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As a traditional medical intervention in Asia and a complementary and alternative 

medicine in western countries, traditional Chinese medicine (TCM) has attracted global 

attention in the life science field. TCM provides extensive natural resources for medicinal 

compounds, and these resources are generally regarded as effective and safe for use 

in drug discovery. However, owing to the complexity of compounds and their related 

multiple targets of TCM, it remains difficult to dissect the mechanisms of action of 

herbal medicines at a holistic level. To solve the issue, in the review, we proposed a 

novel approach of systems pharmacology to identify the bioactive compounds, predict 

their related targets, and illustrate the molecular mechanisms of action of TCM. With 

a predominant focus on the mechanisms of actions of TCM, we also highlighted the 

application of the systems pharmacology approach for the prediction of drug combination 

and dynamic analysis, the synergistic effects of TCMs, formula dissection, and theory 

analysis. In summary, the systems pharmacology method contributes to understand the 

complex interactions among biological systems, drugs, and complex diseases from a 

network perspective. Consequently, systems pharmacology provides a novel approach 

to promote drug discovery in a precise manner and a systems level, thus facilitating the 

modernization of TCM.

Keywords: bioactive compounds, target identification, systems pharmacology, synergistic effect, drug discovery

INTRODUCTION

Traditional Chinese medicine (TCM) plays important roles in the prevention and treatment of 
complex diseases, which has been developed in China for thousands of years (Tang et al., 2009). 
In recent decades, TCM has been widely used as the complementary and alternative medicine in 
Western countries. Generally, Chinese herbal prescriptions or formulae (also called “Fangji”) are 

Abbreviations: TCM, traditional Chinese medicine; ADME, absorption, distribution, metabolism, and excretion; SOD, 
superoxide dismutase; CK, creatine kinase; cAMP, cyclic adenosine monophosphate; cTnI, cardiac troponin I; ALOX5, 
arachidonate 5-lipoxygenase; TOP2A, topoisomerase 2-alpha; ADCY1, adenylate cyclase type 1; SCD, stearoyl-coenzyme A 
desaturase; BCHE, butyrylcholinesterase.
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used in clinical practice, and they can exhibit coordinating roles 
through the rational combination of multiple herbs to achieve 
good efficacy and few side effects for various diseases’ prevention 
and treatment (Li et al., 2009). Despite the widespread use of 
TCM in clinical practice, proving its effectiveness via scientific 
trials and dissecting the molecular mechanisms are still big 
challenges.

Indeed, TCM and Chinese medicine formulae are designed 
under the principle of “syndrome differentiation” according to 
the combination rule of medicinal properties in TCM with obvious 
multiple-compound characteristics (Li, 2009). In ancient times, 
ancestors usually tested poison to identify effective herbs; for 
example, Li Shizhen was a famous physician and pharmacologist 
in the Ming Dynasty, who tested drugs and tried poison in the 
spirit of dedication to science. There is no doubt that viewing 
humans as the testers would be risky, but knowledge on common 
herbs is the achievement of an Ancient Chinese medical scientist 
who tried poison. Nowadays, great efforts have been made 
to extract and isolate compounds in herbs and prescriptions, 
resulting in the emergence of numerous newly identified 
ingredients (Zhang et al., 2018). In addition, the absorption, 
distribution, metabolism, and excretion (ADME) properties are 
defined as the dynamic changes in drugs within an animal or the 
human body, such as oral bioavailability (OB), drug-likeness, and 
half-life, which are critical in drug discovery and development 
(Su et al., 2007). It has been reported that nearly 95% of lead 
compounds fail in the drug development in clinical trials each 
year, and approximately 50% of these failures are due to poor 
ADME properties (Kassel, 2004). Therefore, the optimization of 
the ADME properties of lead compounds may be a critical factor 
that determines whether the drug can be successfully developed 
(MacCoss and Baillie, 2004). Many clinical studies including 
randomized controlled trials (RCTs) of the herbs have been 
conducted, some demonstrating hepatotoxicity and toxicity (Hu 
et al., 2017). However, because the extraction and isolation of 
compounds derived from herbs are costly and time-consuming, 
as well as only a few of them have satisfactory ADME properties 
and less side effects, there is an urgent need to develop a fast 
and effective novel strategy for identifying potential active 
compounds.

Furthermore, the identification of compounds derived from 
TCM is also an important process for drug development and an 
essential factor for the dissection of the holistic mechanisms of 
action of TCM (Cao et al., 2012). Currently, the ligand-based 
virtual screening (LBVS), structured-based virtual screening 
(SBVS), and the text mining-based approach are widely used to 
predict the target–ligand interactions (Ballesteros and Palczewski, 
2001; Byvatov et al., 2003; Krejsa et al., 2003). In addition, several 
chemical genomics approaches, such as the ligand-based, target-
based, or target–ligand methods, are more effective to predict the 
compound–protein interactions (Balakin et al., 2003; Frimurer 
et al., 2005; Nagamine and Sakakibara, 2007; Rognan, 2007; Xia 
et al., 2009; He et al., 2010; Yamanishi et al., 2011). For example, 
Frimurer et al. have established a target-based approach to divide 
the receptors and the known ligands into clusters and further 
to discover each cluster with shared ligands (Frimurer et al., 
2005). However, the target–ligand approach integrates the ligand 

chemical space, target space, and the available known drug–
target network information to construct a complex predictive 
model to predict ligands or targets. For example, the in silico 
models integrated the amino acid sequences, two-dimensional 
chemical structures, and mass spectrometry data, as well as the 
chemical functional groups and biological features, for predicting 
the drug–target interactions (Nagamine and Sakakibara, 2007). 
However, all these approaches only focused on limited receptor 
space with certain protein families or the limited chemical space 
of US Food and Drug Administration (FDA)-approved drugs, 
and maybe they are not suitable for the unknown compounds of 
TCM. Therefore, novel approaches to identify the drug targets of 
TCM are valuable for understanding the mechanisms of TCM.

More importantly, TCM views the human body as a complex 
dynamical system and focuses on the balance of the human 
body, both internally and with its external environment (Ma 
et al., 2016). Previously, the researchers could only focus on the 
human body’s reaction to herbal medicines, such as alleviating 
cough, reducing heat, and limiting bleeding. However, how 
these active molecules combine with each other to assemble 
as a whole to exert their therapeutic effects is still unclear, 
and it is of great significance to understand the molecular 
mechanisms of TCM. Therefore, efficient approaches to 
dissecting the mechanisms of drug combinations in TCM are 
of great significance to understand the underlying mechanisms 
of action of TCM.

