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SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS
WHICH GENERATE AN ORDER PRESERVING FLOW.

A SURVEY OF RESULTS *

HAL L. SMITH

Abstract. This article consists of a survey of results concerning the qualitative behavior of solutions
of systems of ordinary differential equations which generate an order preserving flow. We restrict our
consideration to partial orderings on R" induced by any one of its orthants; a flow preserves ordering if any
two solutions x(t) and y(t) are ordered, x(t)<-y(t), for all > 0 whenever x(0)=< y(0). Many of the
important results for such systems have only recently been obtained, principally by M. W. Hirsch, who
pointed out the tendency of their solutions to converge to equilibrium. Less well known are some global
geometric constraints on the stable manifold of an equilibrium and the existence of heteroclinic orbits
connecting ordered equilibria. A particularly striking result for this class of systems is the easily computable
necessary and sufficient condition for stability of an equilibrium.

One of our main goals is to show that by allowing partial orderings on R generated by orthants other
than the positive one, the usual restrictive Kamke (quasimonotone) condition (all "off-diagonal" feedbacks
are positive) which results from the standard ordering is modified in such a way as to allow (selectively)
some negative feedback. As a consequence, there are many interesting and nontrivial applications of the
theory.

Although the focus of this paper is on systems of ordinary differential equations, some recent
comparison results, derived by Conway and Smoller, for systems of reaction-diffusion equations fit quite
naturally in our framework and are reviewed.
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1. Introduction. The purpose of this paper is to give a survey of some results
for systems of ordinary differential equations in R n which have the property that the
flow preserves a partial ordering "--<c" in R generated by one of the orthants, K
ofR. More precisely, we consider here autonomous systems of ordinary differential
equations:

(1.1) x’=f(x), x UCR"

where f is a continuously differentiable function defined in a suitable open set U of
R. We write Ct(x) for the solution x(t) of (1. l) which satisfies x(0) x. Let K be an
orthant of R, K {x R": (- 1)mxg >- O, <- <- n}, where m; {0, }. Then K is a
cone in R" and, as such, generates a partial ordering "=<K" in R in the usual fashion:
x -< y if and only if y x K. We say that the flow of (1. l) preserves ----<K in case that
whenever x and y lie in U and x =<K Y then (x) --<K Ct(Y) for all -> 0 for which both
solutions are defined.

The well-known result, often attributed to Kamke [27] but in fact due to Miiller
[35], gives sufficient conditions for the flow of (1.1) to preserve the usual partial
ordering on R" induced by the cone R. These conditions are roughly that f is
nondecreasing in xj. for j # in U. This well-known result was extended to give
sufficient conditions for the partial ordering generated by any orthant K of R" to be
preserved by a flow by Burton and Whyburn [7]. Historically, the motivation for
these results was to obtain upper (maximal) and lower (minimal) solutions to a given
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initial value problem, where typicallyfwas assumed only to be continuous. We refer
the reader to one of the texts [10], [31], [59] for a fuller discussion of these results.

Our motivation in this paper is quite different. We assume enough smoothness
onfthat (1.1) generates a unique solution for each initial condition in U and that the
solution depends smoothly on initial conditions. Our focus is on the asymptotic
behavior of solutions of (1.1) and on the constraints on this limiting behavior imposed
by the fact that the flow preserves a partial ordering. As mentioned, this paper consists
of a survey of results on this subject, most ofwhich are in the literature but which are
not well known, at least to many in the applied areas, and most of which are quite
recent. There would be no reason for such a survey if not for the impressive recent
results of Hirsch [19]-[23]there would be few results to survey. Indeed, the author’s
own contributions in this paper and in [46]-[48], [50], [51] have by and large been
inspired by the work of Hirsch. However, there have been many other authors who
have contributed important results. Among these, we mention Selgrade [40], [42],
Martin [32], Matano [33] and Krasnosel’skii [28].

In the literature of applied mathematics, there are numerous examples of systems
of differential equations for which the flow preserves a partial ordering. The gonorrhea
model due to Lajmanovich and Yorke [30]

y[ -aiYi-(i- Yi) Y iijYj, <- <-_ n
j=l

is an example of a system for which the flow preserves the usual partial ordering in
the subset IIf= [0, ci] of R. Under suitable conditions and when all constants are
nonnegative, all solutions tend to zero in the feasible region or all nontrivial solutions
tend to a unique positive equilibrium [30], [2]. Othmer [36] and Selgrade [40] have
studied biochemical feedback loops modeled by the following system:

X[ f(Xn)-- OlXl,
2<__i<-n.

X Xi-1 OliXi

The xi represent chemical concentrations so the natural domain is R. Iff’ >- O, the
system describes a positive feedback loop and the usual ordering on R" is preserved
by the flow. The set of steady states of the system, when nonempty, is typically a
totally ordered subset with alternating stable and unstable steady states [40].

In population biology, one finds many examples of systems for which the
flow preserves a partial order. For example, the two species Kolmogorov model of
competition

x’ xf (x, y),

y’ yf2(x, y),

in which Of/Oy <-0 and Of2/Ox <- 0 is an example of a system whose flow preserves
the partial ordering generated by the second quadrant in R, the time reversed flow
preserves the usual ordering. It is known [17], [24] that all bounded solutions of the
system tend to a steady state. Takeuchi, Adachi and Tokumaru [56], [57] and Post,
Travis and DeAngelis [38], [58] study the Lotka-Volterra system modeling competi-
tion between two subcommunities of species, each community consisting of species
which act cooperatively among themselves. The system can be written as follows:

x’ diag (x)[rl -bAx- By],

y’ diag y)[r Cx+ Dy],
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in which (x, y) R+ xR-, A is a k x k matrix whose off diagonal entries are
nonnegative, D is (n- k)x (n- k) with the same property and B and C have
nonnegative entries. The components of x denote the density of the species in one
community and those of y denote the densities of the other community. The flow of
this system preserves the partial ordering generated by the cone Rg+ x (-R-k).
Remarkable results for such systems have been obtained by Takeuchi and Adachi
[56] and Travis and Post [58] without using the monotonicity properties of the flow.
Some of these results rely on Lyapunov function arguments due to Gob [15], [16].
The author has exploited the monotonicity of the flow to study more general
Kolmogorov type models of competition between subcommunities in [50], [5 l]
making use of results of Hirsch and Selgrade.

Finally, we mention that systems 1. l) arise in the modeling ofa dynamic market
in which the prices of n commodities form the components ofx andf is proportional
to the excess demand function. In case the various commodities are substitutable,
then the flow of (1.1) will preserve the usual partial ordering on R (see, e.g., [43]).

For further examples of systems with the property that the flow preserves a partial
ordering for > 0 we recommend the book by De Angelis, Post and Travis [1 l]
(see also 5).

While the present article is intended as a survey of results, it is by no means a
complete one. We have selected results to be included here based solely on the bias
ofthe author and on a desire to keep the paper to a manageable length. An important
factor in deciding which results to include and which to exclude is the applicability
of a particular result to concrete applications. As a result of this bias, many important
results have been excluded. A reader interested in exploring this field to a greater
depth should certainly consult the work of Hirsch [19]-[23], Selgrade [40]--[42],
Matano [33] and Krasnosel’skii [28].

The organization of this paper is as follows. In 2 we present necessary and
sufficient conditions for the forward flow map to preserve a partial ordering
generated by an orthant of R n. Then we turn to the central problem, that of
determining the asymptotic behavior of solutions of (1.1). Certainly the most impor-
tant result, due to Hirsch [20, Thm. 2.5], says roughly that almost every solution of
(1.1) tends to an equilibrium if a partial ordering (and a certain other condition) is
preserved. It should be remarked that the results of Hirsch [20]-[23] were formulated
for monotone flows in (possibly) infinite-dimensional spaces which are strongly
ordered (see also Matano [33]). We will state these results as they apply to finite-
dimensional flows which preserve a partial ordering generated by an orthant. Simple
results, due to Hirsch [19] and Selgrade [40], which give sufficient conditions for a
particular solution to converge will be stated.

If most solutions of (1. l) tend to equilibria, then it becomes doubly important to
find and determine the stability type of the various equilibria. For systems 1. l) whose
flow preserves a partial ordering generated by an orthant, we find that Df(x) is similar
to a matrix having nonnegative off-diagonal elements. There is an extensive literature
on such matrices which stems from the fact that the Perron-Frobenius theory of
nonnegative matrices 13] applies to them. We refer the reader to the references 12],
[13], [26], [37] and especially to [5]. It turns out that there is a simple necessary and
sufficient test for Dr(x) to be a stable matrix (eigenvalues in the open left half-plane)
which involves computing the signs of the principal minors of a matrix associated to
Df(x). This and other results from the linear algebra of these matrices are discussed
in 2.

