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Microbial communities play important roles in health, industrial applications and earth’s

ecosystems. With current molecular techniques we can characterize these systems in

unprecedented detail. However, such methods provide little mechanistic insight into how

the genetic properties and the dynamic couplings between individual microorganisms

give rise to their dynamic activities. Neither do they give insight into what we call “the

community state”, that is the fluxes and concentrations of nutrients within the community.

This knowledge is a prerequisite for rational control and intervention in microbial

communities. Therefore, the inference of the community structure from experimental

data is a major current challenge. We will argue that this inference problem requires

mathematical models that can integrate heterogeneous experimental data with existing

knowledge. We propose that two types of models are needed. Firstly, mathematical

models that integrate existing genomic, physiological, and physicochemical information

with metagenomics data so as to maximize information content and predictive power.

This can be achieved with the use of constraint-based genome-scale stoichiometric

modeling of community metabolism which is ideally suited for this purpose. Next, we

propose a simpler coarse-grained model, which is tailored to solve the inference problem

from the experimental data. This model unambiguously relate to the more detailed

genome-scale stoichiometric models which act as heterogeneous data integrators. The

simpler inference models are, in our opinion, key to understanding microbial ecosystems,

yet until now, have received remarkably little attention. This has led to the situation where

the modeling of microbial communities, using only genome-scale models is currently

more a computational, theoretical exercise than a method useful to the experimentalist.

Keywords: microbial communities, metagenomic data integration, community modeling, genome-scale stoichio-

metric modeling, metabolism, flux balance analysis

Introduction

Microbial communities are ubiquitous in nature and play key roles in the ecosystems of
our planet. Humans depend on their activities as they play essential roles in element cycling
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and agriculture, e.g., through interactions between plants on the
one hand and mycorrhiza and nitrogen fixing bacteria on the
other hand (Fellbaum et al., 2012). Microbial communities are
also exploited in food fermentations, e.g., in the production of
cheese, yogurt, soy sauce, sauerkraut, and vinegar. Despite this
major impact on human society, we still have little understand-
ing of the design principles that determine microbial ecosystem
functioning, robustness, evolution, and control. This means that
the opportunities to rationally optimize the performance of such
communities are currently very limited.

In view of the complexity of the systems we are dealing with,
it should be clear that experimental data alone will not provide
the desired understanding -regardless of how impressive cur-
rent experimental techniques may be. For example, think about
high-throughput DNA-, RNA and protein-sequencing that gives
high resolution information on the identities of the occurring
species, their (expressed) metabolic potentials and their (relative)
abundances. Yet, the information gained from such meta-omics
studies (we consider 16S rRNA gene sequencing to fall under
meta-omics) is still relatively limited, as they only provide an
indirect view into the metabolic activities of such microorgan-
isms and virtually none about their relationship with the environ-
ment and each other. These properties must, in turn, be inferred
from the data (see Figure 1, in which an ecosystem with various
interactions between species is depicted). Typically, such data,
at best, include metagenomics at different time points, revealing

A

B C

FIGURE 1 | Illustration of the diversity of a microbial ecosystem

with various interactions. (A) Is a schematic representation of an

ecosystem with interactions among community members and the

environment. The small particles are the metabolites, the big particles

the community members, the boxes show the different interactions

between community members. (B) Shows an example time series data

set of the relative biomass abundances in this ecosystem. (C) Shows

the real dynamics of the various species of the ecosystem in time. The

mechanisms behind the dynamics cannot be captured by metagenomics

time series data alone.

the differences in relative species abundances in the ecosystem.
Methods such as stable isotope probing (SIP) (Dumont andMur-
rell, 2005), MAR-FISH (Lee et al., 1999) or nano-SIMS (Li et al.,
2008) can provide additional and independent information on
metabolites that are consumed by the various organisms in an
ecosystem (He et al., 2012).

Inferring the metabolic activities of the species in a microbial
community from the molecular data is largely an open prob-
lem in the field (Myrold et al., 2014). The huge challenge that
microbial ecologists currently face is therefore how to infer the
community state, i.e., the values of all the metabolite concen-
trations, species abundances and microbial activities (see also
Glossary and below) from experimental data. A key question is
therefore to determine what can and cannot be inferred from only
metagenomic data and knowing this, what additional experimen-
tal measurements and computational methods are required to get
a more complete understanding of a microbial ecosystem.

