
LA-2285 
\   ■—,      "S  * 

LOS ALAMOS SCIENTIFIC LABORATORY 
OF THE UNIVERSITY OF CALIFORNIA o LOS ALAMOS    NEW MEXICO 

' TL.> M o^JA (">A. ex... UN ^ 

SYSTEMS OF CONSERVATION LAWS   ' 

ft 
1 

NJ\ 
\: 

'X 

V
:\ 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

Reproduced From 
Best Available Copy 

20000915 070 



LEGAL NOTICE 

This report was prepared as an account of Govern- 
ment sponsored work. Neither; the UnitedStates, nor the 
Commission, nor any person acting on behalf of the Com- 

mission: 

A. Makes any warranty or representation, express 
or implied, with respect to the accuracy; completeness, 
or usefulness of the information contained in this report, 
or that the use of any information, apparatus, method, or 
process disclosed in this report may not infringe privately 
owned rights; or 

B. Assumes any liabilities with respect to the use 
of, or for damages resulting from the use of any infor- 
mation, apparatus, method, or process disclosed in this 
report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the 
Commission to the extent that such employee or contrac- 
tor prepares, handles or distributes, or provides access 
to, any information pursuant to his employment or con- 
tract with the Commission. 

Printed in USA.    Price   $1.25. Available from the 

Office of Technical Services 
U.  S.   Department of Commerce 
Washington 25,  D.C. 



I 
LA-2285 
PHYSICS AND MATHEMATICS 
(TID-4500, 14th edition) 

LOS ALAMOS SCIENTIFIC LABORATORY 
OF THE UNIVERSITY OF CALIFORNIA     LOS ALAMOS    NEW MEXICO 

REPORT WRITTEN:  November 1958 

REPORT DISTRIBUTED:  April 19, 1959 

I SYSTEMS OF CONSERVATION LAWS 

by 

Peter Lax 
Burton Wendroff 

This report expresses the opinions of the author or 
authors and does not necessarily reflect the opinions 
or views of the Los  Alamos  Scientific  Laboratory. 

I 
Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission 



ABSTRACT 

In this paper a wide class of difference equations is described for 

approximating discontinuous time dependent solutions, with prescribed 

initial data, of hyperbolic systems of nonlinear conservation laws. Among 

these schemes we determine the best ones, i.e., those which have the small- 

est truncation error and in which the discontinuities are confined to a 

narrow band of 2-3 meshpoints. These schemes are tested for stability 

and are found to be stable under a mild strengthening of the Courant- 

Friedrichs-Lewy criterion. Test calculations of one-dimensional flows 

of compressible fluids with shocks, rarefaction waves and contact discon- 

tinuities show excellent agreement with exact solutions. In particular, 

when Lagrange coordinates are used, there is no smearing of interfaces. 

The additional terms introduced into the difference scheme for the 

purpose of keeping the shock transition narrow are similar to, although 

not identical with, the artificial viscosity terms, and the like of them 

introduced by Richtmyer and von Neumann and elaborated by other workers 

in this field. 



1. DIFFERENCE SCHEMES FOR CONSERVATION LAWS 

In this paper we consider systems of conservation laws, i.e., 

equations of the form 

ut - fx, (1.1) 

where u is an unknown vector function of x and t with n components, 

and f a given vector function of u, depending in general non-linearly 

on u. When the differentiation on the right side of (1.1) is carried out 

a quasi-linear system results: 

ut = A ux, (!.!•) 

where A = A(u) is the gradient of f. We require that our system of 

equations be hyperbolic in the sense that the matrix A has n distinct 

real eigenvalues p..., ..., u , for all values of u. Of course the 

eigenvalues themselves are functions of u. 

The negatives of the quantities |i are the local sound speeds. 

We shall index them in, say, monotonic increasing order. 



The initial value problem is to find a solution of (1.1) with 

prescribed values at t = 0: 

u(x,0) = cp(x). (1.2) 

It is veil known that on account of the nonlinearity of (1.1) no smooth 

solution will in general exist for all time. Instead we have to seek 

weak solutions of (1.1), (1.2), defined by the requirement that the 

integral relation 

/ / KU"Vx f) dxdt + / w(x>°) VW  dx = 0 (1.3) 

be satisfied for all smooth test vectors w which vanish for |x| + t 

large enough. 

An immediate consequence of the integral relations is that every 

piecewise continuous weak solution must satisfy the Rankine-Hugoniot 

relation across a line of discontinuity: 

s[u] + [f] = 0; (l.k) 

here the brackets denote the jump across the discontinuity, s the speed 

of propagation of the discontinuity. 

It is well known in the theory of systems of conservation laws 

(see, e.g., section 7 of [<?]) that in addition one has to impose a so- 



called entropy condition on discontinuities. This condition can be 

formulated as follows: 

There is an index k such that the shock speed lies between the 

(k - 1) and kth characteristic speeds with respect to the state on the 

left of the shock, and between the kth and (k +  1) characteristic 

speeds on the right. 