The behavior of solutions of (1. l) in the neighborhood ofan unstable steady state
is strongly influenced by the fact that a partial ordering is preserved by the flow. We
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show in 2 that one typically expects monotone heteroclinic orbits to issue from
unstable steady states and to terminate either at infinity or on a stable steady state.
This result places strong constraints on the geometry of the set of equilibria of (1.1).
In addition, we generalize a result of Selgrade [40], which gives geometrical informa-
tion concerning the stable manifold of an unstable steady state. From these results
there emerges a general description of the geometry of the set of equilibria which we
discuss in 2.

Periodic orbits would seem to be of little importance for systems (1.1) preserving
a partial ordering. Hirsch has observed that they can never be attracting 19]. However,
periodic orbits are important for systems (1.1) for which the time reversed flow
preserves a partial ordering, the so-called competitive systems, which can have
attracting closed orbits [19], [52]. We do not consider competitive systems in this
paper, although many of the results stated here can be applied to such systems by
time reversal. We conclude 2 with some brief remarks concerning periodic orbits.

In 3 we describe a simple algorithm for identifying whether or not the flow
corresponding to a particular system (1.1) preserves a partial ordering generated by
an orthant. Briefly, the off-diagonal elements of Df(x), the Jacobian matrix of f,
should not change sign in U (sign stability), Df(x) should be sign symmetric ((Of/Ox)(x)
and (OJj/Ox3(y) should have the same sign for x, y U, i# j) and, in the words of
Travis and Post [58], "friends of friends are friends, friends of enemies are enemies
and enemies of enemies are friends." The algorithm lends itself to a simple graph
theoretic interpretation which we describe in 3.

Armed with this algorithm, we describe certain classes of systems (1.1) possessing
order preserving flows. We are led naturally to the class of tridiagonal monotone
systems. This class was singled out by Smillie [45] who proved that all bounded
semiorbits converge to equilibria. This result should have important applications.

In4 we indulge ourselves by describing some results which are somewhat outside
the scope of the material in the previous sections. We discuss some very nice
comparison results due to Conway and Smoller [9] and Gardner [14] for reaction
diffusion systems:

u=DAu+f(u), xe f,

Ou
0 on 0f,

Ov

u(x, O)= u(x), xe a
with Neumann boundary conditions. Here, f C_ R", u: f--R, D is a positive
diagonal matrix and v is an outer normal to 0f. It is not assumed that the reaction
term f possesses any monotonicity properties but only that fpoints inward along the
boundary of an n-dimensional rectangle. Under these, and additional assumptions,
the above-mentioned authors associate 2- pairs of autonomous ordinary differential
systems which bound, with respect to various partial orderings, solutions of the
reaction diffusion system for which u(x) belongs to the rectangle for x in f.

It turns out that this result is most naturally stated in terms of the type K
monotone systems introduced in 2 (4 preserves the partial ordering induced by the
orthant K). Indeed, each ofthe 2n-I pairs ofcomparison systems is a typeK monotone
system whereKruns through 2n-I ofthe orthants ofR, and these comparison systems
have a certain natural characterization as minimal and maximal type K monotone
systems with respect to the reactive term fi These facts, together with the results of2
give a clearer picture of what one can expect to accomplish by using the comparison



ORDER PRESERVING FLOWS 91

technique. Perhaps the principle observation is that the comparison technique is ideal
for the study of the stability of constant steady states of reaction diffusion systems for
which the reactive term f is a type K monotone system.

We mention that all the ideas in {}4 are applicable to ordinary differential systems
(1.1) (D 0) with f satisfying the constraint mentioned above.

Finally, we should note that it is not our intent to survey monotonicity results
for partial differential systems. This author is certainly unqualified for such a task. It
should be pointed out, however, that many of the ideas and results described in 2
have counterparts for nonlinear parabolic systems and in some cases it appears that
these ideas were first applied to partial differential equations. Besides the results of
Hirsch [20]-[23] which were intended for application to possibly infinite-dimensional
systems, we should mention the work ofMatano [33], Martin [32], Sattinger [39] and
Kuiper [29].

In 5 we present an application of the results of the previous sections to a
mathematical model of repressible cyclic gene systems. We obtain results for general
repressible terms which generalizes earlier work of Banks and Mahaffy [4] in the case
that there are no time delays and the number of participating genes is even.

This author has extended many of the results discussed in this survey to apply to
functional differential equations in [53].

We end this section with some notation and conventions to be used throughout
this paper. The letter n will be reserved for the dimension of R n and N will denote
the set {1, 2, 3, ..., n}. IfKis an orthant ofRn we write x<=i y(x <i y) if and only if
y x K(y x interior ofK). Ifx <_-r y, let Ix, y]r {z e R": x <_-/ z <_-r y}. The sub-
script K will be dropped in case K R, the nonnegative orthant.

2. Type K monotone systems. The purpose of the present section is to define the
class of type K monotone systems and to describe some results which are known for
such systems.

We begin by considering

(2.1) x’ =f(x)
where f is a continuously differentiable function defined on a convex, open set U in
R" (see Remark 3 below for a weakening of the convexity requirement). We seek
sufficient conditions for the flow associated with (2.1) to preserve a partial ordering
on R generated by an orthant. More precisely, let m (m,..., ran), mi E {0, 1},

-< =< n, and Km {X Rn: (-- )mix O, <- <= n}. We say that the solution operator
4t of (2.1) preserves the partial ordering -<r (for t _-> 0) and (2.1) is type Km monotone
if whenever x, y e U with x--<--rm Y then 4t(x) <--Im 4t(Y) for all t >- 0 for which both
,(x) and ckt(y) are defined. The following lemma gives necessary and sufficient
conditions for (2.1) to be a type Km monotone system in the case that fe C(U) for
an open convex set U in R n.

LEMMA 2.1. Iffe C(U) where U is open and convex in R then ckt preserves the
partial ordering <=imfOr t >--0 ifand only ifPmDf(x)Pm has nonnegative off-diagonal
elementsfor every x U, where Pm diag ((- 1)m’, (_ 1)m").

In order to simplify notation, we will hereafter drop the subscript m on P and
onK.

Proof (Sufficiency). Define g:PU-->R by g(x)=Pf(Px). Then Dg(x)=
PDf(Px)P so Dg(x) has nonnegative off-diagonal elements and satisfies the Kamke
condition [27], [35]. Hence cktg(.) preserves <_- for t>=0. But 4ft(x)=Pckgt(Px),

g Pckgt(Px) <=i,, P4gt(PY) orso if xg y then Px < Py, so sg(Px) < 4 (PY), so
t)ft(x)K )ft( y)o
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(Necessity). If(. (. preservesK then since x _-< x + (-1)se for s _-> O,
we have

or

so

so

t(X)gm Ct(X "" (-- )mjsj) for t->0, s_->0

,(x+ (- 1)mse) ,(x)
Ogm s>O, t>-O

S

0,
(x)o

SO

O < (-- rnj+miOC (X),

poet (x)P >--x __0,

Since (Oo/OX)(X) I it follows that

0

Ot

But

SO

t>O

P= diag ((- )ml, ", (-- )mn).

t=O P-x (X) >_-0 if i#j.
ij

t=OkX (X) Df(x)

0

t=0

0,
(x)P= PDf(x)PP-x

so (PDf(x)P)o >- 0 if #-j. This completes our proof.
Remark 1. The proof shows that if (2.1) is type K monotone, then the change of

variables y= Px in (2.1) yields a system y’= g(y), ge C(PU), g(y)= Pf(Py), for
which the flow t preserves the usual partial ordering _-< on R" and Dg(y) has
nonnegative off-diagonal elements in PU. Thus, when it is useful to do so, we will feel
free to establish our future results for this case only. In the applications, however, one
often has some intuition concerning the system (2.1) which may be obscured by
making the above change of variables.

A "canonical" form for type K monotone systems can be obtained by permuting
equations and variables in (2.1) in the same way so that m consists of k ones
followed by n- k minus ones. In this way we arrive at a system (2.1) where
X (X1, X2) Rg x Rn-, f= (f f2) and

OXl
Df(x)

OXl OX2
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where Of/Ox and Of2/Ox: have nonnegative off-diagonal elements and Of/Ox2 <-_ O,
Of/Ox <= O. In these coordinates, the flow of (2.1) preserves the ordering induced by
the cone R+ x (-R$-).