Fortunately, the advent of systems pharmacology has provided 
the opportunity and methodologies for the development and 
modernization of TCM. In the recent year, systems pharmacology 
has been used to identify active natural products and investigate 
the mechanism of natural products (Li et al., 2015a, Li et al., 
2012b; Zhang et al., 2016; Fang et al., 2017; Wang et al., 2017; 
Yang et al., 2017). Also, systems pharmacology provides new 
strategy for discovering novel drug combinations for the 
treatment of complex diseases. Integrated TCM for treatment 
of various diseases based on syndrome differentiations is one 
essential factor of the compatibility principles contributing to 
the drug efficacy (Zhang and Wang, 2015; Wang and Li, 2016a; 
Zhu et al., 2018). However, in contrast to Western medicine, 
TCM is overly dependent on the experiences of patients and 
practitioners and lacks systematic research methods. Therefore, 
there are many issues that need to be resolved in the development 
of TCM, for example: 1) TCM focused on the overall efficacy 
and clinical safety, but there is a lack of precise analysis and 
monitoring, including few studies on the pharmacodynamic 
and toxicological mechanisms; 2) the quality of herbs is one 
of the most important factors for the modernization of TCM, 
which has a major effect on the efficacy of TCM, but the quality 
is difficult to control; 3) the synergistic, additive, or antagonistic 
effects of TCM depend on the different properties of absorption, 
distribution, metabolism, excretion, and the toxicity of the 
pharmacodynamic components, which remain unclear; 4) the 
active ingredients and the mechanisms of action of TCM are 
unclear, which restrict the acceptance and development of TCM 
and seriously hinder the modernization processes. Owing to 
its complex composition and multiple systems, it is difficulty 
to dissect the underlying mechanisms of TCM at the systems 
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level. Furthermore, the methodology often leads to controversy. 
Therefore, there is an urgent need to develop a new systematic 
and holistic research method.

In this review, we first introduced the concept and 
principle of systems pharmacology, and then we reviewed the 
computational methods of systems pharmacology for bioactive 
compound screening, target fishing, drug combination, and 
network analysis. In addition, we detailed the applications 
of systems pharmacology, including the elucidation of the 
mechanisms of action of herbal formulae, the design of 
multi-target drugs or drug combinations, and the theoretical 
analysis of Chinese medicine to guide the development of 
herbal medicine.

CONCEPT AND PRINCIPLE OF SYSTEMS 
PHARMACOLOGY

The exploration of the mechanism of action of the multiple 
compounds within a TCM prescription is the inevitable 
requirement for the modernization of TCM. In addition, to 
uncover the mechanism of actions of TCM, the modern scientific 
and technological methods need to propose for the foundation to 
promote the global development of TCM. Owing to its complexity, 
the holistic concept, and syndrome differentiation of TCM theory, 
the dissection of mechanisms of action of TCM is difficult. 
Therefore, we proposed the systematic research approach of systems 
pharmacology, based on the dynamic interaction of TCM with 
the human body from different levels, such as cellular, molecular, 
tissue, organ, and holistic levels (Wang and Yang, 2013) (Figure 1).

Systems pharmacology is an emerging discipline that 
focuses on the interaction between drugs and the body and 
the rules and mechanisms of drugs at a systems level. More 
specifically, the interactions between drugs and the body 
are illustrated from the microscopic levels (molecular and 
biochemical network levels) to the macroscopic levels (tissue, 
organ, and holistic levels). Systems pharmacology aims to 
investigate the changes in the functions and reactions in the 
human body induced by drugs, thus providing new strategies 
and tools to achieve precise control of the complex biological 
networks inside cells, thus altering disease pathophysiology, 

improving drug efficacy, and reducing adverse reactions 
(Wang and Yang, 2013; Zhang and Wang, 2015). To enhance 
the systems pharmacology platform, theoretic calculations and 
experimental methods were integrated into the models for the 
discovery of bioactive molecules, the identification of new drug 
targets, the prediction of adverse drug reactions, the exploration 
of therapeutic mechanisms, and the elucidation of the rules 
of drug combination (Huang et al., 2013a). This platform 
allows the large-scale analysis of simulation methodology and 
optimization algorithms, which can be applied to determine the 
molecular mechanisms of TCM and to assist the development 
of novel drugs.

METHODOLOGY OF SYSTEMS 
PHARMACOLOGY IN TCM

ADME Screening Methods of Bioactive 
Ingredients in TCM
The ADME properties consist of drug solubility, permeability, 
protein binding ability, oral bioavailability, drug-likeness, blood–
brain barrier (BBB) permeability, small intestine absorption, and 
half-life. TCM is a multifaceted system consisting of numerous 
compounds, of which only a few exhibit favorable ADME properties. 
Therefore, the screening and analysis of bioactive components in 
TCM are extremely challenging. To solve this problem, in the 
following section, we have focused on the introduction of an 
in silico ADME system (SysADME) (Figure 2), which is a rapid, 
efficient, and cost-effective strategy to explore the potential 
bioactive compounds of herbal medicines.

First, from the structure of the compounds and the help of 
system theory and artificial intelligence, the SysADME system 
integrates more than 20 models, including P-glycoprotein 
substrate inhibitor (Pgp) recognition, small intestine absorption, 
BBB permeability, and a mathematical forecast of plasma protein 
binding (Ai et al., 2009; Wang et al., 2009; Ai et al., 2010). In 
addition, we have built a series of predictive toxicity analysis 
(toxicology) models through the integration of modern statistics, 
chemical informatics, and other techniques (Hao et al., 2011; 
Xu et al., 2011a; Xu et al., 2011b). In the following part, we will 
review three representative models in details.