This challenge is to a large extent solved for single species
where systems biology has delivered many methods for infer-
ence, data integration, and predictive modeling. These methods
have become useful tools in more applied fields such as syn-
thetic biology and metabolic engineering. Similarly, experimen-
tal methods such as MFA (see Glossary) (Toya and Shimizu,
2013) [e.g., isotopomer based (see Glossary) (Nöh et al., 2006)]
and metabolomics (Wisselink et al., 2010) can be used to iden-
tify active metabolism of single species. Genome-based and
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genome-scale metabolic reconstructions can be used to integrate
such data and help to understand and predict phenotypes of a
microbial species (Bordbar et al., 2014; Long and Antoniewicz,
2014).

The question is to what extent these existing quantitative and
computational approaches can be applied tomicrobial communi-
ties; several reviews and perspectives (Röling et al., 2010; Zengler
and Palsson, 2012; Röling and Van Bodegom, 2014) pointed out
the need for a more quantitative and systems based approach that
can be used to understand microbial communities. In this contri-
bution we will focus on the subsequent step: how to deal with
quantitative data on ecosystem level? Our approach will be to
investigate whether methods developed for monocultures, such
as inference and quantitative modeling, are at all applicable for
use in microbial ecosystems.

The single species methods we will describe have all been
developed for the analysis of, and are therefore focused on,
metabolism. One must therefore ask whether the microbial com-
munity state is dominantly shaped by metabolism-driven factors
or whether it is also significantly dependent on factors unre-
lated to metabolism? One could distinguish two major classes of
interactions between community members and the environment:
those dictated by social traits and those driven by metabolism.
We postulate that in many relevant cases, the metabolic compo-
nent of the community is dominant. For instance, in glucose-
fed biogas reactors the dominant species are all involved in
the process of the metabolic conversion of glucose to methane
(Fernandez et al., 2000). Many species-species interactions are
metabolically driven, such as cross-feeding, nutrient competi-
tion, and predator-prey relations. All such metabolic processes
account for mass flow through the ecosystem and the concomi-
tant growth and turnover of microorganisms and metabolite
levels.

However, communities are not solely structured by metabolic
interactions. The non-metabolic interactions we exclude are
social traits such as chemical warfare, bacteriocin production,
quorum sensing, and other cell-to-cell interactions (either direct
attachment, or other signaling mechanisms). We cannot exclude
that social traits may play an important role in specific cases.
Phages, for instance, can shape and alter whole ecosystems
(Fuhrman, 1999), yet this important type of interaction cannot be
covered by metabolism-based models. On the other hand, inter-
actions such as quorum sensing also play a role in mono-cultures
of Escherichia coli and Pseudomonas aeruginosa, however, model
simulations suggests that quorum sensing has a minor effect on
the phenotype of those single species (Oberhardt et al., 2008; Orth
et al., 2011).

We will argue that limited quantitative experimental data,
when combined with coarse-grained metabolic models, will be
able to help researchers infer the community structure, i.e., the
topology of species interactions (see Glossary for our defini-
tion of these often loosely defined terms). What do we mean
by coarse-grained models? Basically, reduced complexity of the
model. There are several ways to coarse-grain models, but in gen-
eral it involves either ignoring parts of the system that are deemed
less relevant, or lumping of many details of a subsystem into a
higher-order description of that subsystem. A whole metabolic

pathway can be lumped into one enzymatic reaction; the growth
of a cell can be described by oneMonod-type equation; a group of
organisms can be summarized as one ecotype with an archetyp-
ical metabolic profile (“acetate consumer”). Such coarse-grained
models can be gradually increased in detail over time. Parallel to
these coarse-grainedmodels, genome-scale metabolic models can
be used as data repositories where new data and constraints are
imposed on the models. These two approaches should in the end
converge into the same description of the community. We will
provide an example to illustrate how the combination of these
approaches could aid in improving mechanistic understanding
of microbial communities.

Metabolic fluxes in Single Microorganisms:
a Largely Solved Inference Problem

In metabolic networks, metabolites are produced and consumed
by enzymes that together form a complete set of chemical pro-
cesses in the cell. Since enzymes are proteins encoded on the
genome, and our biochemical knowledge of metabolic reactions
has a long and rich history, it is possible to reconstruct a draft
metabolic network largely from genomics data alone. Tools exist
that automate this process and generate a complete metabolic
network (Henry et al., 2010). In general, such automatic methods
can be opaque and additional physiological knowledge consider-
ably aids in curating the resultingmetabolicmodel (Francke et al.,
2005; Notebaart et al., 2006).

