, in

MusclDys we aim to predict the effects of muscle dysfunc-

tion in a given patient. In CoMorb we aim to compute the

probability of developing a specific co-morbidity in COPD

patients. Those quantitative models are question-specific

and require both statistical (e.g. through cross-validation

[8]) and biological validation.

Objective 3 (Clinical application): bridging the gap

between a predictive model and its use in clinical prac-

tice constitutes an important and challenging task:

Beyond the basic statistical and biological validation of a

model, it also needs to be clinically relevant in the con-

text of personalized medicine. In this objective, predic-

tive models are reviewed for their possible uses in a

CDSS. Once a model is considered useful in principle,

both a thorough clinical validation and an optimal

CDSS implementation are required.
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Understanding COPD skeletal muscle dysfunction
(MusclDys) through systems medicine
Objective 1: Biomarker identification

To identify the relevant features associated with muscle

dysfunction/wasting we used existing data and knowl-

edge through (existing and novel) network-based meth-

odologies. We considered the Biobridge clinical study

[2] as the core of the data and extended it through pub-

licly available data-sets from GEO [6]. Among the most

relevant data-sets are the gene expression profiling of

sputum in COPD ex-smokers (http://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE22148) and Peripheral

Blood Mononuclear Cell (PBMC) profiling of COPD

patients by COPDgene [9]. For those data-sets used but

not publicly available we had permission to access and

analyze the data. Next we describe the interactome-

based methodologies and results.

The Interactome

The etiology of COPD involves a multitude of inter-

twined molecular processes, many of which still remain

unknown. These processes are embedded in the larger

context of the Interactome, referring to a single com-

prehensive network integrating all molecular interac-

tions, such as protein-protein interactions, regulatory

protein-DNA interactions or metabolic interactions (see

Figure 2). While ongoing efforts to systematically map

the complete Interactome stand only at the beginning,

currently available databases (Table 1) already include

several hundreds of thousands of interactions. In order

to explore such large networks, Systems Medicine has

extensively adopted tools from network science [10-12].

Network approaches to human disease are based on the

observation that the cellular components associated

with a specific disease are not scattered randomly within

the Interactome, but segregate in certain neighborhoods

or disease modules. The identification of the specific

disease modules is therefore an important step towards

a holistic understanding of how molecular variations

with small isolated effect sizes collectively give rise to a

certain disease phenotype. The local agglomeration of

disease-associated proteins within the Interactome can

be used in this process, by extrapolating from the con-

nectivity patterns of known disease-associated proteins

to infer novel disease proteins [13,14]. Other applica-

tions of this principle include the identification of path-

way members [15] or prioritization of weak GWAS loci

[16]. In [17] a COPD specific protein interaction net-

work was constructed around genes differentially

expressed between healthy and COPD subjects. This

network was then queried for potential drug targets that

could reverse the expression changes. COPD specific

gene expression is also the basis of a Systems Medicine

method proposed in [18] that aims at identifying sub-

groups of COPD patients with different molecular

signatures.

Typically, only direct physical (binding) interactions are

considered in the Interactome. Another line of Systems

Medicine network approaches uses functional networks,

where links may also represent indirect associations, for

example co-expression [19] or genetic interaction

[20,21]. These networks are usually assembled from spe-

cific experimental data, rather than the more general

Figure 1 Synergy-COPD’s Systems Medicine framework.
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interaction data in public databases. An example for the

use of functional networks in COPD is given by the study

of [22]. In order to explore the molecular basis of muscle

degeneration in COPD, they developed a network model

integrating several types of relevant measurements, such

as blood cytokine levels and muscle gene expression.

They were thereby able to identify several tissue remodel-

ing and bioenergetics pathways that fail to coordinate in

COPD diseased muscles.

Both physical and functional-based networks are use-

ful tools that allow the identification of de-regulated

functional elements, and to zoom-in into the interac-

tions driving that de-regulation. We considered this

information to be relevant in the generation of predic-

tive models addressing the characterization of heteroge-

neity in COPD.

