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Abstract

This paper introduces systems of exchange values
as tools for the organization of multi-agent systems.
Systems of exchange values are defined on the basis
of the theory of social exchanges, developed by Piaget
and Homans. A model of social organization is pro-
posed, where social relations are construed as social
exchanges and exchange values are put into use in the
support of the continuity of the performance of social
exchanges. The dynamics of social organizations is
formulated in terms of the regulation of exchanges of
values, so that social equilibrium is connected to the
continuity of the interactions. The concept of supervi-
sor of social equilibrium is introduced as a centralized
mechanism for solving the problem of the equilibrium
of the organization The equilibrium supervisor solves
such problem making use of a qualitative Markov De-
cision Process that uses numerical intervals for the rep-
resentation of exchange values.
Keywords: Social Exchanges, Exchange Values, Ex-
change Values-Based Social Organization, Social Equi-
librium, Equilibrium Supervisor, Qualitative Markov
Decision Process

1 Introduction

The exchange values approach to social interac-
tions [31, 19], in which an interaction is seen as an
exchange of services among a small group of agents,
along with the corresponding evaluation of (assign-
ment of values to) such services, was conceived as a
methodological stance where organizations are taken

as collections of small groups of agents.
Each such group is seen as having its own internal

interaction dynamics, and the collection of all groups
may be recursively construed as a collection of small
groups of small groups, etc., thus picturing the orga-
nization as a hierarchy of levels of structurally similar
dynamical systems, all centered around the issue of
exchanging values between their components.

The overall balance of exchange values involved in
the operation of a system can be analyzed for its state
in terms of equilibrium (beneficial for all agents) or dis-
equilibrium (beneficial to a particular agent or group
of agents, or beneficial to nobody).

It is usually attributed to George Caspar Homans
the initial development of the exchange values ap-
proach to social organizations [19, 20]. In connection
to that, the exchange values approach is sometimes
criticized as too narrow in scope, on the basis of its
supposedly inherent behavioristic limitations, due to
Homans’ explicit adoption of Burrhus Skinner’s behav-
ioristic psychology as an ancillary explanatory theory
of individual human behavior.

Nevertheless, the exchange values approach to the
analysis of social interaction has nothing inherently
behavioristic in it. Well before Homans introduced
his ideas in [19], Jean Piaget proposed a constructive,
non-behavioristic, theory of social exchanges, where
exchange values play a central role [30, 31].

Moreover, Piaget’s theory of exchange values goes
much further than Homan’s theory, both in what con-
cerns the scope of application of exchange values (go-
ing as far as showing their role in the origination of
laws, moral rules and organizational norms) and in
what concerns the degree of formalization of the ideas.

1



The main contribution of the exchange values ap-
proach to social exchanges, in comparison to the clas-
sical, quantitative utility functions based approach, is
the introduction of the possibility of taking care of
the subjective values, of qualitative nature, with which
everyone judges the daily exchanges he has (good, bad,
better than, worst than, etc.), which usually cannot be
faithfully represented quantitatively, due to the lack
of neat objective conditions for their measurement.

In this paper, we build on our previous work regard-
ing the application of Piaget’s approach to the analy-
sis of interactions in multi-agent systems [34, 35, 14]
and cooperative environments [8, 10], to consider the
way systems of exchange values can be taken as useful
tools for helping to solve problems concerning the or-
ganization of multi-agent systems.1 Also, we explain
our understanding of the connection between Piaget’s
and Homans’ approaches to exchange values, showing
the role that Homan’s theory can play in the broader
analytical framework set up by Piaget.

The paper is organized as follows. In Sect. 2,
we summarize the sociological basis of the work, as
encompassed by Piaget’s theory of exchange values
(Sect. 2.1), by Homans’ theory of social behavior
(Sect. 2.2), and by the way we think both theories
fit together (Sect. 2.3).

In Sect. 3, we present in an axiomatic way our
notion of social organization: in Sect. 3.2 we state
how social organizations are construed by social func-
tions, social roles, exchange values, and social rules.
In Sect. 3.4, we express the dynamics of social organi-
zations, in terms of regulation of exchanges of values,
so that social rules and social equilibrium can be con-
nected to that dynamics. Section 3.5 introduces the
notion of supervisors of social equilibrium.

In Sect. 4 we bring the main concrete contribution
of the paper, namely, a general model of a supervisor
of social equilibrium. Section 4.1 introduces our way
of representing qualitative exchange values by intervals
of a numeric scale. Section 4.2 explains the use of such
intervals to the modelling of social exchanges between
two agents, and Sect. 4.3 generalizes that modelling to
a matrix-like notation capable of representing social
exchanges between all agents of an organization. Sec-
tion 4.4 shows how the exchange values equilibration
problem of an organization can be solved by a qual-
itative interval Markov Decision Process [37], which
uses the interval representation for qualitative values

1Values have been extensively used in the MAS area, through
value-based and market-oriented decision, and value-based so-
cial theory, see e.g., [2, 36, 25]. The merits and interest in using
Piaget’s notion of exchange values is discussed in [34, 35], show-
ing its complementarity to the dependence theory approach.

introduced earlier.
Section 5 brings the analyzes of the model: a theo-

retical analysis (Sect. 5.1), regarding the reachability
of the equilibrium state, considering the case in which
all agents follow the recommendations of the equilib-
rium supervisor; and a comparative analysis (Sect. 5.2)
of simulations of (unsupervised and supervised) ex-
changes processes, considering different degrees of obe-
dience to the supervisor. Section 6 is the Conclusion.

2 Sociological Bases

2.1 Piaget’s Theory of Exchange Values

As a cognitive psychologist, Piaget gave much less
attention in his work to social and affective aspects of
human behavior, than to its cognitive aspects. Never-
theless, he had the opportunity to express in various
places his ideas about those subjects (e.g., in [30, 31]).

2.1.1 Interactions as Social Exchanges

In what concerns human society, Piaget adopts a re-
lational approach, such that the structure of a society
is defined as a relational structure where the relation-
ships among the individuals are established by social
exchanges among them. Thus, interactions are un-
derstood as exchanges of services among individuals,
involving not only the realization of services by some
individuals on behalf of others, but also the valuation
of such services, from various points of view, by every
individual involved in them.

A service performed by an individual, however, is
not a simple action or interference on the action of
somebody else. To be counted as a service, an action
performed by an individual has be to understood by
all individuals involved in the action as an intentional
action, directed toward some other individual, thus
allowing its evaluation as beneficial or prejudicial to
the latter. The evaluation of a service by an individual
(either the server of the service or its client) is done on
the basis of a scale of so-called exchange values, which
are of a qualitative nature, since such values express
subjective evaluations 2.

2 A scale of exchange values is a set of qualitative, ordinal
values, which can be compared for their magnitudes (less than,
equal, greater than), but cannot be algebraically operated in
an unrestricted way, as fully quantitative values can. E.g., the
values can be added or subtracted: if a < b and a < c then
a < b + c. However, the differences between values cannot be
compared: if a < b and c < d it is not possible to decide which
of b − a < d − c or b − a = d − c, or else b − a > d − c, is true.



2.1.2 Exchange Values and Social Equilibrium

Exchange values give rise to a qualitative economy of
social exchanges, where individuals acquire credits for
services they have performed, and debits to others for
services the others have performed to them. The bal-
ances of exchange values allow individuals to observe
the state of equilibrium of the social exchanges (even
between just two individuals) and to react according
to such state (e.g., trying to enforce equilibrium, to
overcome high debts, to keep their status as privileged
beneficiaries of the exchanges etc.).

Qualitative exchange values encompass economic
values as a particular kind of (quantitative) values,
and are seen as the cornerstones of social rules. So-
cial rules of the many different varieties (formal or
informal; moral, economical or juridical, including or-
ganizational norms) can often be understood as means
put to operate in an effort to guarantee that the overall
balance of exchange values are kept in certain equili-
brated (or disequilibrated, i.e., favorable to some in-
dividuals or groups of individuals) states, so individu-
als are kept motivated (or, enforced) to continue their
participation in those exchanges.

A crucial aspect for the right understanding of Pi-
aget’s approach is the clear differentiation between the
notions of social equilibrium and social order (social
stability). By social equilibrium it should be under-
stood a kind of equality, or equity, in the distribution
of exchange values among the agents participating in
the exchange. By social order, or social stability, it
should be understood the temporal continuity of the
established set of social exchanges. The two concepts
are orthogonal, in the sense that any stable or unstable
exchange can be either in equilibrium or in disequilib-
rium, and any equilibrated or disequilibrated exchange
can be either stable or unstable. On the other hand,
they are not independent, in the sense that each may
impact the other 3.

The main technical contribution of this paper is the
concept of an equilibrium supervisor, a system com-
ponent (possibly an agent) that, at each moment, is
able to recommend that particular exchanges among
agents be performed so that a subset of the agents of
the system (possibly, the whole set of agents) be kept
in equilibrium (or, disequilibrium). That is, so that all
agents in that set benefit from the exchanges in equal
(or, differentiated) terms. In other words, equilibrium
supervisors embody social rules designed to keep a set
of agents in certain (equilibrated or disequilibrated)
states of exchange values.

3But this mutual dependence was not fully exploited by Pi-
aget, who concentrated on stable (“static”) societies.