The topology of the metabolic network can be described by
the stoichiometry of the constituent reactions. For example, con-
sider the reaction catalyzed by the enzyme hexokinase, in a
model description this would be described as: glucose + ATP ⇋

glucose-6-phosphate + ADP. This relation between reactions
and reagents can be summarized for an entire metabolic net-
work. In mathematical form, a stoichiometry matrix is created
where rows represent metabolites and the columns reactions (See
Figure 2B for an example).

In many applications we are interested in the behavior of a
species at steady-state. At steady-state all metabolite concentra-
tions are time-invariant, while the cells are metabolically active
and consume substrate and secrete products. This implies that
for each metabolite the rate of production and consumption are
balanced.

In MFA, experimental data is used to deduce the true steady-
state fluxes. In constraint-based modeling, FBA (see Glossary) in
particular, any data that is available is combined with computa-
tional optimization techniques to predict a (in this case optimal)
flux distribution through the metabolic network. Both methods
have their merits and draw-backs, which we will discuss briefly.

Metabolic Flux Analysis: Flux from Data
One of the methods used to extract more information from data
is the use of MFA. MFA is a powerful tool in biotechnology and
systems biology as it aims to estimate intracellular fluxes in liv-
ing cells. It generally applies to systems operating at a metabolic
steady-state, but is not limited to steady-state conditions. MFA
tries to infer intracellular fluxes from measured extracellular
fluxes using a coarse-grained metabolic model where steady-state
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A B C

FIGURE 2 | Illustration of FBA (A). Visualization of a simplified

metabolic network of a micro-organism. The microorganism takes up

metabolite A and produces biomass, and products D and E. (B) The

stoichiometric matrix N representing the network depicted in A, with

rows corresponding to metabolites and columns to fluxes. The

stoichiometric matrix multiplied with the flux vector is in steady-state

always 0. (C) When optimization of the biomass flux is used, the

(in)feasible flux distribution figure between flux v1 and v3 is calculated.

The red dot corresponds with the optimal solution when the biomass

flux is used as the objective function.

mass balances constrain the model. In the early days of MFA,
there was no standard description of how the metabolism of a cell
could be defined in the stoichiometric model and therefore such
descriptions could vary between models. Some defined coarse-
grained metabolic blocks in which multi-reaction pathways are
reduced to a single reaction, such as catabolism, respiration,
product formation, anabolism, and maintenance (De Hollander,
1991). Others limited the description to central metabolism, yet
included all individual reactions of central metabolism in this
description (Van Gulik and Heijnen, 1995).

The more recent approaches are based on partitioning of
stable-isotopic labels over intracellular metabolites (for a histor-
ical overview see Szyperski, 1998 and for a more recent review
see Zamboni, 2011). 13C-tracer studies result in 13C-enrichment
profiles of metabolites in the metabolism of a given strain. The
13C-enrichment in time indicates the amount of flux through
the metabolic network. A fast enrichment indicates a high flux
through the network, where a slow enrichment indicates a low
flux. Exact flux values can be inferred using isotopomer-based
flux analysis (see Glossary), using stoichiometric metabolic mod-
els. These models are based on biochemical data or genomic
information and cover mostly the central metabolism. These
approaches enable the estimation of a large fraction of the intra-
cellular fluxes operative in central metabolism, in steady-state or
dynamic states (Nöh et al., 2007; Wahl et al., 2008). The dynamic
13C MFA applications are still largely in development, but are
perhaps most interesting to microbial ecologists because of the
dynamic conditions in many environmental settings. Methods
have been developed (Abate et al., 2012) and applied (van Heer-
den et al., 2014) to infer dynamic changes in intracellular fluxes
from 13C tracer-experiments.

Yet, all these methods rely on data with a resolution and
quantification that is still very challenging at the community
level. Thus, apart from these model-aided methods to turn data
into fluxes, other modeling approaches are needed: genome-
scale stoichiometric metabolic models to infer fluxes largely from

genomics data (Duarte et al., 2004; Teusink et al., 2009; Orth et al.,
2011).

Genome-Scale Stoichiometric Models: Flux from
Model Exploration
Genome-scale metabolic models contain the coupled metabolic
reactions encoded by the genome of an organism (Francke
et al., 2005; Feist et al., 2008) (see simplified representation of a
metabolic network in Figure 2A). These models tend to be much
larger than the stoichiometric models used for MFA, as their pur-
pose is to be an inventory of the metabolic potential of an organ-
ism based on its genome, not a tool per se for inferring fluxes
from data (smaller models allow for a better estimation of fewer
unknowns).

