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SYSTEMS OF DIVISION PROBLEMS FOR DISTRIBUTIONS
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B. ROTH

Abstract. Suppose (ftj)ist.jtr is a pxp matrix of real-valued infinitely (respec-

tively /«-times continuously) differentiable functions on an open subset fl of R". Then

(fti)isi,isp maps the space of ^-tuples of distributions on fl (respectively distributions

of order Smonfi) into itself. In the present paper, the pxp matrices (P/)isi,<sp for

which this mapping is onto are characterized in terms of the zeros of the determinant

of (fti)ist,iip when the/,/ are infinitely differentiable on Ci^R1 and when theft, are

m-times continuously differentiable on A<=Ä". Finally, partial results are obtained

when the fu are infinitely differentiable on fl <= Rn and extensions are made to p x q

systems of division problems for distributions.

1. Introduction. Let <£""(Q) denote the algebra of real-valued m-times con-

tinuously differentiable functions on an open set Q. in Rn equipped with the topology

of uniform convergence of all derivatives of order imon all compact subsets of Q.

Here 0 S m S oo and S"°(Q.) will often be denoted by S(Q). Sm(Q) is a Fréchet space,

that is, a complete metrisable locally convex topological vector space. Let ^£(0)

denote the subspace of <?m(Q) consisting of all functions with support in the com-

pact set P<=Q equipped with the relative topology and let @m(Q.) denote the

inductive limit of the @t(Q), K a compact subset of Q. Here O^m^co and ^"(O)

will often be denoted by 3>(Q.). For m<oo, 3)'m(ü) (respectively é"m(Q)), the dual

space of 2>m(Q) (respectively Sm(Q)), is the space of distributions of order ámonQ

(respectively the space of distributions with compact support of order ámon Q.).

And @'(Q) (respectively é"(Q.)), the dual space of ¡ÏÏ(Q) (respectively $(&)), is the

space of distributions on O (respectively the space of distributions with compact

support on £2).

For P=(/iy)iSiáp,iSyS3 where/« e #m(Ü), define P: [9"%Ol)\* -* [^"»(Q)]" by

F(sx,...,sq) = (%fusf,..:, ¿/„Ä
v-i 1=1

Let Fc: [<Tm(Q)]° ̂  [<f'm(Q)]p be the restriction of P to [£'m(ü)]«. Let

P': [Sm(LT)]" -> [@m(Q)]<> (respectively F'c: [Sm(Q)Y -> [êm(Q)f) be the transpose

of P (respectively Pc). Then F' = F'c = (f,'j)xsiSqiXáJSp where /¿=/}i, ISiúq,

lájúp.
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When does im (F) = [S>"n(Q.)]p, that is, when does there exist a solution

(«Si,..., S„)e [@"n(Q,)]q to the pxq system of division problems

/ii*Si + • ■ • +flqS<¡ = Ty

JplSy + ■ ■ ■ +JpqSQ  =  Tp

for every (Ty, ...,Tp)e [S'm(i2)]"?

In §2 we show that for p=q, m <co, and £l<=Rn, im (F) = [^'m(í2)]p if and only

if det (F) never vanishes. In §3 it is shown that for p=q and Oc./?1, the following

are equivalent:

(a)im(F)=[<2'(i2)r.
(b) det (F) has zeros of finite order.

(c) det (F) is not identically zero in any component of Q and satisfies the

Lojasiewicz inequality.

In §4 we prove that forp=q and CïczRn, n> 1, (a) implies (b), (a) implies (c), and

(b) does not imply (a). The referee has pointed out that (c) does not imply (a) for

n > 1. And in §5 we dispense with our restriction that p = q and obtain for the general

system of division problems results analogous to those of §2, §3, and §4.

2. Systems of division problems in 2$'m(Q), m<co, QcJ?n. For F=(fij)ySijáp

where fa e S"n(Q),m<co, Dc^ We here show that im (F) = [3>'m(Q.)]p if and only

if det (F) never vanishes. The proof reduces the p xp system of division problems

to a 1 xp system. We begin with a lemma involving 1 xp systems in which Mal-

grange's extension [4] to submodules of a theorem of Whitney [8] describing the

closed ideals in é""(ü.) is used.