We shall describe now a fairly large class of difference schemes 

that can be used to approximate weak solutions with prescribed initial 

data. 

First we choose a vector valued function g of 22 vector argu- 

ments, related to f by the sole requirement that when all the 2.1 

arguments are equal, g reduces to f: 

g(u, ..., u) = f(u). (1.5) 

Abbreviate the values of u(x) at the lattice points x + kAx and at 

time t by u, , k = - oo, ... oo. We define 

g(x+Ax/2) = g(u_i+1, u_i+2, ..., uf); 

therefore similarly we have 

g(x -Ax/2) = g(u_f, u_f+1, ..., uf-1). 



We take now the folio-wing difference analogue of (1.1): 

£ä = £S , (1.6) 
At    Ax ' v 

where Au denotes the forward time difference 

Au = u(x, t+At) - u(x,t) 

and Ag the symmetric space difference 

Ag = g(x+ Ax/2) - g(x - Ax/2). 

From (1.6) we can determine u(x, t+At): 

u(x, t+At) = u(x,t) + XAg, (1.6') 

where X abbreviates the quotient At/Ax of the time and space incre- 

ments. Given the initial values cp of u, we can, using (1.6')> 

determine successively the values of u at all times which are integer 

multiples of At. We claim now that as consequence of (1-5) our differ- 

ence scheme is consistent with the differential equation in the following 

sense: denote by v(x,t) this solution of the difference equation 

(which for noninteger multiples t of At is defined, for the sake of 

convenience, as equal to v(x,t«), t» = At[t/At]). This v depends, 

of course, on At and Ax. 
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Theorem: Assume that as Ax and At tend to zero,  v(x,t) 

converges boundedly almost everywhere to some function u(x,t). Then 

u(x,t) is a veak solution of (1.1) with initial values <p. 

Proof: Multiply Eq. (1.6*), satisfied by v, by any test vector 

w, integrate with respect to x and sum over all values of t which 

are integer multiples of At. Apply summation by parts to the left side, 

and transform the terms involving Ag by replacing the variable of 

integration x by x - Ax/2 and x + Ax/2, respectively. We get the 

following identity: 

ZPw(x,t -At) - w(x,t)  ,  ,» ,  ., '/, -,.\ 
-±-* £t ^-^ v(x,t) dx At (1.3') 

- / w(x,0) q>( x) dx 

■u 
w(x + Ax/2) - w(x - Ax/2) g dx At. 

g denotes g(v,, ..., v?.), where v , . .., v_ denote values of v 

at 2£ points at distance Ax apart distributed symmetrically around 

x,t. If v tends boundedly almost everywhere to u(x,t),  so do v,,..., 

Y
2t'    

and thus g(vi>" ',v2l^    
tends to s(u,...,u), which, by the con- 

sistency requirement (1.5), is f(u). So the limit of (1.3') is the 

desired integral relation (1.3). 



2. MINIMIZING THE TRUNCATION ERROR 

Let u(x,t) be an exact smooth solution of.equation (1.1). It 

will then satisfy the difference Eq. (1.6') only approximately; the 

deviation of the right side from the left side of (1.6«) is called the 

truncation error. It is easy to see that if the function g satisfies 

the consistency condition (1.5), the truncation error is at least 0(A). 

In this section we shall determine g so that the truncation error is of 

as high an order as possible. Specifically we shall consider the case 

£ = 1, and show that g can be chosen so that the truncation error is 

0(A3): 

Expand u(x, tt-At) into a Taylor series up to terms of second 

order: 

u(x, t*At) = u(x,t) + At ut + -^- uu + 0(A3). (2.1) 

With the help of the differential equation (1.1) which u is supposed to 

satisfy we can express the time derivatives of u as space derivatives: 

ut = fx> 

u   = f   = fA  =  (AuJ  = (A2u ) ; tt    xt    tx   v t'x   v  xV 

10 
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what is significant is that all t derivatives are exact x derivatives 

and therefore can be approximated by exact x differences. Substitute, 

namely, (2.2) into (2.1); we get 

2 
u(x, tfAt) = u+ (Atf + -^-A2ux)x+ 0(A

3). (2.3) 

Comparing (2.3) with (1.6f)> we see that the truncation error is 0(A ) 

if and only if 

i - <*♦£*%>,♦ o<*
2

>. 

From this we can easily determine the form that g has to take: 

Theorem:  The truncation error in the difference scheme (1.6*) is 

0(AJ) if and only if 

g(a,b) s    f (a) + f (b) + | A2 t (b.a) (2A) 

o 
plus terms which are 0([a - b[ ) for u - v small. 