An average-sized genome-scale model consists of hundreds of
reactions (Teusink et al., 2009), whereas a large model can eas-
ily contain more than thousand reactions (Herrgård et al., 2008;
Thiele et al., 2013). Such large models rely on exploration and
optimization for hypothesis generation and flux predictions.

Among the methods used to explore genome-scale metabolic
models, FBA is by far the most widely-used method. The idea
behind FBA is to find solutions that satisfy some optimal behavior
of the metabolic network at steady-state; most often the maxi-
mization of biomass yield of a microorganism is used as a proxy
for fitness (Orth et al., 2010). To find this optimal behavior, the
metabolic network has to be constrained as much as possible
(Price et al., 2004). Apart from the mass-balancing constraint
that defines the steady-state condition, bounds on flux values of
reactions are used as additional constraints. For instance, known
irreversible reactions (derived from thermodynamic consider-
ations) are constrained to solely positive or negative flux val-
ues. Additionally, measured substrate uptake rates and product
secretion rates are also used as bounds on flux values. Other
physiological characteristics of the microorganism, such as the
non-growth and growth associated maintenances, the biomass
composition and P/O ratio help to further constrain the model.
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It is also possible to obtain these physiological characteristics
by exploiting the genome-scale stoichiometric metabolic mod-
els (Feist et al., 2006; Mahadevan et al., 2006). Additionally, any
data that can be turned into a constraint, can be integrated into
these models and bring the predicted phenotype closer to the real
phenotype. Protein and mRNA data, for example, can help to
improve the understanding of the fluxes through the metabolic
network (Blazier and Papin, 2012; Lee et al., 2012; Reed, 2012),
but also metabolomics data in combination with thermodynamic
information on Gibbs energies of the reactions (Kümmel et al.,
2006). The principle of FBA is shown in Figure 2C, where due
to the use of a simple network, indeed a single optimal solu-
tion is obtained. FBA on metabolic networks of microorganisms
generally reveals that even when microorganisms are behaving
optimally, many internal flux distributions can enable this opti-
mum. Various algorithms have been developed to calculate the
flexibility of the network at its optimal state (Mahadevan and
Schilling, 2003; Kelk et al., 2012). This flexibility is indicative for
the possible phenotypes an organism could attain.

Using only stoichiometry and no dynamics appears a short-
coming of FBA, especially considering the dynamics in species
abundances and activities in many ecosystems. However, dynam-
ics of extracellular nutrients and biomass can be implemented in
FBA. In such a case, Monod-type kinetics for uptake processes
of substrates are used to constrain the uptake flux in the stoi-
chiometric model, which through FBAwill subsequently produce
an optimal growth rate under that constraint. Resultant rates
of uptake and growth can be integrated into a system of mass
balances that constitute a population dynamic model. Microbial
dynamics during batch cultivation have been described by using
this so-called dynamic FBA (Mahadevan et al., 2002).

Genome-scale stoichiometric modeling of fluxes through
metabolic networks have had an huge influence on biotech-
nology, contributing to the understanding of the physiol-
ogy of industrial microorganisms and identifying targets for
metabolic engineering to improve their performance. This mod-
eling approach has been reviewed in several excellent reviews
(Raman and Chandra, 2009; Gianchandani et al., 2010; Santos
et al., 2011; McCloskey et al., 2013). We have listed a few rele-
vant achievements of constraint-based modeling in the field of
systems biology and biotechnology in Table 1.

Modeling in Bacterial Communities

How can we use the modeling methods for monocultures for
microbial communities? To be unambiguous about the inference

problem at the community scale, let’s take a more formal perspec-
tive on what we mean by community structure and the commu-
nity state (see also Glossary). The community structure implies
the ordering of microorganisms through interactions, ending up
in a connected network. It provides the topology of the network,
much like the stoichiometry does for a metabolic network. In the-
ory, inference methods can be used to identify such community
structure, by measuring the community state over time (Gonzalez
et al., 2012).