Lemma 2.1. Suppose fy,.. .,fpe Sm(ü), m<co, Cl<=Rn, and define

Fc: [i'm(Q)Y -> £'m(0)

by Fc(Sy, ...,Sp) =fySy +■■■ +fpSp. If fi(a) = 0, Ifk i fkp, where a eü, then

df8a$im (Fc).

Proof. Suppose f(a) = 0, Ifkifkp, where a = (a1)..., cn)e Í2. We assume that

Fc(Sy,..., S„) = d'?8a where Sy,...,Spe S"m(Q.) and obtain a contradiction.

Define/by f(xy,..., xn) = (xt — ay)1 + ■ ■ ■ +(xn — an)1 where / is an even integer

greater than m. Then

Fc(fSy,...,fSp)=f(df8a) = 0.

Thus ifSy,.. .JSp)eker(Fc) = M^ where M=im(F'c) = {(flg,. ..,fpg) : geém(Çi)}

is a submodule of the ê m(ü)-module [S m(Q)f. Hence (Slf ...,Sp)e (fM)1 where

fM is the submodule {(fgy,... ,fgp) : (gy, ...,gp)e M}.

For xe Q., let/™ denote the ideal in <?m(Q) consisting of all function which vanish

at x together with all derivatives of order fk m and let Tx denote the natural map-

ping of [Sm(Q)]v onto [êm(n)]"/[Jï]p-
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Define g by g(xx,..., xn) = (xx-ax)m. Then T™(fM) and T£(gM) are both the

zero submodule of [gm(S.)]p/[J™Y. And for xeQ.,x^a,we have T?(gM)<=T?(fM)

since f(x)^0. By Whitney's theorem for submodules [4, Corollary 1.6, p. 25], we

conclude that cl (gM)<=cl (fM), and hence that (fM)1<^(gM)1.

Therefore (Sx, ...,Sp)e (gM)x and thus (gSx,.. .,gSp) e M± = ker (Fc). Hence

0 = Fc(gSx,...,gSp)=g(d^8a).

But g(dxSa)^0 since g(xx,..., xn) = (xx — ax)m. This contradiction completes the

proof.

Theorem 2.1. Suppose F=(fij)XSijip where f, e <?m(LÏ), m<oo, Q.czRn. Then the

following are equivalent:

(a) im(P)=[^'m(LÏ)]p.

(b)im(Pc)=Km(Ü)]".

(c) det (F(x))¿0for all x e Q.

(d)det(P)^""(ß) = ^'m(ß).

Proof, (a) implies (b). UF(Slt.. .,SP) = (TX, ...,TP) wherein,.. .,Sp)e [S)'m(Çï)f

and (Tx,..., Pp) e [é?""(îî)]p, then for an appropriate </>e£m(Q) with compact

support we have F(</>SX,..., i/iSp) = (Tx,..., Tp) where

(ÍSx,...,i/,Sp)e[£"»(Cl)Y.

(b) implies (c). Suppose im (Pc) = [S'm(Q.)]p. We suppose that det (P(a)) = 0 for

some ae Q. and obtain a contradiction. Let r be the rank of the matrix F(a). If

r = 0, then/„(a) = 0, l^ijúp. By hypothesis, there exist Sx,...,Spe é"m(ü.) with

FC(SX,..., Sp) = (dy8a, 0,..., 0), contradicting Lemma 2.1.

Suppose l^r<p. For simplicity assume that det(fiJ)Xéijér is nonzero at a.

Choose TeS"m(ü) such that (-l)r det(fij)XSiJSrT=df8a. By hypothesis, there

exists,, ...,Spe <?""(£2) with

fxxSx+-\-fipSp = 0

frXSx+ ■ ■ ■ +frpSp = 0

/(r + l)l'Jl+ ' " ' +/(r + l)p>Sp = T.