FIGURE 1 | Multi-scale models and approaches of systems pharmacology.
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The Prediction of Human Oral Bioavailability (OB)
Because the predominant and most convenient way to deliver 
drugs of TCM is the oral route, the good OB of a new drug 
candidate is one of the essential pharmacokinetic parameters of 
ADME properties. Recently, multiple large-scale experiments 
have been conducted to evaluate the OB values of drugs, but they 
are labor-intensive and time-consuming. At first, Lipinski’s “rule 
of five” has been qualitatively used to predict the absorption and 
permeability of drugs to guide the prediction of OB (Lipinski et al., 
2012). And then many in silico models have been established 
to predict OB of drug molecules in the early stages of drug 
discovery (Aller et al., 2009). Quantitative structure–property 
relationship (QSPR), rule of thumb (RoT), and physiologically 
based-pharmacokinetic (PBPK) approaches are promising 
alternatives to the OB prediction (Agoram et al., 2001; Cabrera-
Pérez et al., 2018). Since 2000, numerous QSPR models have 
been developed to predict OB; for example, Andrews et al. 
constructed a regression model to predict OB based on a dataset 
of 591 molecules by applying 85 structural descriptors (Aller 
et al., 2009). Compared to Lipinski’s “rule of five,” the false-
negative rate was reduced from 5% to 3%, and the false-positive 
rate decreased from 78% to 53%. In addition, Yoshida et al. used 
the multiple linear regression model for predicting OB with 15 
structural descriptors (Yoshida and Topliss, 2000). However, 
the correct accuracy of this model can only achieve 60% for the 
test compounds. As for PBPK models, Yu and Amidon have 
established a compartmental model of absorption and transit 
(CAT) to predict the fraction of absorbed dose of different 
drugs (Yu, 1999). These integrated models were established 
based on seven transit compartments, which represent different 

anatomical regions of the small intestine. The limitation of the 
CAT model is that it ignored several properties that affect drug 
absorption, such as rate of dissolution, pH dependence on drug 
solubility, absorption in the stomach and/or colon, first-pass 
metabolism, and drug degradation in the intestine and liver, 
leading to the prediction of absorption with low solubility or 
permeability (Cabrera-Pérez et al., 2018). Up to now, there are 
no reliable and efficient models for prediction of OB based on 
simple descriptors.

In our previous work, given the multiple compounds, multiple 
targets, and synergetic effects of TCM, we have proposed a 
mathematical model called prediction of oral drug bioavailability 
(PreOB), which integrated the effects of Pgp efflux and P450 
metabolism to ensure the accuracy of OB prediction of drugs 
(Xu et al., 2012). The PreOB was carried out by the following 
steps: first, 805 drug and drug-like molecules and their OB values 
were collected from the bioavailability database (Hou and Xu, 
2002), and all the OB values were transformed into the common 
logarithm of log (oral bioavailability) (logB). Besides, a total of 
1,536 dragon descriptors were calculated by Professional 5.4, 2006 
(Talete, 2011). Then, all the 805 drugs were divided into several 
statistical subsets according to the geometry-based algorithm 
and iterative self-consistent approach (Jain, 2003). Next, by 
self-organizing map (SOM) (Vesanto, 2002), the compounds in 
each subset were split into training and independent validation 
sets based on their distribution in the chemical space. The two 
linear methods including multiple linear regression (MLR) and 
partial least squares regression (PLS), and the non-linear method 
support vector regression model (SVR) were available to perform 
prediction with five-fold cross-validation and independent 

FIGURE 2 | SysADME/t system for the screening of bioactive ingredients of traditional Chinese medicines (TCMs).
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external tests. The results showed that all the performance of SVR 
is slightly better than that of MLR and PLS, with its determination 
coefficient (R2) of 0.80 and standard error of estimate (SEE) of 
0.31 for test sets. The prediction abilities of the MLR and PLS are 
relatively weak, exhibiting 0.60 and 0.64 for the training set with 
SEE of 0.40 and 0.31, respectively. Our results showed that MLR-, 
PLS-, and SVR-based in silico models have good potential in the 
prediction of OB and may facilitate the drug design. Generally, 
the compounds meeting the criteria of OB ≥ 30% are considered 
as potential active compounds with satisfactory pharmacological 
properties. The comparisons between the tools of the prediction 
of OB developed by the other groups and PreOB model are 
summarized in Table 1. More importantly, the PreOB model has 
been successfully applied for material-based analysis of many 
Chinese medicines (Li et al., 2012b; Liu et al., 2013a).

Systematic Identification of Multiple Toxin–Target 

Interaction (SysTox)
For the novel drug development, many efforts are being devoted 
to evaluate the toxicity properties of drugs. Due to the vastness 
of chemical space (toxins) and the diversity of biological systems 
(targets), the prediction of the toxin–target interface remains 
difficult. Recently, several novel approaches have been proposed 
to achieve this goal. For example, a chemical genomics approach 
that focuses on how similar ligands may interact with similar 
proteins has been applied to predict novel bioactive compounds 
of a target (Klabunde, 2010; Yamanishi et al., 2010). In addition, 
Yu et al. have used the network method to explore ligand–target 
interactions from high-dimensional biological data (Yu et al., 
2012). However, the prediction of toxicity information of a 
variety of compounds by experimental methods remains difficult, 
and a systems-level analysis of multiple toxin–target associations 
is still lacking up to now. Therefore, in our previous study, we 

established a novel systems toxicology approach SysTox (Zhou et 
al., 2013) to predict the toxin targets and their related networks, 
which is based on a large-scale database of 33,800 poison–target 
interactions through the integration of chemical, genomic, and 
toxicological information and systems biology technologies. 
The procedures of SysTox are as follows: 1) a systematic model 
integrating the extracted chemical and genomic features has 
been developed to predict the multiple toxin–target interactions 
with its reliability and robustness estimated by support vector 
machine (SVM) and random forest (RF) methods. And according 
to the phenotypic diseases, the qualitative classification of targets 
has been applied to further explore the biological significance of 
targets, as well as to validate the robustness of the in silico models. 
2) As an example, a genome-scale toxin–target–disease network 
of cardiovascular disease is constructed. 3) The topological 
analysis of the network is implemented to identify drug targets 
that are most susceptible to attracting the most critical toxins, as 
well as to uncover the toxin-specific mechanisms. The advantage 
of our SysTox approach is that it can be used to predict the toxin–
target interactions even for targets with unknown 3D structure. 
It is worth to note that the toxin–target interaction network 
can help us to identify new toxins and new target proteins 
simultaneously and infer novel links from the information of 
known links. The limitation of the SysTox approach is that the 
drug targets involving DNA or RNA were not integrated into 
the model due to the insufficiency of toxin–target information. 
So the prediction of toxins that target RNA or DNA may be an 
extension in the following work. The approaches to evaluate the 
toxicity properties of drugs are listed in Table 2.

The Prediction of Half-Life (HL)
The biological half-life of a drug is defined as the time required 
for the human body to metabolize or eliminate 50% of an initial 

TABLE 1 | The comparisons between the tools of the prediction of oral bioavailability (OB) developed by the other groups and prediction of oral drug bioavailability 

(PreOB) model.