2.1.3 Material and Virtual Exchange Values

Social exchanges are classified by Piaget into two
broad categories: immediate exchanges and deferred
exchanges. In immediate exchanges, individuals ex-
change services in an immediate way, service for ser-
vice, so that the evaluations of such services can be
done immediately, as the services are being performed,
allowing each individual to immediately regulate the
quality and quantity of the service it performs for the
other (as when two people exchange material goods,
negotiating the quantities in which each good will par-
ticipate in the exchange).

Two kinds of values are associated to such services,
corresponding to the investment (cost) necessary to
perform them, and to the satisfaction they may cause
to the client. Such values are called material exchange
values.

Deferred exchanges involve a separation in time be-
tween the stages of an exchange of services, and give
rise to so-called virtual exchange values, encompass-
ing credits and debits: after an individual performed
a service for the other, the first is entitled a credit for
the service performed, and the other is entitled a debit
for receiving the service, and is supposed to pay that
debit in the future 4.

2.1.4 Social Rules

Virtual values have the weakness that they tend to
vanish as time passes: in a very distant future, one
may not feel obliged to perform a service to somebody,
in return for a service he received before, precisely be-
cause that fact, having happened in a too distant past,
may have lost its importance for the current situation.

Thus, besides serving the purpose of governing in-
dividual reactions to the state of the overall balance
of exchange values, social rules also play the essen-
tial role of a means to avoid the vanishing of virtual
values, by associating such values to behaviors that
aim their conservation, and that are to be mandato-
rily performed. Virtual values have their most neat
application to the regulation of exchanges between two
individuals, but are easily extended to cover relations
involving more individuals.

Social rules regulating the preservation of such val-
ues are either moral rules, historically created by the
group, or private contracts spontaneously established
between the individuals involved in the exchanges.

4The term virtual value refers precisely to the fact that they
represent services that are yet to be performed, in the future.



2.1.5 The Structure of Social Exchanges

A social exchange between to agents, α and β, is per-
formed involving two types of stages, illustrated by the
schemes in Fig. 1. In stages of type Iαβ , the agent α
realizes a service for β. The exchange values involved
in this type of exchange stage are the following:

- rIαβ
is the value of the investment done by α for

the realization of the service for β;
- sIβα

is the value of β’s satisfaction due to the
receiving of the service done by α;

- tIβα
is the value of β’s debt, the debt it acquired

to α for its satisfaction with the service done by
α;

- vIαβ
is the value of the credit that α acquires from

β for having realized the service for β.
Investment values are always negative, while the

other values may be either positive or negative.
In stages of the type IIαβ , α asks β the payment

for the service he did previously for β, and the values
related with this exchange stage – vIIαβ

, tIIβα
, rIIβα

and sIIαβ
– have similar meaning. rIαβ

, sIβα
, rIIβα

and
sIIαβ

are called material values. tIβα
, vIαβ

, tIIβα
and

vIIαβ
are the virtual values. The order in which the

exchange stages may occur is not necessarily Iαβ−IIαβ .
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Figure 1: Stages of social exchanges.

Piaget’s modelling of social exchanges has an alge-
braic flavor, aiming at the formalization of algebraic
laws for the operations involved in those exchanges,
laws that serve as the bases for formalization of the
rules that determine the equilibrium of exchanges:

Rule Iαβ : (rIαβ
= sIβα

) ∧ (sIβα
= tIβα

) ∧ (tIβα
= vIαβ

)
Rule IIαβ :

(vIIαβ
= tIIβα

) ∧ (tIIβα
= rIIβα

) ∧ (rIIβα
= sIIαβ

)
Rule IαβIIβα : vIαβ

= vIIαβ
.

Rule Iαβ states the conditions for the internal equi-
librium of stage Iαβ , implying that the investment
made by α in the performance of the service for β
equals the credit that β assigns to α, that is

Rule Iαβ ⇒ rIαβ
= vIαβ

.

Rule IIαβ states the conditions for the internal
equilibrium of stage IIαβ , implying that the credit
charged by α on β equals the satisfaction α gets from
the return service performed by β, that is

Rule IIαβ ⇒ vIIαβ
= sIIαβ

.

Rule IαβIIαβ states the conditions for the external
equilibrium between the two stages, Iαβ and IIαβ , im-
plying that the initial investment made by α equals
the final satisfaction it gets from the interaction with
β, that is

Rule IαβIIαβ ⇒ rIαβ
= sIIαβ

.

The equilibrium rules play a central role in Piaget’s
explication of the dynamics of the social organization
and in the identification of situations of disequilibrium
(including several kinds of social crises).

The development of certain moral rules, for in-
stance, is associated to the equilibrium rules, for such
moral rules are developed precisely for the sake of
guaranteeing the validity of the equilibrium rules,
through the enforcement of certain behaviors that can
compensate behaviors which are prone to produce (or,
that may have produced) a situation of disequilibrium.

The main role of the equilibrium supervisor intro-
duced in this paper is precisely that of indicating what
behaviors should be performed at each moment, by the
agents, so as to compensate extant deviations from the
state of equilibrium of exchange values.

2.2 Homans’ Theory of Elementary Social
Behaviors

Homans approached the subject of social exchanges
(that he called elementary social behaviors) from a dif-
ferent point of view [20]: he was interested in explain-
ing why each agent behave the way he does, in such ex-
changes. Being a sociologist, Homans borrowed from
Skinner the theory of operant conditioning, as a means
to explain why men continue to behave in certain ways
(or, change behaviors), in certain situations.

Homans looked at the exchanges values when he
looked for a sufficient stimulus for continued (or, dis-
continued) social behavior, and found it in the concept
of profit, defined as profit = benefit − cost , where ben-
efit and cost are defined almost exactly as in Piaget’s



theory. Profit, in this qualitative sense, is seen as
the element that can play the role of stimulus: bigger
profit means stronger stimulus to continue the current
behavior, while smaller profit means stronger stimulus
to discontinue the current behavior.

Of course, search for profit maximization was
known, to Homans, not to lead necessarily to the best
overall results for the partners of an interaction, spe-
cially when looked from the point of view of social
equilibrium, as Pareto had shown much earlier5. So,
Homans had to extend Skinner’s conceptions of hu-
man behavior with notions that are essentially non-
behavioristic (such as the notion of personal integrity
before a group [19]) in order to produce consistent ex-
planations.

Homans’ proposal gave the starting point for the
formalization we present below, where the process of
social control that regulates an interaction (which in
Homans’ theory results from the combination of the
various individual behaviors involved in the interac-
tion) is reduced to a Markov Decision Problem [37],
to be solved by a central equilibrium supervisor.

2.3 The Role That Homans’ Theory May
Have in Piaget’s Framework

The striking similarity between the basic concepts
of the two theories, by Homans and Piaget, regard-
ing the idea that a society is based on an organization
where the relationships between individuals are con-
ceived as valued exchanges, puts the question about
the possible ways the two theories can be made closer
to each other.

From our point of view, the way the two theories
can be combined is based on the following observa-
tions. On the one hand, in the theory of the psychol-
ogist Piaget, the psychological aspects of social inter-
actions were kept out of the formalization of social ex-
changes, to allow for a qualitative algebraic form. The
price Piaget paid for that is that the theory had to give
up producing a description of the decision processes
that the individuals adopt while interacting, that is,
to give up explaining the individuals’ behaviors.

On the other hand, in the theory of the sociolo-
gist Homans, the psychological aspect of social inter-
actions was brought to the foreground, in order to pro-
duce a description of the decision processes adopted
by the interacting individuals, and an explanation of
their behaviors. The behavioristic basis of the adopted
psychological explanation, however, forced two con-
sequences. First, the exchange values that could be

5Homans and Piaget were both simpathetic readers of
Pareto, see [22] and [30].

taken into account were restricted to those of a quan-
titative nature, so that the notion of profit could be
introduced, as a measurable and comparable difference
between benefits and costs. Second, the psychological
theory itself had to be extended in non-behavioristic
directions, in order to accommodate subjective phe-
nomena not directly observable, but essential for the
explanation of moral behaviors.

The very constructions of the two approaches, thus,
already indicate the way they may be combined: Pi-
aget’s theory can be used to formalize an explanation
of social exchanges where the agents are understood
algebraically, on the basis of the operations they use
to handle the exchange values, while Homans’ theory
can be adapted to deal with the piagetian algebra of
qualitative values, in order to formalize the internal
decision processes that agents follow when deciding
on the keeping or changing of their social behaviors.

In this paper, we present a first step in that direc-
tion. We don’t show agents making decisions on the
basis of their own idiosyncratic criteria, but we show a
simplified version of the problem, where all agents are
assumed to uniformly follow the same set of criteria
when deciding what exchanges to propose to another
agent, but where each agent is allowed to answer to
that proposal in its own manner.

Halving the complexity of the problem in this way,
we were able to perform the first, provisory stage in the
formalization of the proposed integration of the two
sociological theories that were taken as our bases of our
work. The next step in the evolution of this synthesis,
accounting for the agents’ individual decision making
with respect to exchange values, is briefly considered
in the Conclusion of the paper.

3 Social Organizations

In this section, we build on previous work on the
dynamics of multi-agent organizations [4, 5, 6, 7, 3, 13]
in order to coordinate the notions of organization and
exchange values, so that systems of exchange values
can become useful tools for the organization of multi-
agent systems.