For 1 á/^r+1, multiply the ith row of this system of equations by (—l)i + 1 times

the determinant of the matrix (f¡)x s ¡ s r +1, i s ? s r with the /th row deleted. Adding the

r+1 equations thus obtained, we find that the coefficient g¡ of Sj is
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For Ifkjfkr, g¡ is identically zero since two columns are the same. For

r<jfkp, gj(a) = 0 since the rank of F(a) is r. Thus

giSy+ ■ ■ ■ +gpSv = (- iy det (/y)lsuSrF = srsa

where g/a) = 0, 1 fkjikp, which contradicts Lemma 2.1.

(c) implies (d). Division by a nonzero function is always possible.

(d) implies (a). Since it is always the case that [det (F)S>'m(Q)]p ̂ im (F),

det (F)S'm(ß) = ^""(Q) implies im (F) = [3>'m(ù)]p.

3. Systems of division problems in &(Q.), Q^R1. For F=(/y)iS( jSp where

/y eS(Q), Í2C/?1, we here show the equivalence of im (F) = [@'(Q.)]P, the zeros of

det (F) are of finite order, and det (F) satisfies the Lojasiewicz inequality but is not

identically zero in any component of D. The proof uses the closed range theorem

for Fréchet spaces due to Dieudonné and Schwartz [1], the open mapping theorem

for Fréchet spaces, and some results of the author [6] concerning the relationship

between zeros of finite order and the Lojasiewicz inequality.

Consider <?(Q), Qc:Rn. For each compact set KczQ. and integer /^O, let

l/U.i - sup (\d? ■ ■ -dl"f(x)\ :xeK,ay+-.-+anfkl}

forfe ê(Q). The seminorms | • \KJ define the topology of ¿f(£2). For

f=(fy,...,fp)e[ê(Çï)f,
let

I/U,, = max{\fy\K¡l,..., \fp\Ktl}.

The seminorms | • \Kit define the topology of [S(ü)\p.

Malgrange [4, p. 88] first recognized the usefulness of the open mapping theorem

in establishing the Lojasiewicz inequality. To establish the Lojasiewicz inequality

in this way, the following fact is needed. For any compact set K^Q., integer /SO,

and nonempty closed subset Z of Q, there exists a constant C>0 such that if

x e K—Z, then there exists hx e $(Q) with hx(x)=l, hx = 0'ma neighborhood of Z,

and

\hx\KJ fk C/[d(x,Z)]'.

Here d(x, Z) = inf {d(x, z) :zeZ} where dis the Euclidean metric. Merely let «A be an

infinitely differentiable function with support in the unit ball and </r(0)=l. Then

hx(y) = if<((y — x)/8) has the desired properties when 8 = d(x, Z)/2.

Suppose/e <f(i2), £2<=7îl. A zero of/is offinite order if some derivative of/does

not vanish at the zero.

Finally, we need a lemma which will be used again in §4 and §5.

Lemma 3.1. Suppose F=(fij)ySiJSp where fi, e Sm(ü), OSmáoo, Q^7?n. Then

F'c: [gm(Ci)Y ->■ [Sm(ü)sp is one-to-one if and only if det (F) is not identically zero in

any open subset ofQ.
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Proof. Suppose that det (F) = det (Fc) = 0 in some open subset U of Q where

Fc = (fi'j)ySijSp,fi'j=fji. Let r be the maximum rank of Fc(x) for xeU. If r = 0, then

/y = 0 in Ufor 1 fki,jfkp and clearly F'c is not one-to-one.

Suppose 1 fkr<p. For simplicity assume that det (/w)is.,/sr is nonzero at a e U.

Therefore det (/y)ig.,/sr is nonzero in an open neighborhood N of a with 7Y<= U.

Then

fllgl+-H/i'rgr =/l'(r + l>

/r'lglH-r-/r'rgr = /r(r + 1)

can be solved in N by Cramer's rule for functions gy,..., gr e $m(N).