At any given moment in time, this community state is char-
acterized by: (i) the abundances of all microorganisms in the
community; (ii) the intracellular and extracellular concentra-
tions of their metabolites, mRNAs, enzymes, and other cellular
constituents; and (iii) the process rates (fluxes), i.e., the growth
rates of all microorganisms, and the rates of all the intracellular
and extracellular biotic metabolic reactions and abiotic processes.
Thus, the community state describes the quantitative values of all
the concentrations and process rates occurring in the commu-
nity. For single species cultures, such a data set could be acquired
but already constitutes a major task. There are huge experimen-
tal complications for microbial communities, and this makes the
inference of the community structure also challenging. In the-
ory, if we were to have a kinetic representation of all the pro-
cesses, the characterization of the community state would suf-
fice to determine the rates of change of all the concentrations
in the community. Clearly, we do not know most of the kinetic
parameters that would be required. This inference problem is
still an enormous challenge in modeling monocultures (Link
et al., 2014). As a result, we have to constrain the description of
the community system greatly, simplify smartly, and set realistic
goals.

In ecosystems, the community-level fluxes that are measured
correspond to the sum of cell-specific reaction activities multi-
plied by their respective abundances. Flux analysis of communi-
ties therefore requires the weighing of fluxes by biomass abun-
dances of the community members (Khandelwal et al., 2013).
This makes flux analysis for a community more complicated than
flux analysis for single microorganisms. The inference method
that we envision will, therefore, involve the measurements of
community-level fluxes, abundances of species and knowledge
of the metabolism of these organisms. This requires the consid-
eration of all the metabolic fluxes in the community, which in
complex ecosystems can amount to millions of reactions—many
of which can be the same reaction but carried out in different
species. The constraints imposed on the network do decrease
the amount of solutions in community modeling considerably.

TABLE 1 | Achievements of genome-scale stoichiometric modeling in systems biology.

Achievements Reference

First genome-scale model Varma and Palsson, 1994

Models showed consistency with experimental data Feist et al., 2006; Teusink et al., 2006; Oh et al., 2007

Simulations in correspondence with 13C-tracer studies Sun et al., 2009

Non-optimal growth of strains Ibarra et al., 2002; Teusink et al., 2009

Correct gene knock-out strategies for higher product yields Bro et al., 2006; Pharkya and Maranas, 2006; Park et al., 2007; Lee et al., 2007
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Even so, sophisticated computer models will be required to infer
knowledge from microbial community data.

This situation is reminiscent of early-days MFA, where only
partial genome information and data on extracellular fluxes
were available. For communities the challenges are clearly much
larger. FBA-type simulations on the metabolic network models of
species in amicrobial ecosystemwill be needed to fill in inevitable
gaps in our data sets. These models can integrate the available
meta-omics data of the ecosystem with knowledge about reaction
stoichiometries and thermodynamics. Such type of metabolic
models can provide detailed insights into the metabolic capaci-
ties of single microorganisms in multispecies settings and can be
extended to deal with communities (Zengler and Palsson, 2012).
They provide a straightforward tool for biologists to integrate
data and make realistic predictions, given constraints that derive
from basic principles and experimental data. They have been suc-
cessfully used to understand processes in synthetic ecosystems
(Stolyar et al., 2007), but could also explain phenotypic behavior
in real ecosystems (Zhuang et al., 2010).

Genome-Scale Modeling Approaches in Bacterial
Communities
We therefore believe that the application of stoichiometric mod-
els of the coupled metabolisms of microorganisms in communi-
ties holds great promise, for several reasons:

1. CSSMs (see Glossary) are very suitable for data integration, as
their mathematical description directly maps onto genomic,
metabolomic, proteomic, and flux data of the metabolism of
individual microorganisms in the community. The mapping
can be done on a visualized metabolic map corresponding to
the microbial ecosystem according to methods described in
Maarleveld et al. (2014).

2. CSSMs allow for calculation of the community state and
structure with numerical algorithms.

3. Experimental data can be used as constraints in the associated
modeling formalism, to improve predictions when more data
has become available (Röling and Van Bodegom, 2014).

4. The systemic consequences at community scale of molecular
or physiological perturbations or species augmentation can be
explored with CSSMs.

5. CSSMs can be used for experimental or medium design to
improve community performance.

Different approaches to extend single-species models to
microbial-community metabolic network reconstructions have
been proposed, each trying to answer different research ques-
tions. The existing applications of FBA to CSSMs can be classified
into three different groups: (i) the supra-organism approach
(Rodríguez et al., 2006), (ii) the steady-state compartmentalized
approach (Stolyar et al., 2007; Khandelwal et al., 2013), and (iii)
the dynamic compartmentalized approach, based on dynamic
FBA (dFBA) (Salimi et al., 2010; Zhuang et al., 2010; Hanly and
Henson, 2011). These methods vary in the complexity of the
CSSM description and how they choose to handle individual
species.