Remark 2. The proof shows that (2.1) is type K monotone if and only if

(2.2) POd-(x)P>-O, t>-O, x U.

Remark 3. The requirement of convexity of U can be weakened. As pointed out
by Hirsch [19], it suffices for U to be "order" convex in the sense that if x, y e U with
x _-<: y then tx + (1 t)y U for 0 _-< t _-< 1. Of course, will preserve -< for _-> 0
under weaker conditions than those described in Lemma 2.1. For example, iff is
locally Lipschitz in U and for each i, f satisfies the condition that whenever x and y
are in U with xi yi and x. _-< y, j# i, it follows that f(x) <-_ fi(y), then preserves
the usual ordering -<_ for t-> 0. This approach can be modified to consider the
preservation of -</ as well (see, e.g., [7], [31 ], [51 and (H) of 4). In this way we could
avoid restrictions on the set U and weaken our smoothness requirements on f

Remark 4. Lemma 2.1 leads to a useful algorithm for testing a system (2.1) in
order to see if it is type K monotone for some rn (and for finding m). Although for
small values of n, it is usually a trivial matter to identify a type K monotone system,
when n is large it can be a nontrivial matter. We will describe a simple algorithm for
detecting type K monotonicity in the next section. Here, we content ourselves by
reinterpreting the sufficient condition ofLemma 2.1 as

(2.3) (-1)m’+mO-fi (x)>-O, ij, xeU
oXj

and noting that it requires "sign stability" of the off-diagonal elements of Df(x), i.e.,
Of/Ox cannot have opposite signs in U for each i, j, j, and it requires "sign
symmetry" of Df(x) in the sense that (Of/Ox)(Of/Oxi)>-0 in U. These conditions are
not sufficient however (see 3).

A significantly stronger monotonicity property is enjoyed by the flow t in the
case that Df(x) is an irreducible matrix for each x e U. We say (2.1) is irreducible in
this case. Recall that an n x n matrix is irreducible if it does not leave invariant any
proper nontrivial subspace generated by a subset of the standard basis vectors for R"
or, equivalently, if one cannot put the matrix in the following form:

Ic
where A and C are square matrices by a reordering of the standard basis (see [13]).
Somewhat inaccurately, (2.1) is irreducible if it cannot be decomposed into two
subsystems, one ofwhich does not depend on the other (imagine a linear system with
the above coefficient matrix). The result below has been proved by a number of
authors in varying degrees of generality (see Berman and Plemmons [5], Martin [32],
Aronsson and Kellogg [1] and Hirsch [20]). Hirsch [20] appears to be the first to fully
exploit the hypothesis of irreducibility.

LEMM 2.2. If (2.1) is an irreducible type K monotone system then
P(O4)t/Ox)(x)P> 0 for t > O. Hence, if x, y are distinct points of U with x <--i y then
4)t(x) <--c ebb(y)for t > O.

A proof of Lemma 2.2 can be found in Hirsch [20]. We note that the sec-
ond assertion of the lemma follows immediately from the first together with the
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fundamental theorem of calculus. The stronger monotonicity property enjoyed by
irreducible type K monotone systems has the following noteworthy corollary: Ifx and
y are distinct equilibria with x -< y, then in fact x </ y.

In addition to the stronger monotonicity property enjoyed by irreducible type K
monotone systems, there is another advantage of the irreducibility hypothesis. By
Lemma 2.1, if (2.1) is type K monotone and t->_ 0 then P(Odpt/Ox)P >-0 and by
Lemma 2.2, if in addition (2.1) is irreducible and > 0, then the matrix is positive
(all elements are positive). The Perron-Frobenius theorem yields stronger results for
positive matrices than for nonnegative matrices 13], [5]. Recall that for a nonnegative
matrix A, the spectral radius of A is an eigenvalue and there is a corresponding
nonnegative eigenvector. IfA is a positive matrix then the spectral radius must be a
positive simple eigenvalue strictly larger in modulus than all remaining eigenvalues
and the corresponding eigenvector is positive and the only nonnegative eigenvector
up to scalar multiple. These stronger spectral properties of positive matrices can be
exploited in a differential equations setting (see [52] and later remarks in this section).

The asymptotic behavior of a typical solution of a type K monotone system is
convergence to equilibrium. This statement is more precisely formulated in a result
of Hirsch which we will describe in a later paragraph. Our immediate goal is to
describe two relatively simple sufficient conditions for a bounded solution to converge
to an equilibrium.

LEMMA 2.3. Let O+(x)= {4t(x): t _-> 0} be a semi-orbit of a type K monotone
system and suppose O+(x) has compact closure in U. Then either of the following is
sufficientfor 4,(x) to tend.to an equilibrium as t-- :

(a) (Selgrade [41]) f(x) >--i 0 (f(x) <-_: 0),
(b) (Hirsch [19]) r(x) >/x (v(x) <ix)for some T> O.
Both (a) and (b) are extremely useful, (a) being more useful in the applications

while (b) is a fundamental theoretical tool. We give a brief informal sketch of the
proof. In the case of (a) with f(x)>-iO, it is immediate from the monotonicity
properties off that x + Km is positively invariant for (2.1) (it is easiest, and it suffices,
to see this for Km--R). Hence ff)t(X)g X for _--> 0 and thus 4t+(x)g if)S(x)
whenever s _-> 0 by the monotonicity of s. It follows that the components of t(x) are
monotone functions of and this proves (a). In case (b) with r(x)>/ x, it follows
that lim,_= 4nr(X) 2 exists since the components of {nT(X)}nO are monotone in n
and bounded. By continuity, (2) :, so O(:) {t(2): t e R} is a closed orbit having
T as a period and the omega limit set ofx is O(2). Since the inequality 4r(x)>x is
a strict one, r,(x) > x for T’ in an open set containing T. Thus the closed orbit O(:)
must have a nonempty open set of periods. It follows that O() is an equilibrium.

For examples of the application of (a) to concrete systems the reader is referred
to [40], [51]. Hirsch [19] observes numerous consequences of(b). Noteworthy among
these are that a type K-monotone system cannot have an attracting closed orbit nor
can any two points ofan omega limit set be related by </. For in either case, one can
find an appropriate orbit satisfying (b) and providing an appropriate contradiction.

In low dimensions (n _-< 3) the a and w limit sets of a type K-monotone system
can be completely categorized. In two dimensions, a bounded positive or negative
semiorbit must converge to equilibrium in an eventually monotone manner. This fact
has been noted by several authors [17], [23], [40]. In three dimensions we have for
type K-monotone systems.

THEOREM 2.4 (Hirsch [19]). Ifn 3 and L is an omega limit set which contains
no equilibria then L is a (nonattracting) closed orbit. If L is an alpha limit set
containing no equilibria then L is either a closed orbit or a cylinder ofclosed orbits.
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This author showed in [52] that an alpha limit set containing no equilibria must
be a closed orbit if the system is an irreducible type K monotone system (see [52] for
other conditions implying this result). This result is most important for so-called
competitive systems for which a partial ordering is preserved for t, t _-< 0. Such
systems can have attracting closed obits [52].

For n > 3, no such general result exists. In fact, it is known that type K-monotone
systems can possess invariant sets on which the flow is as complicated as for invariant
sets of arbitrary smooth systems. Smale [44] has proved that any smooth vector field
on the standard n- simplex in R can be extended to smooth vector field on R
which is type K monotone (K R) in R. Although the simplex is a repeller in this
construction, the dynamics on the invariant simplex may be arbitrarily complex.
Hirsch [19] has proved a sort of converse to this result of Smale implying that a limit
set of a type K monotone system can be no more complicated than an invariant set
for a general system in one less dimension. We will not give a precise statement of
this result. Instead, we state the following.

THEOREM 2.5 (Hirsch [20], [21]). Let 4t be the flow of an irreducible type K
monotone system with the property that all forward orbits have compact closures.
Assume that the set of steady states of(2.1) is a discrete set in U. Then the set Y of
points x Ufor which t(x) does not converge to a steady state of(2.1) has Lebesgue
measure zero.

We have strengthened considerably the hypotheses used by Hirsch [20,
Thm. 4.1 in order to avoid some definitions and a somewhat clumsier statement.
Theorem 2.5 is an immediate consequence of a sharper result of Hirsch which we
will have occasion to use later in this section. This result asserts that if Ot is the flow
of an irreducible type K monotone system and if S is a nonempty simply ordered
subset of U containing points whose forward orbits are bounded, then the subset So
of points of S whose positive limit sets do not belong to the set E of equilibria is
countable.