Methodologies and results

To characterize skeletal muscle dysfunction in COPD

patients before and after training we evaluated two

hypotheses. In the first hypothesis, MusclDys is charac-

terized by the de-regulated activity of a selected set of

pathways; namely transcription, proteolysis, immune

activation and/or oxidative phosphorylation (see [4] for

more details). Using these pathways as a reference an

initial list of associated genes was downloaded from the

Synergy-COPD Knowledge-base SKB [7] and then fil-

tered by clinical and biological experts. We followed a

network approach similar to one described in the Bio-

Bridge analysis [22] and extended it by including differ-

ential expressed genes, metabolites, cytokines, and

clinical variables in addition to the filtered list of genes.

We generated a network for each combination of

healthy vs COPD and untrained vs trained individuals,

obtaining two main results. First, we identified a module

(i.e. a network-based cluster of genes, Mod1) that is pre-

sent in all networks and shows the interaction between

mRNA-translation, Insulin and mTOR pathways. Inter-

estingly, this module was also associated to immune

Figure 2 Mechanistic Models and extensions. (a) Oxygen transport and utilization model (M1). (b) Mitochondrial respiration and reactive-
oxygen species generation model (M2). (3) Personalized model of M2: M2 model is personalized by a Bayesian network that predicts the values
of UQCR2 (oxidative phosphorylation chain) by inflammation-associated measurements (IL11RA and TNFRSF25). All models can be simulated in
the Simulation Environment [58] and the patient specific values can be obtained through a COPD Knowledge Based [7].

Table 1 Major resources for protein interaction data:

Database / Interaction type Reference

Databases integrating several sources IntAct [59], MINT [60], BioGRID [61], HPRD [62], MIPS [63], STRING [64]

Protein complexes: CORUM [65], [66]

Binary interactions (high-throughput) CCSB-HI (CCSB), [67;68]

Regulatory interactions TRANSFAC [69]

Kinase-substrate Interactions PhosphositePlus [70]
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markers such as IL1B. A second result is the general

loss of co-regulation (including Mod 1 loss) in COPD

patients’ muscle after training, independently confirming

[22]. These promising results require further corroborat-

ing data in order to obtain a robust predictive model.

In a second hypothesis, we considered that given the

relevance of bioenergetics and immune markers in

COPD patients, we could use them to explain the level

of Reactive Oxidative Species (ROS, major markers of

oxidative stress) in COPD patients’ muscle. In order to

identify the sub-network(s) linking immune and bioe-

nergetics genes to ROS-associated genes (from [23;24])

in the context of COPD we developed a chain-based

methodology [25] named ChainRank. Briefly, the metho-

dology identifies relevant sub-networks by identifying

and scoring chains of interactions that link specific tar-

gets. The type of interactions to include in the chain

search are selected by the user; we selected among those

interactome-networks included in the Synergy-COPD

Knowledge-Base [7]. Scores are generated from the inte-

gration of multiple general and context specific mea-

sures. Finally, the algorithm allows the identification of

genes that are over-represented in highly ranked chains

as relevant features. This list was then used for generat-

ing personalized predictive models in Objective 3.

Objective 2: Predictive models

The generation of predictive models in MusclDys

involves three steps, beginning with the identification of

existing mechanistic models that were then updated and

adapted to better estimate particular features of interest

(FoI). In this process we make use of Objective 1’s

results to either identify FoI or to personalize the mod-

els by adding disease-related parameters.

The identification of mechanistic existing models

Many phenomena in physiology and biology are of

essentially nonlinear nature and therefore require quan-

titative descriptions in addition to qualitative ones [26].

We considered three well-described physiological mod-

els of interest to the characterization of COPD: (i) Oxy-

gen transport and utilization [27,28] (M-OX); (ii) Cell

Bioenergetics, mitochondrial respiration and reactive-

oxygen-species generation (ROS) [23,24], (M-ROS); and,

(iii) Spatial heterogeneities of lung ventilation and perfu-

sion [29] (M-HET). The first two models (M-OX and M-

ROS) are relevant for the characterization of the sys-

temic effects of the disease in skeletal muscle, as they

provide mechanistic description of both the oxygen

pathway and ROS generation. The third model (M-

HET) is relevant for the study of pulmonary events in a

sub-set of COPD patients [3] with low pulmonary den-

sity (high emphysema score) and mild airway remodel-

ing resulting in mild to moderate airflow limitation.
Oxygen transport and utilization [27,28](M-OS): The

model details the determinants of oxygen transport

from air to mitochondria and characterizes oxygen utili-

zation at mitochondrial level during maximum exercise.