Number Model name Description or examples of the model Reference

1 Lipinski’s “rule of five” Qualitatively used to predict the absorption and permeability of drugs (Lipinski et al., 2012)

2 Quantitative structure–property 

relationship (QSPR) model

A regression model to predict OB based on a dataset of 591 molecules by 

applying 85 structural descriptors

(Aller et al., 2009)

3 Rule of thumb (RoT) Multiple linear regression model for predicting OB with 15 structural descriptors (Yoshida and Topliss, 2000)

4 Physiologically based-

pharmacokinetic (PBPK) approach

A compartmental model of absorption and transit (CAT) to predict the fraction of 

absorbed dose of different drugs

(Yu, 1999)

5 Prediction of oral drug bioavailability 

(PreOB) 

Integrated the effects of Pgp efflux and P450 metabolism to ensure the accuracy 

of OB prediction

(Xu et al., 2012)

TABLE 2 | The approaches for the prediction of the toxicity properties of drugs.

Number Model name Description of the model Reference

1 A chemical genomics approach Similar ligands that may interact with similar proteins were used to predict 

the novel compounds of a target

(Klabunde, 2010; Yamanishi et al., 2010)

2 Network method Predict ligand–target interactions from high-dimensional biological data (Yu et al., 2012)

3 SysTox approach Based on a large-scale database of 33,800 poison–target interactions 

through the integration of chemical, genomic, toxicological information 

and systems biology technologies

(Zhou et al., 2013)
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drug dosage. It is noteworthy that measuring and predicting the 
half-life of a given drug are important for the safe and accurate 
dosage of the drug (Berezhkovskiy, 2013). At present, several 
models were proposed to predict the half-lives of drugs. For 
example, Sharma et al. have proposed the prediction model 
for peptide half-life (HLP) in intestine-like environment based 
on 10mer (HL10) and 16mer (HL16) peptides dataset, which 
helps in estimating half-lives of peptides relatively rather 
than in absolute terms (Sharma et al., 2014). With the help of 
seven machine learning methods and molecular descriptors, 
Lu et al. have proposed an approach to predict elimination of 
half-life in humans (Lu et al., 2016). In addition, Turner et al. 
predicted human half-lives of 20 cephalosporins by integrating 
constitutional, topological, and quantum-chemical descriptors 
(Turner et al., 2010). Moreover, Arnot et al. developed two half-
life prediction models in humans based on molecular fragments 
and an automated iterative fragment selection method (Arnot 
et al., 2014). In summary, most models of prediction of half-
life were based on drug structures, while the PreHL model was 
constructed on only eight molecular descriptors of drugs by 
principal component analysis (PCA). However, it is difficult and 
time-consuming to predict the half-life of a specific drug.

In a previous study, we have proposed the PreHL model for 
TCM injection systems (Yang et al., 2014), which is a systematic 
decision-making model to predict long or short half-lives of drugs 
by the C-partial least square (C-PLS) algorithm (Boulesteix, 2004; 
Kidron et al., 2012). More specifically, the PreHL model was built 
in three steps: 1) Dataset collection: One hundred sixty-nine drugs 
(injection formulation) with their half-life values, DrugBank ID, 
chemical name, and Chemical Abstracts Service (CAS) number 
were collected from DrugBank database (Knox et al., 2011), 
and they were divided into two subsets: a training set (n = 126) 
used to build the model and an independent test set (n = 43) to 
validate the accuracy of the model. 2) Descriptor calculation and 
selection: Molecular descriptors were first calculated to construct 
the model, and then 43 objective features were selected based on 
forward stepwise algorithm. Finally, by PCA, only eight of them 
were applied for C-PLS modeling process. 3) Model performance: 
For internal validation, the model was evaluated by the leave-
one-out (LOO) methodology. Bedsides, external validation was 
performed by all models. The performance of the model was 
evaluated by short half-life and long half-life accuracies. For 
internal validation and external validation, the overall accuracy, 
long half-life accuracy, and short half-life prediction accuracy 
are all approximately 85–87%. According to the PreHL model, a 

half-life higher than 4 h is considered as a satisfactory metabolism 
property of drugs. Furthermore, the PreHL model was successfully 
used to assess the half-lives of the potential bioactive components 
of reduning injection (Yang et al., 2014). The models or 
approaches of half-life are listed in Table 3. Compared with other 
models, PreHL is a more systematic decision-making model 
addressing the plasma protein binding, active transport across 
the membrane, absorption, BBB permeability, drug metabolism, 
and half-life in the body.

Identification of Drug Targets
The identification of drug targets of TCM is a basic problem in the 
processes of drug development, as well as an essential factor for 
the dissection of the holistic mechanisms of action of TCM (Cao 
et al., 2012). Currently, the LBVS, SBVS, and the text mining-
based approach are widely used to predict the target–ligand 
interactions. In brief, LBVS aims to identify novel compounds 
by comparing candidate ligands with the known drugs of a target 
protein (Byvatov et al., 2003; Krejsa et al., 2003). Nevertheless, 
if the number of known active compounds for a target is small, 
the performance of LBVS is poor. In addition, it is difficult to 
identify drugs with novel structural scaffolds that differ from 
the known molecules. As for SBVS, it is constrained by the 
available crystallographic structure of target, thus hampering the 
prescreening process of drugs. And it is particularly limited for 
those membrane proteins, like the GPCRs (G-protein coupled 
receptors), whose 3D structure information is still unavailable up 
to now (Ballesteros and Palczewski, 2001).

Therefore, to predict the drug–target interactions, we have 
developed three models, including systematic drug–target 
identification technology (SysDT) (Yu et al., 2012), weighted 
ensemble similarity (WES) (Zheng et al., 2015) method, and 
Pred-binding method (Shar et al., 2016). All the methods of the 
prediction of drug targets are listed in Table 4. In the following 
part, we will review these methods.

The SysDT Model
The SysDT model was developed as a systematic approach 
for the prediction of the drug–target interactions that 
integrated artificial intelligence computing methods systems 
biology, chemical genomics, and structural genomics, which 
are based on two powerful methods, RF and SVM (Yu et al., 
2012) The model was constructed by 6,707 drugs and 4,228 
targets with known drug–target interactions in the DrugBank 

TABLE 3 | The models or approaches for the prediction of half-life.