Choose <jjeSm(ü) with </>^0 and supp iifi)<=-N. Let hy = tpgy,..., hr = ipgr, hr + 1

= —i/«, and hj = 0, r+1 <jfkp- Then (hy,..., hp) e ker (Fc). For

F'c(hy,..., h p) - f f A',/1,,..., ¿ /;a) •

And for 1 fkifkp,

p
2 -/¡'A = -/iifel + • • • +/ir'A«?r-/iCr + l)1A-

J = l

Since supp (fy^N, we have 2i = i//A = 0 in ß —A' for 1 fkifkp. And in A7, we have

(/ii       ' ■ •     fi{r+l) \     J

fii ■■■ /i'(r+D|/dctas)1S(,ysr.

/rl      - " -      /r(r+l)/ /

For 1 fkifkr, the determinant of the matrix in the numerator equals zero since two

rows are the same, and for r<i fkp, it equals zero since the maximum rank of F'c in

N is r. Since (hy,..., hp) e ker (F'Q) and hr + 1= —1/>^0, we conclude that Fc' is not

one-to-one.

Conversely, suppose that det (F) = det (F¿) is not identically zero in any open

subset of D. Suppose (gy,..., gp) e ker (Fc). Then

fligi+■ ■ ■+flpgp = 0

fpigi+ ■ ■ ■ +fipgP = o.

Consider j, 1 fkjfkp. For 1 fkifkp, multiply the ;'th row of this system of equations

by the cofactor of fl¡ in F'c. Adding the equations thus obtained, we find that

det (F'c)g¡ = 0. Hence g> = 0 since det (Fc) is not identically zero in any open subset

of Q.. Therefore F'c is one-to-one.
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Theorem 3.1. Suppose F= (/„), s u s p where fij e <?(ü), D c pi. r/ie« the following

are equivalent:

(a)im(P) = [^'(Q)F.

(b)im(Pc) = [^'(Q)F.

(c) PÓ ¿S one-to-one and im (P¿) zí closed in [cf(Q.)]p.

(¿) det (P) m zzo/ identically zero in any component of Q. and det (P) satisfies the

Lojasiewicz inequality, that is, for each compact set K<^ D there exists a constant

C>0 and an integer /2;0 such that

\det(F(x))\t C[d(x,Z)]1   for all x e K

where Z={x e Q : det (F(x)) = 0). (Here d(x, Z)= 1 for all x ifZ= 0.)

(e) The zeros of det (P) are of finite order.

(f) det(F)@'(Q.) = 3>'(Q,).

Proof, (a) implies (b). If F(SX,..., Sp) = (Tx,..., Tp) where (Sx, ...,Sp)e [^'(Q)]"

and (Tx,..., Tp) e [£"(Q.)]P, then for an appropriate </> e S(Q.) with compact support,

we have F^Slt..., >I>SP) = (TX, ...,TP) where (.¿Si, ...Jsp)e [£'(¿1)]".

(b) implies (c). By the closed range theorem for Frechet spaces [1, Theorem 7,

p. 92], if im(Fc) = [S"(ü)]'', then F'c : [£(8)Y -> [^(ü)]p is one-to-one and has

closed range.

(c) implies (d). If F'c is one-to-one, then Lemma 3.1 implies that det (P) is not

identically zero in any component of Q. We now assume that im (F'c) is closed in

[S(ü)]p and prove that det (P) = det (F'c), where Pc = (/«)isi./si» /«=//!• satisfies

the Lojasiewicz inequality. The case Z= 0 being trivial, we assume Z is nonempty.

Let KcQ, be a compact set. F'c is a continuous linear mapping of the Frechet

space [«?(0)]p onto the Frechet space im (F'c) and therefore F'c is an open mapping.

Hence there exist a constant C>0, an integer /^0, and a compact set K'<=£i with

K<=K' such that if heim(F'c), then there exists ge[S(ÇÏ)]p with F'c(g) = h and

\g\K.o^C\h\K.tl.

For the compact set i'cQ, the integer /^0, and the nonempty closed subset Z

of Ü. there exists a constant C>0 such that if x e K'—Z, then there exists hx e«f(Q)

with hx(x)= I, hx = 0 in a neighborhood of Z, and \hx\K-t¡S C'/[d(x, Z)]1.

