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ABSTRACT: The aim of this paper is to discuss the asymptotic properties of the coefficients
of generating functions which satisfy a system of functional equations. It turns out that
under certain general conditions these coefficients are related to the distribution of a
multivariate random variable that is asymptotically normal. As an application it turns out
that the distribution of the terminal symbols in context-free languages is typically asymptoti-

Ž .cally normal. Q 1997 John Wiley & Sons, Inc. Random Struct. Alg., 10, 103]124 1997
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1. INTRODUCTION

< <Let YY be a set of combinatorial objects, i.e., every element ogYY has a size o
<� < < 4such that the numbers y s ogYY : o sn are finite for every nonnegative integern

n. Especially, if YY has a recursive description, then the generating function
Ž . < o < ny x sÝ x sÝ y x satisfies a functional equation quite frequently.og YY nG 0 n

In order to give a first example and to motivate the topic of this paper, let us
consider the system of planted plane trees. They can be recursively characterized in
the following way: A planted plane tree contains a root which is followed by a finite
number kG0 of planted plane trees. Hence the corresponding generating function
Ž .y x satisfies the functional equation

x2y x sxqxy x qxy x q ??? s ,Ž . Ž . Ž .
1yy xŽ .
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which gives

'1y 1y4 x
y x sŽ .

2

and

1 2ny2nw xy s x y x s ,Ž .n ž /ny1n

Ž w n x Ž .which are the Catalan numbers. As usual, x y x denotes the nth coefficient of
Ž . .the power series y x .

This easy problem gets a little bit more involved if one is not only interested in
the numbers y of planted plane trees of size n but in the numbers y of plantedn nk
plane trees of size n with exactly k leaves. Similarly as above the corresponding

Ž . n kgenerating function y x, z sÝ y x z satisfies the functional equationn, k nk

xy x , zŽ .2y x , z sxzqxy x , z qxy x , z q ??? sxzq .Ž . Ž . Ž .
1yy x , zŽ .

Thus

2''xzyxq1y xzyxq1 y4 xzŽ .
y x , z sŽ .

2

is explicit, but this representation is not useful to obtain proper representations for
y . However, we can use Lagrange’s inversion formula. Fromnk

y1x
zsy ? ,xž /1y 1y y

we obtain

yk1 x
k ky1 kw x w xz y x , z s ¨ x 1yŽ . ž /k 1y¨

and consequently

w n k xy s x z y x , zŽ .nk

yk1 x
ky1 n kw xs ¨ x x 1yž /k 1y¨

1 1ny1ky1w xs ¨ nykž /nykk 1y¨Ž .
1 1ny1 ny2 ny1 ny1s s .ž / ž / ž / ž /nyk ky1 nyk kk ny1
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Hence, by Stirling’s approximation formula

p 22 ny1 y4Žkyn r2. r ny ; 2 e , 1.1Ž .nk 2n

i.e., these numbers admit a Gaussian limiting distribution.
It is also possible to obtain a functional equation for the generating function

Ž .y x, z for the numbers y of planted plane trees of size n and k nodes ofnk
outdegree d, where dG0 is a fixed nonnegative integer:

x d dy x , z s yxy x , z qxzy x , z .Ž . Ž . Ž .
1yy x , zŽ .

Ž .However, there is generally neither an explicit representation for y x, z nor a
Ž .method similar to the above Lagrange inversion to obtain proper exact formula

w x Ž .for y . Nevertheless, there is a general theorem 4 saying that if ysy x, znk
Ž . Žsatisfies a functional equation of the form ysF x, y, z with certain regularity

. Ž .conditions , then y x, z can be represented in the form

'y x , z sg x , z yh x , z 1yxrf z 1.2Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž .with proper analytic functions g x, z , h x, z , and f z , which leads to asymptotic
Ž . Ž .expansions for the coefficients y of y x, z , which is of type 1.1 , and tonk

asymptotic normality.
The aim of this paper is to discuss generating functions that satisfy a system of

Ž .functional equations and to obtain multivariate asymptotic expansions for the
coefficients. Systems of functional equations naturally appear in more involved tree
enumeration problems, e.g., every word in an unambiguous context-free language
can be uniquely represented by its derivation tree. The number of functional

Žequations for the generating functions of the corresponding counting problem i.e.,
counting the number of words of length n with given distribution of terminal

. Ž .symbols equals the number of nonterminal symbols see Section 3.2 .
Ž .As already mentioned, if the generating function y x, z satisfies a single

Ž .functional equation with some additional assumptions , then the problem is
w x w xalready solved in 4 . We will present a more systematic approach than in 4 . The

first step is to use the implicit function theorem and the Weierstrass preparation
Ž .theorem to provide a representation of the form 1.2 . The next step is to apply a

w xtransfer lemma by Flajolet and Odlyzko 7 to obtain an asymptotic expansion for
Ž . w n x Ž .y z s x y x, z . Finally the coefficient y is represented by Cauchy’s formula,n nk

and a standard saddle point method is applied to get an asymptotic expansion for
Ž .y which is always of a form similar to 1.1 and is related to a Gaussian limitingnk

distribution. Therefore, the main problem is to reduce a system of functional
equations to a single one. Of course, this is always possible by using an elimination

Ž w x.procedure. However, there are cases see 6 where the final limiting distribution is
not normal. Nevertheless, we will provide a sufficient condition such that a proper
elimination process terminates at a single functional equation for which the above
concept can be applied.

This paper is organized in the following way. In Section 2 we state and discuss
Žour main theorem. In Section 3 several examples and applications such as
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.context-free languages and tree enumeration problems are treated. Section 4 is
devoted to a systematic treatment of a single functional equation. Finally, Section 5
describes the reduction of a system of functional equations to a single functional
equation.

2. RESULTS

Ž . Ž Ž . Ž .. 1 Ž .Let F x, y, z s F x, y, z , . . . , F x, y, z 9 a vector of functions F x, y, z , 1F jFN,1 N j
Ž . Ž .with complex variables x, zs z , . . . , z 9, yss y , . . . , y 9, which are analytic1 k 1 N

Ž .around 0 and satisfy F 0, 0, 0 s0, 1F jFN. We will be interested in the analyticj
Ž . Ž Ž . Ž ..solution ysy x, z s y x, z , . . . , y x, z 9 of the functional equation1 N

ysF x , y, z 2.1Ž . Ž .