Formula (2.U) has a fairly intuitive meaning and can be derived 

by differencing our differential equation (1.1) as follows:  replace time 

and space derivatives by differences centered at x, t + At/2. This means 

that u.  is to be replaced by a forward time difference, and f  by 

if(x + Ax/2, t + At/2)  - f(x - Ax/2, t + At/2)|/Ax. 
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The value of f at x + Ax/2, t + At/2 is evaluated on the basis of 

the formula 

f(x ± Ax/2, t + At/2) = f(x ± Ax/2, t) + —■ t± + 0(A)
2. 

o 
We express f, as Au = A u , and approximate u  by a difference 

quotient. The value of f(x ± Ax/2, t) is evaluated as the average of 

f at x and x ± Ax. The resulting formula is precisely (2.4). 

The quantity A2 in (2.4) shall be taken as JA (u) + A (v)W2, 

for sake of symmetry more than anything else; any other choice for it 

would make a difference that is quadratic in u - v. 

Denoting the function (2.4) by gQ, we can write any permissible 

g in the form 

g = S0 + | Q(a, *) • (b - a) , (2.5) 

where Q(a,b) is a matrix which vanishes when its two vector arguments 

are equal. 

Substituting formula (2.5) for g into the difference Eq. (1.6'), 

we get 

2 
u(x, t+At) = u(x,t) + XA'f + —■ AA.2 Au + ^QAu, (2.6) 

where A» denotes the operation |[T(Ax) - T(-Ax)], A the operator 
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T(Ax/2) - T(-Ax/2). T(s) denotes translation of the independent vari- 

able by the amount s. We shall call Q the artificial viscosity, 

since it occurs in the difference equations in a way which is similar 

to the artificial viscosity terms introduced by von Neumann and 

Richtmyer in [ 13]. 

The difference Eq. (2.6) expresses the value of u at time 

t + At as a nonlinear function of u at t; we shall denote this 

function (operation) by N: 

u(t + At) = N u(t). (2.6«) 

The value of the solution of the difference equation at some later time 

kAt is obtained from the initial values by application of the kth 

power of the operator N. 

Our aim is to show that the difference scheme (2.6) is convergent 

if the size of X is suitably restricted. Now in the case of linear 

equations it is well known and easy to show (see, e.g., [10]) that con- 

vergence is equivalent to stability defined as the uniform boundedness 

of all powers N  of the operator N within some fixed range pAt < T. 

In the nonlinear case von Neumann has made the reasonable assumption, 

(see, e.g., [12]) that the convergence of the scheme would hinge on the 

stability of the first variation of the operator N. The first varia- 

tion of N is a linear difference operator with variable coefficients; 

von Neumann has conjectured that such an operation is stable if and only 

if all the "localized" operators associated with it, i.e., the operators 

13 



obtained by replacing the variable coefficients by their value at some 

given point -- are stable. 

The stability of a difference operator with constant coefficients 

is easily ascertained by making use of the Fourier transform. In that 

representation the application of a difference operator with constant 

coefficients goes over into multiplication by an "amplification matrix." 

In case the amplification matrix has n linearly independent eigenvec- 

tors, the operator is stable if and only if the eigenvalues of the 

amplification matrix do not exceed 1 + O(At) in absolute value. 

On the other hand, Courant, Friedrichs and Lewy have observed in 

their classical paper [2 ] that a necessary condition for the convergence 

of a difference scheme is that the rate of propagation of signals in the 

difference scheme should be at least as large as the true maximum signal 

speed, i.e., 

H * l"W (2'7) 

where  luI    is the largest eigenvalue of A at any point within the 
'^'max 

relevant range of values. 

Conversely, we shall show: 

In the parabolic case the validity of this conjecture has been estab- 

lished by Fritz John in his important paper [ k ] . In the hyperbolic 

case a fragmentary result has be given in Lax [ 8 ]. 

Ik 



Theorem:  If condition (2.7) is fulfilled, the difference Eg.. 

(2.6) satisfies von Neumann's condition of stability. 

Proof:  The first variation of the operator appearing on the 

right side of (2.6) is easily computed; its value is 

I + XAA' + | X2A2A2 + O(Ax); (2.8) 

where A1 and A are defined as before, and 0(Ax) denotes an opera- 

tor bounded in norm by 0(Ax), provided that we are perturbing in the 

neighborhood of a smoothly varying solution, i.e., one where neighboring 

values differ by O(Ax). In this case the influence of the additional 

artificial viscosity term is 0(Ax)j in section 3 we shall show how to 

take into account the effect on stability of the Q term in regions where 

u does vary rapidly. 

To "localize" the operator (2.8) we merely replace the variable 

matrix A by its value at some point. After making a Fourier trans- 

formation, the operator A' becomes multiplication by i sin a,    and 

a 12 
the operator A multiplication by 2i sin -,  so that ^A  becomes 

multiplication by cos a  - 1; here a.    is |Ax, (• the dual variable. 