A much stronger assertion than that of Theorem 2.5 can be made in the case
that more is assumed about the properties of the flow. Let E denote the set of steady
states of (2.1). If e e E, let B(e) denote the basin of attraction of e. The following
result is a consequence of Theorem 9.4 of Hirsch [23].

THEOREI 2.6. Let Xo be an open, bounded, positively invariant set for an
irreducible type K monotone system, whose closure, o, contains a finite number of
equilibria. Then

t_J Int (B(e))
eEX

is open and dense in Xo.
Int (S) denotes the interior of S. It is not difficult to see that Int (B(e)) if e is

linearly unstable (there exists an eigenvalue of the Jacobian with positive real part).
The results of Hirsch suggest that the asymptotic behavior of a typical solution

of a type K monotone system is convergence to an equilibrium. Thus it will be
particularly important to determine the stability type of each equilibrium of (2.1). If
x0 is an equilibrium of (2.1) then the matrix A Df(xo) is the coefficient matrix of the
variational equation about Xo. By Lemma 2.1, A is similar to a matrix whose off-
diagonal elements are nonnegative. We will call any matrix A having the property
that the off-diagonal elements ofPmAPm are nonnegative for some m, a type K matrix.
We write s(A) for the stability modulus of an n n matrix, s(A) max Re , where ,
runs over the spectrum of A. We call A a stable matrix if s(A)< 0. The following
result summarizes some of the special properties of type K matrices.
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TI-IOgM 2.7. Let A be a type K matrix. Then s(A) is an eigenvalue ofA and
there exists a corresponding eigenvector v K. Thefollowing are equivalent:

(i) s(A) < O.
(ii) There exists u >/0 such that Au <0.

(iii) -A- ->/ 0.

(iv)

>0, l<-k<-_n.

(-1)f(xo + (-1)tu)<:O, o-=O,

for sufficiently small positive t. It follows from the monotonicity offthat the "interval"
[Xo- tu, Xo + tu]i is positively invariant for (2.1). Indeed, the vector field, on the
boundary, points into [Xo- tu, Xo + tu]i for small positive t.

It is interesting to consider the bifurcations which can occur from a steady state
of a type K monotone system in view of Theorem 2.7. It is not difficult to see from
the Perron-Frobenius theorem that if , a + i/3,/3 0 is an eigenvalue ofA Df(xo)
then a < s(A). It follows that a stable steady state loses stability as a parameter is
varied by a real eigenvalue crossing from negative to positive on the real axis. A
complex conjugate pair of eigenvalues can cross the imaginary axis only after a real
eigenvalue has changed sign. Hence a locally stable Hopf bifurcation cannot occur
for type K monotone systems. Unstable Hopf bifurcations can occur from unstable
steady states as shown by Selgrade [41 ]. The Perron-Frobenius theorem also implies
that s(A) is a simple eigenvalue in case A and is an irreducible type K matrix. It is

(v) There exists d> 0 such that the symmetric matrix diag (d)A + A diag (d) is
negative definite, where diag (d) is the diagonal matrix with d, ..., d, down
the main diagonal.

We remark that the inequality B _-> 0 for an n n matrix means precisely that
B maps the orthant K into itself.

The reader may have guessed that the Perron-Frobenius theorem lies behind
many of the assertions of Theorem 2.7. For a proof of most of Theorem 2.7 and for
many other interesting facts about type K matrices, we refer the reader to Berman
and Plemmons [5, Chap. 6] where they are called M matrices (see also Fiedler and
Ptak [12] and Johnson [26]).

In order to interpret.the results of Theorem 2.7 it is useful, and causes no loss of
generality, to assume that A has nonnegative off-diagonal elements, in which case the
partial ordering is the usual one. Notice that by (ii), A can be stable only if each
diagonal element is negative and dominates the other entries in that row. This result
is certainly intuitive. It is quite remarkable that (iv) is precisely the test for negative
definiteness of a symmetric matrix (ignoring the absolute values in the general case).
We have a straightforward test for stability of a type K monotone system, in contrast
to the case of a general matrix. The various other equivalent conditions have proved
to be useful and have been exploited by many authors [15], [16], [30], [38], [40], [43],
[50], [51], [57], [58]. For example (v) has been used by Gob [15], [16] to obtain
Lyapunov functions for Lotka-Volterra equations (see also [56], [57]). The equivalent
condition (ii) has a simple geometrical interpretation for a steady state Xo of (2.1)
where A Df(xo). It implies that
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well known that bifurcation of a steady state must always occur as a simple real
eigenvalue crosses the imaginary axis. We see that the only local bifurcation involving
an exchange of stability that a steady state of an irreducible type K monotone system
can be involved in is a steady state bifurcation.

The existence of heteroclinic trajectories connecting steady states of dynamical
systems with monotonicity properties has been considered by several authors. We
mention results of Selgrade [42] and Matano [33], the latter results apply to a reaction
diffusion equation as well. We present a result below which, while requiting more
smoothness than the results of Selgrade and Matano, has the advantage that we need
only suppose the existence of a single unstable steady state.

THEOREM 2.8. Suppose (2.1) is a typeK monotone system and letfhave a locally
Lipschitzian derivative in U. Suppose f(xo)= O, So s(Df(xo)) > 0 is a simple eigen-
value of Df(xo) with corresponding eigenvector v >=i O. Suppose Xo + K is contained
in U. Then there exists a unique C function y: [0,) Xo + K with the following
properties:

(1) y(r) Xo + rv + o(r) as r--O.
(2) 4t( y(r)) y(eStr), t R, r >= O.
(3) 0 -< r < r2 implies y(r) <=i y(r2).
(4) Either limr_ y(r)l] or limr__,= y(r) x where Xl >=I Xo, f(x) O. If

x >r Xo then s(Df(x)) <= O. IfDf(x) is irreducible ands s(Df(x)) with correspond-
ing eigenvector w >=0 then limr__,= (y’(r)/ll Y’(r)[[ w.

(5) If lim,-_,= y(r)[I then II,(x)ll- as t--- for all x >-_: Xo, X# Xo. If
limr__,= y(r) x then ,(x) x for all x with Xo <-ix <=x x Xo.

Theorem 2.8 states that the monotone curve I’ {y(r): r _-> 0} is a heteroclinic
orbit of (2.1) connecting the unstable steady state Xo to the steady state Xl (or ).
In addition, the steady state x, if not asymptotically stable, at least attracts all
initial conditions x with Xo <--x <_-/ Xl. If x >/ Xo, then the domain of attraction
ofx includes an open set so we may expect that, genetically, x is asymptotically
stable (s(Df(x))<O). If Df(xo) is irreducible, then v >/0 and it follows from (1)
Theorem 2.8 that x >/ x0.

The functional identity (2) can be interpreted in terms of the following commu-
tative diagram of mappings:

F - F

[o, ) -- [o,)
r----) rest

The parametrization y ofthe heteroclinic orbit I’ has been chosen in order to linearize
the action oft on F.

In Theorem 2.8, we have only stated half of the story. If Xo- K is contained in
U, there exists a unique C function z: [0, ) -- Xo K satisfying z(r) Xo rv + o(r)
as r 0, (2) with z replacing y, (3) 0 =< r < r_ implies z(r) >-i z(r), (4) with x _-</ Xo
and limr_o (z’(r)/llz’(r)ll) -w, and the obvious changes in (5).

The assumption that Xo + K is contained in U can be significantly weakened. It
suffices for there to exist a closed positively invariant set P for (2.1) in U contain-
ing Xo + rv for small positive r. In this case y(r) lies in Xo + K P for r _-> 0 (see [49,
Remark 4]).
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In the genetic case then, Theorem 2.8 implies that a steady state of (2.1) is either
asymptotically stable or there are two monotone heteroclinic orbits of (2.1) connecting
the steady state to two different asymptotically stable steady states.

Proofof Theorem 2.8. Theorem 2.8 was proved for mappings by the author in
[49; see Thms. 1.1, 2.1, 2.2 and Remarks]. The translation from mappings to flows is
fairly standard so we will be brief. Fix to > 0 and note that the results of [49] apply to
the map T to(" ); that is, Cbto(Xo) Xo, Dqbto(Xo) >----K 0 and Dto(Xo) has spectral radius
est > with corresponding eigenvector v _->/ 0. Theorems 1.1 and 2.1 of [49] apply to
T and we obtain a function Yto" [0, o) -- Xo / K satisfying (1), (2) with t replaced by
to, (3), (4) except that to(X) x and o(D4to(X)) <_- ifx >/ Xo, and (5) except that
IIvo(X)ll---, oo if limroo yo(r)ll- oo and ckZ,to(X)---> X1 if limr__.oo yto(r)= Xl, as p---.
Also, by Theorem 1.1 in [49] we have yto(r) limv__.oo k,to(Xo + e-’Strv), the limit being
uniform on compact r-sets.