Ž . Ž . Ž .with y 0, 0 s0, i.e, the unknown functions y sy x, z , 1F jFN satisfy thej j
system of functional equations

y sF x , y , y , . . . , y , z ,Ž .1 1 1 2 N

y sF x , y , y , . . . , y , z ,Ž .2 2 1 2 N
...

y sF x , y , y , . . . , y , z .Ž .N N 1 2 N

Before stating Theorem 1 we have to introduce some notations. The dependency
Ž . Ž .graph G s V, E of a system of functional equations ysF x, y, z consists ofF
� 4 Ž .vertices Vs y , y , . . . , y and a directed edge y , y is contained in E if and1 2 N i j

Ž .only if F x, y, z really depends on y .i j
Ž 2 .In order to calculate specific parameters a vector m and a matrix s it is also

necessary to solve the system of functional equations

ysF x , y, z , 2.2Ž . Ž .

0sdet IyF x , y, z , 2.3Ž . Ž .Ž .y

Ž . Ž . Ž .where zs z , . . . , z 9 is the vector of variables and xsx z and ysy z are the1 k
unknown functions; I denotes the identity matrix. The parameters of interest are

x 1 x 1Ž . Ž .z zz2msy and s sy qm9mqdiag m , 2.4Ž . Ž .
x 1 x 1Ž . Ž .

where

­ x ­ x
x s , . . . ,z ž /­ z ­ z1 k

1 Ž . Ž .We always identify a k-dimensional vector as a , . . . , a 9 with a k=1 -matrix, i.e., a column.1 k
Furthermore, if A is a matrix, then A9 denotes the transposed matrix.



SYSTEMS OF FUNCTIONAL EQUATIONS 107

denotes the vector of first partial derivatives

­ 2 x
x s .zz ž /­ z ­ zi j 1Fi , jFk

Ž .the matrix of second partial derivatives of the solution xsx z .
In order to simplify the formulation of the following theorem we will make the

following restriction on F. We will call the system of functional equations ys
Ž . Ž . kq1F x, y, z of simple type if there exist kq1 -dimensional cones C :R , 1F jFN,j

Ž . Žcentered at 0 such that, for every j, all Taylor coefficients y where n andj, nm
Ž . .ms m , . . . , m 9 are nonnegative integers resp. integral lattice points of the1 k

solutions

y x , z s y x nzm 1F jFNŽ . Ž .Ýj j , nm
n , m

Ž . Ž .of 2.1 with n, m gC are nonzero provided that n, m , . . . , m are sufficientlyj 1 k
Ž m m1 m k .large. As usual z denotes z ??? z .1 k

In applications we are interested in the coefficients y have a combinatorialj, nm
interpretation. Therefore, it is more or less a combinatorial question to decide

Ž .whether ysF x, y, z is of simple type or not. We also want to note that there are
Ž w x.special cases see 12 where it is quite easy to find sufficient conditions for a single

functional equation to be of simple type.
Our main result is stated in the following theorem.

Ž . Ž Ž . Ž ..Theorem 1. Let F x, y, z s F x, y, z , . . . , F x, y, z 9 be analytic functions around1 N
Ž . Ž .xs0, zs z , . . . , z 9s0, ys y , . . . , y 9s0 such that all Taylor coefficients are1 k 1 N

Ž . Ž .nonnegatï e, that F 0, y, z '0, that F x, 0, z k0, and that there exists j with
Ž . Ž .F x, y, z k0. Furthermore, assume that the system ysF x, y, z is of simple typey yj j

and that the region of con¨ergence of F is large enough such that there exists a
nonnegatï e solution xsx , ysy of the system of equations0 0

ysF x , y, 1 ,Ž .

0sdet IyF x , y, 1 ,Ž .Ž .y

inside it.
Ž .If the dependency graph G s V, E of the systemF

ysF x , y, z 2.5Ž . Ž .

in the unknown functions

ysy x , z s y x , z , . . . , y x , z 9Ž . Ž . Ž .Ž .1 N

2 w Ž .xis strongly connected and if the matrix s defined in 2.4 is regular then the Taylor
coefficients of

y x , z s y x nzm 1F jFNŽ . Ž .Ýj j , nm
n , m



DRMOTA108

are asymptotically gï en by

a xyn 1 y1j 0 2 y1r2y s exp y mymn 9 s mymn qOO nŽ . Ž . Ž . Ž .j , nm ž /ž /kq2 kq1 kq3' 2n2 p n

2.6Ž .

uniformly for all n, m for which y /0; the numbers a , 1F jFN, are gï en byj, nm j
< < Ž .a s b , 1F jFN, where bs b , . . . , b 9 is a solution ofj j 1 N

IyF x , y , 1 bs0,Ž .Ž .y 0 0
2.7Ž .

b9F x , y , 1 bsy2F x , y , 1 .Ž . Ž .yy 0 0 x 0 0

Remark 1. Theorem 1 can also be interpreted in the following sense. Let X sn
Ž .X , . . . , X 9 be a sequence of discrete random vectors with distribution1n k n

y1, nm� 4Pr X sm s ,n y1, n

where

y s yÝ1, n 1, nm
m

Ž . Ž .is the coefficient of y x, 1 . Then the asymptotic expansion 2.6 is exactly a local1
limit theorem for X , i.e., X is asymptotically normal with expected value andn n
covariance matrix

EX smnqOO 1 and VX ss 2 nqOO 1 .Ž . Ž .n n

Ž w x .Compare with 2,4 .

Remark 2. The assumptions on F of Theorem 1 are quite natural. For example, if
Ž . Ž . Ž .F x, 0, z '0 then the only analytic solution of 2.1 is y x, z '0. Furthermore, if

Ž . Ž .F '0 for all j, then 2.1 is a linear system in y. Hence by Cramer’s rule y x, zy y jj j

is a quotient of analytic functions in x, z, and our methods will not apply. However,
Ž . Ž . Žif f z denotes the smallest positive zero of the denominator of y x, z which is0 j 0

. Ž .assumed to be simple , then y x, z has a polar singularity which varies in z . Atj 0 0
w xthis point we can apply results of 1,2 and obtain essentially the same asymptotic

expansions for y expansions for y as in Theorem 1.j, nm j, nm

Ž . Ž .Remark 3. The assumption that the dependency graph G s V, E of ysF x, y, zF
is strongly connected means that there is no subsystem of equations that can be
solved independently from the others. Of course, this is a restriction. However, if
this assumption is not satisfied, several cases may appear; in fact Theorem 1 need

w xnot remain true. In 6 the simplest case of two functional equations is discussed in
detail. The corresponding limiting distribution is either discrete, or x 2, or normal.