The central concept introduced here is that of dy-
namics of exchange values in social organizations.

3.1 The Notion of Social Organization

The notion of organization is not univocal. There
are at least two main senses in which it is used, namely,
a functional sense and a structural sense. In the func-
tional sense, organization is one of the functional in-



variants that characterize all forms of autonomous dy-
namic systems [28]. In the structural sense, the orga-
nization of an autonomous dynamic system is the rela-
tional structure that allows the system’s components
to interact with each other. In this paper, we use the
term organization in the latter, structural sense.

In its simplest form, the organization of a society
S, at a given time t, is conceived as a structure Ot

S =
(At

S , Et
S) where At

S is the set of agents of the society at
time t, and Et

S ⊆ At
S×At

S is the set of social exchanges
that are happening at that time 6. In the following, we
will only consider the static (synchronic) case, where
the organization of a society is not changing while the
society is functioning. So, we will let implicit the time
index t. Also, since we will consider one single society,
we will let implicit the index S.

3.2 Social Functions, Social Roles, Ex-
change Values, and Social Rules

Societies with the simple form defined above should
have a big problem to keep their existence in time:
the only permanent element they have are the agents,
since exchanges are usually finite, and vanish suddenly.
Agents, in such situations, are thus allowed to interact
with any other agents in the society, at any time, as
they are pleased, or simply not to interact at all. Or-
ganization, in such societies, is no more than a set of
momentary exchanges. There is no way organization
can become a structural invariant of the society, in a
society with such a simple form.

Many other permanent elements are required, in the
organization of a society, if the society is to be able to
keep its organization reasonably stable during a cer-
tain period. We identify four main notions allowing for
such invariant organization, namely, social functions,
social roles, exchange values, and social rules:

- social functions are the services that agents (or,
sets of agents), perform for other agents (or, sets
of agents) in the society, and that justify the
very existence of the society: agents that are self-
sufficient need not live in societies; only agents
that have the need that others perform certain
services for them care to live together with oth-
ers;

- social roles are the relational elements that estab-
lish the links between the agents, the social func-
tions they perform, and the behavior they should

6We follow [11] in considering the dependence relations as one
of the main reasons for the establishment of social exchanges.

have in order to perform such functions in an ad-
equate way; social roles are the gluing elements of
an organization;

- exchange values are the means by which the ser-
vices that an agent performs are evaluated by the
members of the society (including the agent itself
and the other agents involved in the exchange), so
that a resulting balance of exchange values can be
used by social rules (see below) to compensate be-
haviors that deviate the society from the desired
kind of balance (equilibrated, disequilibrated);

- social rules are the means by which agents (given
the social functions that are to be performed in
the society, and the way the social roles were as-
signed to the agents) are obliged to behave in cer-
tain ways, and forbidden to behave in some other
ways.

Implicit in the structural conception of organization
is, thus, a dynamical notion of social equilibrium (or,
disequilibrium), which – in this paper – we restrict to
the notion of equilibrium (or, disequilibrium) of social
exchanges, as defined by Piaget.

3.3 Definition of Social Organization

For the purposes of this paper, the notion of social
organization can be defined as:

Definition 1 The organization of a society is a struc-
ture O = (A,F,Ro,E,BV,Ru) where: A is the set of
agents; F is the set of services (functions) that agents,
and sets of agents, should provide for each other; Ro
is the set of social roles that agents may be assigned
to; E is the set of social exchanges that agents may
perform between them; BV is the set of balances of
exchange values that supports the various ways agents
may evaluate social exchanges; Ru is the set of social
rules that regulate the agents’ behaviors. 7

To the main elements of the organization of a so-
ciety, given in the definition above, a few more com-
plementary elements should be added, so that the dy-
namics of the organization can be explained:

- the set IBeh of all possible individual behaviors
of all agents of the society, so that to each agent
corresponds the set of individual behaviors that it
is capable of realizing, given by IB : A → IBeh;

7We let undetermined the details of the sets in Def. 1, in
order to have an abstract notion of social organization, which
may be instantiated in various ways, in various applications.



- the way the set E of all possible social exchanges
are related to the subset of agents that are capable
of realizing them together, given by Cap : ℘(A) →
E;

- the way each social function is implemented by
a set of agents in the form of a social exchange,
given by I : F × ℘(A) → E;

- the way each social role determines the individ-
ual behavior of the agent to which it is assigned,
regarding the performance of a social function,
given by the function P : F × Ro → IBeh;

- the way each agent evaluates the performance of
an exchange, given by the function Ev : E ×A →
BV

- the way each social rule determines the permit-
ted, obligatory and forbidden behaviors of agents
in a social exchange, according to the balance of
exchange values assigned to the social exchange,
regarding the performance of a social function,
given by Ru : F × A × E → ℘(IBeh × {p,o, f}).

The detailed exploration of the connections among
the main and complementary elements of a social orga-
nization, as defined above, are out of the scope of this
paper. We concentrate just on the connections that
allow the understanding of our notion of dynamics of
exchange values, leading to the concept of exchange
value-based social control, and its provisory centralized
form, the supervisor of social equilibrium.

3.4 The Dynamics of Exchange Values

Although Piaget, in his sociological works, did not
develop his notion of dynamics of an organization,
both in his works on the Epistemology of Biology [28]
and in his psychological works on the equilibration of
cognitive structures [29], that notion is well exposed.
We summarize here that piagetian cybernetics, con-
centrating just in the concepts that directly apply to
our problem.

In any dynamical system where a notion of equilib-
rium can be defined, two related concepts immediately
apply, namely, the concepts of deviation and compen-
sation. Deviation is any action that may happen in
a system and lead it to disequilibrium, that is, away
from equilibrium. Compensation is any action that
may happen in a system, when it is in disequilibrium,
and lead it back to equilibrium.

Regulation is the process of determining which com-
pensation should be performed, at a given moment, to

compensate a deviation, when the system is in dise-
quilibrium. In Homan’s terms [19], Piaget’s process of
regulation is a social control process that aims to keep
the society stable in a state of equilibrium.

Piaget applies such ideas both to the synchronic
regulation of a system’s functioning (where the struc-
ture of the system is kept essentially unchanged) and
to the diachronic regulation of the development of the
system’s structural organization, when the system is
in a process of development. To the first, he assigned
the name minor equilibration, while the latter he called
major equilibration. In our case, we focus on the syn-
chronic functioning of a social system, so that only
minor equilibrations will be considered.

We consider social systems where the interactions
are seen as exchanges of services, and whose equilib-
rium is defined on the basis of balances of values asso-
ciated to such exchanges. In such systems, deviations
are actions (performances of services) whose evalua-
tions lead the system to a state where the balances of
exchange values are such that at least one of the equi-
librium rules Iαβ , IIαβ and IαβIIαβ is not satisfied. A
compensation is a performance of a service that may
lead the system back to a state where the balances of
exchange values are such that those rules are satisfied.

Social rules specify a mechanism of social control
by stipulating that, for each state of disequilibrium,
the kind of action that should be performed in order
to re-establish the equilibrium of the system. Two
kinds of such actions are possible: punishment and
reciprocation. Punishment is an action by which an
individual suffers some lost in order to be reinforced
towards not repeating the deviation action again.

Reciprocation is an action by which an individual
is forced to perform a service for the other, in order to
compensate him for some service the latter had previ-
ously performed for him. Reciprocation is the funda-
mental operation of compensation, in Piaget’s model
of regulation of social exchanges.

Of course, everything that has been said here in
connection to social control processes that aim to sta-
bilize the society or organization in a state of equilib-
rium, also applies to social control processes that aim
to keep the society or organization stable in a state of
disequilibrium 8.

3.5 Supervisors of Social Equilibrium

In general, such exchange values-based mechanism
of social control may be put to operate in two main

8See [12] for a discussion of the role of social control processes
in artificial societies.



ways. On the one hand, social rules may be enforced
by authorities, which have the capacity to push the
agents of the society to follow such rules.

On the other hand, social rules may be internalized
by the agents, so that agents follow such rules because
they are incorporated into the agents’ behaviors.

Typical of the social rules enforced by authorities
are the juridical rules of a society (laws, statutes, or-
ganizational norms), dealing with rights and duties.
Typical of the internalized rules are the moral rules,
dealing with permissions and obligations.

In the following, as a preparatory step to a future
study of decentralized social control mechanisms based
on social rules internalized in agents, we introduce a
centralized version of such mechanism. We consider
the notion of supervisor of social equilibrium, a com-
ponent of the society (possibly an agent) that is able
to determine, at each time, the set of compensation
actions that may be performed in order to bring the
social system back to the equilibrium (or, disequi-
librium), regarding the balances of exchange values,
and that may recommend some of such actions to the
agents of the system, in order to get that equilibrium
(or, disequilibrium).

Obviously, supervisors of social equilibrium do not
implement moral rules, because moral rules, in the
sense defined above, can only be implemented inside
the agents themselves, not in a component of the so-
ciety that is external to them.

So, supervisors of social equilibrium implement ju-
ridical rules (laws, norms). However, they do so in
a way that they are not law enforcers, because we
don’t require that agents follow the recommendations:
agents are allowed to autonomously decide if they are
to follow, or not, any given recommendation.