So the amplication matrix of the operator (2.8) is 

2 2 
I + i sin a U + (cos a  - 1) X   A + O(Ax).        (2 .9) 

Denote the eigenvalues of Xk    by k;  then, according to the spectral 
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mapping theorem, the eigenvalues v of the amplification matrix (2.9) 

are 

v = 1 + i k sin a + k (cos a - 1) + O(Ax). 

Since k = \n is real, the absolute value of v is given by 

|v|2 = (1 - [1 - cos |] k2)2 + k2 sin2 I + 0(Ax) 

= 1 - 2[1 - cos |] k2 + [1 - cos |]2 k
k
 + k2(l - cos2 |) + 0(Ax) 

:1 - [1 - cos |]2 (k2 - k^) + 0(Ax). 

According to our basic stability assumption (2.7) the quantity k does 

not exceed 1 in absolute value; the above formula for |v| shows that 

|v| is bounded by 1 + 0(Ax). Thus we have demonstrated that the 

eigenvalues of the amplification matrix do not exceed 1 + 0(Ax) in 

absolute value, as required in von Neumann's condition. 
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3. ARTIFICIAL VISCOSITY FOR SINGLE CONSERVATION LAWS 

In the last section we have determined the function g(u,v) up to 

quadratic terms in u - v. These undetermined quadratic terms influence 

neither the order of the truncation error nor the stability of the scheme 

at points where the solution varies smoothly. At points, however, where 

the solution varies rapidly -- across a shock, that is -- it is reasonable 

to expect that the quadratic terms have a controlling influence. In this 

section we shall show how to choose the additional quadratic term Q in 

our formula (2.6) so as to assure a fairly narrow shock width. 

As observed in the last section, Q enters the difference Eq. 

(2.6) like an artificial viscosity. Therefore, in order to insure that 

Q has a stabilizing influence on the difference equation, it is reason- 

able to require that:  a. Q is positive. Another property of Q, already 

previously noted, is: b. Q(a,b) = 0 when a = b, while on dimensional 

grounds we must require that: c. Q has the dimension of A. We shall 

discuss first the scalar case, i .e., when the number of components of 

u (and f) is one; correspondingly the matrix A = grad f is one-by-one. 

In this case the restrictions a - c show that Q must be a multiple of 

|A(a) - A(b)|: 
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Q(a,b) = § |A(a) - A(b)|, (3.1) 

where B is a dimensionless constant (which of course could depend on 

the value of u and v). With the above choice for Q in the differ- 

ence equation (3.1) we shall now study the Shape of a steady state shock, 

i.e., a time independent solution of (2.6) connecting states n(-«») and 

|i(oo): 

A'f + |M2 AU+ I AQAu = 0. (3.2) 

We shall denote the values of u at three successive lattice points by 

a, b and c. We write, 

A'f = |[f(c) - f(b)] + |[f(b) - f(a)] 

and make the following approximation: 

f(c) - f(b) « A(b,c)(c-b), 

f(b) - f(a) « A(a,b)(b-a), 

where A(u,v) abbreviates -^~—^-.    For the simplest nonlinear 

function f, a quadratic one, these approximations involve no error, 

18 



Substituting the above changes into (3*2), we get, after multi- 

plication by 2: 

JA + XA2 + Q| (c-b) + JA - \A2 - Q| (b-a) = 0. (3.3) 

o 
We make now a further approximation by omitting the terms \k     in (3«3)> 

under the reasonable assumption that the presence or absence of this term 

won't alter much the nature of the solution, since this term has the same 

character as the retained Q terras, and is expected to be much smaller 

than the Q term in the important region of rapid variation, especially 

if \ is small. 

This assumption was put to the following numerical test: in the 

difference equation (2.6), A  was replaced by WA , where W(a,b) is 

a factor so contrived that its value is near 1 when u and v are close, 

2 
while its value is near zero when u and v differ greatly.  The pres- 

ence or absence of such a factor W made hardly any difference in the 

shape of the steady state shock profile obtained experimentally. 

Making this change, and substituting our choice (3.1) for Q into 

(3*3), we get 

I.e., W switches off the higher order correction term in the shock 

zone, where it has no function to fulfill anyway. 
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JA(b,c) + § |A(c) - A(b)|| (c-b) + JA(a,b) - § |A(b) - A(a)|j (b-a) = 0. 

When B = 1, this equation can be written in the following simple form: 

Max JA(b), A(c)| (c-b) + MinJA(a), A(b)| (b-a) = 0. (3-31) 

Denote by vw and vu    the two prescribed states at -oo and +oo which 

are supposed to be connected by a solution of (3-3'). These states have 

to satisfy the Rankine-Hugoniot condition (l.k)  which, for a stationary 

shock, is 

f(uL) = fd^). (3 A) 

In addition we suppose that the entropy condition is satisfied, i.e., 

that the shock speed is less than -Huj),    the sound speed to the left 

of the shock, and greater than -Afi^), the sound speed to the right: 

AOijJ <0 <A(uR). (3.5) 

It follows from (3.5) that there exists a value Uj^ such that 

A^) - 0. (3.6) 

20 



We claim now that the following lattice function is a solution of (3.31): 

\ 

u(x) = < ^ 

"R 

for all negative lattice points, 

for x = 0, 

for all positive lattice points. 