2 Ž .Remark 4. If the matrix s is singular, then 2.6 is not applicable. However, a
2 Ž .singular matrix s indicates that there are quite strict linear correlations
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between those n and m , . . . , m for which y /0. For example, in Section 3.21 k j, n m
we will count specific words of length n with m letters a, m letters b, and m1 2 3
letters c. Hence we always have nsm qm qm , and we can easily check that1 2 3
the corresponding matrix s 2 is singular. But, if we set z '1, which means that3
we only count words of length n with m letters a and m letters b then we can1 2
apply Theorem 1. A similar procedure can be used in general. If s 2 is a nonzero

2matrix, then there always is a maximal symmetric submatrix s which is regular.
2 � 4Suppose that s corresponds to columns resp. lines lgK: 1, . . . , k , then we only

have to set z '1 for l9fK, and we can apply Theorem 1 for this reducedl9
problem. Sometimes it is now possible to recover the full information about the

Ž .initial distribution as in the above-mentioned example discussed in Section 3.2 . In
Ž 2 . Ž .any case even in the case of singular s the full vector of mean value

Ž . Ž . Žmsyx 1 rx 1 has a natural interpretation. The expected values of X intro-z n
. Ž .duced in Remark 1 are always given by EX smnqOO 1 and can be easilyn

calculated.

Ž .Remark 5. The asymptotic expansion 2.6 is only relevant for those m which are
close to mn. However, it is possible to provide a proper asymptotic expansion
for all sufficiently large values of m if the region of convergence of F is large
enough. If c , . . . , c )0 are positive numbers and if we apply Theorem 1 to the1 k

Ž . Ž .functions y x, z , . . . , z sy y, c z , . . . , c z , 1F jFN, which satisfy the systemj̃ 1 k j 1 1 k k
of equations

y x , z sF x , y x , z , . . . , y x , z , cy1 z , . . . , cy1 z 1F jFN ,Ž . Ž . Ž . Ž .˜ ˜ ˜Ž .j 1 N 1 1 k k

then we obtain an asymptotic expansion for y cm1 ??? cm k for those m close toj, n m 1 k

msm c , . . . , c sy c x c , . . . , z rx c , . . . , c .Ž . Ž . Ž .˜ Ž .1 k j z 1 k 1 jj 1F jFN

Ž w x.It turns out see 1,2,4 that all resulting asymptotic expansions for y arej, nm
Žuniform for c , . . . , c )0 which are contained in a compact set provided all1 k

.calculations needed can be worked out inside the region of convergence of F .
Observe that those positive real numbers resp. vectors n9, m9 which satisfy m9s
Ž .m c , . . . , c n9, in which c , . . . , c vary in some range describe a cone. This justifies1 k 1 k

Ž .the restriction on systems of functional equations ysF x, y, z to be of simple type.

3. APPLICATIONS

3.1. Tree Enumeration Problems

As already indicated in the Introduction tree enumeration problems are frequently
Ž .related to functional equations of the form ysF x, y, z . Let us start with a series

of examples concerning independent subsets of trees.
Žw x.We consider simply generated famines TT of rooted trees 10 . This means that

Ž . 2there exists a power series w t s1qc tqc t q ??? with c G0 such that the1 2 j
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Ž . ngenerating function y x sÝ y x of the numbersnG 0 n

y s v T ,Ž .Ýn
< <TgTT , T sn

where

v T s c D jŽT .Ž . Ł j
jG0

Ž .is the ‘‘weight’’ of a rooted tree T and D T denotes the number of nodes of Tj
with out-degree j, satisfies the functional equation

y x sxw y x .Ž . Ž .Ž .

Ž . Ž . Ž .For example, if w t s1r 1y t , then every rooted tree T has weight v T s1,
and we are just considering planted plane trees as in the Introduction, or if
Ž . 2 Ž .w t s1q t , then every binary tree T has weight v T s1 and any other tree has

Ž . Ž .weight v T s0. If fact, y may be interpreted as the weighted number of rootedn
trees of a special type.

Ž .A subset I of the vertex set of a graph is called independent if no two elements
Ž .of I are adjacent. Let I T denote the number of independent subsets of a1, m

rooted tree T of size m such that the root is contained in the independent subset.
If we set

y s v T I T ,Ž . Ž .Ý1, nm 1, m
< <TgTT , T sn

y s v T I T ,Ž . Ž .Ý2, nm 2, M
< <TgTT , T sn

Ž .then y sy qy is the weighted number of independent subsets of sizenm 1, nm 1, nm
w x Ž .m in trees of size n. In 9 it is shown that the generating functions y sy x, z s1 1

n m Ž . n mÝ y x z , y sy x, z sÝ y x z satisfy the system of functionaln, m 1, nm 2 2 n, m 2, nm
equations

y sxzw xw y qy ,Ž .Ž .1 1 2

y sxw y qy .Ž .2 1 2

The situation is quite similar if one is interested in the number of maximal
Ž .independent subsets. A subset I of the vertex set of a graph is called maximal

independent if I is independent and if every vertex which is not contained in I is
Ž .adjacent to I. As above, we can introduce generating functions y sy x, z ,1 1

Ž .y sy x, z , which count the number of maximal independent subsets in simply2 2
Ž w x.generated families of trees. Here we have see 11

y sxzw xw y qy ,Ž .Ž .1 1 2

y sxw y qy yxw y .Ž . Ž .2 1 2 2

w xIn 3 several notions weaker than the notion of maximal independence are
Ž .considered. For example, a subset I of the vertex set of a rooted tree T is called
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2-independent, if I is independent and every vertex ¨ which is not contained in I
has distance F2 to I , where I denotes the restriction of I to the path connecting¨ ¨
the root and ¨ and to the subtree of T rooted at ¨ . Here the corresponding

Ž . Ž .functions y sy x, z and y sy x, z satisfy1 1 2 2

y sxzw xw y qxw y qy ,Ž .Ž .Ž .1 1 1 2

y sxw y qy yxw y yxw y qy qxw y .Ž . Ž . Ž .Ž .2 1 2 2 1 2 2

ŽIn any of these cases we can apply Theorem 1. Note that these systems of
� 4 .equations are of simple type if and only if gcd l)0: c /0 s1. We also want tol

mention that the first two systems of equations can be reduced to one equation if
one considers ysy qy . We obtain1 2

ysxzw xw y qxw y ,Ž . Ž .Ž .
resp.

ysxzw xw y qxw y yxw yyxzw xw y .Ž . Ž . Ž .Ž . Ž .Ž .

However, the third system of equations cannot be reduced to a single equation in
such a simple way.