4 A Model Supervisor of Social Equi-
librium

In this section, we introduce a formal model for a
supervisor of social equilibrium, which is able to im-
plement a regulation process for the equilibration (or,
disequilibration) of exchange values.

The regulation process is embedded in the equilib-
rium supervisor in the form of a recommendation pol-
icy, which determines for each kind of exchange values
state an appropriate compensation action.

However, we don’t consider here the connection be-
tween the recommendation policy that implements the
regulation process, and the expression of such regula-
tion process in the form of juridical rules. That is,

everything works in the model as if the juridical rules
were pre-compiled into its recommendation policy, by
way of the reward function of the Markov Decision
Process solved by the equilibrium supervisor.

Further work is necessary on this compilation
process both to understand the connection between
the language of juridical laws and its translation in
terms of exchange values, and to allow for a dynamic
compilation process, capable of supporting dynamic
changes in juridical laws, in order to model organiza-
tions supporting evolutive juridical systems.

4.1 Using Interval Mathematics for Rep-
resenting Social Values

Interval Mathematics is a mathematical theory in-
troduced in the 1960’s by Moore [26] that aims at the
automatic and rigorous control of the errors that arise
in numerical computations. Any real number x ∈ R

is represented by a real interval X = [x1, x2], with
x1, x2 ∈ R, such that x1 ≤ x ≤ x2. x1 and x2 denote,
respectively, the left and right endpoints of a real in-
terval X. The set of real intervals is denoted by IR.

The arithmetical operations ∗IR ∈ {+,−,×÷} are
defined on IR as X ∗IR Y = {x ∗ y | x ∈ X, y ∈ Y }9,
and they can be explicitly calculated by [27]:

Addition: X + Y = [x1 + y1, x2 + y2]
Subtraction: X − Y = [x1 − y2, x2 − y1]

Product : X × Y = [min ρ,max ρ],
with ρ = {x1y1, x1y2, x2y1, x2y2}

Quotient : X ÷ Y = [min σ,max σ],

with σ =
{

x1

y1
,
x1

y2
,
x2

y1
,
x2

y2

}
and 0 �∈ Y.

The interval arithmetic operations satisfy the
monotonic inclusion property, for all X ′,X ′′, Y ′, Y ′′ ∈
IR [1, 27]: X ′ ⊆ X ′′, Y ′ ⊆ Y ′′ ⇒ X ′ ∗ Y ′ ⊆ X ′′ ∗ Y ′′.
This property plays an important role in the usage
of Interval Mathematics to compute with real num-
bers that are uncertain for some reason (e.g., if they
are obtained by a measuring instrument with limited
resolution) or that are not exactly representable in a
floating point system (e.g, the numbers π, 0.1, 1

3 ).
A machine interval has floating point numbers as

endpoints and outward roundings are used to guaran-
tee that the resulting output interval of any interval
computation process contains the actual result [17].
Besides that, the range of the output interval is the

9Whenever it can be understood from the context, we shall
not use the notation IR to distinguish interval operations.



indicative of the maximum error that may have oc-
curred in the whole process.

Interval Mathematics has also been applied to rep-
resent other kinds of uncertainty rather than numeri-
cal uncertainty [16], with applications in Artificial In-
telligence, Soft Computing etc.

In this paper, intervals are used to capture the qual-
itative nature of Piaget’s concept of scale of exchange
values [31]. The chosen representation is a compro-
mise between a purely qualitative and a purely quan-
titative representation. It makes the representation
mathematically operational, and the decision process
computationally viable, without being unfaithful to
Piaget’s approach.

Let IRL = {[x1, x2] | −L ≤ x1 ≤ x2 ≤ L} be the
set of real intervals bounded by L ∈ R (L > 0) and let
IRL = (IRL,+,Θ, ,̃≈) be a scale of interval exchange
values, where:

- + : IRL × IRL → IRL is the L-bounded addition
operation defined by

X + Y = [max{x1 + y1,−L},min{x2 + y2, L}].

- A null value is any X ∈ IRL such that mid(X) =
0, where mid(X) = x1+x2

2 is the mid point of X.
The set of null values is denoted by Θ. 0 = [0, 0]
is the absolute null value.

- A quasi-symmetric value of X ∈ IRL is any inter-
val X ′ ∈ IRL such that X + X ′ ∈ Θ. The set of
quasi-symmetric values of X is denoted by X̃.

- ≈ is the qualitative equivalence relation defined
by X ≈ Y ⇔ ∃Y ′ ∈ Ỹ : X + Y ′ ∈ Θ.

µX̃ ∈ X̃ is said to be the least quasi-symmetric
value of X if whenever there exists S ∈ X̃ it holds
that d(µX̃) ≤ d(S), where d(X) = x2 − x1 is the
diameter of X. For all X ∈ IRL, it follows that:

Proposition 1 (i) X̃ = {−[mid(X)−k,mid(X)+k] |
k ∈ R ∧ k ≥ 0}; (ii) µX̃ = −[mid(X),mid(X)].

Proof. It holds that mid(X + [−(mid(X) +
k),−(mid(X) − k)]) = mid

([
x1−x2−2k

2 , x2−x1+2k
2

])
=

0. Consider S ∈ X̃ such that mid(S) �= mid(X).
For k1 �= k2 ∈ R, it follows that mid(X + S) =
mid(X + [−(mid(X) + k1),−(mid(X) − k2)]) =
mid

([
x1−x2−2k1

2 , x2−x1+2k2
2

])
= k2−k1

2 �= 0,
which is a contradiction. It follows that any
quasi-symmetric value of X is of the form
[−(mid(X) + k),−(mid(X) − k)] and, when k = 0,
µX̃ = [−mid(X),−mid(X)] is obtained. �

In practical applications, due to the rounding errors
that arise in any numerical computation, it is usually
not possible to verify wether or not a computed inter-
val is precisely the absolute null value 0 [1, 17, 18, 27].
Then, we shall introduce the concept of absolute ε-null
value 0ε = [−ε,+ε], with ε ∈ R (ε ≥ 0) being a given
tolerance. In this case, an ε-null value is any X ∈ IRL

such that mid(X) ∈ 0ε. The set of ε-null values is
denoted by Θε. The related set of ε-quasi-symmetric
values for an interval value X ∈ IRL is denoted by X̃ε,
and, from Prop. 1, it follows that the least ε-quasi-
symmetric value is given by

µX̃ε = [−(mid(X) + ε),−(mid(X) − ε)]. (1)

The qualitative equivalence relation (module ε) is then
defined by X ≈ε Y ⇔ ∃Y ′ ∈ Ỹε : X + Y ′ ∈ Θε.

4.2 The Modelling of Social Exchanges

Let T be a set of discrete instants of time.
Let α and β be any two agents. A qualitative
interval exchange-value system for modelling the
exchanges from α to β is a structure IRαβ =
(IRL; rIαβ

, rIIβα
, sIβα

, sIIαβ
, tIβα

, tIIβα
, vIαβ

, vIIαβ
),

where

rIαβ
, rIIβα

: T → IRL, sIIαβ
, sIβα

: T → IRL, (2)
tIβα

, tIIβα
: T → IRL, vIαβ

, vIIαβ
: T → IRL (3)

are partial functions, called exchange-value functions,
that evaluate, at each time instant t ∈ T , the in-
vestment, satisfaction, debt and credit values10, re-
spectively, involved in the exchange. The symbol ⊥
denotes an undefined exchange value. In the follow-
ing, we use the notation rIαβ

(t) = rt
Iαβ

, rIIβα
(t) =

rt
IIβα

, sIIαβ
(t) = st

IIαβ
, sIβα

(t) = st
Iβα

, tIβα
(t) = ttIβα

,
tIIβα

(t) = ttIIβα
, vIαβ

(t) = vt
Iαβ

and vIIαβ
(t) = vt

IIαβ
.

For the exchange-value functions given in (2) and
(3), at a given time instant t, the following constraints
must be satisfied for every pair of agents α and β:

rt
Iαβ

= ⊥ ⇒ st
Iβα

= ttIβα
= vt

Iαβ
= ⊥, (4)

vt
IIαβ

= ⊥ ⇒ ttIIβα
= rt

IIβα
= st

IIαβ
= ⊥, (5)

rt
Iαβ

�= ⊥ ⇒ vt
IIαβ

= ⊥, (6)

where:

- rt
Iαβ

= ⊥ denotes that the agent α did not perform
a service for the agent β at time t, and, therefore,
all the other corresponding exchange values in the
stage I resulted undefined;

10The values are undefined if no service is done at all at a
given moment t ∈ T .



- vt
IIαβ

= ⊥ denotes that the agent α, at time t, did
not charge the credit for a service previously done
for the agent β, and, therefore, all the other corre-
sponding exchange values in the stage II resulted
undefined.

The implication (6) means that, according to the
structure of social exchanges (Fig. 1), it is not possible
for an agent α to perform a service for β and, at the
same time t, to charge him a credit. From (6) it follows
that it is also required that vt

IIαβ
�= ⊥ ⇒ rt

Iαβ
= ⊥.