Number  Model name or approaches of half-life Description of the models Reference

 1 Model of peptide half-life (HLP) For HLP in intestine-like environment based on 10mer (HL10) and 16mer 

(HL16) peptides dataset

(Sharma et al., 2014)

 2 An approach to predict elimination half-life in human Seven machine learning methods and molecular descriptors (Lu et al., 2016)

 3 The prediction model of 20 cephalosporins By the integration of constitutional, topological, and quantum-chemical 

descriptors

(Turner et al., 2010)

 4 Two half-life prediction models in humans Based on molecular fragments and an automated iterative fragment 

selection method

(Arnot et al., 2014)

 5 PreHL model The C-partial least square (C-PLS) algorithm (Yang et al., 2014)
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database, which constructed the positive samples. The 
negative samples were obtained by three steps: I) re-coupling 
all drugs and targets in the benchmark dataset into pairs, 
II) discarding those drug–protein pairs that appeared in the 
positive samples and keeping the remaining pairs to represent 
the non-interaction space, and III) randomly selecting the 
negative pairs from the non-interaction space to ensure the 
same number as the positive pairs. Then, by SVM, numerical 
vectors of the drug–target pairs (for both positive and 
negative samples) by concatenating chemical descriptors and 
protein descriptors were mapped into a higher dimensional 
feature space, which is a maximal margin hyper-plane that 
separates the positive from the negative samples by using a 
kernel function. Another method, RF, was also used to build 
a model, which is an ensemble of unpruned classification or 
regression tree. Finally, the performance of the models was 
evaluated by internal five-fold cross-validation and four 
external independent validations with the known drug–target 
interactions.

Our results showed that the optimal models by SVM showed 
impressive prediction performance, with a concordance of 
82.83%, a sensitivity of 81.33%, and a specificity of 93.62%. 
Both SVM and RF demonstrate the reliability and robustness 
of the obtained models. Compared with the structure-based 
simulation methods, the SysDT approach is not restricted by the 
3D structure of targets. More importantly, the advantage of the 
SysDT model is that it enables to identify the unrelated targets 
that may share structure similarity of a chemical with ligands. 
Moreover, it can promote the multi-target drug discovery 
by recognizing the proteins targeted by a particular ligand. 
Therefore, the SysDT approach may provide a reliable analysis 
tool for drug target identification of the herbal molecules on 
human proteins. Although the SysDT model is effective for the 
prediction of the drug-target interactions, it is limited by the 
information of the 3D structure features of the ligand-binding 
domains. Therefore, novel optimal approaches are still needed to 
be proposed in further research.

The WES Method
The available computational approaches mainly focus on 
the prediction of indirect targets of drugs or direct targets 
of drugs in a small scale. To further improve the drug target 
prediction systems, we have successfully developed two optical 
mathematical models: 1) a WES method and 2) a Pred-binding 
approach (Figure 3) to identify the direct targets of drugs based 
on large scale of drug–target interactions.

The WES approach was proposed on the theory that the 
systematic features of ligands could accurately reflect the ligand–
receptor binding pattern. The WES method was constructed based 
on over 900,000 drug–target relations, including three steps: 1) 
identifying the key ligand structural features that strongly related 
to the pharmacological properties in a framework of ensemble; 
2) confirming the targets of drugs by the evaluation of the overall 
similarity (ensemble) rather than a single ligand judgment; 3) 
obtaining the overall similarity with the ligand set by integrating 
the standardized ensemble similarities (Z score) by Bayesian 
network and multi-variate kernel approach; and 4)  evaluating 
and validating the performance of the approach by leave-one-
out cross-validation (LOOCV) and the ligand-binding assay test 
experiments. The WES method exhibits good reliability with a 
good specificity and sensitivity [Area Under The Curve (AUC) = 
0.85] and external [both the binding (positive sample) and non-
binding data (negative sample)] and experimental test (ligand-
binding assay test) accuracies of 70% and 71%, respectively. 
Notably, it is able to distinguish the direct binding or indirect 
binding relationships between drugs and targets, which is of great 
benefit for drug repositioning and discovery (Zheng et al., 2015).

The advantages of WES includes the following: 1) the structural 
features based on statistical tests and optimization analysis were 
integrated into a framework of ensemble to reduce dimensionality 
of dataset and eliminate data noise. 2) The ensemble concept was 
proposed to ensure the model to predict the target of the drug based 
on the drug’s similarity with the whole feature of an ensemble. The 
one nearest neighbor (1NN) model evaluates the probability of drug 
targets based only on the maximum similarity to the known ligands 

TABLE 4 | The methods for the prediction of drug targets.

Number  Model or method name Description of the model Reference

1 The ligand-based virtual screening 

(LBVS)

By comparing candidate ligands with the known drugs of a target 

protein

(Byvatov et al., 2003; Krejsa et al., 2003)

2 Structured-based virtual screening 

(SBVS)

Based on the available crystallographic structure of target (Ballesteros and Palczewski, 2001)

3 Ligand-based approach Based on the families or subfamilies of targets (Huang et al., 2013b)

4 Target-based approach Divide the receptors and pooled together the known ligands into 

clusters

(Nagamine and Sakakibara, 2007)

5 In silico model for predicting the 

drug–target interactions

By the integration of the amino acid sequences, two-dimensional 

chemical structures, and mass spectrometry data, as well as the 

chemical functional groups and biological features

(He et al., 2010)

6 The SysDT model By the integration of artificial intelligence computing methods 

systems biology, chemical genomics, and structural genomics, 

which are based on two powerful methods, random forest (RF) and 

support vector machine (SVM)

(Yu et al., 2012)

7 Weighted ensemble similarity (WES) 

method

Based on the theory that the systematic features of ligands that 

could accurately reflect the ligand–receptor binding pattern

(Zheng et al., 2015)

8 Pred-binding method Based on 1,589 Dragon descriptors of ligands and 1,080 protein 

descriptors, by SVM and RF

(Shar et al., 2016)
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of the target. Compared with the 1NN model, WES is better in 
predicting drug targets for various structurally diverse compounds.

Pred-Binding Approach
Drug–target interactions are important for exploring biological 
activities of these proteins. In fact, some drugs may bind to multiple 
target proteins and sometimes improperly bind to unwanted off-
targets (Wang et al., 2013), leading to severe harmful side effects. 
Therefore, identifying the satisfactory targets of drugs is an 
urgent task for drug development. In our previous study, we have 
developed the Pred-binding model to accurately predict the binding 
strength between drugs and targets (Shar et al., 2016). The Pred-
binding model includes the following: 1) Dataset construction: The 
ligand and target dataset information with known binding affinity 
abstracted from Psychoactive Drug Screening Program (PDSP) 
Ki database was used to build the model (Roth et al., 2000). After 

the exclusion of ligand–target–Ki entries with the repeat number 
of Ki of more than 70, finally, a dataset consisting of 9,948 ligand–
target–Ki pairs was constructed. And 1,589 Dragon descriptors of 
ligands and 1,080 protein descriptors were obtained for further 
analysis. 2) Training set and test set construction: The dataset was 
split into training (used to build the model) and test (used to 
validate the model’s accuracy) sets, and they were randomly split 
into five subsets with equal number, and one subset was selected 
as the test set, and the others were considered as the training set. 
3) Model building: Two in silico models based on SVM and RF 
were proposed to predict the binding affinity. 4) Model validation: 
As mentioned above, first, each subset was selected as the test set, 
and the other four subsets serve as the training set for validating 
model. The processes were repeated five times. Second, five external 
independent validations were performed for all models using 
different test sets. Third, the comparison of the performance of RF 

FIGURE 3 | Drug target identification approaches of systematic drug–target identification technology (SysDT), weighted ensemble similarity (WES), and Pred-binding 

models.
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model and SVM model by F test was performed. The results showed 
that the cross-validation coefficient was 0.6079 for SVM and 0.6267 
for RF, exhibiting a good potent Ki predictability. In conclusion, 
the Pred-binding approach may contribute to the prediction of 
novel potential targets, further guiding the drug development. The 
limitation of the model is the robust and efficient features; therefore, 
a better regression model needs to be developed.