Next we want to describe a very general situation, where systems of functional
equations appear. We consider rooted trees with N different types of nodes and a
node of type j is followed by m nodes of type i, 1F iFN, with ‘‘weight’’i
c G0. Here the generating functionsj,m , . . . , m1 N

y x , z , . . . , z s y x m1q ??? qm N z m1 ??? z m NŽ . Ýj 1 N j , m , . . . , m 1 N1 n
m , . . . , m1 N

of the ‘‘weighted’’ numbers y of those trees of size n with m nodes ofj, n, m , . . . , m i1 N

type i, 1F iFN, and with root type j satisfy the functional equations

m m1 Ny x , z sxz c y x , z ??? y x , z 1F jFN . 3.1Ž . Ž . Ž . Ž . Ž .Ýj j j , m , . . . , m 1 N1 N
m , . . . , m1 N

w xThis kind of relations has already been established in 6 . However, the main scope
w xof 6 was to determine asymptotic expansions for the number of trees in the case

of two types of nodes and where the dependency graph is not strongly connected.
Ž .Note that we cannot apply Theorem 1 directly to the system 3.1 since all
Žnumbers y that are nonzero satisfy m q ??? qm sn. Compare withj, nm . . . , m 1 N1 N

.Remark 4 and with the last paragraph of Section 3.2. However, if we set z '1 forl
specific l, if the above system is of simple type, and if the dependency graph is
strongly connected, then we can apply Theorem 1.

3.2. Context-Free Languages

We also want to mention another application of Theorem 1 to recursively defined
objects, namely, to context-free languages. Our aim is to determine the distribution
of the terminal symbols.
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For this purpose let us consider the following easy example of a context-free
grammar

Gs N , S , P , SŽ .

� 4 � 4with nonterminal symbols Ns S, T , terminal symbols Ss a, b, c , rules Ps
� 4SªaSbS, SªbT , TªbS, TªcT , Tªa , and start symbol S. The correspond-

Ž .ing context-free language L G consists of all words which can be generated from
Ž .S by using the rules P, e.g., the following derivation leads to a member of L G :

SªaSbS
ªabTbaSbS
ªabcTbaaSbSbbT
ªabcabaabTbbTbba
ªabcabaababbcTbba
ªabcabaababbcabba.

Ž .Obviously, the above grammar is unambiguous; any word of l G has a unique
derivation tree. Hence, if

sss u , u , u s s ul1 ul2 ul3Ž . Ý1 2 3 l l l 1 2 31 2 3
l , l , l1 2 3

Ž .denotes the generating function of the numbers s of those words in L G withl l l1 2 3

l terminal symbols a, l terminal symbols b, and l terminal symbols c and1 2 3

ts t u , u , u s t ul1 ul2 ul3Ž . Ý1 2 3 l l l 1 2 31 2 3
l , l , l1 2 3

Ž .denotes the corresponding generating function of the context-free language L G9
Ž . Ž .of the grammar G9s N, S, P, T i.e., the start symbol S of G is replaced by T ,

Ž . Ž .then sss u , u , u and ts t u , u , u satisfy the relations1 2 3 1 2 3

ssu u s2 qu t ,1 2 2

tsu squ tqu .2 3 1

We will now apply Theorem 1 to the above context-free language. Set y s1
Ž . Ž . Ž . Ž .y x, z , z ss xz , xz , x and y sy x, z , z s t xz , xz , x . Then y , y satisfy1 1 2 1 2 2 2 1 2 1 2 1 2

the system of equations

y sx 2 z z y2 qxz y ,1 1 2 1 2 2

y sxz y qxy qxz2 2 1 2 1

Ž .and the coefficient y of y x, z , z is exactly the number of words of length1, nm m 1 1 21 2

n with m terminal symbols a and m terminal symbols b. Furthermore, all1 2
assumptions of Theorem 1 are satisfied. Especially we obtain x s0.4658229 . . .0

Ž .and ms 0.22723 . . . , 0.53813 . . . . This means that an average word consists of
22.7% terminal symbols a and of 53.8% terminal symbols b.

Ž .Note that it is not useful to consider the functions y sy x, z , z , z s1 1 1 2 3
Ž . Ž . Ž .s xz , xz , xz and y s y x, z , z , z s t xz , xz , xz . Here the coefficient1 2 3 2 2 1 2 3 1 2 3
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Ž .y of y x, z , z , z is the number of words of length n with m terminal1, nm m m 1 1 2 3 11 2 3

symbols a, m terminal symbols b, and m terminal symbols c. But we always have2 3
m qm qm sn, which means that m , m , m cannot vary independently if n is1 2 3 1 2 3
fixed. In this case we cannot apply Theorem 1. The corresponding matrix s 2 is

Ž .singular compare with Remark 4 and with the last paragraph of Section 3.1. .

4. THE IMPLICIT FUNCTION THEOREM REVISITED

The most important tool in the proof of Theorem 1 is the following proposition
Ž .which describes the structure of the dominating singularity of the solution ysy x, z

Ž .of a functional equation ysF x, y, z .

Ž .Proposition 1. Let us suppose that F x, y, z is an analytic function in x, zs
Ž . Ž . Ž .z , . . . , z 9, and y such that F 0, y, z '0, that F x, 0, z k0, and that all Taylor1 k
coefficients of F around 0 are real and nonnegatï e. Then the unique solution

Ž .ysy x, z of the functional equation

ysF x , y , z 4.1Ž . Ž .

Ž .with y 0, z s0 is analytic around 0 and has nonnegatï e Taylor coefficients around 0.
Ž .Furthermore, if we assume that the region of con¨ergence of F x, y, z is large

enough such that there exist nonnegatï e solutions xsx and ysy of the system of0 0
equations

ysF x , y , 1 ,Ž .
1sF x , y , 1 ,Ž .y

Ž . Ž .with F x , y , 1 / 0 and F x , y , 1 / 0, then there exist functionsx 0 0 y y 0 0
Ž . Ž . Ž . Ž .f z , g x, z , h x, z which are analytic around xsx , zs1 such that y x, z is analytic0

< < < <for x -x and z F1, 1F jFk, and has a representation of the form0 j

x
y x , z sg x , z yh x , z 1y 4.2Ž . Ž . Ž . Ž .( f zŽ .

Ž . Ž Ž . . Ž Ž . .locally around xsx , zs1. We ha¨e f 1 sx , g f z , z sy f z , z , and0 0

2 f z F f z , g f z , z , zŽ . Ž . Ž .Ž .Ž .x
h f z , z s .Ž .Ž . ) F f z , g f z , z , zŽ . Ž .Ž .Ž .y y

Ž .If z is real and close to 1, then f z is the radius of con¨ergence of the power series
Ž . Ž Ž .. Ž .x¬y x, z . Moreo¨er, if arg xy f z /0, then 4.2 pro¨ides a local analytic contin-

Ž .uation of y x, z .