A configuration of exchange values for any pair of
agents α and β at a time instant t is specified by one
of the tuples of well defined exchange values:

(rt
Iαβ

, st
Iβα

, ttIβα
, vt

Iαβ
), (rt

Iβα
, st

Iαβ
, ttIαβ

, vt
Iβα

),

(vt
IIαβ

, ttIIβα
, rt

IIβα
, st

IIαβ
), (vt

IIβα
, ttIIαβ

, rt
IIαβ

, st
IIβα

).

A social exchange process between two agents α and
β of a multi-agent system, occurring during the time
instants T = t1, . . . , tn, is any finite sequence of such
configurations of exchange values et1 , . . . , etn . Each el-
ement of this sequence is called a stage of the exchange
process, which may be a stage of type I or type II.

The exchange balance of stages of type I of a social
exchange process between any pair of agents α and β
that has occurred during a time interval T is a tuple

bT
I{α,β} =(

rT
Iαβ

, rT
Iβα

, sT
Iαβ

, sT
Iβα

| tTIαβ
, tTIβα

, vT
Iαβ

, vT
Iβα

)
, (7)

where, for k = r, s, t, v,

kT
Iαβ

=
∑
t∈T

kt
Iαβ

and kT
Iβα

=
∑
t∈T

kt
Iβα

,

for all kt
Iαβ

�= ⊥ and kt
Iβα

�= ⊥. The exchange balance
of stages of type II, denoted by bT

II{α,β} , is defined anal-
ogously. The general exchange balance is then given
by

bT
{α,β} = bT

I{α,β} + bT
II{α,β} .

The material results mαβ and mβα of a social ex-
change process that happens between agents α and β,
during the interval T , according to the points of view
of α and β, respectively, are given by the sum of the
respective material values involved in the process:

mT
αβ = rT

Iαβ
+ sT

IIαβ
+ rT

IIαβ
+ sT

Iαβ
, (8)

mT
βα = rT

Iβα
+ sT

IIβα
+ rT

IIβα
+ sT

Iβα
. (9)

Analogously, the virtual results vαβ and vβα are
given by:

vT
αβ = tTIαβ

+ vT
IIαβ

+ tTIIαβ
+ vT

Iαβ
, (10)

vT
βα = tTIβα

+ vT
IIβα

+ tTIIβα
+ vT

Iβα
. (11)

The general results take into account all kinds of
exchanges values, and is obtained by:

gT
αβ = mT

αβ + vT
αβ , gT

βα = mT
βα + vT

βα. (12)

A social exchange process between a pair of agents
α and β is said to be in equilibrium (with tolerance
ε ≥ 0) if

gT
αβ ∈ Θε and gT

βα ∈ Θε.

The material equilibrium is achieved when

mT
αβ ∈ Θε and mT

βα ∈ Θε.

4.3 Modelling Social Exchanges Involving
Multiple Agents

In this section, a matrix-like notation is introduced
to make possible the generalization of the results con-
cerning the social exchanges between two agents, pre-
sented in Sect. 4.2, for the case of an organization com-
posed by m agents. An m×m interval �-matrix [xij ]�

is defined as the interval m × m matrix [xij ] where
xij = � whenever i = j, that is:

[xij ]� =




� x12 · · · x1m

x21 � · · · x2m

...
... · · · ...

xm1 xm2 · · · �




A 2 × 2 �-matrix is denoted schematically by an
ordered pair

(x12, x21)� =
(

� x12

x21 �

)
(13)

For two interval m × m �-matrices X = [xij ]� and
Y = [yij ]�, we define:

- The addition operation: X + Y = [xij + yij ]�.

- Any �-matrix [nij ]
� such that nij ∈ Θε is an ε-null

�-matrix. The set of such �-matrices is denoted
by Nε.

- The qualitative equivalence relation (module ε):
X ≈ε Y ⇔ (∀i �= j) xij ≈ε yij .

In a multi-agent system composed by m agents, the
exchange values determined by the functions defined in
(2) and (3) can be represented by the eight m×m×#T
interval �-matrices

KI =
[
kt
Iαβ

]�

and KII =
[
kt
IIαβ

]�

,

called investment (K = R), satisfaction (K = S), debt
(K = T ) and credit (K = V ) matrices for the social



exchange stages I and II, respectively, that occurred
between each two agents α and β in T . 11

For each t′ ∈ T , Kt′
I =

[
kt′
Iαβ

]�

and Kt′
II =

[
kt′
IIαβ

]�

are m × m interval �-matrices. For a time sequence
T = t1, . . . , tn, the four m × m matrices of global in-
vestment, satisfaction, debt and credit in T are given
by

KT
I =

tn∑
t=t1

Kt
I and KT

II =
tn∑

t=t1

Kt
II,

for K = R,S, T, V .
The exchange balance of stages of type I, given in

(7), is represented by a tuple of �-matrices:

BT
I =

(
RT

I , ST
I | TT

I , V T
I

)
.

Analogously, the exchange balance of stages of type II
is represented as a tuple BT

II . Therefore, the general
exchange balance can be represented by the tuple:

BT =
(
RT , ST | TT , V T

)
,

where, for K = R,S, T, V , KT = KT
I + KT

II .
The material, virtual and general results of social

exchange processes in a multi-agent system, given in
(8–12), are then evaluated by

MT = RT +ST ,VT = TT +V T and GT = MT +V T ,

respectively.
Thus, a multi-agent system is said to be in equilib-

rium if
GT ∈ Nε.

It is in material equilibrium when

MT ∈ Nε.

If a social exchange process between any pair of
agents α and β, which occurred in T , is not in material
equilibrium according α’s point of view, that is, mT

αβ �∈
Θε, then the least ε-quasi-symmetric of mT

αβ , given in
(1), is said to be the compensation value from α’s point
of view. The compensation value for mT

αβ ∈ Θε is the
interval [0, 0]. A compensation �-matrix for a �-matrix
of material results MT is the �-matrix M′ whose each
entry is the compensation value of the corresponding
entry of MT . It follows that MT + M′ ∈ Nε.

11To extend this representation to interactions between two
groups A and B of agents one should take into account the sum
total of the interactions of every agent of A with every agent of
B, e.g., KI = [kt

IAB
]�, where kt

IAB
= Σα∈A,β∈B kt

Iαβ
.

4.4 Solving the Equilibration Problem
Using a QI–MDP

We conceive, in the context of a social exchange
process in a multi-agent system, a special agent, called
equilibrium supervisor, which analyzes the exchange
processes between each pair of agents and makes sug-
gestions of exchanges to each two agents in order to
keep the material results of exchanges in equilibrium.
The equilibrium supervisor also takes into account the
virtual results of the exchanges in order to decide
which type of exchange stage he shall suggest for the
two agents.

To achieve that purpose, the equilibrium supervisor
models the exchanges between each pair of agents as
simultaneous Markov Decision Processes (MDP) [37],
where the states of the models represent “possible ma-
terial results of the overall exchanges” and the optimal
policies represent “sequences of actions that the equi-
librium supervisor recommends that the interacting
agents execute”.

In the following, the Qualitative Interval Markov
Decision Process (QI-MDP) is introduced. An initial
formulation of this model, considering a society of just
two agents, was presented in [14].

4.4.1 The Basis of a QI–MDP for a Multi-
Agent System

Consider an admissible tolerance ε ≥ 0, a bound L ∈ R

(L > 0) for the set of real intervals IRL and n ∈ N

(n > 0). Let Ê = {E−n, . . . , En} be the set of 2n + 1
equivalence classes of intervals X ∈ IRL, defined, for
i = −n, . . . , n, as:

Ei = (14)

{X | iL
n
≤ mid(X) < (i + 1)L

n
} if − n ≤ i < −1

{X | −L
n
≤ mid(X) < −ε} if i = −1

{X | −ε ≤ mid(X) ≤ +ε} if i = 0
{X | ε < mid(X) ≤ L

n
} if i = 1

{X | (i − 1)L
n

< mid(X) ≤ iL
n
} if 1 < i ≤ n.

The classes Ei ∈ Ê are the supervisor representa-
tions of classes of unfavorable (i < 0), equilibrated
(i = 0) and favorable (i > 0) material results of ex-
change social processes. Whenever it is understood
from the context, we shall denote by E− (or E+) any
class Ei

i<0 (or Ei
i>0).

The accuracy of the equilibrium supervisor is given
by κn = L

n . The range of the midpoints of the intervals
that belong to a class Ei is called the representative
of the class Ei. Whenever it is clear from the context,
we shall identify a class Ei with its representative.



The states of the QI–MDP model are �-matrices
E =

[
Ei

αβ

]�

, where each each entry Ei
αβ ∈ Ê is the

class representing the material results of the social ex-
change process between α and β, from the point of
view of the agent α. For the analysis of the equilib-
rium, we shall consider each pair of co-related classes
of material results

(
Ei

αβ , Ej
βα

)
.

The �-matrix
[
E0

αβ

]�

is the terminal state, repre-
senting that the system is in equilibrium. However,
in some applications, it may be considered just a sub-
set B of agents for the analysis of the equilibrium,
even when all agents are involved in the exchanges
processes. In this case, the terminal state is such that
Ei

αβ = Ej
βα = E0, for all α, β ∈ B.