The supra-organism approach has first been applied by
Rodríguez et al. (2006). It combines all metabolic reactions of

the various species in the microbial ecosystem to create a sin-
gle meta-metabolic network to study the metabolic capacities
in terms of product and substrate variation of the community.
This approach simplifies the complexities of interactions and reg-
ulations amongst cohabiting species and makes it easy to pre-
dict environmental conditions that can be imposed to optimize
a community level objective toward an outcome of interest to
biotechnology. By combining all reactions into one network, it
ignores the impact of species abundances and the interactions
between community members.

The steady-state compartmentalized approach considers the
various species as separate compartments where one shared
compartment is introduced for the exchange of metabolites
between the species. This approach elucidates interactions
between species, contributing to an improved insight on host-
microbe/pathogen interactions or mutualistic interactions. With
this approach, for instance, it is suggested that instead of for-
mate, H2 is exchanged in a co-culture of Desulfovibrio vulgaris
andMethanococcus maripaludis (Stolyar et al., 2007). Initial com-
partmentalization approaches neglected biomass concentrations
of each species individually, resulting in biased quantitative flux
distributions. Implementation of biomass concentrations in the
compartmentalization approach has recently been successfully
applied and is of particular interest when accurate quantitative
transfer rates are required (Khandelwal et al., 2013).

The dynamic compartmentalized approach implements dFBA
by using the kinetics of substrate uptake andmetabolite exchange
between species (Salimi et al., 2010; Zhuang et al., 2010; Hanly
andHenson, 2011). Implementation of dynamic behavior is often
required to understand ecosystem structure and functionality.
Here, biomass concentration of each species is taken into account
and can change with time. Therefore, it is possible to simulate
competition, predation or other interactions altering the commu-
nity state. The requirement of quantitative kinetic information
is one of the major disadvantages of the dFBA method. Obtain-
ing this for every species in a community will be laborious, if at
all possible. However, the kinetic parameters can be inferred by
fitting the model with experimental data.

A limitation of all these methods is that they are currently
tailored for simulation and not for inference of metabolic activ-
ity and abundances of microorganisms from community-level
fluxes. Even though such models can actually be used for this
purpose, this is rarely done, because of experimental chal-
lenges in obtaining the data. In particular resolving fluxes at
the level of the single species remains challenging. However,
recently species level isotopomer-based flux data were obtained
from synthetic consortia (Shaikh et al., 2008; Rühl et al., 2011).
When experimental procedures for isotopomer-based analysis
of fluxes through microbial communities are developed further,
the CSSMs as we describe here, also become relevant to experi-
mentalists. Moreover, recent work (Niebel, Heinemann, personal
communication) provides hope that detailed thermodynamic
constraints, which are physical constraints that should apply to
all organisms, may sufficiently constrain metabolic networks to
infer realistic intracellular flux distributions without the need for
isotopic labeling data. Thermodynamic constraints can also con-
tribute to the search for novel microorganisms that can carry
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out biochemical conversions in nature that appear thermody-
namically possible on paper (Raghoebarsing et al., 2006). In such
work, initially a coarse-grained perspective is taken to understand
overall metabolic potentials in ecosystems, and this approach
is supplementary to the genome-scale approaches discussed
so far.

Inferring the Community Structure and State
Using Coarse-Grained Models
Even though CSSMs can be very useful, for many applications
they will be too detailed and too unparameterized to be of imme-
diate value. The details will result in many degrees of free-
dom, for example in many potential substrates and products. A
more pragmatic approach is therefore often needed. Simplifying
and coarse-graining models is also regularly required for mod-
els of monocultures. This happens when the data is still insuf-
ficient to parameterize a model, or when the model becomes
so detailed that it hampers understanding. Even well-curated
models might be too detailed and complicated to understand
the simulated results, because there are too many variables and

independencies. In such cases there may be predictive power but
no understanding. Obviously, it depends on the question what is
preferred: ideally, the type of research question determines the
required level of detail and initially limits the complexity of the
model, at the same time allowing for progressively and gradu-
ally increasing the model in size when more experimental data
becomes available. The work flow we envision is visualized in
Figure 3.