In summary, it constitutes the most complete integrative

approach of the interplay among factors modulating

oxygen transport (lungs, hearth, blood and skeletal

Figure 3 The “Disease Interactome”. The Interactome (left) represents the complex network of all molecular components (gene products, proteins,
metabolites, RNAs etc.) and their interactions. Diseases can be understood as local perturbations. The local neighborhood around genes reported to
be associated with COPD (right) is only a very small subset of the full Interactome, yet already shows its enormous complexity.
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muscle) and oxygen utilization at muscle level (see Figure 2

(a)). In COPD patients, the oxygen transfer capacity from

the atmosphere to the cell, as well as its utilization at mito-

chondrial level, can be limited. It is therefore of interest to

observe the effects of such a limitation at all levels of the

transport chain [30] and, in particular, its effects on

muscle’s mitochondria.

Cell Bioenergetics, mitochondrial respiration and reac-

tive-oxygen-species generation (M-ROS): The model

details mitochondrial respiration and its relation with

the production of Reactive Oxidative Species (ROS).

The model integrates two sub-models, the Electron

Chain model and the TCA cycle module [23,24]. ROS

production in the mitochondrial respiratory chain is a

signal of cellular adaptation to the environment, but a

sharp increase is incompatible with cell survival; there-

fore the predicting ROS production is a relevant task.

Moreover, in smoking-related COPD patients the anti-

oxidant capacity is severely reduced and further

decreases after smoking cessation due to endogenous

production of ROS [31,32]. The integrated model

(M-OX + M-ROS) generated within the Synergy-COPD

project allows estimating quantitatively the relationships

between determinants of cell oxygenation and mito-

chondrial ROS generation. The interplay between ROS

levels and the antioxidant capacity of the redox system

ultimately determines tissue oxidative and nitrosative

stress with important implications on pathway regula-

tion and cell damage.

Spatial heterogeneities of lung ventilation and perfu-

sion [29] (M-HET): The anatomy-based multi-scale

model of the human pulmonary circulation allows for

the study of pre- and post-occlusion flow and embolus-

generated blow flow redistribution, among other fea-

tures. It combines four independent simulations of

model geometry, tissue mechanics, ventilation and blood

flow allowing for a local description of alveolar ventila-

tion and pulmonary blood flow. The lung modeling

approaches are described in this Supplement in detail in

a separate paper as interactive work with the FP7 EU

Project AirPROM. A major relevance of lung modeling

in Synergy-COPD is the characterization of patients

with reduced lung density but without classical COPD

symptoms of airway obstruction [3]. The inclusion of

this modeling approach in Synergy-COPD had two main

goals. Firstly, the analysis of the impact of spatial het-

erogeneities of lung ventilation and perfusion on blood

oxygenation and, secondly, the study of the subset of

COPD patients showing dissociation between high

emphysema score and low intensity of airway remodel-

ing, as indicated above and described in [3].

Updating existing models

In order to characterize skeletal muscle dysfunction in

COPD (MusclDys) we modified the oxygen transport

and utilization model (M-OX) and included the mito-

chondrial respiration [33]. The outcomes of this model

were two fold: (1) it increased the physiological validity

of the model by estimating the mitochondrial PO2, (2) it

allowed for the integration with bioenergetics models

(M-ROS). A second extension of the model was the

modeling of lung ventilation/perfusion heterogeneities

and [33]; these extensions (see Figure 2(a)) allows better

estimation and better personalization of the model in

COPD.

In addition, we integrated models M-OX and M-ROS

(IM) to model the relation between oxygen transport and

ROS generation, which constitutes a major marker of

skeletal muscle dysfunction. Parameter models were

investigated again in the case of [23,24], to provide better

ROS estimations. A major outcome of the integrated

model analysis [34] is that it permits to estimate the

effect of various states of oxygen supply and demand of

mitochondrial PO2 on ROS production; this is relevant in

COPD patients with airway obstruction symptoms [22].