The actions considered in the model are state tran-
sitions [

Ei
αβ

]� [Ai
αβ]��→

[
Ei′

αβ

]�

,

with Ei
αβ , Ei′

αβ ∈ Ê, where
[
Ai

αβ

]�

is an interval �-

matrix operator such that mid
(
Ei

αβ + Aαβ

)
∈ Ei′

αβ .

Ai
αβ is an interval action that should be one of the

following types:

- a compensation interval Ci, which is the least
quasi-symmetric of a class representative Ei;

- a go-forward-k-step interval F i
k, which is an in-

terval that transforms a class Ei into Ei+k, with
i �= L and i + k �= 0;

- a go-backward-k-step interval Bi
−k, which is an

interval that transforms a class Ei into Ei−k, with
i �= −L and i − k �= 0.

The set of compensation intervals, denoted by C, is
shown in Table 1. The set F of go-forward intervals
and their respective effects are partially presented in
Table 2. The set of go-backward intervals, denoted by
B, can be specified analogously.

Table 1: Specification of compensation intervals

State Compensation Interval Ci ∈ C
Ei

−n≤i<−1 [− (
2i+1

2
L
n

) − ε,− (
2i+1

2
L
n

)
+ ε]

E−1 [12
(

L
n + ε

) − ε, 1
2

(
L
n + ε

)
+ ε]

E0 [0, 0]
E1 [− 1

2

(
L
n + ε

) − ε,− 1
2

(
L
n + ε

)
+ ε]

Ei
1<i≤n [ (1−2i)

2
L
n − ε, (1−2i)

2
L
n + ε]

For example, consider the case of a society with just
two agents α and β. For the pair of classes of material

results (using the notation given in (13))(
Ei

αβ , Ej
βα

)�

−n≤i<−1,1<j≤n
≡([

i
L

n
, (i + 1)

L

n

]
,

[
(j − 1)

L

n
, j

L

n

])�

,

it follows that the compensation–compensation ac-
tion

(
Ci, Cj

)� and the go-backward−3–go-forward+2(
Bi

−3, F
j
+2

)�

action are specified by

Ci =
[
−2i + 1

2
L

n
− ε,−2i + 1

2
L

n
+ ε

]
, (15)

Cj =
[
(1 − 2j)

2
L

n
− ε,

(1 − 2j)
2

L

n
+ ε

]
, (16)

Bi
−3 =

[
−3

L

n
− ε,−3

L

n
+ ε

]
, (17)

F j
+2 =

[
2
L

n
− ε, 2

L

n
+ ε

]
, (18)

respectively, resulting in the following state transi-
tions, with −n ≤ i < −1 and 1 < j ≤ n:(

Ei
αβ , Ej

βα

)� (Ci, Cj)
∗

�→
(
E0

αβ , E0
βα

)�

(
Ei

αβ , Ej
βα

)� (Bi
−3, F j

+2)
∗

�→
(
E

(i−3)
αβ , E

(j+2)
βα

)�

.

The equilibrium supervisor has to find, for each
state [Ei]�, the action that shall achieve the terminal
state or, at least, another state from where the ter-
minal state can be achieved, with the least number of
steps and least final value uncertainty12. We observe
that the choice of such actions are also regulated by
the rules of the social exchanges, and, therefore, there
are some state transitions that are not allowed.

Based on a optimal policy, the equilibrium super-
visor may be asked to recommend that the agents act
optimally. An optimal exchange recommendation con-
sists of a function that gives, for each actual material
result (represented by a state of the model), a partially
defined exchange stage that shall restore or establish
the material equilibrium or, at least, give conditions
that it be achieved in a least number of steps with
least value uncertainty. This partial definition shall be
completed by the analysis of the virtual results, which
allows the specification of which particulary types of
exchange stages (I or II) should be considered.

Although the interacting agents acknowledge the
optimal recommendations from the equilibrium super-
visor, they are autonomous in the sense that they may

12By value uncertainty of a state [Ei]� we mean the diameters
of the intervals Ei.



Table 2: Specification of some go-forward intervals and their respective effects

State Go-forward interval F i
+k ∈ F Effect

Ei
−n≤i<−2

[
k L

n − ε, k L
n + ε

]
0<k≤−i−2

Ei �→ Ei+k
i<i+k≤−2

E−2
[

L
n − ε, L

n + ε
]

E−2 �→ E−1

Ei
−n≤i<−1

[
k L

n − ε, k L
n + ε

]
1−i≤k≤n−i−1

Ei �→ Ei+k
1<i+k≤n

Ei
−n≤i<−1

[−iL
n + ε,−iL

n + ε
]

Ei �→ E1

E−1
[

L
n + ε, L

n + ε
]

E−1 �→ E1

E−1
[
k L

n − ε, k L
n + 2ε

]
2≤k≤n

E−1 �→ Ek−1
1<k−1≤n

E0
[
2ε, L

n

]
E0 �→ E1

E0
[
k L

n , (k + 1) L
n

]
0<k≤n−1

E0 �→ Ek+1
1<k+1≤n

E1
[
k L

n − 2ε, k L
n + ε

]
0<k≤n−1

E1 �→ Ek+1
1<k+1≤n

Ei
1<i≤n

[
k L

n − ε, k L
n + ε

]
0<k≤n−i

Ei �→ Ei+k
i<i+k≤n

not follow the recommendations exactly. The agents
may have different personalities, interests, needs etc.,
which may lead them not to always follow the recom-
mendations. This means that there is a probability
that the system achieves another state different from
the suggested by the supervisor and, therefore, there
may be a great deal of uncertainty about the effects of
the agents actions.

Even if the agents follow a recommendation exactly,
we will show that the effect may not be the expected
by the supervisor, since it depends on the ratio κn

ε ,
where κn = L

n is the equilibrium supervisor accuracy
and ε ∈ R (0 ≤ ε < κn) is the admissible tolerance. On
the other hand, in this paper, we assume that there is
never any uncertainty about the current state of the
system, that is, the equilibrium supervisor always has
access to the current configuration of exchange values
and has complete and perfect abilities to evaluate the
current material balance.

Definition 2 A Qualitative Interval Markov Decision
Process (QI–MDP), for keeping in equilibrium the so-
cial exchanges in a multi-agent systems of m agents,
is a tuple 〈E,A, F,R〉L,n

ε , where:

- The set of the states of the model is the set of
m×m star-matrices E = {

[
Ei

αβ

]�

| Ei
αβ ∈ Ê} of

classes of material results as specified in (14).

- The set of the actions of the model is the set of
m×m star-matrices A = {

[
Ai

αβ

]�

| Ai
αβ ∈ C∪F∪

B}, of compensation Ci ∈ C, go-forward F i
+k ∈ F

and go-backward Bi
−k ∈ B intervals.

- F : E × A → Π(E) is the state-transition func-
tion, which gives for each state and each action,
a probability distribution over the set of states;

- R : (E×A) → R is the reward function, giving the
expected immediate reward gained by choosing an
action

[
Ai

αβ

]�

when the current state is
[
Ei

αβ

]�

.

In this model, the next state and the expected re-
ward depend only on the previous state and the action
taken, satisfying the so-called Markov property.

4.4.2 The Optimal Policy and the Reward
Function

The reward function plays an important role when the
equilibrium supervisor is choosing the action that will
generate a recommendation of agents interaction, in
each state. The supervisor aims to maximize the util-
ity of sequences of actions, evaluated according to the
reward function, thus trying to bring the system back
to equilibrium (or keep it there) with the least possible
number of state transitions.

A sample reward function R : (E × A) → R that
conforms to the idea of supporting a recommendation
function that is able to direct pairs of agents into so-
cial equilibrium is partially sketched in Table 3, us-
ing the notation given in (13). This particular sample
function illustrates various requirements that should
be satisfied by any reward function of the model.

Observe, for instance, that if the current state is of
the type (E−, E+)�, then the best action to be cho-
sen is the compensation-compensation action (C,C)�,
which results in a state transition (E−, E+)� �→
(E0, E0)�. Any other choice should make the agents
either take a long way to the equilibrium or get away
from it.

On the other hand, if the current state is of type
(E−, E−)�, then a compensation-compensation action
(C,C)� would generate a recommendation of agent



exchanges of satisfaction-satisfaction type, which is
impossible according to the model of social interac-
tions [33], since it is impossible for an agent to get a
satisfaction value from no service at all. The reward
function R should state that (C,C)� is a very bad ac-
tion to be chosen in such situation.

Any optimal policy π∗ : E → A solving the social
equilibrium problem should satisfy the set of require-
ments expressed by the schema partially sketched in
Table 4 (for a pair of agents). Notice that it is a non
deterministic policy.

The optimal value recommendation associated to
an optimal policy π∗ is a �-matrix operator ρπ∗

that gives, for each state
[
Ei

αβ

]�

and optimal action

π∗
[
Ei

αβ

]�

=
[
Ai

αβ

]�

, recommendations of exchange
stages, possibly partially undefined, consisting of �-
matrices whose elements in symmetric positions are
either

(
rαβ , Ai

αβ

)
and

(
sβα, Aj

βα

)
, or

(
sαβ , Ai

αβ

)
and(

rβα, Aj
βα

)
, where (rλδ,W ) means the performance,

by the agent λ, of a service with investment value
W < 0, and (sδλ,W ′) means δ’s satisfaction with in-
terval value W ′. The optimal value recommendation
ρπ∗ , corresponding to the the optimal policy shown in
Table 4, is partially sketched in Table 5.