Ž . Ž .Remark 6. Note that the assumptions F x , y , 1 /0 and F x , y , 1 /0 arex 0 0 y y 0 0
Ž . Ž .really necessary to obtain a representation of the form 4.2 . If F x , y , 1 s0,x 0 0

Ž . Ž Ž .. Ž .then F x, y, z and y x, z would not depend on x. Furthermore, if F x , y , 1y y 0 0
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s0, then F is of the form

F x , y , z syF x , z qF x , z ; 4.3Ž . Ž . Ž . Ž .1 2

then

F x , zŽ .2
y x , z s , 4.4Ž . Ž .

1yF x , zŽ .1

Ž .which is explicit and surely not of the form 4.2 . However, representation of the
Ž . Ž Ž . .form 4.4 where F x, z k0 usually leads to the same asymptotic expansions for1

Ž .the coefficients of y x, z as is the case covered by Proposition 1; compare with
Remark 2.

Ž . Ž .Proof. First, we show that there exists a unique analytic solution ysy x, z of
Ž . Ž . Ž .ysF x, y, z with y 0, z s0. Since F 0, y, z s0, it follows that the functional

mapping

y x , z ¬F x , y x , z , zŽ . Ž .Ž .

Ž .is a contraction for small x. Thus the iteratively defined functions y x, z '0 and0

y x , z sF x , y x , z , z nG0Ž . Ž . Ž .Ž .nq1 n

Ž . Ž .converge uniformly to a limit function y x, z , which is the unique solution of 4.1 .
Ž .By definition it is clear that y x, z is an analytic function around 0 and has realn

Ž .and nonnegative Taylor coefficients. Consequently, the uniform limit y x, z is
analytic, too, with nonnegative Taylor coefficients.

It is also possible to use the implicit function theorem. Since

F 0, 0, z s0/1,Ž .y

Ž . Ž .there exists a solution ysy x, z of 4.1 that is analytic around 0.
Ž .However, it is very useful to know that all Taylor coefficients of y x, z are

Ž .nonnegative. Namely, it follows that if y x, z is regular at x , z which are real and0 0
Ž . < < < <positive, then y x, z is regular for all x, z with x Fx and z Fz . Therefore, we0 0

will now suppose that x and z are real and positive.0 0
Ž .For a moment let z F1 be fixed. Let f z denote the radius of convergence of0 0 0

Ž . Ž . Ž .y x, z . It is well known that x s f z is a singular value of y x, z . The0 0 0 0 0
mapping

x¬F x , y x , z , zŽ .Ž .y 0 0

Ž .is strictly increasing for real and nonnegative x as long as y x, z is regular. Note0
Ž Ž . . Ž Ž . .that F 0, y 0, z , z s0. As long as F x, y x, z , z -1, it follows from they 0 y 0 0

Ž .implicit function theorem that y x, z is regular even in a neighborhood of x.0
Ž .yHence there exists a finite limit point x such that lim y x, z sy is finite0 x ª x 0 00

Ž . Ž .and satisfies F x , y , 1 s1. If y x, z were regular at xsx , theny 0 0 0 0

y x , z sF x , y x , z , z qF x , y x , z , z y x , zŽ . Ž . Ž . Ž .Ž . Ž .x 0 0 x 0 0 0 y 0 0 0 0 x 0 0
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Ž Ž . . Ž .would imply F x , y x , z , z s0, which is surely not true. Thus y x, z isx 0 0 0 0 0
w Ž . x Ž .singular at xsx i.e., x s f z is the radius of convergence and y x , z is0 0 0 0 0 0

finite.
Ž .Now, let us consider the equation yyF x, y, z s0 around xsx , ysy , zs1.0 0

Ž . Ž .We have 1yF x , y , 1 s0 but yF x , y , 1 /0. Hence by the Weierstrassy 0 0 y y 0 0
Ž w x. Ž . Ž . Ž .preparation theorem see 8 there exist functions H x, y, z , p x, z , q x, z , which

Ž . Ž .are analytic around xsx , ysy , zs1, and satisfy H x , y , 1 /1, p x , 1 s0 0 0 0 0
Ž .q x , 1 s0, and0

2yyF x , y , z sH x , y , z yyy qp x , z yyy qq x , zŽ . Ž . Ž . Ž . Ž . Ž .Ž .0 0

Ž . Ž .locally around xsx , ysy , zs1. Since F x , y , 1 /0 we also have q x , 1 /0 0 x 0 0 x 0
Ž . Ž .0. This means that any analytic function ysy x, z which satisfies ysF x, y, z in

a subset of a neighbourhood of xsx , zs1 with x , 1 on its boundary is given by0 0

2p x , z p x , zŽ . Ž .
y x , z sy y " yq x , z .(Ž . Ž .0 2 4

Ž . Ž .Since p x , 1 s0 and q x , 1 /0, we have0 x 0

2
­ p x , 1Ž .

yq x , 1 /0,Ž .ž /­ x 4 xsx 0

Ž .too. Again by the Weierstrass preparation theorem there exist functions K x, z
Ž . Ž . Ž .and r z which are analytic around xsx , zs1 such that K x , 1 /0, r 1 s0,0 0

and

2p x , zŽ .
yq x , z sK x , y xyx q r zŽ . Ž . Ž . Ž .Ž .04

Ž .locally around xsx , zs1. This finally leads to a local representation of ysy x, z0
of the kind

x
y x , z sg x , z yh x , z 1y , 4.5Ž . Ž . Ž . Ž .( f zŽ .

Ž . Ž . Ž .in which g x, z , h x, z , and f z are analytic around xsx , zs1 and satisfy0
Ž . Ž . Ž .g x , 1 sy , h x , 1 -0, and f 1 sx .0 0 0 0

Our starting point was to show that for positive real z the radius of conver-0
Ž . Ž .gence x s f z of y x, z can be extracted from the system of equations0 0 0 0

Ž . Ž . Ž . Ž .ysF x, y, z , 1sF x, y, z . Thus f z s f z for positive real z . Similarly we0 y 0 0 0 0 0
Ž . Ž .can show that xs f z is a singular point of y x, z if z is close to the reals, where0

Ž . Ž Ž ..xs f z and ysg z are the solutions of the system of equations0 0

ysF x , y , z ,Ž .0
4.6Ž .1sF x , y , zŽ .y 0
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Ž . Ž .Thus f z s f z even in this case. Therefore, we can calculate the derivatives of0
Ž .f z by implicit differentiation.