By induction, we now prove the property P(k), 1 =k^p, where P(k) states that

there is a constant Ck>0 such that the maximum of the absolute values of the

determinants of the kxk submatrices of F'c(x) is greater than or equal to Ck[d(x, Z)]kl

for all x e K. Observe P(p) states that there is a constant Cp>0 such that

|det (P(x))| = |det (Pó(x))| ^ Cp[d(x, Z)]pl   for all xeK.

First, we prove P(l). Consider xeK—Z and let h = (hx,0,...,0). Then

h e im (Pé) since hx = 0 in a neighborhood of Z. Therefore there exists

g = (*!,...,&,) £[<?(&)]"

with F'c(g) = h and

\g\K.*t\ C\h\K,,iú CC'/[d(x,Z)]'.
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Since F'c(g) = h, we have fly(x)gy(x) + ■ ■ ■ +f[P(x)gp(x) = hx(x)=l so for some

j, 1 újfkp, we have \fí¡(x)g}(x)\ ̂  l/p. Thus

1/l/i'yWI = P\gi(x)\ ̂  p\g\K.o fi pCC'l[d(x,Z)]K

Therefore for each x e K—Z, there exists j, 1 fkjfkp, such that

|A',(x)| ^ [d(x,Z)]'/pCC.

This proves F(l).

Now assume that P(k) holds where lfkk<p and prove F(/V+l). Consider

x e K—Z. For simplicity assume that

|det(/y(x))iSMá)c| 2: Ck[d(x,Z)r.

Let h = (hy,..., hp) where hk + 1 = hx and /z¡ = 0, / == Ar -F 1. Then Aeim(FÓ) since

AÄ = 0 in a neighborhood of Z. Therefore there exists g = (gy,..., gp)e [<f(ü)]p with

Fc(g) = h and \g\K.0SC\h\K.¡t fk CC'/[d(x,Z)]1. Since F'c(g) = h, we have

/ii(*)«?i(*) + • • • +fip{x)gv(x) = 0

fLl(x)gy(x)+ ■ ■ ■ +fkp(x)gp(x) = 0

fá + in(x)gi(x)+ ■ ■ ■ +f(k + i)P(x)gp(x) = hx(x) = 1.

For 1 fkifkk+l, multiply the z'th row of this system of equations by (—l)i + 1 times

the determinant of the matrix C/y(.*))isis/c + i,iä/sfc with the z'th row deleted. Adding

the equations thus obtained, we find that the coefficient of gj(x) for 1 fkjfkp is

(fii(x) Zl'lW •••    f{k(x)     \

dj = det I       ; ; |       J.
\/(k + lwW    /(k + l)lW      ' ' -     f'k + Vkix)/

Since dj = 0 for 1 fkjfkk, we have

J   djgi(x) = (-lf det Ca*))is«.,s¿
í = k + l

Therefore for some/, k+l fkjfkp, we have

\digj(x)\ ^ \det(fl,(x))yéi,iSk\lp ^ Ck[d(x,Z)rip.

Since \gj(x)\ fk \g\K,o, we have

1/|«/,| ^/?|g|K,0/C,[«7(x,Z)]w ^/?CC'/Cfc[«7(x,Z)r + 1>'.

And since |</,| for k+l fkjfkp is the absolute value of the determinant of a

(A: +1) x (k +1) submatrix of Fc(x), we have proved P(k + 1).
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Since P(p) states that det (Pc) = det (P) satisfies the Lojasiewicz inequality in K,

we conclude that if im (P¿) is closed in [S'(Q.)]P, then det (P) satisfies the Lojasiewicz

inequality.

The equivalence of (d), (e), and (f) is a result of the author [6, Corollary 6.2] for

connected Í2 and the extension to arbitrary open subsets of Rn is immediate.

(f) implies (a). Since it is always the case that [det(F)@'(Q)]p<^im(F),

det (FW(Q) = 2)'(Ü) implies im (F) = [@'(Q)]P.