(3.7) 

We have to verify that the difference equation (3.3') is satisfied for 

all triplets of three successive lattice points. Since (3.3') is triv- 

ially satisfied whenever a = b = c, only three cases remain to he 

checked: 

I II III 

a
 = "L "L "M 

h
 

=
 \ \ \ 

C = UM \ \ 

In case I, it follows from the first half of inequality (3*5) and from 

(3.6) that Max^A(b), A(c)>-= 0; since b-a is likewise zero, (3-3') 

is satisfied. We can show similarly that (3.3') is satisfied in case II, 

In case II, the left side of (3.3') is 

A
<V  

[U
R " V 

+
 

A(U
L>  

[U
M " \

h 
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Since A(uJ = 0, this expression is twice 

—J1"2  [UR " "M] +  2  [UM " "I1* 

We rewrite the two terms above as 

which is correct if f is a quadratic function and which for general 

nonlinear f involves the same kind of error which we have already com- 

mitted. This last expression is equal to ffUp) - f(\)>    
a quantity 

equal to zero by virtue of the Rankine-Hugoniot relation (3*1*). This 

verifies the difference equation (3.3") in case II. 

We summarize our result in this 

Theorem: Any two states uL and v^   which can be connected by 

a stationary shock, i.e., which satisfy the Rankine-Hugoniot relation 

(3A) and the entropy condition (3.5)* can be connected by a steady state 

solution of our difference equation (3.2). This steady state solution is 

given approximately by formula (3«7), which shows that the transition 

region is spread over two mesh widths. 

The theorem above refers to the case when B is taken to be 1. 

It is not so easy to solve the steady state difference equation for any 

other value of B, but we conjecture that a steady state solution exists 

for a reasonable range of B. On the basis of previous experience of 
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other investigators with artificial viscosity one would expect the width 

of the region across which the bulk of the transition takes place to 

increase with increasing B. This prediction was indeed borne out by 

numerical experiments recorded in the tables at the end of this paper. 

Likewise, when u, and u_ are two states which can be connected 

by a shock proceeding at some nonzero speed, we expect that the difference 

equation (2.6), with Q being given by (3-l)> possesses a steady, progress- 

ing solution connecting these two states, whose structure is similar to 

the stationary solution. 

We shall analyse now the stability of the difference scheme (2.6), 

with Q given by (3.1). We make the assumption that the stability of 

(2.6) is governed by the stability of the following associated linear 

difference operator: 

I + XAA' + | X2 A2 A2 + | \QA2, (3.8) 

where A and Q denote values of A and Q at some point. The ampli- 

fication factor associated with this operator is 

1 + i\A sin a + |-fx2 A2 + XQHCOS a -  !}"• (3.9) 

It is not hard to show, by an analysis parallel to that given at the end 

of section 2, that this factor does not exceed 1 in absolute value for 

any frequency a if and only if 
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?,2A2
+\Q < 1. (3.10) 

Denote by [i    the largest possible value of |A|; it follows from Eq. 

(3.1) for Q that then Q will not exceed |BV, where V is the var- 

iation of A. If A does not change sign, V <u. Substituting the 

above bounds into (3.10), we get 

XV + |B\U < 1, (3.11) 

which is equivalent to 

\u * (1 + B2/^)1/2 - BA- (3.11') 

In particular, we get for B = 1: 

\u < .78 . 

This stability condition is slightly more stringent than the 

Courant-Friedrichs-Lewy condition (2.7). It bears a strong resemblance 

to the stability condition derived by von Neumann and Richtmyer in [ 13], 

and to the stability criterion derived later by George White of IASL. 

If in (3.10) the strict inequality holds, then the amplification 

factor (3.9) is actually less than 1 in absolute value for all frequencies 

2k 



a except a = 2jtn, n integer. This would lead us to believe that then 

the steady state solutions are strongly stable, in the following sense: 

Every solution of the difference equation (2.6),  with Q given 

by (3.1), whose initial values tend to u_ and IL as x tends to 

±00, approaches a steady state solution with increasing t, provided 

that the stability condition (3.11') is satisfied. 

Given an arbitrary initial state, such that the corresponding 

exact solution of the differential equation (1.1) contains a number of 

shocks, not necessarily stationary or steady, progressing, we would 

nevertheless expect the corresponding solution of the difference equa- 

tion (2.6), with the same initial data, to bridge these shocks by 

transitions similar to the stationary solution we have found before, i.e., 

we expect the bulk of the transition to be spread over 2-3 mesh widths. 

This is reasonable, since the rate of variation of the states at the two 

sides of the shock will in general be much slower than the rapid varia- 

tion within the shock itself. 

Test calculations performed so far have confirmed this expectation. 

