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ABSTRACT
A method of self-consistent fields is used to study the equilibrium

configurations of a system of self-gravitating scalar bosons or spin % fermi-

ons in the ground state without using the traditional perfect fluid approxinia-'
tion or equation of state. The many particle system is described by a second

quantized free field which in the boson case satisfies the Klein-Gordon equa-

tion in general relativity Va vie = tuzé‘, and in the fermion case the Dirac

equation in general relativity ya Va‘i’ = pY¥, where u= mc/#. The coef-
ficients of the metric gozB are determined by the Einstein equations with a

source term given by the mean value, < @ | T VI ¢ >, of the energy momentum
W .

tensor operator constructed from the scalar or the spinor field. The state

\ .

vector < @] corresponds to the ground state of the systenq-of many particles.
In both cases‘, for completeness, a nonrelativistic Newtonian approximation is
developed and the corrections due to special and general relativity explic’itly
pointed out.

For N bosons, both in the region of validity of the Newtonian treatment

(density from 10—80g cn'l”3 to 1054g c1n—3 and number of particles from 10 to 10.{_}:0),

‘ : e . . 54 - : '
as well as in the relativistic region (density ~ 10" "g cm 3, number of particles ~ 1040)

we obtain results completely different from those of a traditional fluid analysis.
‘The energy rnomentum tensor is anisotropic. A critical mass is found for'a

40 25

system of N ~ (Planck mass/rn)z ~ 107" (for m ~10 "7g) self-gravitating bosons

in the ground state, above which mass gravitational collapse occurs
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For N fermions, the.binding energy of typical particles is
Gzn15N4/3 h_z and reaches a value Nm'cz for N ~ Ncrit ~ (Planck mass/:.n)3 ~ 1057
(for m ~ 10_24g1~, implying mass ~ 1033g1‘, rac‘lius ~ 106cm, density ~ 1015.g/cm3).
For densities of this order of magnitude and greater we havc'} given the iull. self con~
sisteilt relativistic treatment. It shows that the concept of an equation of state makes
sense only up to 1042g/cn‘13 and it confirms the OppenheixneluVolkoff‘treat~
ment in extremely good approximation. There exists a gravitational spin-orbit
coupling but its magnitude is generally negli‘gible.

The plroblem of an elementary scalar particle held together only by its

gravitational field is meaningless in this context,




I. INTRODUC TION

1 - degenel ate
Chandl asekhar and L(,,nd'tu were the fll‘bt to p01nt out that a syst‘,m in 1{‘5/

" state, composed of a critical nurnber of particles, will necessarily“‘und'ergo |

gravitational collapse. In the 1ntervenmg years many questlons have been _ B

. -

raised and much new has ‘been learned about gravitational colla.pse. 2 Among
the questions that constantly recur none are asked more frequently fhan these:
“(i) What does one really kilov‘/}about the equations of state of matter at supra-
nuclear density? (ii) What right does one have to use an equation of state at
all? The first qile‘ssti.on will not be treated here and for good reasons: one
knows the equations of state of "catalyzed" matter with sufficient accuracy
. | . 14 3 '

from every day density up to the denmty ~ 10 g/cm of,nuc].ear m.atter, and
“one has an argument from caus al1ty (Speed of sound < speed of light) that no
~allowable modifications of the equatlons of 's_tate at supranuclear de‘nsities,
can change the critical mass by m‘ore Ehan a factor of the order of two awéy
from an estimated figure M ~M® =2 % 10 gr. ) K . o

We focus hére on the second question: can one discuss stability agams’t |
gravitational collapse without rmentioning an equation of state at all? Sir A.

-~

4,5 ‘ | '
Eddington ™’ > raised questions about the possibility of using an equation of

state at all and also purported to derive an equation of state quite different
in the relativistic domain from Chandrasekhar's standard equations of state
.for a degenerate ideal Fermi gas. Today one takeg seriously none of his

results but only his motivation He sought some eqcape f1 om the corlcept ’

of the c‘ri‘ti‘c_a.l mass, made so vivid by the first de'tail'ed' cal'culation_of the




critical mass by Chandrasekbar, '

Happily in the same period Dirac,
starting from first principles and employing the Hartrée—Fock model of the
atom, showed {for the first time how to go straight from the physics of bound
orbitals to the concept of an equatioph Q»qufaté, as had already been used in

the Fermi-Thomas atom model. 9,10, 11

A. Fermions

To justify the concept of an equation of state it was only necessary,
Dirac showed, that the éffective potential should change by a small {raction
of its value over one wavelength. 1z This condition is normally reasonably
well satisﬂed in atoms containing a large number of electrons. In Section
IIT we extend the origin;ll Dirac arguments to the context of general relativity
and particles moving with relativistic velocity, taking into acc‘:ou.nt é.l]_ the
effects of the spinorial variables.

We explicitly point out how difficulties arise in ouxr p;obleml before .one
violates the condition laid down by Dirac: slowly varying potential over one °
wavelength. A spin-orbit gravitational interaction start to be quantitatively
important as soon as the effective gravitational potential vary percentagéwise

by a significant amount over a typical distance ~ L (m.q\/m)Ll/3 ~ 10—8 cm

(we indicate by L = (2 G C—?’)l/2

the Planck length, by m = (7 ¢ Cr-ﬂl-)_l/‘2 the
Planck mass, by m the neutron mass). This cdupling is generally neglected in

the fluid approximation. Its physical significance and order of magnitude are

analyzed in Section III. It seems at first sight preposterous that in a system
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of 10 or 100 km radius the effective gravitational polential can vary
g an=S . : . : .
significantly over 10 = cm. However, in a configuration of sufficiently
high central density the rate of fall of the density is also very high (Fig. 1).
Specifically, for each hundred fold increase in the central density the half-
radius of this ''central core" (Schwarzschild coordinate where the density
; 13
falls to half value) decreases by one power of ten. These enormous changes
in the core have practically no effect on the rest of the star; the core in this
sense is almost '"isolated" from the vest of the star. The outer radius and
the total mass of the star are influenced less and less as the central density
: : 14 .

goes to higher and higher values = (Fig. 2).

Nothing in principle prevents the central density from being so high as

~

10" g cm ~ with a radius of the central core of the order of magnitude of

-8

10 ~ cm. Under this condition the concept of an equation of state no longer
makes sense. Naturally it is a fantastic idealization to think of particles moving

i | Y 2 -3
about "freely' at a density of 10" "g cm

and responding only to the curvature
of space. Even so the spin-orbit gravitational coupling has negligible effect
on the radius and total mass of the system. In Section III we show the basic

13

reason for this result: when many fermions are present, the Pauli exclusion
principle forces the t’ypiéal fermion into a state with very high quantum numbers. - |
Then the JWKB approximation is applicéb].é ever;ﬁ?here except in the ‘coré Which
is exceedingly small; outside the core the self consistent field method that we have

used give exactly the same results of the traditional fluid analysis and therefore

the concept of an equation of state is perfectly well justified.
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B. Bosons
The direct opposite is the case of an idealized system composed of

many bosons interacting only by way of gravitational forces. Some aspects-

] . 16,17,18,19
of this problem have been previcusly treated, When the system

" is in its ground state eagh individual bd’son‘ 1; also in the ground state (one
and thg same state fo_r all bosoné). "Their distribution of stress, except nea‘r
thé center; is aniéotropic. Therefore the concept of an equation of state is
Completely iﬁaﬁpropria‘ce. Fig.. 3 shows the stress ellipsoid at selected
distances f;orn the centAe»r. At nonrelativistic energies (few par;cicles, weak
gravitational Pindipg) a Ng.\vt011i.a1;: t}'eatinent is possible. In this regime a
simple bca11i1g 1a\V bri mds out a smmlarlty between nonr e1a11v1st1c syste:rns
with differeht pumbers of bbsons, N . We find

-

'('central density) ~ 0. 9G N4 10, 6‘1&’" . 7.08 x 10 108‘N g cm

distance froﬁl éellté;t' 5 1 -1 -3 27 -1
at which the potential| ~6.24#2°G N m ~ = 7.55 x10" N ~ cm
falls to half value *

energy to remove all
i the pa.L‘LJ,c,],es_ to o ~ 0,246 G m N
separation

3 3

3 & —8-;;86;; 10-8JN' ergs

o o 25 S SR
having chosen for m the meson mass (2.489 x 10 "g). Evidently there exists

ir | -2 : RN :
a critical value of the order N ~ {lic/G)m ~ at which the binding energy per
particle becomes cmnoarable to Lhc rest energy. For a number of particles

of this order of magnitude the Newtonian -non-relativistic treatment fails.
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We have developed a full relativistic self-consistent trcatment for
the case N comparable to or greater than the Ncrit for bosons. A de-
tailed analysis of the system of equations obtained is given in Section II.
The solution of the equations was carried out by computer; the particulars
of the integration method are given in Appendix A. It is of greaf interest
to know at what point the change from stability to instability takes place in
the family of equilibrium configurations that we have found. One of us (R.R.)
hopes to return to this question. Without waiting for this yet to be done analy-
sis, one can immediately draw one new conclusion: There exists no equi-

2

librium configuration for a system of more than N " ~ (Planck mass/m)
cri

ideal self-gravitating bosons in their ground state.