Replacing to above by (p/q)to where p and q are positive integers we obtain y(p/q)t
with properties as above and it is easy to see that y(v/q)to(r)= Yto(r) on [0, oo). If Q/
denotes the positive rational numbers then we have for n, o e Q/to that

,(y(r)) (y,(r)) y,(eS"r)= y,o(eSr),

the second equality following from (ii) of Theorem 1.1 in [49]. The equality
y,,(r) k,(yoo(re-S")) from above can be used together with the uniqueness of yt for
t > 0 from Theorem 1.1 of [49] to show that the equality extends to all n > 0 with
co Q/to. From this the continuity of the map (n, r)---> y,,(r) follows and hence
Ytl(r) yto(r) for any t > 0. Now dpt(Yto(r))= qbt(Yt(r)) yt(eStr) so that (2) follows for
t > 0 where y(r) Yto(r). Since (2) holds for t > 0 it also holds for < 0 by applying t
to (2) with t replaced by -t.

Since ckt(x) limr__.oo ckt(y(r)) limroo ckt(yt(r))= limr__,oo yt(etr) limr__.oo y(eStr)
x, it follows that x is a steady state of (2.1).
The remaining assertions are trivial to check using the monotonicity of t.
From Theorem 2.8 and the remarks following it, we conclude that an unstable

steady state Xo should give rise to two other steady statesx_ and Xl with X--1 K X0K Xl
and we may expect, genetically, that x-1 andx are asymptotically stable. The converse
is also true [51, Lemma 3.7].

PROPOSIXION 2.9. Suppose Xl andx are steady states of(2.1) with s(Df(xi)) < 0
for 1, 2 and Xl <i x2. Then there exists at least one steady state Xo in [Xl, x2]/ with
s(Df(xo)) >- O.

If (2.1) is an irreducible type K monotone system, one can make some genetic
statements about the set E of equilibria based on the previous results. Recall that
irreducibility implies that two steady states are either unrelated by -<c or are strongly
related (by <to). Assume that all equilibria are nondegenerate. Let x and x2 be two
equilibria as in Proposition 2.9 and assume that there are no other stable equilibria
in [Xl, x] (if there are, replace for example x2 by a "nearest to x" stable equilibria).
Then a simple Brouwer degree argument as in [51 shows that [x, x2] must contain,
apart from Xl and x, an odd number of equilibria and each ofthese must be unstable
(s > 0). Theorem 2.8 implies that each of these unstable equilibria gives rise to a most
unstable manifold connecting it to Xl and to x. Such a block [x, x] together with
its unstable equilibria and connecting orbits can be viewed as a typical "atom" making
up the set E.

Our final result concerns the geometry of the stable manifold of an unstable,
hyperbolic, steady state of (2.1). If Xo is such a steady state, we denote by W(xo) the
stable manifold of x0, a C manifold, immersed in U, consisting of points which are
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asymptotic to Xo as t-* oo for the flow. The content of Theorem 2.10 is that no two
distinct points of WS(xo) can be related by --<r. Such a result was proved by Selgrade
[40] in the special case that K R and dim WS(xo)= n- for a particular class of
equations. Theorem 2.10 extends his result.

THEOREM 2.10. Let (2.1) be a typeK monotone system. Suppose Xo is a hyperbolic
steady state of(2.1) where s(Df(xo)) > 0 and Df(xo) is irreducible. Then WS(xo) does
not contain distinct points x and y with x <-i y.

Proof We first show that the result holds for linear systems. By making the
change of variables y Px where P diag (1, l, ..., l, 1, l, ..., l) has k ones
followed by n k minus ones down the diagonal, we may as well assume K R (see
Remark following Lemma 2.1). Taking Xo 0 and (2.1) as x’ Ax where aij >--0
if # j and A irreducible, we have eat > 0 by ]. Thus if u Ws(O) [0} and u >- 0,
then eAtu > 0 for t > 0. But then there exists v > 0 with v Ws(o) (take v eAtu for
some t > 0). It follows that the set {x: 0-< x =< v} is contained in Ws(O). Since the
latter set has a nonempty interior we have a contradiction. Hence the result follows
for linear type K monotone systems.

Now suppose the system is nonlinear and without loss of generality that x0 0.
Let E denote the direct sum of the eigenspaces corresponding to eigenvalues ofDf(O)
with negative real part. From the first paragraph we know that E contains no two
distinct points x and y with x _-<: y. There exists a neighborhood U of zero such that
U W(0) is positively invariant for (2.1) and such that there exists a neighborhood
V of 0 in Es, a continuously differentiable map h: V-E where E is a complemen-
tary subspace to E in R n, R E + Ec, II" II" II, / II" 112, with h(0) 0, Dh(O) 0
and U tq Ws(O)= {(v, w): w h(v), v V}. We now show that there exists a neigh-
borhood U of zero, UC U, such that no two distinct points of U tq W(0) are
related by -<r. If this were false then we could find two sequences of points xp and
yp with xp <-r Y,, Xp yp, xp, yp U W(O) and Xp -- O, yp ---) 0 as p oo. Write
Xp (Vp, h(vp)), op - V and yp (t3p, h(Op)), t3p e V. Then vp, 6p- 0 as p oo and

for p= 1,2, .... Now let p---oo along a suitable subsequence for which
(0- o)/(11 11) e obtaining (e, 0)_>-r0, Ilell- 1, and (e, 0)e Es. This contra-
diction to the first paragraph of the proof establishes that there exists a neighborhood
U of zero with U f3 W(0) satisfying the conclusion of the theorem. The theorem
now follows from properties of Ws(o) and the fact that preserves _-<r for t _-> 0.

In Fig. 2.1 we depict a typical unstable steady state, its stable manifold and its
most unstable manifold.

We end this section with some brief remarks concerning periodic orbits of
type K monotone systems. We have already mentioned the result of Hirsch that
a type K monotone system cannot have an attracting periodic orbit. Thus, it would
appear that closed orbits are not of interest for type K monotone systems. They are
of great interest, however, for systems for which the time reversed flow preserves a
partial ordering (-f satisfies (2.3)), the so-called competitive systems which can and
often do have attracting closed orbits. For this reason, this author made a study of
the invariant manifold structure associated with periodic orbits of irreducible type K
monotone systems in [52]. Briefly, in [52] we show that every closed orbit of an
irreducible type K monotone system has a simple Floquet multiplier which exceeds
unity. This largest multiplier gives rise to a "most unstable" cylinder manifold
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F

wS(xo)

FIG. 2.1. An unstable steady state, Xo, in R with K= R3+, dim WS(xo) 2. Points of WS(xo) are not
related by <- and r is a monotone curve.

associated with the closed orbit which has monotonicity properties. Roughly speaking,
this result is the counterpart of Theorem 2.8 for steady states. It is also shown in [52]
that the stable manifold of a periodic orbit (if it exists) has the property that no pair
of its points can be related by =<c. This, of course, is the counterpart ofTheorem 2.10
for steady states.

It is an interesting application ofLemma 2.2 and the Perron-Frobenius theorem
to show that a nontrivial closed orbit 3’ of an irreducible type K monotone system
must have a Floquet multiplier which is real and larger than 1. Let p 3’ and let
T be the period of ,. Consider variational matrix 04/Ox(p). Clearly we have
04r/Ox(p)f(p) f(p) since[ (p) is a solution ofthe variational equation about 4t(p).
By Lemma 2.3(a), neither f(p)>-I,:0 nor f(p)<-I,:0 can hold. On the other hand, by
the Perron-Frobenius theorem for positive matrices, Ocbr/Ox(p) has a positive spectral
radius which is a simple eigenvalue and which strictly exceeds in modulus all
remaining eigenvalues. Moreover, corresponding to there is an eigenvector v >/ 0.
It follows that > 1.

3. Some special classes of type K monotone systems. In this brief section we
develop a simple algorithm for deciding when a particular system is type K monotone
and which partial ordering is preserved by the corresponding flow. We also identify
certain special classes of systems which are type K monotone.