As yet none of these calculations have included very rapidly changing 

shocks, so at this time we don't know how the present method will handle 

such a situation. 
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k.    ARTIFICIAL VISCOSITY FOR SYSTEMS 
OF CONSERVATION IAWS 

In case of a system of any number of conservation laws the three 

properties of Q listed at the beginning of section 3 no longer suffice 

to determine Q within a single dimensionless constant but still leave 

a rather bewildering variety of possibilities. 

Richtmyer and von Neumann based their choice of the artificial 

viscosity on a physical analogy, and the various ingenious modifications 

proposed and tested by Landshoff, Harlow and Longley were likewise partly 

based on physical analogies. In this section we propose a form for Q 

which is dictated entirely by mathematical analysis. 

Again we study the shape of stationary solutions of (2.6): 

A«f + I*. A A2 A + | A Q A u = 0. (fc.l) 

We denote again by a, b and c three consecutive values of u, and as 

before make the following approximation: 

2A»f = f(c) - f(a) = f(c) - f(b) + f(b) - f(a) 

(h.2) 

» A(b,c)(c-b) + A(a,b)(b-a), 
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where as before A(u,v) abbreviates  ^U' *—^-.    Substituting this 

approximation into (k.l),  we transform it to the following form: 

JA + \ A2 + QI (C - b) + Ik  - K A2 - QJ- (b - a) = 0,      (k.3) 

where A and Q in the first brace are to be evaluated between the 

points b and c, in the second brace between the points a and b. 

We wish to reduce the above difference equations for a vector valued 

function to a scalar equation. Such a reduction is rigorously possible 

if all the coefficient matrices commute; in that case we can get n 

difference equations similar to (3.3) where the role of A and Q is 

played by the eigenvalues of A and Q. This dictates the following 

choice for Q: Q(a,b) should be a matrix commuting with A(a,b) whose 

eigenvalues are equal to the absolute values of the differences of the 

corresponding eigenvalue of A(u) and A(v) times dimensionless factors 

Bn, ..., B  of the order of magnitude 1. 

The requirement that Q should commute with A implies, accord- 

ing to a well known theorem of matrix theory, that Q is a function of 

A. This function we can take to be a polynomial of degree n - 1: 

Q = g0 I + g-L A+ ••• + gn_1 A
n_1 (k.h) 

whose coefficients g , ...,  s _^   are uniquely determined by the pro- 

posed choice for the eigenvalues of Q. Finding the coefficients 
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„ o    , leads to the Lagrange interpolation problem which is &o     °n-l 

easily solved. 

In the next section we shall actually carry out the determination 

of Q in case of the equations of motion of a compressible fluid using 

Lagrange coordinates. 

It should be pointed out that even if Qfov) is chosen to commute 

with A(a,b), there is an error involved in replacing (It-.3) by scalar 

equations since the matrices A(a,b) and Afoe) do not commute in 

general. Still we feel that the above choice for Q comes pretty close 

to imitating the scalar case. 

We close this section by a further observation on the shape of the 

solutions of the steady state equation fol). In analysing this equation 
L 2 

in the scalar case we have simplified matters by dropping the term ^A f 

which was thought to be small compared to the artificial viscosity term 

in the region of rapid variation. On the other hand, in determining the 

shape of the tail ends of the transition curve the role of the two terms 

is reversed. We shall determine now asymptotically the shape of the 

tail ends. We write 

k a = u + r w, 

k+1 b = u + r   w, 

k+2 „ c = u + r   w, 
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where u is one of the two values u- or u_ and w some vector 

independent of k. We substitute this into (h.3),  divide by r  and 

drop all terms that still contain the factor r . In particular the 

quadratic term Q drops out. We get 

|A + \ A2| (r2 - r) + |A - \ A2} (r - 1) w = 0, 

where A denotes A(u). This equation has a nontrivial solution if 

and only if the matrix acting on w has zero as eigenvalue. Now ac- 

cording to the spectral mapping theorem, the eigenvalues of that matrix 

are 

LL + \ n2| (r2 - r) + jn - \ H2} (r - 1), 

where \i    stands for an eigenvalue of A. Setting the above expression 

equal to zero gives, after eliminating the uninteresting root r = 1, 

the following value for r: 

_ hL 
X+i + 1" 

According to the Courant-Fredrichs-Lewy condition (2.7),     |^l 1? 1>    
so 

that the above expression is always negative. Furthermore, at the left 

endpoint u, we must have |r| > 1, at the right end u^   we must have 

|r| < 1. This is the case if and only if \i(uj)    is negative, ^(Up) is 
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positive. But according to the entropy condition described at the begin- 

ning of section 1, two states u, and v^   •which can be connected by a 

stationary shock always possess such eigenvalues. 

A similar analysis can be made of the asymptotic shape of the 

tail of steady, progressing solutions of the difference equation (2.6). 