There are both great‘differences and-at the same time gresn: similari-
ties between a system of ideal self-gravitating bosons and a system of ideal
se'lf— graviftating fermions., Xach is characterized by its own critical mass.
On the other hand, there is an enormous contrast between bosons and fermions

. 3
with respecct to the value of the critical number (Ncrit ~ (Planck mass/m)~ for

&

. 2 ’ : .
fermions, N pit "~ (Planck mass/m) for bosons)and to the dimensions of the
' crit , . : .

«

sysfern required to reach relativistic conditions. This difference is due
pi‘incip&liy‘ to the fact that all the N bosons are in the g'rouncl state, whercas
the N fermions, according to the Pauli principle, are distributed in the N
lowest energy statecs of the‘phase space. ‘

Sevction II also notes that it is absolutely meaningless to consider in

the present context the "problem' of one elementary particle held tog_ef;he'r

only by its gravitational field.
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II. BOSONS

1. Newtonian Treatment

)

-
b

In Nevstonian theory the gravitational potential V satisfies the Poisson

o p— . N - 7

.equation

e AV -4uGp | ' . : ';(1)
where .p. is the matter density :and G Newton's gra;vita,tional constant. The
Schrtﬁdinger equation for .a,.particle of mass }xn , in the prresenc';e of a gravita-
tional potential V is

S MY+ 2Zm A HEA mY) ¥ = 0 R L@

We are interested in a system of self-gravitating bosons, all iz the same
) l v

quantum state. We therefore assume that the gravitational potential V
’ ’ e 5] .,
satisfies equation (1) with p = NY ¥Ym, where N is the number of bosons and
- ¥ is the wave function of the quantum state under consideration., The wave
function is normalized to one : ‘ : ' o :
k ! e Ir 3 ' . o | K ‘
J‘v Yd” x=1 , : , (3)

hd

We shall considex only the ground state of the system (n=1, £=0) which
. we may assume to be spherically symmetric.” Tonsequently the resulting system

of equations in dimensionless units is

Al 2, A A A |

b1 a%7ab? Foy+ (E+ V) o= 0 e (4.

Al 2, 02 A A AR e o
I T d /dr (r V)= -0 g ‘ Ry . - (4.2)

; ROA2 2 ' ‘ ' , | |
[oeitar=1 - | | | (4.3)
where
. - ‘ = . 2 . - 3 . ..~. _ - o B P . i ar i ~
. (5. 1) Y = .-?l- }1 m G lN ]i s?

1

-

“ 3 | - 3/2 )
(5.2) Y= (20)72 (2m” G N Z)f/d P
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; A
(one particle potential) = 2 ﬁ'-z" Gz Nz 1114 Vv

1l

(5. 3) v

(one particle energy) = 2 Cr2 N2 'mS T K

il

(5.4) E
We have carried out a numerical integration of the éystexn (4) by the

, A
Runge-Kutta method. We have found the eigenvalue E by looking at the

behaviour of the wave function at infinity.- “As usual we have determined

the ground state by requiring that the eigenfunction have no nodes. The
results are given in Table I, Fig. 4 and Fig. 5. Knowing the solution of

the universal system of Eq. (4) and thanks to relations (5) it is possible to
obtain a solution relative to an arbitrary number of bosons simply by making
appropriate scale changes. If W‘e distinguish quantities 're.fe;ring to solutions

with N1 and N2 particles by suffixes 1 and 2 respectively, we obtain the

A

following relations

) 2 L
E, = By (N/NDT v, = 1) (N/N))

(6)
2

. 3/2 | _ N
v, =¥, (NZ/Nl) ] v, =V, (NZ/Nl)

These arguments could suggest that for any number of bosons in the
ground state there exists always a position of equilibrium! ?But we must
analyze if the theory we have used always makes sense.

It is possible to divide the plot of Fig. b5 into three regions:’ to .a.n

increase in the particle number corresponds

in region I an increase in the total energy of the system
in region II a decrease in the total energy of the system which never-

theless remains positive,

in region IIT a decrease in the total energy of the system which is now

negative,
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It is very important to cbserve that at the end of region I the gravi-

tational energy of one particle is of the order of magnitude of the rest mass

energy of the particle. Therefore it is clear that corrections coming from

special relativity must be taken into account. . "Moreover, no doubt exists
that, in the regions II and III, the application of Newtcnian gravitational theory

is meaningless and one would expect importart modifications from the use of

20 ;
N 1 1545 -'tr :
gen~ral relativity. ‘ .
-
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2. General Relativistic Treatment

The effect of introducing general relativity is com.p.a,rativély simple
as long as the particles are t.rea.ted in a statistical way (no allowance for
the details of partide—particle coupling). Then the gravitational problem
is no more difficult than the Hartree-Fock atom. In both cases the inter-
action is unive-rsa,l, in vthe sense that one law covers all ranges of distances
(in contrast, i.e., to nuclear forces). The case of ideal particles coupled
gravitationally differs from the case of electric coupling in this respect, that
ﬁo "interaction'" ever puts in a direct appearance.' Instead, thanks to the
geometrical interpretation of gravitation, it is possible to treat the inter-
action simply considering the field equatibn for free particles in a curved
space where the metric is determined by the system of particles its elf.” This
treatment has the advantage of being valid even in the regionv of an arbitrarily

strong g ravitational field.

. We shall consider scalar bosons described by the curved space 21
Klein~-Gordon equation .
v et pfe= 0
M % ' . ' (7)
VQVQ’@‘#- p,z@‘.:() ' :

- | o ) . »
where = mc/# and Vo and V~ are respectively the operators of co-
variant and contravariant differentiation. This equation can be derived from

the Lagrangian

j 2 o RTRY % 2k
Jo=- 2m oMYy 3 & -
of =% (2m) (e 2 2oy

In the usual way we can derive the following conserved quantities: the symmetric

energy-momentum tensox

o o/ a2 Al

YAV aXO! N @_g&_‘i agLLL
_and the current-wvector SR ax“ e oty Wt e T

S R
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gt 5,1 ((a<z?(a(a‘ifz>"‘))@;"‘ - (aaf/a(ap@))a.:») | . (0)
where, g = - det € up | | .

k We only wisch to consider spherically symmetric distributions of

equilibrium. Therefore we may express the metric in Schwarzschild co-

. 1 2 o3 oL
- ordinates (x = ct, xl =r, x =0,x = cp)_
¥ 2 2 22 S |
ds‘,2 = B(r)c dt? - A(r’)dr2 - r (sin ()dgoz + dO.Z) (11)

In t:his syétz_ar’n the equation (7) becomes

1 1.2 2 R )
lg! ?a (e (Jgh)? o 81+ B o %24 pfe=0 - (12)

Rl

It is 1)ossi}ale to make a separation of variables in equa’tion (12) by

setting

-i(E /”'fl)t

&(r,0,p,t) = R(r)Yfm(B, Q) e (13)

\

‘where Y (0 @) is a spherical harmonic. The functien R must satisf_‘j:r;
the equation

) » o2 -l-2 -2 2 . -1 -2
"o R B N Lian/g 1 ] - e 4 . .
Ry (2 2]3 /B ZA/A)R)QM AlB_ B 7 o 24 1A TR,
L (14)
where the prime de'ﬁo'tes‘differéntiati'oxi with re‘spect.to pL 23 - | |

T}he most general bound solution of the equation (7) can be expressed |

in the following way

&(r,0,p,t) = E c 'R Y£ e nt +
: nfm -n.ﬁ m , ‘
nhn : , , : ;
‘ g B PR A2
+2J_b.P Y e gt
: nfm nf e,

nfm
ats
B

Since we are considering a neutral field @ is real and therefore & =&

and
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4 o w R - o
)nﬁm.'_ “nim }‘ . ST (16) |

o ieeine 2 In.the formalism of second quantization & is an operator and can- -———————:-

 be separated into two components . o : | o - _
o R e i(E A e,
+ + £ nf S :
= [/ . .
(I) Z: phnan.QY m(e’\i) €. R SR (17)
- nim _ —
- . - — - - v s e . - .'-,.’ ) .i..‘ Cees i i e mem +1(E /ﬁ)t - ,....-......-_..__-w-.-__..-_..__-——'—-..un...»...._h“
& = 2 v R Y! (0,%7) e nf : (18)
: Imn ni
' 7 - nlm '
so that S ., .'f A L
o : - : o ‘
=0 +¢°
Hpn and Fomn 25€ respectively the creation and annihilation 0pe1‘af01‘s

for a particle with angular momentum “f, azimuthal momentum 4Hm and

energy E . ' R T o L
These operators satisfy the commutation rules t AR
]=86, .6 6 . - (19.1)

[Mlm.n’guﬁ'm‘n’ £2' ‘'mm' nn'

[1 ;rnn Hoim! n'] =Ly hnn"”.ﬁ- 'm'n' ] =0 : | ,4 (19'?)
From the Oper’ator @ it is pos sible to cons tz’ﬁ;:t the energy-
momentu;n tensor c;peifator T“V and the current vector operator .
We consigler a vétate o> fovr 'which all f;he N pér%:iclqs ére in the éfougd
| ~le>=IN,0,0,0,> o G

'We compute the mean values of the components of the operators "I‘}J ) and

gt for 'this sta te,

We obtain
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1,2 -1 2 2 -1

0 -1 2 2
<Q[TO [Q>=-1"m"'N [(B E, /(’n c )+u )R  HA R'Ol]
1 . 2 4 12,22 2.2 .12
. > :1_1__ 4 - 1
<Q‘[T1 IQV PN [(BUE /ETCT) - pTR G+ AT Rm]

2 3 2 - 12,22 2 2

> = > =1 . N - -
<alT,%l0 5Q1T3 |0 > =1l [(BTEL /6 ") R gy
| o 2 -1
- R!
, ROIA ]
< Q|T01|Q> =0
‘where E01 and ROI are respectively the eigenvalue and the radial part

of the eigenfunction of the ground state (n=1, £ = 0).
._thé component J  of the current vector'is

N m° IC—ZRZ B—l .