Ž Ž . . Ž Ž .. Ž Ž . ..Furthermore, it is clear that g f z , z sg f z sy f z , z , which gives0

2g x , z sg f z qg f z , z xy f z qO xy f z .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .ž0 0, x

Ž Ž . .In order to calculate h f z , z , we use Taylor’s theorem

0sF x , z, y x , zŽ .Ž .
sF f z , z, g z xy f yŽ . Ž . Ž .Ž .Ž .x 0

21q F f z , z, g z y x , z yg z q ???Ž . Ž . Ž . Ž .Ž . Ž .y y 0 02 4.7Ž .

sF f z , z, g z xy f yŽ . Ž . Ž .Ž .Ž .x 0

2 3r21 < <q F f z , z, g z =h f z , z 1yxrf z qO xy f zŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .y y 02

Ž Ž ..and by comparing the coefficients of xy f z we immediately obtain

2 f z F f z , z, g zŽ . Ž . Ž .Ž .x 0
h f z , z s . BŽ .Ž . ) F f z , z, g zŽ . Ž .Ž .y y 0

Ž .Corollary. Suppose that F x, y, z satisfies the same assumptions as in Proposition 1.
Then

2 f z F f z , g f z , z , z xŽ . Ž . Ž .Ž .Ž .x
y x , z sg f z , z y 1yŽ . Ž .Ž . ) (F f z , g f z , z , z f zŽ . Ž . Ž .Ž .Ž .y y

< < 3r2qg f z , z xy f z qO 1yxrf z . 4.8Ž . Ž . Ž . Ž .Ž . Ž . Ž .x

Ž . Ž Ž . . Ž < Ž . <. Ž .Proof. Since h x, z sh f z , z qO 1yxrf z , 4.8 immediately follows from
Proposition 1. B

Ž . ŽThus we have succeeded in determining the exact behavior of y x, z consid-
. Ž .ered as a function in x near its real singularity xs f z at its radius of conver-

gence if z is positive, real, and close to 1. Next we will show that if we assume that
Ž .ysF x, y, z is of simple type, then there are no other singularities on the circle

< < Ž .x s f z .

Ž .Lemma 1. Suppose that F x, y, z satisfies the same assumptions as in Proposition 1
and is of simple type. Then for z sufficiently close to 1 the radius of con¨ergence of the

Ž . < Ž . <power series x¬y x, z is f z and there are no other singularities on the circle of
< < < Ž . < Ž . Ž .con¨ergence x s f z than xs f z . Furthermore, there exists «)0 such that y x, z

< < < Ž . < Ž Ž ..can be analytically continued to the region x F f z q« , arg xy f z /0.

Ž .Proof. Suppose that z is real and positive and let y x, z be represented as a
power series

y x , z s y z x n .Ž . Ž .Ý n
n
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Ž . < Ž . < Ž < < . < <Then by assumption y z )0 for nGn . Hence y x, z -y x , z if x/ x andn 0
consequently

F x , y x , z , z -F f z , y f z , z , z s1Ž . Ž . Ž .Ž . Ž .Ž .y y

< < Ž . Ž . Ž w x .for x s f z , x/ f z . Compare with 12 . Thus, by the implicit function theorem
< < Ž .there are no other singularities on the circle x s f z .

Ž .Note that the local expansion 4.5 is also valid for nonreal z. It is now an easy
< Ž . < Ž . Žexercise to show that f z is the radius of convergence y x, z considered as a

. Ž .function in x if z is sufficiently close to the reals. Obviously, xs f z is a singular
Ž . < Ž Ž .. <point of y x, z . Furthermore, by continuity we also obtain F x, z, y x, z -1 fory

< < < Ž . < < Ž . < Ž .x F f z and xy f z Gd , where d)0 is sufficiently small. Thus xs f z is the
Ž . < < < Ž . < < < < Ž . <only singularity of y x, z on the circle x s f z and it is regular for x - f z .

Ž .Furthermore, the implicit function theorem implies that y x, z has an analytic
Ž . < < < Ž . < < Ž . <continuation at xs f z . Since the range x s f z , xy f z Gd is compact there

Ž . < < < Ž . < Ž Ž ..surely exists «)0 such that y x, z is analytic for x F f z q« , arg xy f z /0.
B

w xNow we are in a position to apply a transfer lemma of Flajolet and Odlyzko 7 .

Lemma 2. Let

F x s a x nŽ . Ý n
nG0

be analytic in a region

< <Ds x : x -x qh , arg xyx )q ,� 4Ž .0 0

in which x and h are positï e real numbers and 0-q-pr2. Furthermore, suppose0
� 4that there exists a real number af 0, y1, y2, . . . such that

ya
F x sOO 1yxrx xgD .Ž . Ž . Ž .Ž .0

Then

a sOO zyn nay1 .Ž .n 0

Ž .Corollary. Suppose that F x, y, z satisfies the same assumptions as in Proposition 1
Ž . w n x Ž . Ž . Ž . nand is of simple type. Set y z s x y x, z , i.e., y x, z sÝ y z x . Thenn nG 0 n

12 f z F f z , z, g zŽ . Ž . Ž .Ž . ynx 0 yn y5r22y z s yf z qO f z nŽ . Ž . Ž .Ž . Ž .n ) ž /nF f z , z, g zŽ . Ž .Ž .y y 0

f z F f z , z, g zŽ . Ž . Ž .Ž .x 0 yn yny3r2 y5r2s f z n qO f z n 4.9Ž . Ž . Ž .Ž .) 2p F f z , z, g zŽ . Ž .Ž .y y 0

uniformly for z which are sufficiently close to 1.
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Ž w xWhat remains is to apply a multivariate saddle point method compare with 2
w x.and 5 to extract the coefficient y ofnm

y z s y zm .Ž . Ýn nm
m

Ž .Proposition 2. Suppose that F x, y, z satisfies the same assumptions as in Proposi-
tion 1 and is of simple type. If the ¨ector m and the matrix s 2 are gï en by

u u1 k­ log f e , . . . , eŽ .
ms yž /­ uj 1FjFkus0

and by

2 u u1 k­ log f e , . . . , eŽ .
2s s yž /­ u ­ ui j 1Fi , jFkus0

and if s 2 is regular, then

ynx F x , y , 1 xŽ .0 x 0 0 0
y snm ) k k kq3'2p F x , y , 1Ž . 2 p ny y 0 0

1 y12 y1r2= exp y mymn 9 s mymn qO n . 4.10Ž . Ž . Ž . Ž . Ž .ž /ž /2n

Remark 7. Note that the preceding representation of m and s 2 corresponds with
Ž .the definition given in 2.4 . Since

u1 uk f eu1 , . . . , euk eu j­ log f e , . . . , e Ž .Ž . z Js u u1 k­ u f e , . . . , eŽ .j

Ž . Ž .and f z sx z we obtain

x 1Ž .z
msy .

x 1Ž .