We are led to an equation which contains noninteger powers of r and 

which may have complete solutions. 

All this is not very important as a practical consideration, but 

it does explain a curious phenomenon observed already in calculations 

performed with the Richtmyer-von Neumann method, and in many calculations 

using modifications of that method: that the shock transition overshoots 

and approaches a constant value in an oscillatory fashion. By changing 

the available parameter, the amount of overshooting could be diminished 

but never completely eliminated, nor could the oscillatory nature of the 

approach to a constant value be changed. The present analysis explains 

this behaviour by the negative value of r. 

In contrast, calculations performed by a somewhat crude earlier 

method proposed by Lax (see [6] and [7]) produced shock transitions 

which approach their final values monotonically. A similar asymptotic 

study of the tail end of the steady state solutions for these equations 

disclosed that all the relevant values of v are positive. 
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■5. APPLICATION TO HYDRODYNAMICS 

In section k we have sketched a method for constructing an arti- 

ficial viscosity term for use in a numerical scheme for arbitrary systems 

of conservation laws. In this section we shall carry out the details of 

this construction in the special case of the equations of compressible 

flow in Lagrange coordinates. 

As dependent variables we shall use specific3 volume, momentum and 

total energy, denoted by V, v and E. The quantity v is of course 

velocity, and the total energy E is the sum of internal and kinetic 

energy: 

E = e+ \ v2. (5.1) 

The internal energy e is related to pressure p and specific volume 

V by the equation of state 

P = P(e,V). 

%.e., per unit mass, 
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The equations of conservation of mass, momentum and energy are: 

vt -  V 

vt = -Px, (5.2) 

Et = - (vp)x. 

Here t is time and x is Lagrange mass variable. Differentiating 

these equations with respect to time, we obtain 

V
tt    *    \x> 

v
tt    -    "

p
tx> (5

*
3) 

E
t    "    ^tx' 

Using the chain rule, we have 

Pt   -    Peet+PvVt. (5A) 

According to a well known identity in thermodynamics 

,2 
PPe - Pv = C, (5.5) 
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where C is the Lagrangian sound speed. We can also write 

et = Et " v V (5.6) 

Using (5.*0, (5«5)> (5«6) and the original differential equations (5.2) 

to express first t derivatives as x derivatives, we can rewrite (5«5) 

as follows: 

Vtt -■ -P«' 

v^    =    (C v ) , tt    x   x'x' (5.7) 

E. .  = (pp + C w ) . tt    v •'x      xx 

Recalling the identity valid for arbitrary systems of conservation laws; 

utt =  <AVx' 

we see from (5.7) that in our case 

/ 

A2u C2v_. 

\ 

\ 

PPX + C wx 

(5.8) 
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Accordingly we shall use the approximation 

A* A u = 

/ 
- Ap 

p 
C    A v 

p A p + c2 
v A v-| 

(5.9) 

We turn now to the determination of Q, which, according to the recipe 

given in section lj-, is a quadratic polynomial in A(a,b) whose eigen- 

values are constant multiples of the absolute values of the differences 

of the eigenvalues of A(a) and A(b). Now the eigenvalues of A are: 

0, ± C. We claim that Q is given by 

Q 
B |C(a) - C(b)| A2. 

9. + "b 
A and C in the above formula are to be evaluated at —g—. Clearly, 

Q as given by the above formula has the appropriate eigenvalues. 

Substituting this form of Q into formulas (2.^) (2.5) for g and 

making use of (5.9), we have 

g(a,b) = 

V-t1B^2   J 2 C 

-P+lW**}^ 2 U C2 
(5.10) 

vp + H'S^H
5
**"

8
"}/ 

3^ 



where the barred quantities are to be evaluated as averages between points 

a and b. 

Two observations about this formula are in order: first, 

1. Consider an initial distribution in which v and p are 

constant, although V not necessarily; in fact, V may be discontinuous. 

For such initial values the function g, given by formula (5.10), is a 

constant; therefore the corresponding solution of the difference equation 

(5.2) is stationary. This agrees, of course, with the fact that such an 

initial configuration is—in the absence of diffusion or heat conduction—in 

hydrodynamic equilibrium and shows that our difference scheme introduces 

no artificial diffusion or heat conduction. 

More generally, we expect that even in nonstationary flows contact 

discontinuities are transmitted as sharp discontinuities. 

2. Although our formula (5.10) for g was derived on a purely 

mathematical basis, it can be given a more intuitive interpretation. 

First of all, as already observed in section 2, the second order correc- 

tion terms can be regarded as merely centering the values of f properly. 

The additional artificial viscosity term can be given the following 

interpretation: Define an artificial velocity and an artificial viscous 

pressure as follows: 

vart " " —F  lCxl *V 

Part " " T- l°xl V 
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where the indicated derivatives are to be replaced by centered difference 

quotients. Clearly, the effect of the Q term in the mass and momentum 

equations is to augment the value of velocity and pressure--properly 

centered--by the amounts indicated above. The effect of the Q term on 

the energy equation can be described similarly, if we neglect the differ- 

ence between vp and v p, and if we neglect the product of the artificial 

velocity and the artificial viscous pressure. 