<QIJ lo>=E <

~01
- From the expressions (20. 1),
Schwarzschild coordinates we obtain

1.2 .2 2 2102

Afat+ 1/x% 1-1/8) = e [(B Eg /0 c ) + )R +ATRY] -
~ 2 | 12 22 2‘2 -1
1 <y N = - e Br P . -1,
| B'/ABr)- 1/x (l. 1/A) = ¢ [( }:01/(%1 c ) o) R.Oli:A ROI]
where ‘
o= 4G ¢ EAm I N

and these together with the equatic&i; (14) form a closed self-coné:iétent
system_(diagram in introduction). The other equatio’ns

2 . 2
,GZ =1<T2

and:

The mean value of

(20. 2) and from the Eins tein equations in .

*

(20.1)

(20.2)

20.3)

(20.4)

(21)

(22.1)

(22.2)



_wifh the syst‘em of ekquations (14) and (22).

L%

We have put the system into di:mensrigrmless units obtaining the

following expressions:

BV%B?’)? /8% @ - 1/8) = S [BTE -'.1)ﬁ +aTRE) i

‘01 01
e 142 a2 1a 2
E { oy 1

A /(,{x Py 1/1 (1 - 1/A) - LB E,t ngfrA R' 0]

il ‘ e od A
ROI (2/r+B/2B A/ZA)R -!-A(EOIB .-l)R.Ol = 0

."_:_]'.6__ | -
are consequences of Eq. (22) becausé of the Bianchi identities
N KSR SERNEE RO w GE =0 o -
| T a p.. S | |
-and of the relation
™ =0
v
- The normalization conditi‘on‘ EREEERIE 1 "  -—— e L
- S 0. 3 -
f«]-:-g<3 >d’x = N (23)
"is, explicitly - T
- 2. -
4 fEOl R B 2A rdr =1 (24)
Y'The initial conditions and the bouncia.ry conditions are
: 7: - . 5 “
ROl(O) const (25.1)
_ - - : : - AP E'" A
ROI(O) 0 o e (2. >‘ Z)
A(0) =1 (25. 3)
B() =1 (25. 4)
. . 16,17 e r A EAT |
It is possible to show that the conditions (25) are consistent

@61
(26.2)

i _"(26."3).‘
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f R, B 2A277dy = 1 - ~ (26. 4)

. . o . . ' - A
- where now the prime denotes differentiation with respectto ¥ , and

ey .

A ~ | R .

T= o ‘A | | _ (27.1)
AL 2 | R o
Lo_l = B,/ mc e L . . (27.2)
A ’ A ' -3 % . A . . .

R= R (4nEg p ) - o (27.3)
A 3 A -l 2 2 o/ o
¢= ep” (4wBy) T = Ly N/Eg, (27.4)

| = 31
where L is the Planck length L = (ﬁG/(;?’)z .
- We have carried out a numeurical integration of the system (26) for

different values of the radial function R

01 &t the brigin. We have plotted

some results in Fig. 6, Fig. 7, and Fig. 8. Particulars of the integration

method are described in Appendix A.

-

Theé introduction of special relativity (Klein-Gordon equation) and ™~ °
general relativity eliminates completely some difficulties present in the

nonrelativistic Newtonian approximation, i.e., the regions II and III of Fig, 6

: ‘ ‘ : S T . :
have disappeared. An increase (decrease) in the number of particles always

P

corresponds to an incrcase (decrease) in the mass at infinity . (See Fig. 8.)
. On the other hand the relativistic treatment introduces the concept

of critical mass. The mass at infinity and the number of particles expressed
| . .

as functions of the central density (see Fig. 8) reach a maximum I\/ic‘rit ~

o

(0. 311 x ]-Oug/ﬁfl)ﬁ Ncrit ~(3.01 x 10“10/11d2) corrésiagnding to a central density

97

» 24 3 : B : ‘ . "‘ ) ‘ N & : ' ! R v'
Py~ (520 %107 x m?)g/cm where m’ is the boson's mass in grams. Both

- quantities reach their peak values at the same value of the central density

(ox the same value of any other appropriate parameter). -After this maximum

Lo
'
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they decrease mon‘otonicajlly for an arbitrary increase oﬁ the central density. 24
We give in Table II some numerical values.

Iniagine bosons of one or eynother mass, and out of each kind of boson a
system put together composed of very many identical pérticles. For each kind
of boson there will be a different critical mass. When the mass m of the-
particle goes to zero the critical number of particles Ncrit | goes to infim’.ty.
So does the critical mass Mcrit' For the case of distributions endowed with
the critical mass, the Schwarzschild radial coordinate, r lat which gll_
reaches the maximum, also goes to infinity as m goes to zero. Simultaneously
A N
the central density p goes to zero. .

One can treat a system of many bosons at constant temperature T. as a
fluid with an equation of state p = p(g) derived from quantum statistic:s“":i.n
flat space. Can one e;x;i:end this treatment to T=0 (ground state})? No! We run
into difficulties because the pressure is proportional to '1“'5/2 and therefo’re
vanishes in'the limit T - 0. Proceeding to this limit we would never obtain
any of the configurations of equilibrium that we have found. ;1: is clear thé.t the
approximation of treating the system as a perfect fluid is completely inadequate
at T = vO in a2 system of this kind. It is essential to allow, as we have, vfor the
fact that all the particles fall into the lowest quantum state, a state which more-

o -3

Moreover the pressure is anisotropic and very different from zero!



exists but the anisotropy in the tensor moinen

-] G- 3 :

.-
The anisot is due e f atln2 L :
sotropy 1s due to the factor A "R!'”which appears with different sion
) A Y b
in the - T) and in t 2 3 , .
in the component T1 and 111.f,he components T2 and T3 of the tensor momentum

energy. In the distribution that we have considered, all the particles are i.n the

same ground state n=1, 4=0 and they are limited to a region of the order of the

. : N -1 ’ . .
- de Broglie wavelength # P . For a number of particles N ~ (Planck nrmss/m.)z

we have p ~m c. Referred to #/m c the inhomogeneity of the effective gravitational

. .2, | 2 -4 L
potential (G p ¢ 7) is of the order G p fzz 2 C 4 ~ 1, Under such conditions the

gravitational disturbance in the tensor momentum energy of the system of particles
and the anisotropy due to the tide producing force is indeed expected to be very large.
However, if the N bosons are equally distributed in excited states the radial

distribution R(r) of the system-can have a derivative with 1'espect to r absolutely

negligible. In this case the quantum g:.'avitatiogal bound state for the sysfé%ﬁ still

ik
ST

tum energy disappears.

Ao e

3. Possible Generalization of the Method

" In the préc{edi'ﬁg paragraph we have studied the problem of a system

of bosons in the ground state. If would be interesting to study the corres-

i@

ponding problem for a distribution function

<0,0,...,N N ] o (29)

nim’’

‘in other words, all the bosons in the same excited state, and examine the

dependence of the critical mass upon the quantum numbers n, f,m of that
state, ' ¢ B

~We would have to compute the mean value of the energy rnomentum

tensor corresponding to this distribution. The radial function weould satisfy
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the Eq. (14) and in the mean value of the energy mormentum tensor some

'quant‘i_ties depending.on n,f{ and m would be present, e.g.,

1. -1,2 12 22 L(el) 2 I
<T >=A"R. +(B En-z-p-)Rnﬂ- 3z, R (30)

The computation of the mean value is completely analogous to the calcu-

" T ation (2067 for the ground state. The number of zeros in the radial func- =

tion is equal to the difference n - 2 - 1. This number was zero for the
self grivitating system in its ground state. For the general excited state

this difference will be large, and the radial function will have many nodes.

However, there is another case where again the number of nodes is zero,
namely large n, but £ also large and equal to n - 1. A simple analysis
' ' . \

- shows that we are dealing here with waves running round in a thin "active

region' or "spherical zone of activity." It is interesting to see that if we
write the equations in the lirnit p — 0 we obtain after some simple approxi-
mations Wheeler's equation for geons--not however electromagnetic geons
(built on a field of spin 1) nor gravitational geons (spin 2 field) but geons

,A v. - : : : . . | ‘ﬁ' -
built on a scalar field of spin O.