4. Systems of division problems in @'(Q), Qc/î". It is known that for/e <^(Q),

a<=Rn,f@'(Q.) = @'(Q.) if/is a polynomial (Hörmander [2, Theorem 4, p. 568]) and,

more generally, if/is real analytic in Q. and not identically zero in any component

of Q. (Lojasiewicz [3, p. 130]). Furthermore, the results of Malgrange [5, Theorem 1,

p. 23-01] together with Lemma 3.1 imply that for P=(/i,)isusp where the/y are

real analytic in Ü, if det (P) is not identically zero in any component of Q, then

im (F) = [¿&'(Q)]P. However, a necessary and sufficient condition that im (F)

= [3¡'(íl)]p, where F=(fi,)XiUSp, fij eê(£ï), Q.^Rn, n>l, seems to be unknown,

even for p = 1.

Several necessary conditions that im (F) = [3>'(Q)]P can be given. The first of

these is that det (P) satisfy the Lojasiewicz inequality and that it not be identically

zero in any component of £2. In fact, we have already proved this since the proof

that (a) implies (d) in Theorem 3.1 makes no use of the hypothesis that £2<=pi.

Thus we have

Proposition 4.1. Suppose F=(f¡)XSUip where fijeé'(Q.), Í2<=P\ If im (F)

= [&(Q.)]P, then det (P) is not identically zero in any component of Q. and for each

compact set Pc Í2 there exists a constant C> 0 and an integer /SO such that

\det(F(x))\ = C[d(x,Z)]'   for all x e K

where Z={x e Q. : det (P(x)) = 0}. (Here d(x, Z)= 1 for all x ifZ=0.)

Suppose fe <?(£2), £2<=P\ A zero of fis offinite order if some partial derivative

of/does not vanish at the zero. A second necessary condition for im (F) = [<3'(Q,)]P

is that det (F) have zeros of finite order.

Proposition 4.2. Suppose F=(ftj)XSijSp where fu ee(ü), Í2<=P\ If im (P)

= [3>'(Çl)]p, then the zeros of det (P) are of finite order.

Proof. Suppose im (F)=[3>'(Ql)]p. Then im(Fc)=[S'(ü)]p. We suppose that

det (P) has a zero of infinite order, say at a = (ax,..., an) e £1, and obtain

gi,..., gpe <o(Q) having zeros of infinite order at a and Sx,..., Sp, Te S'(Q)

where supp (P) = {a} such that gxSx + • • • +gpSp = T. This together with Malgrange's

extension of Whitney's theorem leads to a contradiction.

If fi} has a zero of infinite order at a for 1 Si, j^P, then the fact that im (Pc)

= [é"(Q.)]p implies that there exist Sx,...,Spe S"(Q) with

fuSx+ ■ ■ ■ +fXPSp = ¿v
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Otherwise, let r be the largest integer such that there is an rxr submatrix of F

whose determinant is either nonzero at a or has a zero of finite order at a. Then

1 fkr<p. For simplicity assume that da det (fj)ysijsr = d*1- ■ -d"n det (f¡j)ysi,,sr is

nonzero at a. Then, proceeding as in the proof that (b) implies (c) in Theorem 2.1,

we find gy,..., gp e S (Ù) having zeros of infinite order at a and Sy,..., Spe <f'(Q)

with

giSy+---+gPSp = (-l)rdet(./y)iSi,iSr«?aSa.

Therefore there exist gy,.. .,gp e<f>(Q) having zeros of infinite order at a and

Sy,..., Sp, Te<S"(Q.) where supp (T) = {a} such that gySy+ ■ ■ ■ +gpSp = T.

Define Gc: [<?'(Q)]p -> S'(Q.) by Gc(Ty,..., Tp)=gyTy+ ■ ■ ■ +gpTp, and let

G'c: <?(Q) -> [£(&)]p be the transpose of Gc. Define/by

f(Xy, ...,Xn)   =   (Xy-ay)l+ •  ■  •  + (Xn ~ (2n)¡

where / is an even integer sufficiently large so that/T=0. Then Gc(fSy,.. .,fSp)

=/F=0. Thus (fSy,.. .JSP) e ker (GC) = M1 where

M = im (G'c) = {(gyg,..., gpg) : g e ê(ÇÏ)}

is a.submodule of the «f(Q)-module [<?(&)]". Hence (Si, ...,Sp)e (fM)1.