Similarly s 2 can be calculated.

Ž .Sketch of the Proof. The basic idea is to extract the coefficient y of y z snm n
Ý y zm by Cauchy’s formulanG 0 nm

p p1 nit i t yiŽm t q ??? qm t .1 k 1 1 k ky s ??? y e , . . . , e e dt ??? dt .Ž .H Hnm n 1 kk
yp yp2pŽ .

It turns out that the major part of this integral comes from that part of integration,
where t , 1F lFk, are very close to 0. Sincel

1 2y1 y1i t i t im9ty t9s t1 k 2f e , . . . , e ; f 1 e ,Ž . Ž .
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Ž .in which ts t , . . . , t , we can approximate the integrand by1 k

nit i t yiŽm t q ??? qm t .1 k 1 1 k ky e , . . . , e eŽ .n

f 1 F f 1 , g 1 , 1Ž . Ž . Ž .Ž . n 2x 0 yny3r2 iŽ m nym.9ty t9s t2;n f 1 e .Ž .) 2p F f 1 , g 1 , 1Ž . Ž .Ž .y y 0

Ž .Hence, 4.10 follows almost directly. A detailed proof of a related problem can be
w xfound in 5 . B

ŽRemark 8. It is also very easy to derive asymptotic normality of X from Re-n
. Ž . Ž .mark 1 in terms of a weak limit theorem directly from 4.9 without using 4.10

Ž w x.see 1, 2 .

5. REDUCTION TO A SINGLE EQUATION

In this final section we will show that the assumptions of Theorem 1 assure that we
Ž .can apply the concept presented in Section 4 so that the asymptotic expansion 2.6

wfollows immediately from Proposition 2 see also Remark 9 and Lemma 3 in order
Ž .xto evaluate the parameters needed in 2.6 .

Ž . Ž Ž . Ž ..Proposition 3. Let ysy x, z s y x, z , . . . , y x, z 9 be the solution of the system1 N
Ž .of functional equations ysF x, y, z satisfying the same assumptions as in Theorem 1.

Ž .If the dependency graph G of ysF x, y, z is strongly connected, then there exists aF
Ž . Ž . Ž . Ž .function f z and functions g x, z , h x, z 1F jFN which are analytic aroundj j

xsx , zs1 such that0

x
y x , z sg x , z yh x , z 1yŽ . Ž . Ž .j j j ( f zŽ .

Ž Ž ..locally around xsx , zs1 with arg xy f z /0.0

Proof. For the sake of shortness and transparency we just discuss the case of
three functional equations. The general case of N functional equations can be
treated along the same lines.

Ž .We consider a system of functional equations for the unknown functions
Ž .y sy x, z , 1F jF3:j j

y sF x , y , y , y , z ,Ž .1 1 2 3

y sG x , y , y , y , z , 5.1Ž . Ž .2 1 2 3

y sH x , y , y , y , z ,Ž .3 1 2 3

Ž .where zs z , . . . , z 9 is a k-dimensional complex vector,1 k

F 0, y , y , y , z sG 0, y , y , y , z sH 0, y , y , y , z s0,Ž . Ž . Ž .1 2 3 1 2 3 1 2 3
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and that F, G, H are analytic functions in x, z, y , y , Y are real and nonnegative1 2 3
and the regions of convergence are large enough in the sense that the following
calculations can be worked out inside them. Furthermore, we may assume that

F 2 k0, G 2 k0, H 3 k0.y y y1 2 3

For example, if F 2 '0 then F has the formy1

F x , y , y , y , z sy f x , y , y , z qg x , y , y , zŽ . Ž . Ž .1 2 1 1 2 3 2 3

and y can explicitly represented by1

g x , y , y , zŽ .2 3
y s .1 1y f x , y , y , zŽ .2 3

Ž .Inserting this into the second and third equation of 5.1 yields a reduction of the
number of equations.

Finally the condition that the dependency graph is connected may be translated
into

F k0, G k0, H k0, 5.2Ž .y y y2 3 1

into

F k0, G k0, G k0, H k0, 5.3Ž .y y y y2 1 3 3

Ž . Ž .or into conditions symmetric to 5.2 or 5.3 .
Ž .The basic idea to extract the solutions y , y , y of 5.1 is quite simple. With1 2 3

Ž .help of the implicit function theorem we can use the third equation of 5.1 to
Ž .obtain y sy x, y , y , z , where y and y are considered as additional variables.3 3 1 2 1 2

Ž .Next we insert this solution into the second equation of 5.1 and extract y s2
Ž .y x, y , z , where y is considered as an additional variable. Finally we insert2 1 1
Ž . Ž Ž . . Ž .y x, y , z and y x, y , y x, y , z , z into the first equation of 5.1 and obtain just2 1 2 1 2 1

Ž .one equation for one unknown function y sy x, z . At this point we will be able1 1
Ž . Ž .to describe the singularity structure of y x, z and hence that of y x, z s1 2

Ž Ž . . Ž . Ž Ž . Ž . .y x, y x, z , z and that of y x, z sy x, y x, z , y x, z , z .2 1 3 3 1 2
Ž .From y sH x, y , y , y , z we immediately obtain that its solution y s3 1 2 3 3

Ž . w Ž . xy x, y , y , z with y 0, 0, 0, 0 s0 is analytic around 0 and all Taylor coefficients3 1 2 3
Ž .are real and nonnegative see section 4 . Furthermore, it can be analytically

continued as long as

­
y yH x , y , y , y , z s1yH /0.Ž .Ž .3 1 2 3 y3­ y3

In this region we obtain by implicit differentiation

H H­ y ­ yy y3 31 1s and s .
­ y 1yH ­ y 1yH1 y 2 y3 3

Note that the Taylor coefficients of these functions are real and nonnegative, too.
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Ž Ž . .Next consider the equation y sG x, y , y , y x, y , y , z , z . Similarly its solu-2 1 2 3 1 2
Ž . Ž Ž . .tion y sy x, y , z with y 0, 0, 0 s0 is analytic around 0 and its Taylor2 2 1 2

coefficients are real and non-negative. It can be analytically continued as long as

­
y yG x , y , y , y x , y , y , z , zŽ .Ž .Ž .2 1 2 3 1 2­ y2

H­ y y3 2s1yG yG s1yG yG /0.y y y y2 3 2 3­ y 1yH2 y3

Again by implicit differentiation

Hy­ y 13 G qGG qG y yy y 1 3 1y H­ y 1 3 ­ y y1 32 s s .­ y H3 y 2­ y 1yG yG 1yG yG1 y y y y2 3 ­ y 2 3 1y H2 y3