A further generalization to distributions of the form

Moo Na00r Na1or 00l . s

. and a corresponding examination of the critical mass would be possible.
In this case we would have a number of radial equations equal te

oy et the number of different values of £ and in the energy momentum tensor a

sum of contributions belonging to all the different values of n,{,m for
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Whi‘Ch anm ;é On € g' 2
. . .
: <T{>= X - ¢, : <Ty =~ > .. L (32
1 gmn fmn l4mn S : (32)

where the Comn 2T some suitable normalization factors. The computation

cf the mean values would be done using the commutation rules (19).
Down to how small a number of particles does it make sense to use

the statistical treatment which we have given for a sYstem of N ideal self-
gravitating bosons in their ground state? For bosons of any familiar mass
value the statis__tical‘t'r._e:.itm_ent:in; the small N limit is Newtonian. It gives

for the binding energy of the N boson svystem

; ~ 3.2 5,-2 »
}"'bind = O.-1626’N G m # . ».(_)3)

and for the 2_"-boso.n system S U Y S S
SR = 13008 GEmoaTE S T gy

bind
.On the other hand the exact treatment of the ideal two boson system follows
from the standard theory of the hydrogen atom when we insert (a) for the -
mass the reduced mass m/2 of the two boson system and (b) for the coef- .

s 2 2 . . , . e 2
ficient ¢~ of 1/r in the expression for the force the Newtonian value G m™;

thus, v .
. 25 -2 S e
-‘Ebind = 0.25G™'m
Comparing (34) and {35) we see that the statistical treatment gives a value

o ~ 5,2 times | R I
for the binding / greater than the correct value. The discrepancy will

‘be of the same order whéne_ver we go to the full ‘:‘relat'ivisytic' trea,tﬁuent'and
we consider the case of a srnall number of particles of appropriately larger

i

mass (~10 “gr). The reason for the error is clear:

h - (35)

L]



L2240 o —

: 0 |
the quantity <J > does not represent a real density of particles but only

B e v TPLE BEA

;i.d‘ensity"o'f probability. = Therefore .the,me,tric, is compited in corres-_

pondence not to the time changing rnomentary distribution of matter but

to a probability distribution. Thus it would appear that the freatment

-

--.—developed here, valid for a system of a large number_of par,ticle-s isa_ .
poor approximation for a single: particle as well as for a system of only
- two yo'r three particles (large fluctuation away from any average density,

‘correction for centér of mass etc.). ~In effect a system of equations

equivalent to the system (Zé}iand substantially equivalent to the equations
published in references 16 and 17 has been recently analyzed in connection

with the problem of one pérticle or a few paxlticles by Feinblum and

26

C 25, . 7 , .. .
McKinley, and by Kaup27. Moreover in our opinion there is not-the

slightest reason to believe that the considerations on a relativistic many-

“boson system given in this paper have any relevance whatever to the quite

e PR — S 28,29
different problem of the internal structure of a4 single boson. P

. - - %
‘ .

1



III. FERMIONS

To bring out the effects that we are looking for with maximum clarity
we vestrict attention here and in the following to an idealized system of
fermiops: particles which interact with each other exclusively by gz:av.itational
forces (no electric forces, no nuclear forces) and which are treated as s£able
(no beta decay, no other elementary particle transformations). A collection
of neutrons ‘in the first few minutes before beta decay can occur!) is the
closest approximation we have today to such a system. Hov&ever, it should be
emphasized that well known effects come into play for neutrons at sufficiently

high densities, which make a neutron star depart from the ideal system under

consideration here in respects which are important and which are still not suf-

-

: . . 3
ficiently well understood to be neglected in a detailed analysis. 0

As we have pointed out in the introduction, for a system of many self
gravitating fermions a "spike'' in the density at the origin (Fig. 1) forces the
effective potential to change substantially over dimensions of the order

|

r ~ L (‘:m"\/m)[i/g. " Then the concept of equation of state breaks down.
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We make the analysis first in the framework of Newtonian mechanics:

the potential seems to be perfectly regular for the self gravitating system of

fermions (Fig. 9). In this figure the gravitational potential (x/x) expressed

in appropriate dimensionless units, is plotted as a function of the distance from

the center, also in appropriate dimensionless units. Both quantities are taken
31 . . .

from the tables of Emden for a polytrope of index n = 3/2; that is a function

which satisfies the equation

% x/ax" = - ><3/2//X : (37)

The function ¥ satisfies the normalization condition

X
max
| x.l/z ><3/2 dx = 1. (38)

0
The connection between this po].ytroiae and the system of N fermmions is well
known. The‘us ual radial coordinate r+*in the Newtonian systenﬁ is connected
with the dimensionless coordinate x by the equation

r = N—l/3 b x (39)
where the unit of length, b, has the value
b= 1/2 (31\"/'4)2/3 2o m gl

The value of the gravitational potential (relative to the gravitational poten-

tial on the surface of the system as standard of reference) is

(g:Gme/r o | (40)

‘where G is the Newtonian gravitational constant.
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1

The kinetic energy of a fermion at the point r is connected with the Fermi

-

momentum and the potential %, by the eguation

V _L2 -1
(K. E. )rnax. = Py (2m) "= m %' (41)
The mass density of particles is i
- 8w -3 3
o ()= (5) m 4™ ps. (42)

This is the source term in the Newtonian equation for the gravitational potential

A g = -41 G p (43)
From Eqgs. (39) and (40) it follows immediately that the density distribution
for an arbitrary particle number can be ébt&}ined directly fro'nl the graph of x/x
as function of x in Fig. 9.

The smoothness of the dimensionless potential plotted in Fig. 9 shoxzx;.é
that there is no "'spike'' in the potential for a system containing a reasonable
number of particles. However with increasing N the whole scale shrinks.
Automatically what was a potential without a ”spike”- becomes a potential which
is everywhere a ”spike‘;. Then the statistical treatment fails.

Long befofe one arrives at this critical value of N , however, ti1e bulk
of the fermions have been promoted to relativistic energies (last entry in Table III).
'fhe nonrelativistic treatment fails. The Newtonian nonrelativistic regime ends
~when thé Fermi kinetic energy, largest at the ce‘ntéif"bf the syste:m», ’a,ttains a
value of the order of m (;,2 ; thus

(K.E.) k = mgy}vnncz ‘ : (44)

Fermi
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4/3 - 2 .., 2 SR
G.Nrel‘m b (x/x)o m ¢ . | (45)

From this equation we find '

~ 1rn=.g 3 / mj ('\10 ) "

H

5
7 for m

’ . . Nre.l.

= 156 x 10,

g) (46)
s \1/2 -5 L

Here m = (hc/G) =2,.2x10 7 g is the Planck mass and ()\/x)o is the

dimensionless measure of the gravitational potential at the center.

For values of N > Nrel the Newtonian treatment has to be modified

. s . 5yl -
in two ways: [a)} the nonrelativistic relation E (2m) "between the

r Py

Fermi energy and the Fermi momentum must be replaced by the relativistic
one; and (b} the Newtonian theory of gravity must be corrected to general

relativity, becausc the dimensions of the system are becoming comparable

to the Schwarzschild radius. U

]

o 32 ' 33 |
Historically Landau (1932) and Chandrasekhar = (1931) considered
. . ST ‘ . 34
the effect of special relativity before Oppenheimer and Volkoff = added the
effects of general r@].a.tivif.y. In the meantime the propérties' of an idealized
system of fermions have been studied in considerably more detail, As the

<

central density goes higher and higher a localized "spike' indeed develops in,

‘ " » ‘ o 36 .. * . A N . . )
the gravitational potential, Ultimately it becomes so sharp that in the region
of the spike the cor.xr:.ept' of the equation of state therefore breaks down.

In the following section we trace out in detail the propertics of the

region of the spike, the connections between the th

eory of many self gravita-
ting particles and the concept of the equation of state, and finally the modif-
ication which comes about in the region of the Yspike. "

We found that the modifications in the region of the ''spike' are quali-
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tatively extremely important; however, we believe that they cause no more

.

trouble in the theory of the n;eutron star than the cofresponding troubles

caus c,d for the'the‘orvyvof the atom .ar~1d for the same ‘refa‘son:“ ithe volume of

tlvqe' effective region is negligible qonipared to the;rolume of fhe entiré sys:tem.
On the (;th.er ilalad we show‘explici‘tly that outsiae ;thé region of ﬁhe ';"spike"

the éi,pplicatibn of the equétioﬁ. _Of statAe is pe;‘fe;ctly- legitimate and coincides

with the treatment of many fermions with a s"elf consistent field method.

1. Formalism of the Relativistic Treatment
We apply the formalism of Section II to the case of fermions. We

assume a familiarity with the spinor formalism in a differentiable manifold.

Nevertheless it is useful to recall a few definitions. : :

-

-

1t simp‘liﬁes the problei*n" to adopt a syst'éxnrof isotropic coordinates. ,

Assuming a spherical symmetric and static distribution, the metric in this system

of coordinate is:d e Bly) o d t2- Al ((dxdy®+(dx2)24(dx3)%) 4
where - | L . : - k I .
LoD - o ' ) '
2 2.2 2
r =x +ty +z
1
X =X
dy e
y . = .
X =z

Yo¥p FYgla" Pt (A
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~—r

where 1. is the unit matrix.