The coarse-grained models can be created at different levels
of granularity. However, in order to model microbial commu-
nities, we envisage that a more detailed (but unparameterized)
description, at a lower level of granularity, is always possible.
Ultimately, there is the genome of the individual consortium
species that allows for a reconstruction of the metabolic poten-
tial, which is a solid ground on which to build more detailed
reconstructions. When the genome of the consortium species
is not present, data from metagenomics is suitable for more
detailed metabolic reconstructions. However, the level of detail
of the metabolic reconstructions will be largely dependent on the
sequencing depth of the metagenome.

FIGURE 3 | Representation of the work flow to get more information

from experimental data. On one hand the inference approach with as

result a coarse-grained data-model which fits the measured data and on the

other hand the genome-scale models which are highly underdetermined, but

can be used as data repositories. The challenge is to create models which fit

the research question. This can be done via the represented steps.
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Application to a Case Study

We will make use of an elegant study performed on a nitrate
respiring community (Kraft et al., 2014) as an example to illus-
trate and explain how the proposed work flow could be applied
in practice.

Kraft et al. (2014) incubated a nitrate respiring community,
originating from sediment in the German Wadden Sea, in reac-
tors with continuous substrate supply, and altered environmental
factors to investigate if denitrification or ammonification evolved
as the major nitrate respiring process. The researchers mea-
sured community level fluxes, performed metagenomics, meta-
transcriptomics, and metaproteomics, and used fluorescence in
situ hybridization to unravel the effect of specific environmen-
tal conditions on community behavior. A schematic overview of
the metabolic interactions was created, based on the meta-omics
data, with fermenting microorganisms generating fermentation
products that were consumed by the microorganisms respiring
nitrate to either ammonium (ammonification) or nitrogen gas
(denitrification) (see Figure 4). In total 7 dominant populations
related to ammonification and denitrification were identified.

Denitrification became dominant at short generation times and
with nitrite supply, while nitrate supply and long generation
times with nitrite as supply favored ammonification. The same
enzymes are responsible for the first steps in both processes,
which branch after nitrite reductase. Therefore, they hypothe-
sized that differences in apparent affinity of this enzyme for nitrite
determines the dominating respiration process, with the nitrite
reductase of denitrifyingmicroorganisms having higher affinities.

The study by Kraft et al. (2014) covers the “Data” and the
“Data analysis” part of the “Inference problem” in Figure 3, but
several hypotheses and open questions could not be answered by
the data. This study therefore provides an interesting test case for
integration of the experimental data into a mathematical model
to get mechanistic understanding of community functioning and
eventually could lead to control and steer its performance. The
third and last step in our proposed work flow in Figure 3 of
the “Inference problem” would be the construction of a coarse-
grained data model describing a limited set of pathways and
connect them to each other to create a community (Figure 4).
Once the simulations with the coarse-grained models match the
experimental data, they can be applied to answer questions about

FIGURE 4 | Illustration of the models used to get a mechanistic

understanding of the nitrate respiring community studied by Kraft

et al. (2014). At the top the coarse-grained models, whereas at the

bottom the highly detailed genome-scale models are shown. In the

middle is the type of model created using the synergistic approach of the

coarse-grained models and the genome-scale models which will

contribute to mechanistic understanding of the nitrate respiring community

and it’s functioning.
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the community. The type of research question will influence
which parts of models should be described in high detail and
which not.

For instance, to address the hypothesis that nitrite affinity
determines the major respiration process, we start by creating
simple models of the three functional groups (ammonifiers, den-
itrifiers, and carbon fermenting organisms). The model of the
carbon fermenting organism will be the simplest, that is: uptake
reactions of glucose and amino-acids and secretion reactions of
acetate, formate and hydrogen, because testing the given hypoth-
esis only requires the secretion of fermentation products that can
act as substrate for the other functional groups. The ammonifiers
model should contain the metabolic pathway of nitrate to ammo-
nium conversion, transport reactions, carbon metabolism and
other energy generating pathways. The denitrifiers require the
same level of detail in their model as the ammonifiers. Now, these
simple coarse-grained models allow to first investigate whether
the experimentally observed differences might be explained with-
out requiring the inclusion of the affinities for nitrite. If not,
a kinetic description of the nitrite reductase in both functional
groups can be included. Subsequently, it is possible to determine
how big the difference in nitrite affinity should be to explain the
experimental results.