Let us suppose that we are given an autonomous system of equations

(3.1) x’ =f(x)

where fis a smooth function defined on an open convex set U in R n. We are interested
in determining if (3.1) is a type K monotone system. Recalling Lemma 2.1 and in
particular Remark 4, we must compute Df(x). First, we check the Jacobian for sign
stability of the off-diagonal elements, i.e., one must establish that either Ofi/Ox(x) <= 0
for all x U or that Of/Ox(x) >= 0 for all x U, for each j. Having done this, and
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assuming that (3. l) passes this test, we must next consider the requirement of sign
symmetry ofDf in U. In other words, Of/Oxj(x)Of/Oxi( y)>-_ 0 should hold for all j,
x, y e U. This can usually be checked simply by a look at Df Again, we assume that
(3. l) has passed this test of sign symmetry. Now it suffices to consider only the entries
ofDfabove the main diagonal.

For each < j, (i, j) eN x N, define Sij - Z2 ({0, }, + (mod 2)) by the following:

0f0 if >0 for somexe U,

ofsi if <0 for somexe U,

arbitrary if f is independent ofxj..

Since we are assuming Df is sign symmetric, si is well defined. Now consider the
solvability ofthe system of n(n 1)/2 equations in the n unknowns mi - Z, <- <- n

m + m2 S12,

ml + m3 S13

ml + mn Sin,

(3.2) m2 + m3 s3 (mod 2 arithmetic).

m2 + mn S2n,

mn-1 + mn Sn-l,n.

Ifthere is a solution m eZ (for some choice ofthe si which were arbitrarily assigned),
then (3.1) is type Km monotone for this value of m. Equivalently, since an equation
involving an arbitrarily assigned s0 can always be satisfied by an appropriate choice
of so depending on mi and mj., we can delete such equations from (3.2) and consider
the solvability of the remaining equations only. Note that if (3.2) is solved by
rn eZ then m +1 also solves (3.2) where 1 (1, 1, ..., 1) since the kernel of the
left-hand side of (3.2) is just {__0, 1 }. This is not at all surprising since m and m +1
correspond to orthants Km and -Km respectively and a map is easily seen to preserve
one partial ordering if and only if it preserves the other.

There is a graph theoretic test for type K monotonicity which is described in
Travis, Post and DeAngelis [38], 11 ], and in a private communication ofHirsch [25].
We assume Df(x) is sign stable in U. Consider the graph I’ with vertices 1, 2,
3, ..., n. If Of/Ox is not identically zero in U, put a directed edge E from j to
(arrow pointing to i) and attach the sign of Of/Oxj to the edge. Then (3.1) is type K
monotone if and only if for every loop in I’ the number of minus signs is even.
Notice that the test for sign symmetry reduces to checking that if there is a loop con-
sisting of an edge from to j and from j to then the two signs are identical.
Once this has been checked, the two edges can be collapsed to a single undirected



102 HAL L. SMITH

edge with the common sign attached. Now the signs on the edges determine the
fight-hand side of (3.2). It would appear then that to determine m and thus
the partial ordering preserved by the flow, one must do some linear algebra.

We now identify certain classes of systems whose solution operators preserve a
partial ordering gm,

Example 1. Two-dimensional sign-symmetric systems. Consider a planar system
(3.1) which is sign stable and sign symmetric: Of/Oxa. Of/Ox >= 0 in U..If both
derivatives are nonnegative then (3.1) is cooperative in the usual sense. If both
derivatives are nonpositive, the so-called competitive case, then (3.1) is type Km
monotone where m (0, 1). In either case it is well known that all bounded solutions
tend to equilibrium both as t-- and t---o [17], [19], [24], [40].

Example 2. Three-dimensional sign-symmetric systems. Consider (3.1) where
n 3 and sign stability holds. We assume (3.1) is sign-symmetric in U: Ofi/Ox.
OJ)/Ox >= O, j. Then (3.1) is type Km monotone if and only if the equations

m + m2 s12

m + m3 s3 (mod 2)

mz + m3 s23

are solvable inZ where sgn (Of/Ox + Of/Oxi) (-ly’ (the sign is to be determined at
a value ofx in U for which the quantity does not vanish if such a point exists). These
equations can be solved for m Z23 if and only if s2 + s3 + s23 0 (mod 2). Hence
(3.1) with n 3 and the conditions stated above is type Km monotone if and only if

(3.3) \Ox+OXl] \Ox3 "]-Oxl \Ox3
"q-
OX2]

>----0 in U.

The reader will recall the strong result (Theorem 2.4) stated in 2 for three-
dimensional type K monotone systems due to Hirsch.

Example 3. Nearest neighbor interactions on a circle or line segment. Consider
the following system:

Xf "--fl(Xn,Xl,X2),

x f(x,,x,x),

(3.4)
X; f(Xi--1

X
describing the interaction of species Xi arranged on a circle where each species interacts
only with its nearest neighbors. Note that (3.4) includes Examples and 2 above as
special cases.

Then Df(x) is tridiagonal except for the entries Of/OXn in the upper fight-hand
corner and Ofn/OXl in the lower left-hand corner. Assuming that the Of/Ox, i j
do not change sign in U and that Df(x) is sign-symmetric, we will establish condi-
tions for (3.4) to be type Km monotone for some m. Equations (3.2) reduce to



ORDER PRESERVING FLOWS 103

the following:

(3.5)

m + m2 S12,

ml -!- mn Sln

m2 + m3 $23

mn-1 + mn Sn-l,n.

Ignoring the second equation in (3.5) we can solve the remaining equations
for m2, , mn in terms of m: m s2 + s23 + $34 "1" -1" Sj-I,j "1"m (mod 2),
2 =< j -< n. The second equation will be satisfied if and only if

Sin-l= S12 -" $23 -I- -- Sn-l,n" 0 (mod 2).

This is the solvability condition. If it is satisfied then (3.4) is type Km monotone
for rn as calculated above. The solvability condition can be restated in terms of the
derivatives as follows:

(3.6)
k0x2
+ + + + ----> 0 for all xe U.
OXl kOX3 0X2/ \ OXn OXn-1 \OXn

Observe that if Of/Ox+ + Of+/Oxg =- 0 in U for some e {0, 1, ..., n} (where 0 = n
and n + = 1), then (3.6) is automatically satisfied. In this case by renumbering we
may as well assume Of/Ox, + Of,/Ox 0 in U, or f is independent of x, and f is
independent of x. We refer to such systems as sign symmetric tridiagonal systems
since Df(x) is a tridiagonal matrix. As we have seen, sign-symmetric tridiagonal
systems are always type Km monotone systems. Smillie [45] has obtained the following
result for such systems.

THEOREM 3.1 (Smillie). Supposef is n times differentiable and (3.1) is a sign-
stable, sign-symmetric, irreducible, tridiagonal system. If x(t) is a solution on a
maximal interval [0, a), 0 < a <-_ , then either limta x(t) exists and is an equilibrium
point or as -- a, x(t) eventually leaves any compact set.

The irreducibility assumption for tridiagonal systems amounts to assuming that
Of/Ox does not vanish if[i j[ 1. Since -f satisfies the hypotheses of Theorem 3.1
if and only iff does, we see that symmetric conclusions can be drawn for x(t) on a
maximal interval (-b, 0], 0 < b _-< .

Finally, it may have occurred to the reader that a particular system (3.1) might
have the property that its flow preserves several different partial orderings and
perhaps the more, the better is its behavior. Certainly, if t preserves the partial
ordering generated by the orthant Km then it also preserves the partial ordering
generated by the orthant Km+ -Km as we have seen. But these two partial orderings
give rise to the same monotone functions and hence must be considered equivalent.
The question then becomes "can a flow preserve two inequivalent partial orderings
generated by orthants ofR? We show that the answer is yes but only in a trivial
sort of way. Let R" R x R"-, x (x, X2) and consider the system

xf =f,(x,),

x =jS(x).
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Let tI(Xl) and 2(x2) be the solution operators of the subsystems and ,(x)=
($](x), $2(x)) be the solution operator for the full system. Suppose 4](.) preserves
a partial ordering generated by a cone Kin, in R and $2 (.) preserves a partial ordering
generated by a cone Km in R"-. Then ,(.) preserves the inequivalent partial
orderings generated by Km, X Km: K(ml,m2) and Km x K_m2- K(ml,_m2 This rather
trivial example of a system which preserves two inequivalent partial orderings is the
rule. Any system (3.1) which preserves two inequivalent partial orderings generated
by cones Km and K can be decomposed into two uncoupled subsystems. Indeed,
suppose rn # r and rn # -r and let T {i N: m # r} and S T2 Neither S nor
T is empty. Since (.) preserves the partial orderings generated by Km and K we
have

(--1)m’+mOf >--O, i#j
OXj--

(- 1)"+m 0f -> 0, i#jaxe-
It follows immediately that

for all xe U.

af 0__
ag

OXj
in U

for (i, j) S x T. Since U is convex, it follows that for S, f depends only on xj for
j e S and similarly f, e T, depends only on xj for j e T. By suitable rearrangement
of equations and variables, the system must decouple as in our example.