In the Majorana r'epre.s entation and with the fnetri“c (47) v\}eﬂob.ta'ivn: o

. for the ;/;the followirig,éxpr essions

e b -
- e 1 0| . S
= 1/2 L -
. 0 0-1 0 R
- 0 0 0 -1
0 0.-1 0
0 0 0 -11{,1/2 RS
v, = : ,A-,/,[ L (50.2)
10 0 o] -
0-1 0 0
0 0 0 -1
v, - 0 0 1. 0 A.I/Z (50.3)
0 1 0 0 '
| 1 0 0 0

0 o‘~1 o B].'/;‘:

1 0 0 0

—

- - We will also use the Pauli representation; we have the relation

Y.Paul_i,‘" YMajo_rana_ i (51', b

- where @ is the unitary matrix SRR S
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I 1 i 1
: -ioi-1 1 ' :
Q = 1/\2 | o (51.2)
.d ‘_' "i i 1 "1 v ‘ S N
1 1 i -i
The Dirac equation is
a A B A "
Yy V‘f U U T . (52)

.° A ® d v @ I3 ‘ o
with. ¢ we indicate a contravariant spinor of 4 components. The covar-.

iant dervivative X/ is
o

A A A B - -
= ! .
Vb =0 4+ o e | (53)
v L!} - a 4} - c !:) 4} :) . ) e ( fid)
a A A aA "B ’
-whelj_e
A, ) S) A fﬁ’)c k —‘;}. :
@ BT Vg YooY B (29
From (53); (54} and (55} we obtain | S , ’
A A &5 A A C D A
Vo Y68 * % Yp5™ Ype YoB T %acVpn ~ %0 B Ypp *° (50

We define the covariant and antisymmetric two-spinor fundamental form
ho ,

| wA};} & "“BA N 'é , (57) -
with components '
e T )
a7 i ©gp T O3 T 0y T3 7 O | - (58)
w23 ; “1(10)]/4 o o o S
l' for v;rh‘ich we have | | - | e

This fundamental form is used to raise and lower the spinorial




indices

N B : ‘
_"!iA: wABlp | S ‘ | (59)

2. The Dirac Equation in a given Isotropic Metric
If we write Eq. (52) using the metric(47) we obtain the following

equation

/

RN VUAS LA R AR A (60)

which in the Pauli representation is

3

\ /2, _-1/2 _ -1 - 4 "3
AY (B / Enle l'l*p,) P1+ (alpq.- i3, P - 53134,‘) = 0
Al/z(ls'}l/?' o + 1) %y (51133-;« iaZP3 - 331:)4-) = 0 |
- SRR A (61)
v'Al,/z(;B"l/Z E 4 et +p,)P3+' (alp2 - iaZPZ + agplj) = 0 .
A2 /2 - -] 4 | | 2 T
A T(-B Eh ¢ +p)P 4+ (alp + 16_213 - 33P7) = o
Here we have put N ‘
A1l 2 230 A, i iEfz"—lc“le -7/8 -3/8
U (x,x T, xT,x )= P(x) e A B (62)

Let us introduce a polar system of coordinates; as in flat space it is possible

. [
to ‘separate the radial part of the function PA from the anguiar part. We .

obtain the following complete set of solutions

1 e T | 1/2 m'—].' |
Tkmn ((kk-1+m)/(2k-1)) E kn Yk~1

Pl s ((k__ln)/(?k__]))l/z Foooy™ Lol S z

.o ITkmn * : ". ’ kn k-1 L ‘ | »» |

FERE SR L (63.1)

3 - i o1/ 2 <m ‘ i
Tkmn - ~i((k~m)/i 24 ,1))' Gy 'Yk"1 E >0
4 m

e e
\glkmn. § 1((‘1@ m)/(z% 1)) ‘ G, ¥k



SO LU

1 _ PSRN V£ om-1
Pl kmn - (._(,".F‘“_I.nfl)/,(".z}f' m ‘ Fkn Y;k
R ((-k+m)/(-2k+1))1/2».F’ v
" II-kmn ooy o Tk T -k
,

H-kmn

]

(K me1) /(-2 1)) Y 2 G, Yo k<0

I R 2 omel
ST PIIfkmn » 1(("k+ m)/(-ZK-i- 1)) ‘.'AGkn ,Y-1_<-_1 :

m-1
PIIII’(mn‘

kn Yk—l

= (tk-_]r!- n'l)/(Zk-l))l/z G

2 TR IZ IR
}'?Hlkmn'" ((k~nn)/(;§k«;)) j',GkI'l'vXk-l

3 -

| e /2 | o
e -*-:I)Hlkrnn.f'—J‘_((k—m'{il)/(Zk-l).) “Fkn Yk. . EQ 0

o4
C Prmemn

]

(it )/ (2-1)) Y 2 Fo Yo

B [

._1 P PO . be .k e . 1 2 Lo 7 rn“l' . : v e '_.‘ . ;_.N_". |
‘PIV-kmri = ((~k-m+ 1)/("2k+ 1)) / Gkn Yk : ' T

2 L 1/2

™m
kn Y-—k
: (63, 4)

T, o Lil/2 -
’EIV-krnn - f1((-k+,m-1)/(--?kf D) F ¥

kn = -k-

—

4 .
IV-kmn

e o 12 m
"] = £ _ e - A -
P 10kt ) /( 'ZK* 7T FL Y"k’fl
where F and G are the radial functions. T11e angular part is des'cri.}‘o'ed by -

e

the spherical harmonic functions 'Yc (0,¢); m and k are the integer quantum

b T
numbers corrfesponding respectively to the observable

J_+1/2and K = g- L e

~ where ‘o isthe 5pin momentum and L the orbita) angular momentum.,
The functions G and F must satisfy the following SYStem of equa’tionsk

-

(63..2)

k> 0 (63.3)

REEITI TIERRRRITT Wy L
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\ . . , » D R -1‘?‘1' ~1/2'. v 1/2‘ T
o d F,/dr+ Fin (1-k)/r= (E_4""c B™/ %+ pa Gy ‘
s o ' | S 1 y -1/_' : y - (64)
S e a /e -1 -1 -¥/2 - . 1/2 .
d Gkh/dr + Gkn (1+L)/r (-Eknfx c B R + p)A I’“kn

1

4/

where Ekn’ Fkn’ and Gkn are the e;’mgenv'a.lues‘ ancz the eig‘enfunctions

corresponding to a given k. It is possible to de,rhonétréfé that the spectrum

. of eigenvalues is discrete.

3. .Einstein_Equations

So far the treatment applies as well to chai"ged particles as to neutral

N

ones. However, we are interested only in neutral particles (ideal system of

self—gravit‘ating neutrons). Therefore we ask that the field function

verifies- 1':he _following conditian .
| nge c 1s the charge conjugatibn Opérator“." To fn&ke; this cgndi:ti.o.n tal;e its '
simplest form, we now go to the }{iajorana representation. | Th_ei'e the ope‘ra"-v-
fi.onf(?{ charge c:.o‘njugafr..ig‘m has‘ the form

0 »,.’ . : . -.. ““

1o

where

It is easy to see that in the Majorana representation we haye from (51)
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R 1
s,

' qulkmn‘: I/Z(P +1PI.’ 1PI.i_P)k;m S A B 7
-1 -1 0
| = : - E A& "¢
z L sp?2_ip3: P e -7/8 -»3/8
! =! -
| - SR (67)
~ - -1 -1 0 » — s
E )x
3 s/z(-ipr: Pl P3 = nk” 7/8 —3/8
4‘Ikmn—-1/2(>~1PIePI+ P.Iurlp) n‘ | .
| - -1 10 '
| | B -l
o P2 3 b i ~7/8..-3/8 |
w"lkfnn—'l/z(lPI-* l-:)I“PI“IP'I)knrme. L Lt -B“ .;':-::',.T:':t'

In the same rw"'ay it is possible to jo'bta,in Y ﬁ, ibﬁl, U IAV For simplicity in the |

Tfollowing; we indicate With t the eigenfunctions with k > 0.and with | ‘the
~eigenfunction with k < 0. It is now po 51b]e to erte the following expressmns:

(i) the symmetric energy-momentum tensor

Top™ 1/4 { vaTﬁvﬁM- Vﬁ-'\ﬁlYu | "‘J\{ﬁ v lp_-:;'g,a v‘{'ﬁ Y )_ﬁf - '(65);
(ii) the current vector | | | “ | |
AR 7 T ()
(iii) the spin tensor R o ‘.
._ sﬂfllﬁ = YO(Y Yﬁ“YBY )\P T (.'70) :

" With § we indicate the covariant spinor tha.tris' obtainéd from the contra-

variant spinor 4} by means of the 1owe:clng operator (59)' e'. g+

R R ‘l‘ F W 4“ 4 :
In Lhe fonnahsm of second quantization the Wave functlon W is an operator-
acting on the state vector < Ql . The Ta ‘3', - Ja, - and” S.' are also "

- operators and their mean values are computed for a state vector < Q!