The artificial viscous pressure that has cropped up in this treat- 

ment bears a strong resemblance to the one introduced by Rolf Landshoff. 

We present the results of two calculations using (1.6) and (5.10) 

to obtain approximate solutions of (5.2). In the first calculation we 

initially had two constant states separated by a shock. The exact shock 

speed is 1. In Table I we show the appearance of the configuration at the 

ItOth time cycle, which, with ~ = .337, corresponds to t = 13.5. At 

this time the shock, which started at x = 50, should be at x = 63.5. 

We used 2 for the parameter B, and the second order correction terms 

were not switched off. 

In the second calculation we again initially have two constant 

states separated by a discontinuity. However, this time the configuration 

at kO  cycles is a shock moving with speed 1.21*-, a contact discontinuity 

at the point of the initial discontinuity, namely x = 50, and a rarefac- 

At tion wave. We used ^ = .337, B = 1. The results of the calculation are 
Ax 

listed in Table II. 
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TABLE I 

PROGRESSING SHOCK 

X VOLUME VELOCITY ENERGY 

1* 1.000 1.000 1+.1+29 

*5 1.000 1.000 1+.1+29 

1+6 1.000 1.000 1+.1+29 

1+7 1.000 1.000 1+.1+29 

1*8 1.000 1.000 1+.1+29 

1*9 1.000 1.000 1+ .1+28 

50 

51 

1.001 

1.01*1+ 

1.000 

1.000 1+.601 

52 1.012 1.000 1+.1+76 

53 1.003 1.001 1+.1+1+5 

5^ 1.001 1.001 1+.1+56 

55 1.002 .998 1+.1+26 

56 1.002 .998 1+.1+25 

57 .996 1.006 U.1+1+2 

58 .995 1.007 1+.1+1+1+ 

59 1.010 .986 1+.1+01 

60 1.011+ .980 I+.388 

61 .979 1.052 1+.1+96 

62 .965 1.051+ 1+.51+5 

65 I.105 .861+ 

6k I.503 .1+11 3.381+ 

65 I.876 .085 2.91+1+ 

66 1.983 .011 2.867 

67 I.998 .001 2.858 

68 2.000 .000 2.857 

69 2.000 .000 2.857 

70 2.000 .000 2.857 

Initial Position of Shock 

Present Position of Shook 
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TABLE II 

PROGRESSING SHOCK, STATIONARY CONTACT 
DISCONTINUITY, AND RAREFACTION WAVE 

VOLUME VELOCITY ENERGY 

21+ 
25 
26 
27 
28 
29 
30 
51 
32 
33 
3^ 
35 
36 
37 

38 
39 
14-0 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

67 
68 
69 
70 

2.245 
2.246 
2.248 
2 .253 
2.264 
2.284 
2.316 
2.362 
2.422 

2.495 
2.577 
2.660 
2.756 
2.842 

.912 

.956 

.963 

.935 

2 
2 
2 
2 
2.898 
2.882 
2.892 
2.907 
2.9O9 

2.903 
2.902 
2.907 
2.887 

.825 

.777 

.772 
?774 
•773 
.772 
.771 
.769 
.768 
.767 
.766 
.765 
.766 
.770 
.7^9 
.754 

1.204 
1.852 
1.990 
2.000 

.698 

.699 

.702 

.709 

.725 
•75>+ 
.800 
.866 
.9^8 

1.045 
I.150 

1.259 
1.366 
1.463 

1.541 
I.589 
1.596 
I.566 
1.525 
I.508 
1.518 
1.53^ 
1.536 
1.529 
I.526 
1.528 
1.528 

I.528 
1.528 
1.528 
1.528 
1.528 
1.528 
1.527 
1.528 
1.527 
1.527 
1.528 
1.533 
1.526 
1.519 
1.576 
1.546 

.850 

.108 

.006 
,000 

20.04 
20.04 
20.03 
20.02 
20.00 

19.95 
19.87 
19.78 
19.66 
19.53 
19.40 
19.28 
19.18 
19.09 

19.03 
19.00 
19.00 
19.02 
19.05 
19.06 
19.05 
19.04 
19.04 

19.05 
19.06 
19.08 
I8.96    «- 

p = 3.528 

253 
956 
-930 
937 
932 
.924 

5.914 
5.906 
5.9OO 
5.895 
5.894 
5.903 
5.889 
5.870 
6.011 
5.983 

4.309 
2.979 
2.863 
2.857 

Rarefaction Wave 

Exact Volume = 2 .9OO 

p = 2 .465 

■Initial Discontinuity 

Exact Volume =   .767 
Exact Velocity = 1.528 

Present Exact 
• Position of Shock 

P =  -571^ 
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