In summary, the above three models have provided new 
approaches for the identification of drug targets, which may 
benefit the drug design and promote the drug development.

Drug Combination Prediction 
and Dynamic Analysis Approach
Probability Ensemble Approach (PEA) for the 

Prediction of Drug Combination
Drug combination has been a promising strategy for the 
treatment of complex diseases with higher efficacy and fewer 
side effects than has the single-drug treatment (Zimmermann 
et al., 2007; Al-Lazikani et al., 2012; Roemer and Boone, 2013). 
In vitro approaches, such as the high-throughput screening 
method (Borisy et al., 2003; Lehár et al., 2009) and the 
“multiplex screening for interacting compounds” (MuSIC) (Tan 
et al., 2012), have been proposed to investigate the synergistic 
drug pairs. However, these methods are time-consuming and 
cost intensive. Alternatively, several computational approaches 
have been developed to identify novel synergistic drug 
pairs by integrating network analysis and chemical biology 
data (Chou, 2010; Zhao et al., 2011; Tang et al., 2013). The 
majority of these methods are limited to dissect the molecular 
mechanisms or identify combinatorial drugs based on targets 
with multiple diseases. In addition, some attention has been 
focused on pharmacokinetic properties of the compound, 
pharmacodynamic constants, or both pharmacokinetics and 
pharmacodynamics to predict the drug–drug interactions. 
But the systematic analysis for predicting the efficacy and side 
effects of the known or novel drug pairs is still lacking.

To clarify the issue, we have proposed the probability 
ensemble approach (PEA model) (Li et al., 2015b), by 
the integration of the molecular chemical space, the 
pharmacological space, the gene annotations, and the 
biological networks, for the prediction of drug combinations 
(Figure 4). First, by the integration of drug molecular and 

pharmacological phenotypes, a Bayesian network model based 
on a similarity algorithm was developed for the prediction of 
both clinical efficacy and adverse effects. The performance of 
PEA showed that the combination efficacy of drugs with high 
specificity and sensitivity (AUC = 0.90), which was further 
verified by independent data derived from the literature or 
novel experimental assays. Second, PEA also assesses the 
adverse effects (AUC = 0.95) quantitatively and predicts 
the potential therapeutic indications of drug combinations. 
Finally, the PreDC (Predict Drug Combination) database was 
constructed with 1,571 known and 3,269 predicted optimal drug 
combinations associated with their therapeutic indications and 
potential side effects. In addition, the standalone software and 
web server of the PreDC are freely available at http://lsp.nwu.
edu.cn/predc.php.

Compared with the simple feature-enrich method proposed 
by Zhao et al. (2011), the PEA algorithm exhibited good 
advantages with high training efficiency and extensive 
applicability (the comparison of the methods for the 
prediction of drug combination is shown in Table 5). More 
particularly, PEA shows similar performances as the whole-
feature model by integrating the weakly predictive features, 
such as target sequence and chemical structure, to improve 
the performance, making it convenient and easy to 
understand. Generally, owing to the unknown underlying 
molecular mechanisms of combination therapies, drug 
combinations are predicted based on clinical rules derived 
from clinical experience or randomized clinical trials. 
Therefore, the drug combinations were predicted only 
with the similar functions. Notably, PEA has shown that 43% 
of our high-confidence predictions (with P1 ≥ 0.9 and P2 ≤ 
0.1) are predicted as effective drug combinations with different 
Anatomical Therapeutic and Chemical (ATC) classes (the 
first level), indicating that PEA is not restrained by the rule. 
Moreover, PEA model was experimentally validated by 10 
novel effective drug combinations that are a combination of 
antibacterial and anticancer drugs, showing that 80% pairs are 
synergistic to cancer models. Moreover, the PEA algorithm has 
incorporated the clinical efficacy and adverse effect evaluation 
to identify the potential drug combinations effectively. The 
limitation of the PEA is that the dosage was not integrated into 
the model; therefore, it should be taken into account to improve 
the prediction of drug combinations.

FIGURE 4 | Design processes of the drug combination prediction approach [probability ensemble approach (PEA) model] (Li et al., 2015b).
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Network Elementary Subgraphs and Dynamic 

Modeling Analysis (NetSyner)
TCM is a complex system with multiple compounds and multiple 
targets; particularly, natural products derived from TCM with 
weak binding affinity have been proved to have satisfactory 
therapeutic efficacy through the regulation of the coordination 
equilibrium of the whole biological network (Zhu and Xu, 2003; 
Tan, 2007; Huang et al., 2013a). Recently, nearly ~110,000 small 
molecules with low binding affinity have been reported in the 
public database (Liu et al., 2007). However, a suitable strategy 
to discover the low-binding-affinity molecules is yet to be 
constructed.