Finally, the equilibrium supervisor has to decide
which types of exchange stages (I or II) should be rec-
ommended. This is done by the analysis of the virtual
results from the points of view of each pair of agents
α (given in (10)) and β (given in (11)):

- If vαβ > 0, then α is able to charge β the credit
for services previously done. Thus, an exchange
stage of type IIαβ should be recommended.

- If vβα > 0, then it is the case that the agent
β can charge α the credit for services previously
done, indicating that an exchange stage of type
IIβα should then be recommended.

- If vαβ ≤ 0, then the agent α does not have any
credit to charge α. Therefore, the service done by
β must be spontaneous. In this case, an exchange
stage of type Iβα should then be recommended.

- If vβα ≤ 0, then the agent β does not have any
credit to charge β, resulting that an exchange
stage of type Iαβ should then be chosen.

Table 6 shows the criteria used by the equilibrium
supervisor to reason about the possible stage recom-
mendations, based on virtual results, according to the
discussion presented in the paragraph above. Observe

that these alternatives are not mutually exclusive. The
final decision of which type of exchange stage shall be
executed is let to the agents to decide.

Table 6: Criteria for deciding on types of exchange
stages to be recommended

Virtual Result Type of Exchange Stage Label

vαβ > 0 IIαβ T 1

vβα > 0 IIβα T 2

vαβ ≤ 0 Iβα T 3

vβα ≤ 0 Iαβ T 4

The stage effects of the recommendations (Table 6)
are sketched in the simplified state transition diagram
shown in Fig. 2. The dot lines represent alternative
paths to the equilibrium state that were not considered
as optimal recommendations since they are considered
impossible according to the structure of the exchange
stages. The symbol � of the �-matrices was omitted.

5 Analysis of the Model

For the analysis of the model, we consider a multi-
agent organization whose agents are classified by the
degree in which they follow the recommendations
given by the equilibrium supervisor. The obedient
agent always follows the recommendations; the dis-
obedient agent may not follow the recommendations.

5.1 Theoretical Results

The analysis concerns the reachability of the termi-
nal state and the complexity of the regulation process
in terms of number of steps that are necessary to
achieve the equilibrium.

If no agent follows the recommendations of the equi-
librium supervisor, the latter is unable to regulate the
system. Its effectiveness increases with the number of
agents that follow its recommendations.

Thus, for the theoretical analysis, we shall consider
only the case in which the agents always follow the
recommendations given by the equilibrium supervisor.
We show that, even in this favorable case, the decision
process is a non-trivial one, due the qualitative nature
of exchange values and to the restrictions imposed by
the definition of exchange, that always requires a ser-
vice (with a definite cost) to be done in any exchange
stage. However, we show that under some conditions,
it is always possible to have the system equilibrated in
at most four steps.



Table 3: Partial schema of the reward function R for the case of two interacting agents

R (C,C) (0ε, C) (C, 0ε) (B−1, F+1) (B−3, F+3) (F+1, B−1) (C,B−1) (B−3, C) (F+1, C)

(E−, E+) 30 20 -30 -5 -10 3 20 20 20
(E+, E−) 30 -30 20 3 5 -5 20 18 -30
(E+, E+) 30 20 20 0 0 0 18 20 20
(E0, E+) 28 30 0 25 20 25 5 20 25
(E+, E0) 28 0 30 25 20 25 20 10 -5
(E0, E−) -30 -30 0 30 13 -20 -5 0 -30
(E−, E0) -30 0 -30 -20 20 30 0 -10 0
(E−, E−) -30 -30 -30 30 0 30 28 26 -30

The symbol � in the notation of the �-matrices was omitted.

Table 4: Partial schema of the optimal policy π∗ for the case of two interacting agents

State Action State Action State Action

(Ei, Ej)1<j≤n
−n≤i<−1 (Ci, Cj) (Ei, Ej)1<i,j≤n (Ci, Cj) (Ei, E0)−n≤i<−1 (F i

+(−i+1), B
0
−1)

(Ei, E1)−n≤i<−1 (Ci, B1
−1) (E1, Ej)1<j≤n (B1

−1, C
j) (E−1, E0) (F−1

+1 , B0
−1)

(E−1, Ej)1<j≤n (F−1
+1 , Cj) (E0, Ej)1<j≤n (0ε, C

j) (Ej , E1)1<j≤n (Cj , B1
−1)

(E−1, E1) (F−1
+1 , B1

−1) (E0, E1) (0ε, B
1
−1) (Ei, E−1)−n≤i<−1 (F i

+(−i+1), B
−1
−1)

(Ej , Ei)1<j≤n
−n≤i<−1 (Cj , Ci) (Ej , E0)1<j≤n (Cj , 0ε) (E−1, Ej)−n≤j<−1 (F−1

+2 , Bj
−1)

(E1, Ei)−n≤i<−1 (B1
−1, C

i) (E1, E0) (B1
−1, 0ε) (E−1, E−1) (F−1

+2 , B−1
−1)

(Ej , E−1)1<j≤n (Cj , F−1
+1 ) (E0, Ei)−n≤i<−1 (B0

−1, F
i
+(−i+1)) (Ei, Ej)−n≤i,j<−1 (Bj

−1, F
i
+(−i+1)) or

(E1, E−1) (B1
−1, F

−1
+1 ) (E0, E−1) (B0

−1, F
−1
+1 ) (F i

+(−i+1), B
j
−1)

The symbol � in the notation of the �-matrices was omitted.

Consider a multi-agent system composed by just
two obedient agents α and β and use the notation
given in (13). Let Mτ = (mτ

αβ ,mτ
βα)� be the ma-

terial results, at step τ , of a social exchange process
performed by the agents α and β. For a given toler-
ance 0 < ε < κn = L

n , where κn is the equilibrium
supervisor accuracy, the following results hold:

Proposition 2 If m0
αβ ∈ E−1 and m0

βα ∈ E1, then
the system achieves the equilibrium in one step if and
only if 1 < κn

ε ≤ 3.

Proof. (⇒) Considering that the system is at the state
(E−1, E1)�, then, for β’s material result, it holds that
ε < mid(m0

βα) ≤ L
n , and the optimal recommendation

(Table 5, R11) is based on the optimal action C1 =[− 1
2

(
L
n + ε

)
,− 1

2

(
L
n + ε

)]
. It follows that:

ε − 1
2

(
L

n
+ ε

)
< mid(m0

βα) − 1
2

(
L
n + ε

) ≤ L
n − 1

2

(
L
n + ε

)
⇒ 1

2

(−L
n + ε

)
< mid(m1

βα) ≤ 1
2

(
L
n − ε

)
⇒ 1

2 (−hε + ε) < mid(m1
βα) ≤ 1

2 (hε − ε) ,

where L
n = hε, with h > 1. If the system achieves

the equilibrium in the step 1, then it holds that
1
2 (hε − ε) ≤ ε. It follows that 1 < h ≤ 3, and
therefore, 1 < κn

ε ≤ 3, since κn = L
n . The proof for

α’s material result is analogous. The proof of (⇐) is
almost straightforward. �

Proposition 3 (i) If m0
αβ ∈ Ei, with 1 < i ≤ n, then

it is possible to get mτ
αβ ∈ E0

α in at most τ = 2 steps
if and only if 1 < κn

ε ≤ 3; (ii) If m0
βα ∈ Ei, with

−n ≤ i < −1, then it is possible to get mτ
βα ∈ E0

β in
at most τ = 2 steps if and only if 1 < κn

ε ≤ 3.

Proof. (i)(⇒) Considering that (i − 1) L
n ≤

mid(m0
αβ) < iL

n and that the optimal recommen-
dation (Table 5, R3), thinking about each agent
individually, is based on the optimal action C =[

(1−2i)
2

L
n , (1−2i)

2
L
n

]
, it follows that:

(i − 1)
L

n
+

(1 − 2i)
2

L

n
< mid(m0

βα) +
(1 − 2i)

2
L

n

≤ i
L

n
+

(1 − 2i)
2

L

n
⇒ −1

2
L

n
< mid(m1

βα) ≤ 1
2

L

n
.