R N

remembering the antisymmetric fermion commutation rules. In the minimum

energy state of the sysfem, the lowest N/2 cells ofypha.,sé space are occupied.
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Coﬂsequently we have for the mean valuees‘of < QI Tg[Q > 'the follo{ving ‘

-expressions ‘

ey 2 2. -1-1/2
o _Ikl(Gkn + F )ATBT )

<o|tlila>= ¢ B Yg
0 ' 4 kn —
* k)o,n ’ . . . - i ; (71)
0 (Al o wmlf2 Lol 2 2 .1 -1/2 R—
<q|Tgile>= 2 BVE_TUTIk[(GL+ F)ATB .
, k<0, n e :
and for the mean value of the Spatial trace i o
< QlT 1[Q >= - < Ql'l’ 1]Q >-in:1c2'3 ]kI(Fi GIZ. atlg Ve
k>0, n n o o e
, L | | (72)
<QlT .tlQ > = ..<QIT 1|Q N lkl(Ff .2 )alpl/2 ;
n K1l ) ‘ .
1<<O n : : -
- For the projection-of Tik on a unit-vecto: t normal to a radial unit
vector we have
<Q]T Ak tzIQ >= F, G, ]klA'lB"']'./zr"l o
n kn R
y o (73)
il _ -1.-1/2 -1 T T
<Q|T, gLt |Q>=.F _ G |k[laA7B™/ % (R | o

We define, as in the boson case, the probability density p by means of the
zero component of the vector JW

) 2 2 . -1.-1/2 0., 2
Y pl 1= B |k[(G + Fy JATR /= J‘T(goo)/

k 0, k>0, n : Lo bl e - : o (74)
ot = BK|(GE + Fin)A“lB“l/Z = 3%, (goo)]‘/&‘ | B
k&0, n k<0 n | ' .

1t is posmble now to write the Einstein eqtiat'ions for the system of

N fermions

i

‘RO - I/ZR .817(} 0-4 [<.TOT_>>I5 <TOL > " ,
0 T e e (75)

i

R;-3/2R=81Gc™ [<T) 1>+ <T)1>]

e

 These equations with Eq (64) and the normalization'condition :
© _ : . - : g v :
| J' J'Otf--g'd3x== f Jol NET: d3x= N/2
0. ' 0 SO
" determine the distribution of the N fermions in the lowest state of enrergy."

The boundary conditions are the same as in the boson cdse.
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4. Possible Approximations .

-

-

In the ground state of the N-boson systém all the particles are in

“the same quantum state. How different the N-fermion system! The Pauli

W

p“rir'lciple forces all the p‘artic‘les inte different quantum states. To solve |

exactly the problem of ].057 fermions self gravitating it would be neces-

Ly :sa_.ry' to compute 10.5’7 eigenvalues and' 10" eigenfunctions! Therefore it is

e

s .necessary to develop some approximation methed.

From (74) we can write the expressions (71) in the following forin:

‘ ' 1
< T0/p> - 2y B 2E

. p e
: kn "kn t..
k>0, | .
g (76)
' 1 Lo
<'T3¢>,= E,B"ZEka Oy 1
: k<O, n no
~In the system of equations (64) we can eliminate G‘kn obtaining a second |
order equation o |
' 2 -2 -2_-1 2 - -2
Fi;n + (Cl"/CY)Fi(rl + Fkn _[(Ekn’h c B -p)A +a'a Tkr 1. k(k-1)r "] =0
,, | | (77)
where : o
| , U R R £ 1 | ® '
e = (Ekn/ﬁ c B ZHp)Ac | o | (78)
~and | ' |
oat = + aat - %B'EknB"?’/z-(EknB 2+mc2) 1 (79
- We fix now attention on high quantum numbers and we suppose that
R S Lo I ,
o EknBia z’z;'l'c L ~uig greater than p inside the distribution. Then we'can
< write }
waot=taatesh Lo - (80)

If we put ¢ = Q".IF we have for Eq. (77) the new following expression
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- A w2 —2 - i : i Coy ' N )
6" + [(Ep,B Bl da- ki) % at o ™ Ha/a)-(3/0)(e /) T = 0
| T ¢
- We apply the JWKB method We write | o ‘ ' | |
- e ¢ = i(r) e s/ L (82

We obtaih‘the' following exact equation‘-f‘();'lS: 39‘ -
- --»:(S")Zuvf (Ez é-?B:-1~m2c2_)A - k(k-l)l‘-?h2_+ R

U

R S 1 "/o. (3/9(a'/0)? 1% + a'a” ’m 17‘1?-: % [(3/4 s/51)°- 1s"/s1) )=

. (83)

-~ s e

" In the case where all the quantities'with_ 7‘12 “in front are little in

.~ comparison with the otheré,with-the exception of k(k-l)/fz (high qu.a.ntﬁm

: numbers), Eq. (83) becomes

o [ke-np’r7fa Al % 4 mPPy= B2 BT (e

- m—

: | 21 o : : |
The quantity A 2S' is the projection in the radial direction of the momen-

tum p of a particle with total energy' Ekn’ i.e., |
. R , i
A 28 = p'p,

where p1 is a unit radial VeCtQI’ of component 3

(g 2t

"1 o, 22.1Y/2 2 -1

= (g /22t |

| (-333)1/-2X3r-1 ¥ L | }_; -' |  .
plp = -1

o SEUS L e , L1

The quantity EknB ¢ is the energy of the particle and the quantity (k(k-1)}2 4.4 er

- . .

~is the magnitude of the projecti’on of the momentum in a plane normal to the
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radial direction. We see that (84) reduces with this notation to the familiar

relation between momentum and energy,

-1 ' 1
w= EB2 = c(p+m? c2)Z, (85)
We neglect in this approximation the following quantities .
atot ke tals? (86.1)
-1 1 " 1 2 2
AT [3(a" o) - (3/4)(a' /)" ]7 (86. 2)
and as usual we neglect
2 2
[(3/4)(s"/8)% - L(smi/s)Ta” . (86. 3)

The expressions (86.1) and (86.2) contain the interaction between a fermion
and the metric. We consider in detail the expression (86. 1)..

For high quantum numbers the projection of the momentum in the
plane orthbgonal to the radius can be written

Py = k# r"1 A"

tofes

(87)

We put

o1 -
Fj= pecE B2 = kﬁcE"le r 1A

o

0 =j<l -~ (88)
the T are a consequelflée of the fact that k can have positive and negative

values. From {83) we obtain

2 -2

| - -1 -1 -
P =c w2(1--m2c4w 2 F ) dca 1A. ¢ .

hw ). (89)

1 G ) - : .
hw represent a gravitational spin-orbit interaction. The particle

— e



with parallel spin modifies its binding energy in opposite sign {rom the

particles with antiparallel spin.

- -1 i -
For af'a'ch 2 hw 1>j 1mzc‘{]tw 2

the Pof would be timelike. In this limit certainly different phenomena take
placé and other effecfs must be considered (quantization of gravitational
field, interaction fermion graviton, etc.). We will now give an order of
magnitude of the interaction between the spin and the angular momentum.

We have from the relation (89) that this interaction is important when

-1

o
o o hcA 2 2 4

w ~m" ¢ : (90)

To evaluate this quantity we consider the Oppenheimer-Volkoff analytic
. e e . 40 . . o "
solution for an infinite central density. Using this solution we can evaluate
. -1 : . ' , :
in Eq. (90) the factor o'« = as well as give an approximate value for w.
-1 ]
We must only remember that B'S " = -p'(p+p) and the behavior of the

equation of state and of the density p(r) near the origin. 41 We see that

2 =A<)8/& _10t42

condition (90) is satisfied when the density is p ~ c2 G_l L~ ('m/m g cm

4/3

. . * -8 . ’
and the central core has dimensions r ~ L (m /11’1) ~~ 10 cm (having chosen

for m the neutron mass, and m and I. being the Planck mass and the

Planck length). |
5.  Case of a Weak Field
It is clear that in Eq. (71) the low quantum numbers give a negligible
0. | 0
‘i‘ )
o > and < TO

limit our attention only to high quantum numbers and in this limit the summa -

contribution to the mean values < T L > Therefore we can
tions can be substituted by integrals. From expressions (71), (74), (76), and
(85) if we express the differential densgity of presence in the 137)01n611tu31d'313ace

we obtain for the energy density of our configuration the following expression
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. kn

texpresscd in the following way

Remembering Eqgs. (72) we can write

-39 -

. Py : ‘

L 0 -3 -2 : : 1 ) . “
~ <Tp>= Tt [ eptimied)Tp? ap (91)
. o . N 0 S

‘ {;Jhere pF is the Fermi "mpn;entmn that is _;‘elated to the densit':yvof particies

p by the following expression
. - P |
. . T 7_.3 _2 a2 1 . . _
op= T T [ ptdp= gpn T (92)

To c:oni;juté the r.heahuvalue of the spatial trace we must evaluate the qlié.ntity

2

> | |(F ~G ) p1 esent in the expre essions. (72). Following the approximations
,-.,kn . I . . - - , )

i

ad0pted in §4 we can write

s, s/ SRR (74 R
“kn = Ekn © and Fyn = fep © R o (93)
" We obtain for Eq. (64) the following expression ’
-1 2 % f T . iS4 -1 - -1 L '
gkﬁ((ﬁc) Ern B 24 p)A [ iS'h T f kr " f 7. (94)

kn S ‘kn

. We multiply Eq. (94) for the cornplex conjugate and, neglecting the quaxn’fijt'y

f! , we have ' ' >

| * -1 -2 2 2 2.2 &2
0 2 .4 - 1<y e
gkngkn((hé) LknB +u) A= (k'r +4 7S )fknfkn

- (95)

Rememblevring the e>.'<p1"ession’(84~v) we can write (95) as fgllowin%g'

ol

S T L T TR T S 02
(fzc E, B 24y = ((hc)E, B ‘“Wlknr

g g 1% (96)

. On the other 'S'id‘e, we know from (74) that the density of présellce‘cén be

2 2
1%+ 14,

Prn = !kl (l gkﬁ kn' - | !A(49 7)