Novel models

In Synergy-COPD we generated novel models (Objective

2) by integrating existing mechanistic models, developed

for the healthy individual, with features of interest (FoI)

associated to MusclDys (obtained in Objective 1).

Having identified ROS as a major marker of muscle

dysfunction, we aimed to predict ROS status by surro-

gate variables identified in Objective 1. Initially those

surrogate variables were immune markers from protein

measurements in the blood as shown in [22]. To inte-

grate the effect of the surrogate variables (SV) with the

integrated model of oxygen transport and ROS genera-

tion we proposed to use SV values (which are more

commonly used in clinical diagnostics) to estimate a

subset of the integrated model parameter values. As a

technical solution we proposed the used of Bayesian

networks (see Figure 2(c), [35]) to connect immune

markers and selected model parameters. This connec-

tion was also possible through the use of methodologies

and results obtained during Objective 1 such as the

ChainRank methodology briefly described elsewhere in

the manuscript. However, the generation of accurate

linking-by-Bayesian networks is limited by the require-

ment of a large number of samples. Therefore, to

increase accuracy we made use of public available mus-

cle-related data-sets in GEO [6] and included estimates

of relations from other sources such as text-mining

[36]) into the Bayesian network generation. While we

considered that the proposed approach to be technically

valid, still we need to increase the sample size to gener-

ate useful models, therefore the requirement of follow-

up studies. The model can be run in the Synergy-COPD

Simulation Environment and the patient specific values

can be obtained through a COPD Knowledge Base [2,7].
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As a second approach, we integrated transcriptomic

data from muscle biopsies and literature-based data into

a mathematical discrete model [37]. By this model-dri-

ven approach we aimed to determine the processes that

lead the abnormal adaptation to training in COPD

patients and the role of ROS in this process. Since skele-

tal muscle mitochondrial dysfunction is a central actor

in COPD [38] this approach was based on those genes

associated to selected mitochondrial processes from

Objective 1’s candidate biomarkers obtained in [22]. The

modeling was achieved by inferring the activity state of a

gene regulatory network (GRN) in six different states:

Control group, COPD with normal body mass index

(BMI) and COPD with low BMI before and after under-

going 8 weeks of training program [22]. We carried out

this task in two parts: 1) GRN reconstructions and 2)

Integration of GRN into a discrete model.

As a first step in the GRN reconstruction we curated

the list of candidate biomarkers to be included by the

re-analysis of the transcriptomic data of the six different

states used previously in [22]. For this aim, we used sta-

tistical methods such as rank product [39] to determine

the gene candidates and Gene Ontology and Human

Proteins Atlas databases [40,41] to filter those genes

associated with mitochondrial processes in skeletal mus-

cle. Next, to determine gene associations we used IPA

software and DroID [42,43]. Finally, In order to correct

incomplete or erroneous annotations and identify the

direction and the sign of the interactions, we manually

curated the GRN reconstruction using a large number

of bibliographic data sources.

The GRN reconstruction was then converted into a

mathematical discrete model based on the Thomas form-

alism [44] by mechanistically describing the interactions

between those mitochondrial-associated genes that were

differentially expressed between states. In order to refine

the accuracy of our model predictions, we used public

available muscle-related data-sets in GEO [6] to impose

constraints to our model. We integrated these constraints

in the form of inequalities based on probabilistic

approaches: if we observed a strong Pearson correlation

(rho>0.9) between two non-connected genes, their

expression values were forced to evolve in the same

direction. The rationale is just the opposite in the case of

a strong anti-correlation. Then, summing up, we propose

a method by which the interaction between genes are

determined by performing a tissue and organelle specific

GRN reconstruction and the constraints are defined

using probabilistic approaches, finally both, the GRN

reconstruction and the constraints are integrated into a

discrete model in order to unveil the mechanisms gov-

erning the adaptation to training in the groups of study.