In a previous study, we have developed a systematic approach 
NetSyner, which is based on the dynamics of target networks 
and the dynamics of formula structure to predict the response 
of perturbation of multiple nodes by cell signaling networks 
(Figure  5) (Wang et al., 2016b). The approach includes three 
steps: First, dynamic models for a series of three-component 
elementary subgraphs were built, and 33 elementary subgraphs 
were performed to determine the desired topology and dynamic 
parameters among targets. And elementary subgraphs were 
modeled by a set of ordinary differential equations (ODEs) 
including the rate laws of mass action and the complete Michaelis–
Menten reaction kinetics. The combination index (CI) was used 
to evaluate whether the two targets in an elementary subgraph can 
have a synergistic effect. Specially, the mitogen-activated protein 
kinase (MAPK) pathway is an evolutionarily conserved and well-
studied signaling pathway involved in regulating fundamental 
cellular processes in response to stress and inflammation 
(Johnson and Lapadat, 2002; Sabio and Davis, 2014). As an 
example, through the application of the elementary subgraphs 
to the MAPK pathway, several optimal target combinations 
were predicted. Then, all the targets of the formula were mapped 
into the elementary subgraphs; both the modes (synergistic, 
antagonistic, or unrelated) and extent (synergistic index) of 
interactions between the bioactive compounds were calculated by 
the dynamic analysis. Moreover, molecular dynamics simulation 
and molecular mechanics Poisson–Boltzmann surface area 
(MM-PBSA) methods were employed to evaluate the binding free 
energies between the compound and the targets. Furthermore, 
to experimentally validate the prediction of NetSyner, analyses 
of the inhibitory effects of the two natural products (luteolin and 
tanshinone IIA) and the four known selective inhibitors on IL-6 
and TNF-α production were carried out. The results indicated 

that multi-weak perturbations of luteolin and tanshinone IIA 
against the MAPK signaling pathway can potentially decrease 
the inflammatory response. In conclusion, weak-binding drugs 
exhibit favorable efficiency and few adverse reactions, which may 
offer a promising future for novel drug discovery. Nevertheless, 
due to the parameter independent model of NetSyner, it is 
applicable to those pathways that must be satisfied by two 
conditions: 1) pathways must be evolutionarily conserved and 2) 
the parameters of the pathway must be intact.

APPLICATION OF SYSTEMS 
PHARMACOLOGY IN TCM

Construction of TCM Systems 
Pharmacology Software and Databases
At present, several databases have been established for the 
investigation of TCM from different aspects. (The database of 
TCMs were listed in Table 6.) For example, TCM Database@
Taiwan (Chen, 2011) and TCM-ID (Chen et al., 2010) have 
provided a large number of herbal ingredients with 3D structures 
and functional properties. TCMID (Xue et al., 2013) consists of 
TCM formulae, herbs, ingredients, and their related targets and 
diseases. Both ChemTCM (Ehrman et al., 2007) and HIT (Ye et 
al., 2011) focus on herbal ingredients and their corresponding 
targets. The CVDHD database (Gu et al., 2013) focuses on natural 
products associated with cardiovascular diseases and targets. But 
there is lack of systematic network pharmacology analysis among 
these databases.

Therefore, our team proposed a unique systems pharmacology 
platform of TCM-TCMSP (Ru et al., 2014; Liu et al., 2016) (http://
lsp.nwu.edu.cn/tcmsp.php). The database consists of more than 
36,000 chemical molecules and forms a complete library of 
Chinese medicine ingredients. In addition, the database integrated 
12 ADME key properties like human oral bioavailability, half-
life, drug-likeness, Caco-2 permeability, blood–brain barrier 
and Lipinski’s rule of five, and the drug-likeness analysis of 
compounds, with more than 4,000 targets and 1,000 types of 
disease information. More importantly, “drug–target–disease” 
network pharmacology analysis tools were developed as a novel 
tool for the identification of the specific targets and the specific 
diseases of active molecules/groups in TCM. In summary, the 
particular strengths of TCMSP are the large number of herbal 
ingredients with ADME properties and their ability to analyze 

TABLE 5 | The approaches for the prediction of drug combination.

Number Approach name Description Reference

 1 High-throughput screening method In vitro approaches (Borisy et al., 2003; Lehár et al., 2009)

 2 Multiplex screening for interacting 

compounds (MuSIC)

In vitro approaches (Tan et al., 2012)

 3 Several computational approaches By integrating network analysis and chemical biology data (Chou, 2010; Zhao et al., 2011; Tang 

et al., 2013)

 4 Simple feature-enrich method By simple feature-enrich method to predict drug combinations (Zhao et al., 2011)

 5 Probability ensemble approach (PEA 

model)

By the integration of the molecular chemical space, the 

pharmacological space, the gene annotations, and the biological 

networks

(Li et al., 2015b)
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drug–target networks and drug–disease networks, thus providing 
a platform to dissect the mechanisms of action of TCM, uncover 
nature of TCM theory, and develop novel herbal-oriented 
drugs. Moreover, the related software can be used to search the 
information in the database conveniently. Recently, two novel 
databases, SymMap (Wu et al., 2019) and ETCM databases 
(Encyclopedia of Traditional Chinese Medicine) (Xu et al., 2019), 
were built. SymMap is an integrative database of TCM enhanced by 
symptom mapping. SymMap is an integrative database, consisting 
of the information of TCM symptoms and related herbs, diseases 
and associated symptoms, herbal ingredients, and gene targets. 
Furthermore, SymMap could be applied to predict component 
pairwise relationships by statistical tests to filter promising 

results to guide drug discovery. Actually, SymMap was focused 
on TCM symptoms and their relationships to herbs and diseases, 
which provides both candidate leads and screening directions for 
phenotypic drug discovery. As for the ETCM database, it contains 
comprehensive and standardized information of 403 TCM herbal 
species, 3,962 TCM formulae, 7,274 herbal ingredients, 2,266 
validated or predicted drug targets, and 3,027 related diseases. 
ETCM is convenient to obtain the information of the herbs’ basic 
property and quality control standard, formula composition, 
ingredient drug-likeness, the gene targets of the ingredients, and 
related pathways or diseases.

Compared with SymMap, TCMSP is a more comprehensive 
database that integrated all the herbs and their related compounds, 

FIGURE 5 | Flowchart of network elementary subgraphs and dynamic modeling analysis (NetSyner) (Wang et al., 2016b).

TABLE 6 | The database of TCMs.

Number Database name Description Reference

1 TCM Database@Taiwan Provides a large number of herbal ingredients with 3D structures and functional properties (Chen, 2011)

2 TCM-ID (Chen et al., 2010)

3 TCMID database Consists of TCM formulae, herbs, ingredients and their related targets and diseases, drug–target 

networks, and drug–disease networks

(Xue et al., 2013)

4 ChemTCM Focuses on herbal ingredients and their corresponding targets (Ehrman et al., 2007)

5 HIT (Ye et al., 2011)

6 CVDHD database Focuses on natural products associated with cardiovascular diseases and targets (Gu et al., 2013)

7 TCMSP database Consists of herbs, their chemical molecules, ADME properties, targets, and disease information (Ru et al., 2014)

8 SymMap database Focuses on TCM symptoms and their relationships to herbs and diseases (Wu et al., 2019)

 9 ECTM database Includes the herbs’ basic property and quality control standard, formula composition, ingredient 

drug-likeness, the gene targets of the ingredients, and related pathways or diseases.