: ’ ‘ 2 2 : : ,
qucgn-{t.}.l‘ege;fiore_;e‘>~:.p,1"es‘;s lfkn.l and lgknl as a funct:o'n of Pn and we

obtain . Ty
' lkllfknl 2

; i 2 1 “
[l gyl % = 3 4 3% oy 08

R Nt
2+mec )E B

w!r-

S e (98)
~m¢2)E~'~1 z i

ol
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P D 2411
< Ti 1T>= - < TO T > +k§ P, T € EknB : ' S .
et s s et - miAElEr LR
2 R 0 & Prp ™M &~ Fkn e el

| T ki C :

We can; as before for thé _’<_'AT8. S, transfd:;m the summation inAinvte-
grals and express the differential density dp in the momentum }'Space ob- E

f-.vta;ining for the trace the following expl‘essi‘bn:

. PR Tl pF L
o h _L -.1 o . _1~ . ° . ;
<T; S S 4 ((plrmPct) BT w2 )p%p [ -(100)

. After the computation of the integrals we obtain

0 2,3,-1 2, 22 2, _22% . 4 .1 .1-]
- :‘<‘TQ‘>: = -c(8w Aa7) {pF(ZpF--I-m ¢ )pp +m7c)? -(mc) s:.ph (ppm ¢ 1))
« (0L
i 2,3-1. 2 2 22 2. 2 2L 4 -] a4
i T, >l= =3¢ (8u"27) {pF(ZS Pp -1, ;»)(pF +m~c”)2+ (mc) “sinh (pF_m c )}
| (102)
Thése expressions for the sourcerof the Einstein equations are exactly ~

P

the same as those used by Oppenheimer and Volkoff. We have also shown |

~that the pressure is isotropic. We have in fact found the relation

T U TR 2 i e
e Tttt ¥ = 2 TS S o (103) ,
’, ] ik 3 v 1 . ’ : S S [EERE TR ‘ o

where t° is a unit vector normal to a radial unit vector. It is possible to verify

7
/

‘that' the relation. (103): follows from the approximation previo‘usvly‘ adopted. aﬁd'

from (73). . ovy
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We know that in the relativistic regime w ~ cp and

Py

f 8w p3 h“3 c"1
o

dp= Zﬂ‘p%‘ 273 ets P .

A

2 -2

'On the other side we have o oz_l ~4m G c"2 p.r,and Gpc ~ ~7

from the Oppenheimer-Volkoff solution.
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APPENDIX A = - | L
The sYsterr; ’(26) a;pp_c’ea.r"s" to be a system of nonlinear _diﬁfe{rentifxl
equations of first'order in the funcigions A and’B gnd of second order in R.
‘All three functions are present in each of the three equations. ‘Th'é..system |

is solved by determining the eigenvalue E_ . which permits the boundary

01 |
and initial conditions (2.5‘) and the integra_l condition (24) to be ‘s.ati'sfied.
If we have a solution ’of (26) tha.t.satis‘fi‘es the boundary and initial
conditions (25) but with fhe integral(24) having 'a value I # 1, then this will .
be equivalent to a new solution normalized to 1 ’withv | |

A

Ax=A  Re=RAI Né= N.T

B* =B ,”?:’fg:a I L “
Wh.ez‘e * inciicates the new solution.' Another very useful property thatwe
have ‘.usgd during}the inffe}grav.tion of the sysfenﬁ is that €00 can be d.e.fizled
up to an éLrbitrary constant factor. ‘In other words we can integraﬁe the
system and .fin.d‘the eigen‘value independently'of the b'ounda_ry gdnd.i.tiozi (2.5. 4)

S

| ‘ a.nd then divide 800 by an appropriate factc?r' SO thét .goo(o;) = 1.
We have 'integrated the s;}sterﬂ 1n two éompl.efl;ely different \véyg. |

In‘é:t'nalogy‘ with fhe usual me‘thbd adopte‘d'for‘ sirhil:_ir pl-leems 111 a..tomi.c

and nlolécu].a,r physics we have used an i‘terétive met’hod' of cém.putatién.r

We have expi'eésed At aﬂd, B!' as functibﬁs of:ﬁ;’, M{Band,R, RY és a.’functio‘n |

"'c;f R, A! ’~~B"t: A, §B. We start from flat spacei A=B=1 andfrom a“

giveﬁ in_itia]; "rac'ii’ably disvtr"i'bution R(r). We c‘émputg new values for A and B;

- We put these new values in the radial equation and integrate obtaining a

T
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new radial function. Starting from these values for A, B and R we start a°
: N . . r : o ) . ‘
néw cycle (see Fig: 10}, 7 R IR SR

P aeh L mae  eeeman u ey ———t—— e

+%3-% I porany ‘reasohable choice of the initial function'R, the procedure
cfé:r:i've'rgé's rapidly.” Within five cycles we found o
L mme laela /G, sl <10T e

wheleGl -and G1+] -' ’stan.difor" the three functions A, B and R, é\}aluated
for ilh@ i‘th and (i +1)th cycles. This program was extr‘emely“ac‘cui"ate but

-

five cycles at three minutes per cycle is tco long to be practical. For this
reason we have developed a new program based on the Runge-Kutta method

{(for particulars see reference 18 using the preceding program only for com-

parison or for improving the accuracy of some results. : R

<

Y 3

The method of integration is completely different from the former.
We fix some value for A, B and R at the origin and a random value for the

'. A * . . ’
“eigenvalue E We solve all three equations simultaneously and we extend

oY

N
.- the solutions, starting from the origin, by successive intervals A¥ = h.
If the value of EOl is correct the radial function R decreases ex-
- . . .; . ’ . | S . ’ V A \ ‘ .
ponentially reaching the value zero at infinity. If it is too small then at a
certain value of T the derivative R' changes sign; thereafter R increases,

. . . . . } ) - - c . . A ' . . . N : o
and goes to + oo ,as T goes to +.00. Moreover, if EOl is too large, then
' at a certain value of r the radial function R will change sign; as r in- N

creases further towards infinity, the function R will go to -c. The
_ ,prog\ramvstaljts, the intc’ag%ration at the origin and extends the solution to the

Cooat . A A
- point where either R! >0 or R <0, .
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A subprogram optimizes the choice of a new eigenvalue and the
'integration starts again froi’n.the origin. The computation is stopped to
. . ' ‘"]O . . 3 . .
the asymptotic region R <10 ' €91 ~ B ™ 1. Some illurninating diagrams

are sketched in Fig. ]1 .o [ ———

“From the asymptotic form of gy: we have ’cmnpu'ﬁed, in the usual
way, the value of the mass at infinity, and from the maximum of ST
have determined the Yeffective radius' of the distribution,

3 ' 1'(:matx )
Yeffective radius'' = f €11 Ng. . dr
,_ - | (0] S 1

The computation carried out with this second program (Runge-Kutta} is in

p‘erfe'ct agreement with the computation of the first program (iterative

method). .
¥ e,
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TABLE I

TABLE II:

~the Va]ue is glven in units Bc G m" ). The elgenva]ue E

v’has been determlned by requiring that the radial function R

- koo = ; | ’

“ TABLE CAPTIONS Y
. ’ A - . '
The dimensionless quantities ¢, V and /1\ relative to the
equilibrium configuration of many self-gravitating bosons in_

their ground state (n"::, 1, £ = 0) are given. These data refer

ad . N =

to a Newtonian approximatiori valid for a number of particles

N << (Planck mass /rn) where m is the mass of tho boson
under consmeratlon The solution relatlve to a flxed mnnber

‘of bosons N is obtained h om the dimens ionless quantltles (p, |

)

v and T by appropriate scale factor (seevrgl_at1ons (5)).

In A are given some numerical results relative to the New-
tonian nonrelativistic treatnnent of a system of rnany self-

gravitating bosons in the ground state (n =1, £ -'—' O). The mass
-25

of the bosons has been chosen to be m = 2.68910 “7 g. _The

value of the radial coor_dinate for which the potentia.l‘has'one—

half of its value at the origin has been defined to be the ‘radius

of the distribution. The total'mass of the sy.stem has been com-~

.puted neglecting the b1nchng energy. From these‘ numerical

values, clearly appears the presence of a scaling law in fhc

nonrelativistic treatment. Itis also clear that the density at

~which such a quantum-gravitational bounded state takes pla.,ce

is strongly dependent from the number of particles under con-

.sideration.

In B numerical results f01 the extreme rclat1v1st1c regmn are

glven R Ol(O) is the value of the 1ad3al part of the \aave func- :

tion at the origin. The mass at mf1n1ty has been computed

from the as y*rnptotlc beha vior of &1 and €00 at 1nf1n1ty and '
1 .
01

Ol

. 2
| goes to zero at infinity and is measured in units of me where

: ‘m is 'rhe booon mass The value of the rachal c001 dmatn r



TABLE III:

- 5] -

corresponding to the maximum of g1 has been defined to

be the radius of the distribution (units /’zn'lﬁlc_l). The mini-~
mum of €00 is attained at the origin and its value is fixed

in agreernént with the requirement goo(oo) = 1. The number
of parﬁcles determined by the integral I < JO >(—g)% d3x = N

T - 1
is measured in units L 2m 2 where L = (hc/G)?.