Together, both probabilistic approaches show a way

forward to close the inherent under-determination gap

of deterministic, quantitative models by coupling data

driven and knowledge driven approaches.

Objective 3: Clinical application and limitations in

Synergy-COPD

The models proposed to address MusclDys are still far

from the clinical practice. We consider that the methodol-

ogies to achieve such goal do exist, but the data publicly

available is limited. Several lessons can be learnt:

(1) While the use of mechanistic models is very valid

to understand biological systems and diseases, they

have serious limitations in the study of complex

diseases. Complex diseases may be described as the

combination of many factors, and mechanistic mod-

els will require too many parameters and conse-

quently too much data to be yet clinically effective.

(2) However statistical predictive models (e.g. linear

models, Bayesian networks, etc.), not necessarily

mechanistically accurate, may provide a valid technical

solution. The implementation of such technical solu-

tion requires the use of large amount of data to ensure

accuracy and statistical validation. For this data to be

obtained we consider necessary (1) to strengthen the

policies promoting data-sharing (especially in the clini-

cal context) and (2) the generation of large data-sets

with proper experimental designs and clinically-driven

hypotheses.

(3) Clinically driven research needs to be re-designed

to align the different objectives described in Figure 1.

We observed that the re-use of data is necessary but

complex, and minimal modifications (such as extended

questionnaires to patients providing samples) in exist-

ing bio-banks may be very useful.

Understanding COPD co-morbidities through
systems medicine
COPD has been associated with several diseases such as

lung cancer [45], metabolic syndrome and cardiovascular

diseases [46]. However, not all COPD patients share the

same diseases or exhibit the same degree of co-morbidity.

We hypothesized that the particular co-morbidities in a

given COPD patient can be understood from his/her parti-

cular set of de-regulated pathways and genes. Identifying

genes and pathways that are shared between COPD asso-

ciated diseases could therefore allow for a more detailed

characterization of COPD and its co-morbidities. In the

first subsection we briefly describe our method to identify

such potential biomarkers (pathways and/or genes). We

then introduce our initial predictive models in the second

subsection and finally discuss the clinical applications.

Some of the data sets supporting this article are available

in HuDiNe repository (http://barabasilab.neu.edu/projects/
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hudine/resource/data/data.html); for the rest we had per-

mission to access and analyze the data.

Biomarker and Co-morbidity identification

Using 13 million health records from U.S. Medicare

[47], we identified 27 disease groups (DG) with signifi-

cantly elevated risks to co-occur with COPD. These

groups included both well-established associations like

cardiovascular diseases or lung cancer, but also unex-

pected ones that could be interesting candidates for

more focused follow-up investigations. In order to eluci-

date possible shared molecular origins between the dis-

ease groups and COPD, we considered their respective

implicated pathways: for each disease group, we first

constructed a comprehensive list of known associated

genes from the literature (by pooling several sources of

gene-disease associations such as OMIM, NIH The-

saurus and text-mining among others). We then per-

formed a pathway enrichment analysis for each disease

group. The results show that there are a number of

pathways that are shared between different disease

groups, suggesting that the observed co-morbidities are

indeed rooted in shared molecular mechanisms. By

further inspecting the genes within prevalent pathways

we were able to identify a number of genes with the

potential to characterize COPD co-morbidity. We are

investigating if those markers may predict the level of

co-morbidity. This could be of immediate relevance for

the clinical practice, as co-morbidity has been associated

to lower overall quality of life [48] and increased mortal-

ity [47,49]. To date, a number of interesting outcomes of

this analysis remain to be validated in further studies.

However, with currently available data we considered

that the disease groups and co-factors such as age and

gender could be used to generate predictive models.

Predictive models

We selected disease groups that are highly prevalent in

COPD patients, such as heart and circulation associated

diseases and digestive alterations. The observation that

their prevalences vary with age prompted us to develop

a first model (Objective 2) aiming to predict the prob-

ability for specific co-morbidities in COPD patients over

different age strata; in this case we made use of the

ranking of co-morbidities from Objective 1 to select

those diseases of major interest in the generation of the

predictive models. This model may be used as support

information for clinicians in the daily practice (e.g. pre-

dictive medicine, or comparing observed symptoms with

candidate co-morbidities). For a more robust clinical

validation, however, follow-up studies in different

cohorts will be required; for this reason we consider the

comorbidity modeling as part of Objective 2, but closer

to the Objective 3 that any other model presented.