4. Some remarks on a comparison theorem. An interesting comparison theorem
has been derived by Conway and Smoller [9] and improved by Gardner [14] for
systems of reaction diffusion systems which admit a bounded invariant rectangle. It
turns out that this comparison technique involves type K monotone systems in a very
natural way. We describe these results here (see [!4] for a more general treatment).
The reader may, if he or she chooses, consider only ordinary differential equations.
Consider the system

(4.1) u=DAu+f(u), (x,t)xR+

where ft is a bounded domain in R with smooth boundary, u e R" andf is a smooth
map from an open set U in R" into R ". We do not assume f has any monotonicity
properties. D is a constant diagonal matrix with positive diagonal elements (orD 0).
We consider (4.1) together with homogeneous Neumann boundary conditions

(4.2)
0u

0 on0 xR+

Ov

where Ou/Ov Vu. v, v is the outer normal on 0ft. It follows that solutions of the
ordinary differential equation

(4.3) u’ =f(u)

are spatially homogeneous solutions of (4.1) and (4.2). Together with (4.1) and (4.2)
are prescribed continuous initial conditions

(4.4) u(x, O)= u(x), xe.
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It will be assumed that (4.1) admits a bounded invariant rectangle

(4.5) (I [ai, hi] (7_ U
i=1

in R with a; < bi, N. This means that if u(x) , for x e 2, then u(x, t) for all
(x, t) e f x [0, ) for which the solution is defined. It can be shown [8] that a unique
solution of (4.1), (4.2), (4.4) exists for 0 and u(x, t) for (x, t)e x [0, ) if
u(x) e , x . Sucient conditions for (4.1) to admit a bounded invafiant rectane
are ven in [8], [55] and these amount to some regularity assumptions together with
the requirement thatfpoints into along the bounda of :
(4.6) If U , Ui ai(bi) thenf(u) 0 (f(u) 0).

Systems ofthe type (4.1), (4.2) are common mathematical expressions ofchemical
and biolocal phenomena, and the existence of invafiant rectanes for such systems,
at least for models in population biology, is also commonplace [6], [9], [14], [55].
The idea now is to constct various ordinaff differential equations whose solutions
bound the solutions of (4.1), (4.2) and (4.3) when u(x) for x e ft.

Let I be a subset ofN and denote by J the complement of I in N. Define the
ohant KI {U Rn: Ui O, L uj O, j J} and write z for the associated paial
ordering. Define n-vectors AI, B by A ai, I andA b, j e J and B bi, I
and BJ aj, j e J. Note that Ati BI and Z [At, BI]I. Now, define functions if,
if, sf, sf, p N, on Z by

,f(u) [mini {():e [A,, u],and u},
(4.7)

jf(u) =(minj1( ): e [u, BI]iandp Up 1.

Define H(v)= (h,(v), ..., hn(v)), v e by hi(v)= if?(v), e L and h(v)= ,fT(v),
j e J. Define Hj(v) (h,(v), hn(v)) by h(v) jf?(v), e I and h(v) jf(v),
j e J. The vector function HI and Hj are Lipschitz continuous on Z (see [9], [55]) and
it is not difficult to see that

(4.8) H(u) ,f(u) ,H,(u), ue.
Let Oi(l) be a solution of

v’=H,(v), v(0)=veZ,
(4.9) u(x)zV, xe,
and for the complementaff set J, let Oj(l) be a solution of

v H(v ), v(0)=veZ,
(4.0) v,u(x), xe.
With these definitions, we may state the result due to Gardner [14] in the following
way.

THEOREU 4.1. For aH (x, t) x R+ we have

v(t), u(x, t) ,v,(t).

It is easily seen that Z is positively invafiant for the systems (4.9) and (4.10). It
may appear that we are merely introducing some different notation for a known



106 HAL L. SMITH

result. The following result may justify this notational change. Let , and be the
solution maps for (4.9) and (4.10).

THEOREM 4.2. The systems (4.9) and (4.10) are typeK monotone. Moreover, we
havefor t >- 0

(4.11) Ai<-iC (Ai) <-i oj(t <- u(x, <-i vi( <-i qb (Bi) <-iB.
The map t -- 4),(AI) is monotone nondecreasing with respect to <-i and [(At) tends
to an equilibrium of(4.10) as - . Similarly, the map - It(Bi) is nonincreasing
and tt(BI) tends to an equilibrium of(4.9) as t -- oo.

Before proceeding to the proof ofTheorem 4.2, a point of clarification should be
made. Since HI is only Lipschitz continuous in general, (4.9) cannot be type K
monotone in the sense of 2. However, as pointed out in Remark 3 of 2, the flow
t/ of (4.9) can preserve the partial ordering <=i for t->_ 0 under weaker hypotheses.
The appropriate hypothesis on a vector function h is the following [7], [51 ].

(H) If v, w e with v -<i w and v w for some l
then h(v) <- h(w) if l e I and h(v) >- h(w) if l e J.

ProofofTheorem 4.2. We must check that (H) holds for HI and Hj. We consider
H only. For I, H(v) jf (v). Clearly, if v <- w, v w, jf (v) <- jf (w) since
the minimum is being taken over a smaller set in defining jf?(w). For j e J,
HJs(v) sf)(v) so sf)(v) > + <-Ijfj. (w) ifv w, vj. wy since the maximum is being taken
over a smaller set in defining +jfj. (w). Hence (H) holds for Hj and Hj is type KI
monotone by [5 l, Thm. 2.4].

The inequality A-<i ,J(AI) follows from the positive invariance of Z for (4.10).
The inequality {(AI) <-i vj(t) follows from the fact that (4.10) is type K monotone
and that AI <-i vj(O). The other inequalities come from Theorem 4.1 or can be
established in a similar manner.

The monotonicity of S(Ai) follows immediately from the fact that AI <= {(AI)
for >- 0 and since (4. l) is type KI monotone. This completes our proof.

Theorem 4.2 is essentially giving us an idea ofwhat one can expect to accomplish
through the use of the comparison technique. Since we know that the typical solution
of a type K monotone system converges to an equilibrium as tends to infinity, we
can expect that vj(t) and vi(t) will converge to equilibria of (4.10) and (4.9), respec-
tively. If we label these equilibria by Q and P, vj(t)--- Q and vi(t) P, then the
comparison technique yields that the omega limit set of the orbit through u consists
of functions taking values in [Q, P]I c y,. We might hope that P Q in which case
u(x, t) converges to an equilibrium of (4.3) uniformly for x gt (f(Q) 0 by (4.8)).

Let us denote by A-/= limit= dpJt(Ai) and limit= alp It(B1) the equilibria of
(4.10) and (4.9), respectively, described in Theorem 4.2. If AI <I AI <--i BI< BI, then
we may set ’ [At, B]I and attempt to iterate the comparison technique by redefin-
ingH and Hj relative to ’. This is essentially the technique used by Brown [6], who
has nicely refined the comparison technique in order to obtain convergence of u(x, t)
to a constant equilibrium of (4.1), (4.2). Brown [6] assumes (4.1), (4.2) has a one-
parameter family of"contracting rectangles" 2:(r) [a(r), b(r)], 0 -< r _-< 1, i.e., rectan-
gles on the boundary of which the inequalities (4.6) are strict, with Z(0)= ,
2:(1) [u*}, an equilibrium. Furthermore, it is assumed that a(r) is increasing and
b(r) is decreasing, both continuous functions of r. Under these assumptions, Brown
shows that if u(x) e 2:(0) then u(x, t) u* as t oo uniformly in x e ft.

The comparison technique described above should be particularly effective when
the system (4.3) is a type Km monotone system. In this case, set I [ie N: m 0}
and J= [j e N: m 1}. Then it is easy to see that f(v) Hi(v) Hj(v) (see 4.8).
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COROLLARY 4.3. If (4.3) is type Km monotone and I, J as above, then
f(v Hi(v) Hj(v ), v ,. If, belongs to the domain ofattraction ofa steady state
u* of(4.3), then u(x, t) -. u* as t -. uniformly in x 2 whenever u(x) ,, x f.