Properties of an ideal system of self-gravitating fermions"
W

in the Newtonian regime. The mass of the ideal neutral

fermions considered is m= 1,6 x 10'"24gr. Here the "radius'!

is the distance at which the Fermi kinetic energy falls to half

value; (K. E. /mcz)r is the kinetic energy of the particle

=0

at the center in units mc is the central density; M

Po
is the total mass (neglecting the negative mass of gravitational

binding) and T ohw is the gravitational radius of the system

endowed with thissmass. Irom the last line (1054 particles)

: © it is evident how the effects of special and general relativity

are manifested simultaneously.
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TABLE I

7 s g T v @
0.00692 0.15793 0.08329 | 11.44081 0.08411 0.02122
1.04637 0.15667 .0.08214 | 12.48026 0.07809 0.01714
2.08581 0.15305 0.07883 | 13.51971 0.07270 0.01374
3.12526 0.14741 0.07371 | 14.55915 0.06788 0.01095 |

4.16470  0.14022  0.06724 | 15.59859  0.06359 0.00867
5.20415 0.13203 0.05997 | 16.63803  0.05975 0.00683
6.24359 0.12335 0.05240 | 17.67747 0.05632 0.00536

7.28304  0.11460 0.04497 | 18.71693  0.05324 0.00419
§.32248 0.10614 0.03798 | 19.06340 0.05228 ~ 0.00386
9.36193 0.09816 0.03164 | 20.10285 - 0.04960 0.00300
0.40137 0.09808 0.02605 | 21.14230 0.04717 0.00233




TABLE I

“A) Nonrelativistic-Newtonia n Region
Number of Radius-cm Mass of the Binding Energy Density (g cm ) Gravitational Potential
over 2 -2
Partic System (g) RGO at r= 0 cm” sec
Tctal Energy
— - . /
LA10 o qpkT s =15 . -%2 - n=02 -42
10 7.55x10 2.489=x10 1.060x10 1. 047 x10 3.089x10
20 - 7 -5 YA - ~-42 -22
10 7.55x10 2. 489x10 1. 060x10 1.047x10" 77 3.089x107 %"
PR . .
3 - e -3 N apn=22 ’ +18 -
10 7.55x10 2. 489x10 1. 060x10 1.047x10" °° 3.089x10
9 N
’ 1
L,
W
X i}
B) Relativistic Region _ j
. ‘ . - .. ,‘,-‘-l ' A R ] — P D .
ROI"O> Number of Particles | Radius x (7 'me)  M_ x (mm )i Bigenvalue 2= Max of gl Minofg,,
| 2 *"‘2 T.' 2 =k
X (m m- ) = O‘r (mc”)-1
0.2 0. 6389 5.100 0.6207 0.9403 1.236 0.5771
i Yo . -
0.4 0.6225 . Z.9392 0.60856 0.8993 1.452 0.3207
0.6 0.5163 2.072 0.524¢ 0.8783 1.632 0.1687
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| .1016& cm"':3 <p s 10_22g cm-3. As the c‘enti'al density goes to 'highe'r'éﬁa

_approach asymptotic values R_

refers to a distribution with R

R "_ B T
FIGUBE CAPTIONS

Fig. 1. Density is plotted as a function of the radial coordinate for a system

of Self-grav'ita'ting féfmion’s fdr selected values of the central density. Near

.

.i:l‘ie origin there exists a very simp‘le‘ sc'aling‘law'(Boi?di s'cali-ng law). A

'\/*-“f . . , o .
solution for a value of the central density 'KZpC, whereKz.is a constant, is

obtained from the solution of central density pc -téxlkihnlg the value of p at the
po.i‘nt r and rrnulti'plyirig then by K2 ‘and r by | l/K " Enormous c-haﬁnges‘in' the

core have practically no effect on the rest of the distribution.

”~

. ' - : Lo . s . ! . . .* : . '.t.
-Fig. 2. The radius R and the total mass (expressed in kmm, M = MG/(:?)

of a2 neutron star are plotted as a function of the central density in the range

o
-

cent

. - e )
. . i R - - .
‘higher values the radius R and the mass M are influenced less and less and

]

6.4 kin and M_= 0.617 M_.

Fig. 3." The stress ellipsoid for a degenerate gas of self—gra;f’itating bosons

~

r

1f5 plotted-at selected distances from the center. From this figure it is evident

-

. how the anisotropy increases from the center (the stress is the same in all

2
.

directions Tj= T2 = T}) to the outside (T)/T4 =~T/T} = 1.75). " The plot

Ol(O) = 1.0 (see Section I1). The ra.diial_,cﬁ:o}o1'dir1até'

-1

~ .is measured in units #(mc) ~, the stress tensor in units # (2m) "N.

ks

l Fig. 4. The dimensionless quantities ¢ and V. relative to the equilibrium

 configurations of many self-gravitating bosons in their ground state (n=1, 4=0)

ao. -
" N - - Ml T .
B I R T L LT
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in the non-relativistic domain are given as a function of the dimensionless

coordinate r . The exact numerical values are given in Table 1.

|
Fig. 5. The total energy Etot as evaluated by numerical computation in ‘
the Newtonian approximation is plotted against the number of particles N, We '
can understand the qualitative behavior of this diagram by considering the -

2_5

" h.—Z

.Afo'zrfnu].a Etoi: = N mc2 - 0.1626 N3 G . The lnaximul;n of the total ‘

~

energy corresponds to a particle number given approximately by (Planck mé.ss/nu)z

We indicate by m the mass of the elementary boson. |

01 is plotted as a function of r (dimensionless)

<

Fig. 6. The radial function R

for selected values of 'R .(0) at the origin,

01(

(S

ey

Fig. 7. The coefficients and - of the metric aié:. lot‘ced.‘as fiinc:tions
g & &9 8o P : 4

of r (dimensionless) for selected values of the radial function RO] at the or‘igin.

- . o ' ' . 2 - S R . ‘
To an increase of the central density (pc ~ ROl(O)) corresponds an increase in

the maximum of E1] and a decrease in the minimum 'of €00

Fig. 8. The mass at infinity multiplied by (m x n1>‘="2) and the total ’nrlinlbt_ar of ~

22

| "particlés multiplied by (:m /r’;lm)ﬂ2 (m = Planck mass ~ 1O~57g: and m = nq&sé of

25

w

 the Si‘ngle‘ boson = 2.689 10 ““g) as obtained from the general relativifstic,

- v

tre‘atmentare plotted as a function of the central density. We hézve adopted a
. particular scale to focalize our attention cn the extreme relativistic region
(N ~ (Plank:k mas s/m)z) where the contx“i,bulytion.s: o‘f general and special

relativity are more important. For a direct comparison are also shown the

- corresponding quantity obtained in a Newtonian approximation. For a number




~

- 87

oA

. ; - > : »
. ‘of particles N < (Planck mass/m)_ the general relativistic treatment approaches

¢ . . . -~

. asymptotically the Newtonian approximation. From this figure it is clear that
... in the full relativistic treatment to an increase (dec.rease) in the particle numbexr ‘

corresponds always an increase (decrease) of the mass at infinity, This result

’ .

eliminates one of the strongest difficulties of the Newtonian approximation, where,

for sufficiently high density, an increase in the particle number corresponds to

" a decrease in the total energy of the sy'stem (in the Newtonian approximation this

"

last quantity, divided by cz , takes place of the mass at inﬁn’ity.of general

relativity). The mass at infinity stays always positive and, at least in the
b ' Ut . o
accuracy of our numerical computations, seems to approach an asymptotic

positive value, when the central density goes to infinity. The total number of

I '

particles in the .general relativistic treatment reaches a maximum value Ncrit
otherwise non-existent in the Newtonian approximation; in this way the concept
| ncep

.t ,

of a §ritica1 raass is introduced and Kthe presence of the gravitﬁtiénal c.olla,psef

- also in the bo}sons'f case, seems uhavoidable. We notice that in the asy;mptotic:'

) regioﬁ, increasing the central density, the cu.rvé of the mass aﬁ /inf}nity crosses
t}.le‘ curve of the total number 'o'f. particles, suggesting the gxistellce Qf gravitationally
unbound states.

“

Fig. 9 The Newtonian gravitational potential of a system of self-gravitating

e BTN ey

fermions in degenerate state is plotted as a function of the radius in a.ppr'opriaté

dimensionless units (% = GNm bnl(x/:;c)‘, ro= N-1/3 b x, G is the Newtonian

gravitatic}nal CO;istant, b = 1/2/(37‘r/4)2/3 ham_3G~1, m the ‘mass of the fermion). .




-58- . ’
Fig. 10, Scheme ¢ the iterative

. .
program.relative to the numerical solution
. ) . \‘

of the relativistic equations of many seif-j;ravitating bosons in their ground state.
Pl

The index I indicates the cycle number, the index K is determined by the number

cf iterations necessary to obtain a given accuracy,.

Fig. 1.

: A .
Radial functions R

01 relative to the ground state distribution of N

]

self-gravitating boson are plotted as a function of r (dimensionless) for

- A ] . A.
. ifferent values of EOl . The ecigenvalue is EOl = 0.8842.
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-NEWTONIAN APPROXIMATION

Etot* (e c2)

- px(FPritm*2c3)

2 15 18 21 24 27 30 33 % %) >
| -G. R. TREATMENT- -

! | m=mass of the bosons
2.489 10725

. \I/2

m* =Planck mass(hél) ~
) _5 4
0-5g

px(ﬁ3 zfn”£2 3)
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