Clinical application and limitations in Synergy-COPD

While co-morbidity is being generally accepted as a rele-

vant clinical factor [47,50-55], co-morbid predictive models

are rarely reaching the clinical practice. Our experiences

gained throughout the Synergy-COPD project suggest sev-

eral limitations:

(1) Incompatibilities in the medical nomenclature.

While there are several large health registries available

to investigate co-morbidities (e.g. Medicare, Swedish

Registry and others), there is yet to agree a common

diagnostic standard even for simplified administrative

coding. In Sweden, for instance, nowadays ICD10 is

being used, yet the registry also includes information

coded in ICD7 to ICD9. In comparison, Medicare (as

used in [47]) is mainly using ICD9 codes. Maps

between ICD coding do exist, but they are not accu-

rate, and every new ICD coding system may represent

a different conceptual approach. ICD11 will represent

a new challenge.

(2) There are many studies investigating specific co-

morbidities, not only in COPD but in many other dis-

eases. Yet, two major limitations inhibit the integration

of these studies in larger meta-analyses: (1) diseases

may be defined differently in each study and in many

cases no official coding is followed; (2) the selection of

diseases is biased towards well established and

expected diseases. These two limitations reflect that

most studies are developed to validate specific hypoth-

eses. We believe that broader studies and normalized

questionnaires will eventually facilitate meta-analyses

and thereby increase the power of co-morbidity

studies.

(3) Finally, previous large-scale studies are often lim-

ited to one type of data: either -omics data were col-

lected, but no co-morbidity information, or the other

way round. We believe that in the future it will be cru-

cial to combine these two approaches.

Conclusions
Despite the massive amounts of data collected in medical

research throughout the last decades, our understanding

of complex diseases still remains very limited. The funda-

mental shortcoming of our knowledge may be illustrated

by a popular quote attributed to Ernest Rutherford: all

science is either physics or stamp collecting [56]. Systems

Medicine bears the promise of facilitating the transition

from stamps to understanding. Indeed we are convinced

that a systems perspective is necessary for the integration

of all hitherto largely disconnected facts, thereby ulti-

mately enabling clinically predictive tools. Synergy-COPD

presents a large-scale case study of Systems Medicine

applied to COPD, recognizing that both Clinical Research
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and Clinical Decision Systems require the development of

integrative quantitative models. Developing such models is

a complex task which we addressed by adhering to a

3-step framework: (1) feature identification, (2) model gen-

eration and statistical validation, (3) clinical validation and

implementation. We developed and used the framework

targeting specifically the characterization of muscle-related

systemic effects and co-morbidity as use-cases thus

grounding the methodology in real-world applications. In

both use-cases we were able to identify candidate biomar-

kers that may help characterizing COPD heterogeneity,

and developed models with the potential to be considered

in future Clinical Decision Support Systems (e.g. co-mor-

bidity prevention and prognosis among other objectives).

Throughout the project we identified several key factors

that are currently limiting the clinical applicability of our

approach: the most important ones were data availability,

normalization of frameworks (e.g. ICD codes in co-mor-

bidity) and the necessity of broader and optimized experi-

mental designs (e.g. the inclusion of co-morbidity

information in genomic studies).

In conclusion, we consider that the first steps to bridge

the gap between basic research and clinical practice are

built, however further steps are required to complete the

path. To exploit the full potential of our results, future fol-

low-ups are required for statistical and clinical validation,

and once validated, predictive models (supported by longi-

tudinal studies) will make a strong case for clinical applica-

tions. Further considerations on challenges and future are

discussed in [57] on this Supplement.

We are at the juncture of a very exciting era, where Sys-

tems Medicine offers the possibility of a real connection

between research and clinical applications. While Synergy-

COPD may only represent a minor milestone along a long

road, we are convinced it is a relevant and instructive case.
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