Kraft et al. (2014) also observed large differences between the
potential rates of nitrite reduction between the ammonification
and denitrification process, in particular when multiple electron
donors were fed to the consortium. They hypothesized that this
could be caused by a bottleneck in electron supply to the nitrite
reductases of ammonification. Those proteins require six elec-
trons per nitrite, where only one electron is required for deni-
trification. Testing this hypothesis requires an additional level of
detail compared to the models presented in the first example: the
metabolic pathways of the different electron donors should now
be implemented. Amediumwith multiple electron donors can be
simulated and compared with a medium with only one electron
donor. The model will show whether the ammonifiers become
relatively less active when multiple electron donors are provided
to the community compared to a situation in which one carbon
source is provided.

Finally, Kraft et al. (2014) observed functional redundancy
within both denitrifiers and ammonifiers, and the applied genera-
tion time determined which population became dominant within
these groups. To better understand the underlying mechanisms,
a more detailed model would be required compared to the pre-
vious examples. Firstly, each functional group needs to be split
in several populations, each capable of either ammonification
or denitrification. Secondly, for each population a more detailed
metabolic model needs to be constructed, to capture differences
in metabolism within the functional groups. These models are
informed by the binned metagenomic data of Kraft et al. (2014).
The resulting models could subsequently be tested. To establish
what causes the difference in dominance in relation to generation
time, kinetic information to describe competition should likely be
included.

The aforementioned examples show how the question deter-
mines the level of detail of the “Inference models.” These
coarse-grained models of the players in the ecosystem should

be based on knowledge of the (genome-derived) metabolic
networks of the species. Therefore, parallel to this “Inference
model,” genome-scale stoichiometric metabolic models are main-
tained to act as data repositories (shown in Simulation in
Figure 3). For the key species in the community, genome-scale
metabolic reconstructions could be created using genomic, lit-
erature, and experimental data. All models can be combined
in one metagenome-scale compartmentalized consortium model
and allow for the exploitation and exploration of the microbial
community.

Finally, a synergistic approach emerges where the interplay
between the simple coarse-grained models and the genome-scale
metabolic models are determined by the type of question being
asked about the community. An important aspect is that the out-
put of models with different levels of description should be con-
sistent with each other and agree with available data. This process
of iterative model making should inform the experimentalists
about knowledge gaps and suggests new experiments.

As demonstrated by Kraft et al. culturing communities under
well-controlled conditions, for instance in chemostats, enables
quantification of community-level fluxes, biomass abundances
and gene expression levels of specific populations, and allows for
applying well-tractable perturbations. This type of experimental
approach will be very helpful to develop and optimize meth-
ods for species-specific flux descriptions on basis of CSSMs, to
understand the community function and eventually control the
microbial ecosystem.

Concluding Remarks

In this paper, we described current methods to model the
metabolism of single species and how we think such system
approaches could be used at the microbial community level.
These methods go from genomic information to understanding
and directing microbial community metabolism. We argued that
metagenomics data are great, but they need to be augmented with
flux measurements and model-based inference methods to iden-
tify the community structure and state. We arrive at a proposed
approach where models are combined with quantitative data.
Such models can vary in their level of coarse-graining depend-
ing on the research questions, data and experimental options at
hand. Genome-scale stoichiometric models will be the knowl-
edge base with which to integrate genomic, physiological and
physicochemical data, and can be developed parallel to coarse-
grainedmodels to understand the community structure, state and
function. We feel that what is missing -but is within reach- is a
description of the functioning of a microbial community in terms
of the fluxes through its members. We therefore advocate that
flux analysis specialists from the fields of biotechnology, micro-
bial physiology, and systems biology team up with microbial
ecologists, as they increasingly do.
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Glossary

Community-scale stoichiometric model (CSSM): Stoichiometric
model that describes the microbial community.

Community state: The full set of concentrations, abundances of
species and process rates within a community.

Community structure: Topology of the network of species
interactions, as selected by the environment.

Flux Balance Analysis (FBA):Method used to calculate flux dis-
tributions through the cell. Measured flux data are not required,

so FBA can be used purely computational. FBA is performed on
genome-scale stoichiometric metabolic networks.

Isotopomer: Molecules which have the same constitution and
the same configuration but differ in isotope substitution.

Isotopomer-based flux analysis:Advancedmethod forMetabolic
Flux Analysis, using isotopomer data to infer intracellular fluxes
from isotopomer enriched metabolites.

Metabolic Flux Analysis (MFA): Method to infer fluxes
from measured flux data. The stoichiometric models are
coarse-grained and are used by the experimentalists.
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