Corollary 4.3 has the following interesting implication. Ifg is a type KI monotone
vector field defined on 2 such thatf(u) <-i g(u) for u e 2, then Hi(u) <-i g(u) for u
Hence Hi(u) is the minimal type KI monotone vector field satisfying the fight-hand
inequality of (4.8). Similarly, Hj(u) is the maximal type KI monotone vector field
satisfying the left-hand inequality of (4.8).

Corollary 4.3 explains the very successful application ofthe comparison technique
to the case where (4.3) is a planar competitive or symbiotic system given by Conway
and Smoller [9]. In the following section we will apply Corollary 4.3 to a mathematical
model of cyclic gene systems involved in the control of protein synthesis. We mention
that the comparison technique is applicable to the single loop feedback systems
studied by Selgrade [40] and to mathematical models of mutualism [50] and mutual-
ism and competition [51 ].

Finally, it should be mentioned that many other authors have contributed to the
understanding of monotonicity in reaction diffusion systems. Notable among these
are Martin 32] and Matano 33 ].

5. An application. In this section we apply some of the results of the previous
sections to a mathematical model of a repressible cyclic gene system following Banks
and Mahaffy [3], [4]. We will consider here only a very special case of the model
which is treated in considerably more detail by the author in [54]. It is assumed that
two genes control the synthesis of certain proteins. The first gene is transcribed
producing mRNA, (Yl), which in turn is translated to produce a protein, (y2), which
acts as an enzyme for the production of protein (y3) and so on until an end product
protein yp is produced. This last protein acts as a repressor, inhibiting the transcription
of the second gene. A similar sequence of reactions, leading from the second gene,
leads to the production of proteins zl, ..., zt, the last of which acts as a repressor
inhibiting the transcription of the first gene (see Fig. 5.1).

The letters y; and zj will also be used to denote the concentrations of the proteins
and thus are nonnegative quantities. An appropriate system of differential equations
is given by

y =j(z)- oy,

(5.1)
y[ --Yi-l--OtiYi, 2<-i<-p,

Z[ =f2(Yp)--lZ1,

z] Zj_l --/3z, 2<--j<--l.

The parameters of c,., / are positive and the functions f are positive-valued,
strictly decreasing smooth functions vanishing at infinity. After suitable scaling, we
assume

(5.2) f(v)>0, f[(v)<O, f(0)=l, f()=0, i=1,2.

We can apply the graphical test for type K monotonicity of (5.1). Note that there
is exactly one loop in the graph associated with (5.1) (see {}3) and this loop contains
two negative feedbacks corresponding to the two nonlinearities f and j. It follows
that (5.1) is type K monotone.

The state of the system is given by the vector u (y, z) e RP++z. We leave to the
reader the verification that (5.1) is type K monotone where K is the orthant
K= RR+ x (-R+).
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Gene

y mRNA

Y2 enzyme

yp repressor

Gene 2

z mRNA

z enzyme

z,= repressor

Gene

W mRNA

W enzyme

w repressor

FIG. 5.1. A repressible cyclic gene system.

(5.3) DF=

If we denote by F the vector field defined by (5.1), then we have

0 ff (Zl)
0
0

0

The loop of nonvanishing terms am, am,m-, am-,m-2’’" a2, am in the matrix
DF=(aij)i,"=, m=p+ l, implies that DF is irreducible and hence (5.1) is an
irreducible type K monotone system.

Equilibria of (5.1) are given in terms of yp and Zl by

(5.4)
f (Zl) "Y Yp,

ZI- lZl

Yp-2-" apOl.p-lYp, Y apOl.p-l a2yp,

A(yp)’-2Zl,



ORDER PRESERVING FLOWS 109

Hence steady states of (5.1) are in one-to-one correspondence with nonnegative
solutions of

’j5 (z) y,

%(y) z,

or, equivalently, of solutions of

g(z,) (.’f f )(z,)= z,.

In view of our assumptions on f, g:[0, )--.[0, ) satisfies g(0)=,J(-),
g’(z) > 0 for z> 0, g()

For simplicity, we assume without further mention that

(5.5) Ifg(z) z then g’(z) 1.

It then follows that g has an odd finite number, r, of fixed points z < z2 < z
and (5.1) has r steady states:

fi (p, 2s), s= 1,2,... ,r,

33= (a, ci)-f (zS), i= 1,... ,p,

2=3’2(/3,/32... [3j)-z s, j= 1,2,... ,l.

Sincef is strictly decreasing it follows that the set of steady states is a totally ordered
set (see Fig. 5.2):

lr<Klr-1 <K" 2 <Kill,

The stability of a steady state can be inferred from Theorem 2.7. Simply take
absolute value of the off-diagonal elements of (5.3) and check that the principal

I.I

FIG. 5.2. The steady states of(5.1) in case r 5. The shaded regions belong to the domains ofattraction of
the odd indexed equilibria.
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minors of the resulting matrix alternate in sign. It is easily seen that principal minors
alternate in sign except possibly for the largest minor, the determinant. Thus
s(DF()) < 0 if and only if

(5.6) "y’y2-f(z)f(ym)>O or equivalently g’(z)<l.

From the characteristic polynomial equation
p

II (h + ag) II (h +)-ff (z1)f(ym)=O
i=1 j=l

we see that (5.6) is just the condition that the constant term in the polynomial is
positive. Also note that (5.5) and the form of the characteristic polynomial imply that
s(DF(ft)) # 0; in fact DF(ft) is nonsingular, so either is asymptotically stable or
there is at least one eigenvalue of DF(ft) with positive real part and is unstable.

It is interesting that the existence and stability of steady states of (5.1) is mirrored
by the existence and stability of fixed points of the map g. In particular, the odd
indexed i are asymptotically stable and the even indexed i are unstable.

LEMMA 5.1. For each >- 1, >- the box
p

D(r/, ,)= II [0, ,q(a,... a;)-’] x 1-I [o, s(/3,...
i=1 j=l

is positively invariant. Moreoverfor eachfixed > and > 1, every solution of(5.1)
eventually enters and remains in D(n, ).

Proof The positive invariance of D(n, ) follows immediately from the fact that
F points into D(n, ) along the boundary of D(n, ) (use 0 -<f _-< 1). Now fix n >
and > 1. Since y _-< cy it follows that yl(t) < c?n for large t. Hence for large
t, .F6 < a-/-- a2.F2 and so y2(t) < (c c2)-n for sufficiently large t. As we continue in
this fashion, the last assertion becomes obvious.

We let D-- D(1, 1). The following result can be inferred from the results of2
(see [541).

THEOREM 5.2. IfB(t i) denotes the basin ofattraction oft in RP++, then

B(9
odd

is open and dense in Re+. Ifr then t is globally attracting in
Theorem 5.2 follows essentially from Lemma 5.1 and Theorem 2.6. One can

obtain more information concerning the basins of attraction by very simple argu-
ments. Namely the following inclusions hold:

{uR++/: 1/l K fflr-1, U# lr-1} (-B lr

ue RP++l: tr-1 <K U <=K ’Ir-3 U# fflr-1, /r-3 C B(lr-2

{ue Rv++: z2 _-</u, u# 2} C B(fil ).

We establish the last inclusion only; the others follow similarly. Since
s(DF(ft2)) > 0, Theorem 2.8 implies the existence ofa monotone trajectory emanating
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from 2 and tending to z21 as t tends to infinity. In addition, Theorem 2.8 implies that
{u: t2 _-<r u -<r z2, u u belongs to B(). Note that if u, e B(), u --<c , then
[u, o]rC B(z2) by the order preserving property of the flow. Our remarks follow-
ing the statement of Theorem 2.5 imply that if v _->c0, then the set of points u on
the half line {u: u u + to, t _-> 0} such that the positive orbit through u does not
tend to a steady state is at most a countable set. Now if u lies on this half line then
u->_r so t(u)>- ft for all > 0. Thus is the only steady state that cht(u) can
tend to as t tends to infinity. It now is apparent from the previous two remarks
that for every point, u, on the half line, t(u) tends to z2 as t tends to infinity.
Since v_->r0 is arbitrary, we have established that {u: u->r} C B(z2). The last
inclusion follows by sandwiching a point u with u ->r z2., u u_, between a point in
{u: _-<r u _-<r z2, u } and a point in {u: ->r} and applying a previous remark.
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