Table 5: Partial schema of the optimal value recommendation ρπ∗

State Optimal policy Value Recommendation Label

(Ei, Ej)−n≤i<−1,1<j≤n (Ci > 0, Cj < 0) ((rβα, Cj), (sαβ , Ci)) R1

(Ej , Ei)−n≤i<−1,1<j≤n (Cj < 0, Ci > 0) ((rαβ , Cj), (sβα, Ci)) R2

(Ei, Ej)1<i,j≤n (Ci < 0, Cj < 0)
((rαβ , Ci), (sβα, Cj))
or ((rβα, Cj), (sαβ , Ci))

R3

R4

(E0, Ej)1<j≤n (0ε, C
j < 0) ((rβα, Cj), (sαβ , 0ε)) R5

(Ej , E0)1<j≤n (Cj < 0, 0ε) ((rαβ , Cj), (sβα, 0ε)) R6

(E0, Ei)−n≤i<−1 (B0
−1 < 0, F i

+(−i+1) > 0) ((rαβ , B0
−1), (sβα, F i

+(−i+1))) R7

(Ei, E0)−n≤i<−1 (F i
+(−i+1) > 0, B0

−1 < 0) ((rβα, B0
−1), (sαβ , F i

+(−i+1))) R8

(E−1, Ej)1<j≤n (F−1
+1 > 0, Cj < 0) ((rβα, Cj), (sαβ , F−1

+1 )) R9

(E1, Ei)−n≤i<−1 (B1
−1 < 0, Ci > 0) ((rαβ , B1

−1), (sβα, Ci)) R10

(E−1, E1) (F−1
+1 > 0, B1

−1 < 0) ((rβα, B1
−1), (sαβ , F−1

+1 )) R11

(E1, E−1) (B1
−1 < 0, F−1

+1 > 0) ((rαβ , B1
−1), (sβα, F−1

+1 )) R12

(Ei, E1)−n≤i<−1 (Ci > 0, B1
−1 < 0) ((rβα, B1

−1), (sαβ , Ci)) R13

(E−1, E0) (F−1
+1 > 0, B0

−1 < 0) ((rβα, B0
−1), (sαβ , F−1

+1 )) R14

(E0, E−1) (B0
−1 < 0, F−1

+1 > 0) ((rαβ , B0
−1), (sβα, F−1

+1 )) R15

(Ei, Ej)−n≤i,j<−1

(F i
+(−i+1) > 0, Bj

−1 < 0)
or (Bj

−1 < 0, F i
+(−i+1) > 0)

((rβα, Bj
−1), (sαβ , F i

+(−i+1))
or ((rαβ , Bj

−1), (sβα, F i
+(−i+1))

R16

R17

The symbol � in the notation of the �-matrices was omitted.

Therefore, it holds that m1
βα ∈ E1

α. From Prop. 2, it
follows that with one more step we can get the desired
result. The proofs of (i)(⇐) and (ii) are analogous. �

The following result is almost immediate:

Proposition 4 If m0
αβ ∈ Ei, 1 < i ≤ n, is such that

2i+1
2

L
n −ε ≤ mid

(
m0

αβ

)
≤ 2i+1

2
L
n +ε, then m1

αβ ∈ E0
α.

From Prop. 3, it follows that an individual transi-
tion from a material result that belongs to a class Ei,
with 1 < i ≤ n or −n ≤ i < −1, to the equilibrium can
be done in at most two steps (Ei �→ E1( or E−1) �→
E0). However, in any interaction between two agents,
combined transitions departing from a state (Ei, Ej)�

or (Ej , Ei)�, with 1 < i ≤ n and −n ≤ j < −1, may
result in a state different from (E1, E−1)�, (E−1, E1)�

or (E0, E0)�. We may have, for example, (E−1, E0)�,
and, in this case, it will not be possible to get the equi-
librium in one more step, since any compensation or
go-forward action for α is not allowed without a cor-
responding β’s service. The solution is then to have
a transition to (E1, E−1)� and then, finally, to reach
(E0, E0)�. Thus, the overall process takes three steps.

The worst case is when the interaction presents ma-
terial results that belong to the state (Ei, Ej)�, with
−n ≤ i, j < −1, since two simultaneous positive com-
pensation actions (that would require a recommenda-
tion of satisfaction values for the two agents without

any service at all) are not allowed. In this case, the
optimal recommendation (Table 5) leads the agents to
get the material equilibrium in at most four steps, by
one of the following transitions:

(Ei, Ej)�
−n≤i,j<−1

R16�→ (E1, Ej)�
−n≤j<−1

R10�→ (E0, E−1)� R15�→ (E−1, E1)� R11�→ (E0, E0)�,

(Ei, Ej)�
−n≤i,j<−1

R17�→ (Ej , E1)�
−n≤j<−1

R13�→ (E−1, E0)� R14�→ (E1, E−1)� R12�→ (E0, E0)�.

5.2 Simulation Results

Simulations of supervised social exchange processes
were developed in the Python programming language,
generating two types of reports: tables with the con-
figurations of exchange values and material results at
each time t ∈ T = 0, . . . , 1000, and graphics showing
the trajectory of the mid points of the material results
of the exchanges between two agents of a (simulated)
system. The material and virtual values that agents
could use at each exchange stage were set to vary in the
range −100 . . .+100. A tolerance of [−ε, ε] = [−25, 25]
was adopted for the definition of the equilibrium point.

First, we considered simulations of social exchanges
processes in organizations where the supervisor was
inactive, Fig. 3, having exchange values bound to
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Figure 2: Effects of stage and optimal value recommendations

L = 2400). In those simulations, the social exchanges
were totally random along all the time interval T .
Then we awaked up the supervisor and let it make
recommendations, which the agents followed or not,
according to their degree of obedience to the supervi-
sor.

In successive experiments, we increased the percent-
age of agent obedience to the supervisor, generating
five different simulations: obedience during 1% of the
time (Fig.4, exchange values bound to L = 1400), obe-
dience during 25% of the time (Fig. 5, exchange values
bound to L = 700), obedience during 50% of the time
(Fig. 6, exchange values bound to L = 350), obedi-
ence during 75% of the time (Fig. 7, exchange values
to bound L = 185) and obedience during 100% of the
time (Fig. 8, exchange values bound to L = 105).
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Figure 3: Unsupervised social exchange process
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Figure 4: Agent obedience in 1% of the time

In the unsupervised exchange processes shown in
Fig. 3, agents α and β present behaviors such that β
profited from the interaction much more than α, which
was forced to keep its material results at a negative
level for the most part of the experiment. Considering
the given tolerance, one finds that the system starts
in equilibrium, but was unable to keep it.

Figure 4 shows a 1% supervised exchange processes.
The figure shows that just such level of supervision is
enough to make the two agents alternate their kinds
of behaviors during the exchanges, thus avoiding that
one of them profits from the interaction at the expense
of the other. Also, the system was able to achieve the
equilibrium in various opportunities (e.g., at t = 196
and at t = 893), but was kept yet in disequilibrium
almost all of the time.
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Figure 5: Agent obedience in 25% of the time
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Figure 6: Agent obedience in 50% of the time

Figures 5, 6, 7 and 8 shows the increasing effect
of the supervisor recommendations, according the in-
creasing level of the agents’ obedience to it. In par-
ticular, one can see that the range of deviations of
the material results from the equilibrium was progres-
sively reduced as the agents progressively adhered to
the supervisor’s recommendations.

The simple simulations that we produced seem to
confirm well the theoretical predictions that we could
derive from the supervisor model in section 5.1.

6 Conclusion

This paper introduced the QI–MDP version of
the Markov Decision Process. The combination of
interval-based modelling and qualitative approach to
the comparison of values of the model made it well
suited for solving the problem of keeping social ex-
changes in equilibrium.

From the point of view of Piaget’s theory of social
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Figure 7: Agent obedience in 75% of the time
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Figure 8: Agent obedience in 100% of the time

interactions, it means a sound way of making practical
use of the INRC group of social exchanges that struc-
ture the social interactions and defines its equilibrium
problem [9, 10].

The QI–MDP model is general enough to be applied
to other problems, besides the problem of keeping so-
cial interactions in equilibrium. It can be adapted
to model situations in which the social interactions
should be kept stable, but in disequilibrium. This can
be done by choosing a non null terminal state for the
supervisor.

The model can also be applied to equilibrium prob-
lems of other kinds of systems, besides systems of so-
cial exchanges, if such systems have one single terminal
(equilibrated, disequilibrated) state.

Regarding the notion of social control introduced
in [23], and explored in [12] in connection to multi-
agent systems, the social rules concerned with ex-
change values introduce the notion of exchange values-



based social control, first analyzed in [19]. Thus, the
present paper can be seen as a preliminary step in the
computational formalization of such notion.

Immediate future work will be concerned with the
case of an equilibrium supervisor that is not able
to determine the material balance of social exchange
processes with complete reliability (i.e., it is not al-
lowed to know all the exchange values of the two
agents). In this case, a partially observable Markov
decision process (POMDP) shall be considered (see,
p.ex., [15]), since the equilibrium supervisor shall be
able to make external observations (also probabilistic)
to help him to decide about the recommendations.

Further future works will deal with (i) the inter-
nalization of the model decision process introduced in
the paper, in each agent of the organization, so that
the mechanism of exchange values-based social control
that it supports can be performed in a decentralized
way, and (ii) further exploration of the role of exchange
values in dependence-based agent interactions.
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[5] A.C.R. Costa, J.F. Hübner, and R.H. Bordini.
On Entering an Open Society. In Proceedings of
Brazilian Symposium on Artificial Intelligence,
SBIA 94, Fortaleza, pages 535–546, 1994.

[6] A.C.R. Costa, J.M.V. Castilho, and D.M. Clau-
dio. Toward a Constructive Notion Of Functional-
ity. Cybernetics and Systems, 6(4):443–480, 1995.

[7] A.C.R. Costa and Y. Demazeau. Toward a For-
mal Model of Multi-agent Systems with Dynamic
Organization. In J.W. Perram and J.-P Müller
(Eds.), Proceedings of 2nd. International Confer-
ence on Multi-agent Systems, ICMAS’96, Kyoto,
page 431, 1996.

[8] A.C.R. Costa. The Piagetian Theory of Social Ex-
changes and its Application to Learning Envirom-
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