As mentioned above, the next step is to consider the equation

y sF x , y , y x , y , z , y x , y , y x , y , z , z , z . 5.4Ž . Ž . Ž .Ž .Ž .1 1 2 1 3 1 2 1

Ž .Its solution y sy x, z is exactly the unknown function we are looking for.1 1
w Ž . Ž .Obviously, if we insert this function y x, z into y x, y , z , we obtain the1 2 1

Ž . Ž Ž . . Ž . Ž Ž .unknown function y x, z s y x, y x, z , z . Similarly y x, z s y x, y x, z ,2 2 1 3 3 1
Ž . . xy x, z , z .2

Ž .By the implicit function theorem the solution y x, z is analytic as long as1

­ y ­ y ­ y ­ y2 3 3 2
J x , z sF qF qF qŽ . y y y1 2 3 ž /­ y ­ y ­ y ­ y1 2 2 1

Hy1G qGy y1 3 1y H y3sF qFy y H1 2 y 21yG yGy y2 3 1y H y3

Hy1G qGy y1 3 1y HH H yy y 31 2qF qFy y H3 3 y 21yH 1yH 1yG yGy y3 3 y y2 3 1y H y3

/1.

Ž .Clearly we also have to check that H /1 and that G qG H r 1yH /1.y y y y y3 2 3 2 3

However, this will follow almost automatically as we will see in a moment.
Ž . Ž .For a moment, let zs z , . . . , z s 1, . . . , 1 be fixed and suppose that x is real1 k
Ž . Ž .and nonnegative. Since J 0, 1 s0 and the mapping x¬J x, 1 is strictly increasing

Ž . Žthere surely exists a minimal solution xsx of the equation J x, 1 s1. Note that0
we have now used the assumption that the regions of convergence of F, G, and H
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.are large enough. Furthermore, it follows that

H sH x , y x , 1 , y x , 1 , y x , 1 , 1 -1 5.5Ž . Ž . Ž . Ž .Ž .y y 0 1 0 2 0 3 03 3

and that

Hy2G qG -1. 5.6Ž .y y2 3 1yHy3

Ž .This can be checked in the following way. It is clear that 5.5 can only fail if a term
of the form

1

1yHy3

Ž . Ž .does not appear in J x, 1 resp. 5.6 can only fail if a term of the form

1
Hy 21yG yGy y2 3 1y H y3

Ž .does not appear in J x, 1 . However, it is easy to check that this cannot occur if the
corresponding dependency graph is strongly connected.

Hence we are in a situation as described in Section 4. There exist analytic
Ž . Ž . Ž . w Ž . xfunctions g x, z , h x, z , f z around xsx , zs1 satisfying f 1 sx such that1 1 0 0

Ž .y x, z admits the representation1

x
y x , z sg x , z yh x , z 1y . 5.7Ž . Ž . Ž . Ž .1 1 1 ( f zŽ .

Ž . Ž .Moreover, as mentioned above, 5.7 yields similar representations for y x, z and2
Ž . Ž . Ž .y x, z . From 5.6 it follows that y x, y , z is analytic around xsx , y s3 2 1 0 1
Ž . Ž .y x , 1 sg x , 1 , zs1. Hence by Taylor’s theorem1 0 1 0

y x , z sy x , y x , z , zŽ . Ž .Ž .2 2 1

x
sy x , g x , z yh x , z 1y , zŽ . Ž .2 1 1 (ž /f zŽ .

x
sg x , z yh x , z 1y ,Ž . Ž .2 2 ( f zŽ .

Ž . Ž . Ž .in which g x, z and h x, z are analytic functions around xsx , zs1 . A2 2 0
Ž .similar representation holds for y x, z :3

x
y x , z sg x , z yh x , z 1y . BŽ . Ž . Ž .3 3 3 ( f zŽ .

Ž .Remark 9. In the preceding proof the function f z has been extracted by
Ž . Žconsidering the functional equation 5.4 . We also want to mention that if the

. Ž .dependency graph is strongly connected if is also possible to obtain f z by using



SYSTEMS OF FUNCTIONAL EQUATIONS 123

the following system of equations:

y sF x , y , y , y , z ,Ž .1 1 2 3

y sG x , y , y , y , z ,Ž .2 1 2 3

y sH x , y , y , y , z ,Ž .3 1 2 3

F y1 F Fy y y1 2 3

G G y1 G0s ,y y y1 2 3

H H H y1y y y1 2 3

Ž . Ž . Ž .where z is considered as the only variable and y sy z , y sy z , y sy z , and1 1 2 2 3 3
Ž . Ž .xsx z s f z are the unknown functions. This is also generally true. The system

Ž . Ž . Ž . Ž Ž ..2.2 , 2.3 , i.e., ysF x, y, z , 0sdet IyF x, y, z , which was used to define m andy
2 Ž . Ž .s in Section 2 can always be used to extract xsx z s f z .

Ž . Ž Ž ..Set D x, y, z sdet IyF x, y, z . Then by implicit differentiationy

y sF x qF qF y , 5.8Ž .z x z z y z

0sD x qD qD y . 5.9Ž .x z z y z

If the dependency graph is strongly connected it turns out that the matrix

IyF yFy x

D Dž /y x

Ž . Ž .is regular. Hence the above system 5.8 , 5.9 can be used calculate x and y .z z
ŽSimilarly we obtain x . Note that if we are only interested in m which meanszz

.that we only have to calculate x , then there is a very quick way of calculation.z
Ž . Ž . Ž .Since D x, y, z sdet IyF s0, there always exists a vector asa z such thaty

Ž . Ža9 IyF s0. In fact, if the dependency graph is strongly connected then IyFy y
.has rank Ny1, i.e., a is unique up to a nonzero factor. Hence we obtain

a9Fz
x syz a9Fx

Ž .from 5.8 .
Ž .Finally, we can now prove that 2.7 has a solution b.

Ž .Lemma 3. By assuming the assumptions of Theorem 1 the system 2.7 has exactly
Ž . Ž .two solutions bs" a , . . . , a 9, where a )0, 1F jFN, and y x, 1 are locally1 N j j

represented by

y x , 1 sc ya 1yxrx 1F jFN 5.10Ž . Ž . Ž .'j j j 0

for certain positï e real numbers c , 1F jFN.j

Ž . Ž . w Ž .xProof. By applying Taylor’s theorem to F x, y, 1 and inserting 5.10 as in 4.7j
Ž . Ž . Ž Ž . Ž . .we see that as a , . . . , a 9 and ya satisfy 2.7 . Moreover, since IyF x z , y z , z1 N y
Ž .has rank Ny1 by the connectedness of G these are the only solutions. BF
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