For x e Q, letJx denote the ideal in ¿>(Q) consisting of all functions which vanish

at x together with all derivatives and let Tx denote the natural mapping of [S(Ü.)]"

onto [ê(CÏ)]pl[Jx]p. Then Tx(fM) = Tx(M) for all x e Ü. By Whitney's theorem for

submodules [4, Corollary 1.7, p. 25] we conclude that cl (/M) = cl (M) and hence

that (fM)L = M1.

Therefore (Sy, ...,Sp)e Mx = ker (Gc). But

C7c(5i, ...,Sp)= gySy+- ■ ■ +gpSp  =   T ¿  0.

This contradiction completes the proof of Proposition 4.2.

An example due to Malgrange [4, p. 89] shows that the converse of Proposition

4.2 is false for Q.^Rn,n>l.

Example 4.1. Let

f(x,y) = e-1'x2+y2,        x # 0,

= y2, x = 0.

Then the zero of/is of finite order. However, by Proposition 4.1, we see that

f3i'(R2)^S>'(R2) because/fails to satisfy the Lojasiewicz inequality in any compact

neighborhood of the origin.

The referee has pointed out an example which shows that the converse of

Proposition 4.1 is false for £l^Rn, n>l.

Example 4.2. Let g(x, y)=yf(x, y) where/is defined as in Example 4.1. Then

g satisfies the Lojasiewicz inequality, but

g2'(R2) = fy®'(R2) = f2'(R2) ¿ 2¡'(R2).
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5. General systems of division problems. For F=(flj)Xítáp¡xsjSq where

fueSm(Q), 0^m = oo, Qcff, when does im (P) = [^""(ü)]" ? We first show that,

for p>q, it is never the case that im (F) = [Si'm(ü)]p. However, for púq, results

analogous to Theorem 2.1, Theorem 3.1, and Proposition 4.2 hold.

Proposition 5.1. Suppose E=(fiJ)1SiSp¡XSjSq where p>q and fu e Sm(Q),

O^zwgoo, ßcP\ Then im (F) ¥=[3'm(Q)]p.

Proof. We prove that im (F) # [@'m(Q.)]p by showing that

P': [@m(Q)]p -> [2>m(Çï)f

is not one-to-one. Let G be F augmented by p — q columns of zero functions, that is,

let G = (gii)iSiJap where gu=fiJ for l=i^p, lújúq, and gw = 0 for lúi^p,

q<j^p. Then det(G) = 0 and therefore, by Lemma 3.1,

G'c: [£m(Cl)]p -> [Sm(Q)]p

is not one-to-one. Since ker (<7c) = ker (Fé), we conclude that

Pc: [êm(ü)]p -> [£m(Q)Y

is not one-to-one. Hence F' is not one-to-one.

For pfíq, the analogue of Theorem 2.1 can be established by an argument similar

to that employed in the proof of Theorem 2.1.

Theorem 5.1. Suppose F=(fij)Xáiáp¡x¿jSq where p^q and f,e <gm(Q), m<oo,

Q.<=Rn. Then the following are equivalent:

(a) im(P)=[^""(ß)]p.

(b)im(Pc)=K""(Ü)]".

(c) For every x eü. the rank of the matrix F(x) is p.

Proof, (a) implies (b) as in Theorem 2.1.

Suppose im (Fc) = [S"m(Q)]p. By supposing that at some point ae Q. the rank r

of the pxq matrix F(a) is less than p and arguing as in the proof that (b) implies

(c) in Theorem 2.1, Lemma 2.1 is contradicted. Hence (b) implies (c).

Suppose that for every x e D the rank of F(x) is p. Then there is a locally finite

open covering {ßj of Q with the property that in each Qa the determinant of some

pxp submatrix of P is never zero. Therefore, for (Tx,..., Tp) e [!3)"n(ÇÏ)]p with

supp (T¡)cQ.a for \%iûp, there exists (Sx, ...,Sq)e [3>'m(Q)]<> with supp (S,)cQa

for 1 újúq such that F(SX,..., Sq) = (Tx,..., Tp). Then, by using a partition of

unity subordinate to the covering {Oa}, im (F) = [2'm(ü)]p is easily verified (see

[7, p. 126]). Thus (c) implies (a).

The analogue of Theorem 3.1 is also valid for p^q but a method of proof

different from that utilized in Theorem 3.1 seems to be required.
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Theorem 5.2. Suppose F=(/y)1SiSp>iSJS3 where pfkq and fi, e £(&), Q^R1.

Let IF be the set of pxp submatrices of F and Z={xeQ. : rank of F(x)<p}

= {x e Q. : det (M(x)) = 0for all M e IF}. Then the following are equivalent:

(a) im(F) = [3>'(Q)]p.

(b)im(Fc) = [<?'(n)]p.

(c) For every xeZ there exists Me¡F such that x is a zero of finite order of

det (M).

(d) max {|det (M)\ : M e!F} is not identically zero in any component of Q and

satisfies the Lojasiewicz inequality, that is, for each compact set K<^ Q. there exists a

constant C> 0 and an integer /> 0 such that

max{|det(M(x))| : Me«F} ^ C[d(x,Z)]1   for all x e K.

(Here d(x, Z) = 1 for all x ifZ= 0.)

Proof, (a) implies (b) as in Theorem 3.1.

Suppose im (Fc) = [é"(Q.)]p. Suppose that there exists a point aeZ such that

det (M) has a zero of infinite order at a for every M e ¡F. Proceeding as in the

proof of Proposition 4.2, we obtain gy,..., g„e <?(Q) having zeros of infinite order

at a and St,..., Sq, TeS"(Q.) where supp (T) = {a} such thatg,Si+ • • • +gqSa = T.

This together with Malgrange's extension of Whitney's theorem leads to a contra-

diction, as shown in the proof of Proposition 4.2. Hence (b) implies (c).

The equivalence of (c) and (d) follows from results of the author [6, Corollary 6.2].

To complete the proof, we show that (c) implies (a). Suppose that for every xeZ

there exists Mef such that det (M) has a zero of finite order at x. Then there is a

locally finite open covering {Í2„} of Q. with the property that for each Qa there exists

M e ¡F such that det (M) either has no zeros in Qa or has one zero of finite order

in Qa. Therefore, for (Tlf ...,Tp)e [S'(Q)]P with supp(F¡)<=üa for Ifkifkp, there

exists (Sy,..., Sq) e [3>'(Q.)]Q with supp (£,)<= Q.a for 1 fkjfkqsuch that F(Sy,..., Sq)

= (Ty,..., Tp). Here we are using the fact that division by a function with zeros of

finite order is always possible in R1 (see [7, p. 125] or [6, Corollary 6.2]). Then,

using a partition of unity subordinate to the covering {Ü<J, im (F) = [@>'(Q)]P is

easily verified (see [7, p. 126]). Thus (c) implies (a).

For the general system of division problems in 3i'(Q), ClczRn, the results of

Malgrange [5, Theorem 1, p. 23-01] together with an extension of Lemma 3.1

imply that for F=(fi,:)ySiSPtySjS<, where pfkq and the/y are real analytic in ii, if

for each component of Ù there is a pxp submatrix of F which is not identically

zero in the component, then im (F) = [S¡'(D)]P.

Observing that the proof that (a) implies (c) in Theorem 5.2 makes no use of the

hypothesis that Ü.^R1, we obtain the analogue of Proposition 4.2 for pfkq.

Proposition 5.2. Suppose F=(f¡,)ySiSpAájSQ where pfkq and fi} e <?(Q), Q.<=Rn.

If im (F) = [3>'(£t)]p, then for every xeQ. there exists a pxp submatrix of F whose

determinant is either nonzero at x or has a zero of finite order at x.
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However, our proof of Theorem 5.2 does not establish the analogue of Proposi-

tion 4.1 for the general system of division problems.
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