(Xu et al., 2019)
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the compound ADME properties, potential targets, and diseases, 
which can automatically establish the compound–target and target–
disease networks to analyze the drugs’ mechanisms of action and 
promote the TCM drug development. The limitation of TCMSP is 
that it lacks some medicinal and pharmacological data, the dose–
effect relationship of ingredients, and the drug action modes: 
stimulation or inhibition, drug combination for various diseases, 
and tissues and organs that the compounds target. To improve these 
limitations, the ETCM database provides the habitat and quality 
control information of herbs, which may become a major data 
warehouse for TCM to promote TCM drug development.

Although tremendous efforts have been made in the past 
to provide databases containing cancer-related information, to 
our knowledge, no such dedicated comprehensive repository of 
anticancer herbs and anticancer herb-originating natural products 
has been developed currently as yet. Some databases like CancerDR 
(Kumar et al., 2013) and CancerPPD (Tyagi et al., 2015) have 
been made in the past to provide comprehensive data involved in 
anticancer ingredients. However, the CancerDR mainly focuses 
on FDA-approved and experimental drugs, and CancerPPD is 
a database of anticancer peptides and proteins. Considering the 
bleak situation of cancer and absence of systematic database for 
anticancer herbal products, for the first time, we have developed 
a comprehensive repository named anticancer herbs database of 
systems pharmacology (CancerHSP). The CancerHSP database 
provides information of 2,439 anticancer herbs, 2,439 anticancer 
active compounds, the molecular structure of each compound, and 
antitumor activity data based on 492 different cell lines (Tao et al., 
2015). Furthermore, the database also consists of natural products 
with anticancer effects, their related ADME properties, antitumor 
activity, and target information, which not only helps to dissect the 
underlying molecular mechanisms of anticancer drugs but also 
provides basic data support for the development of anticancer drugs.

Synergistic Effects of the Active 
Components in TCM
Multi-Target Synergistic Effects of TCM
Based on network pharmacological methods, scientists discovered 
that TCM exhibits multi-target synergistic effects. For example, 
Violeta et al. have built a computer multiphase pharmacology 
fingerprint (CPF) based on the Gauss integration screening method 
(GES) to encode the corresponding multiple target fingerprint atlas 
of drugs. Besides, the approach successfully found that drugs can 
interact with multiple targets, which provides a novel method for the 
discovery of new preclinical and clinical drug candidates (Violeta 
et al., 2014). In fact, if one drug could act on multiple targets, the 
drug molecules may exhibit better therapeutic effects through 
targeting on multiple targets under the synergistic effects (Hopkins, 
2007; Hopkins, 2008). Recently, Huang et al. successfully dissected 
the molecular mechanisms of TCM with multiple targets for the 
treatment of depression; for example, several antidepressant drugs 
acted on more than 20 targets (Huang et al., 2013a). In addition, 
Liu et al. illustrated the mechanisms of action for the herb licorice, 
and the potential bioactive components were identified by the 
systems pharmacology. For instance, liquiritigenin, licochalcone 

B, naringenin, and kaempferol were considered as the bioactive 
compounds that acted on 22 targets related to cough, including 
ADRB1 (β-1 adrenergic receptor), ADRB2 (β-2 adrenergic receptor), 
CALM1 (calmodulin-1), PDE4B (cAMP-specific 3′,5′-cyclic 
phosphodiesterase 4B), PDE4D (cAMP-specific 3′,5′-cyclic 
phosphodiesterase 4D), HSP90AA1 (heat shock protein HSP 90-α), 
HSP90AB1 (heat shock protein HSP 90-β), PPARG (peroxisome 
proliferator-activated receptor γ), and THRB (thyroid hormone 
receptor β). The flavonoids, including isoliquiritigenin, liquiritigenin, 
and liquiritin, exerted synergistic therapeutic effects on thrombosis 
through the regulation of the proteins F2 (prothrombin), F10 
(coagulation factor X), and PTGS2 (prostaglandin G/H synthase 
2), which are closely involved in the processes of thrombosis. In 
addition, licochalcone A and licoisoflavanone acted on the proteins 
5-hydroxytryptamine 1A receptor (HTR1A), ADRB1, cell division 
protein kinase 5 (CDK5), D opioid receptor (OPRD1), GSK3B, and 
HRH1; therefore, they may exert synergetic effects to achieve anti-
ischemic effects to treat ischemic heart disease (Liu et al., 2013a).

Moreover, we identified some novel targets, 5-hydroxytryptamine 
2A receptor (5-HT2A) and aldose reductase (AKR1B1), which 
are associated with diabetes. Also, several bioactive compounds 
in licorice could target proteins of the nervous system, such as 
monoamine oxidase type B (MAOB), D2 and D3 dopaminergic 
receptors, and mitogen-activated protein kinase 10 (MAPK10) (Liu 
et al., 2013a). Notably, we dissected the detoxification mechanism 
of licorice; for example, the compounds liquiritin and licochalcone 
G can target the metalloelastase to destroy bacteria and strengthen 
the tissue macrophages, thus defending against external invasions. 
In summary, with the aid of systems pharmacology, we generated 
a novel perspective for better understanding of single herbal 
medicine for treating various diseases from the molecular level to 
the systems level. More importantly, it also explained why licorice 
is a popular herb, as well as the mechanisms of detoxification of the 
licorice (Liu et al., 2013a).

Multi-Pathway Interactions of Herbs
To comprehensively investigate the interactions between herbal 
ingredients and their related biological processes, a drug–target–
pathway network was generated (Chen et al., 2009). The most 
important pathways are the cellular signaling pathways, which 
can interact with each other. In addition, various stimuli appear 
to activate the same downstream targets, thus exhibiting the same 
cellular functions. For example, Gong et al. identified alternative 
pathways based on experimental data, which are involved in 
regulating cell functions (Gong and Zhang, 2005). In the target–
pathway network, targets that appear in multiple pathways are 
often considered as potential key targets for the treatment of 
complex diseases.

In addition, by a systematic genetic analysis of 24 types of cancers, 
scientists found that 67–100% of tumor cells were involved in 12 
cellular signaling pathways and related carcinogenesis processes 
(Jones et al., 2008). Li et al. found that multiple compounds were 
involved in multiple pathways in Compound Danshen Formula: 
58 compounds were associated with the glucocorticoid and 
inflammatory signaling pathways; 56 compounds acted on the 
l-arginine/NO signaling pathways; 35 compounds disturbed the 
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renin–angiotensin–aldosterone pathways; and 31 compounds 
regulated signaling pathways associated with platelet aggregation. 
Interestingly, all these signaling pathways are closely related 
to inflammation and coagulation, indicating that Compound 
Danshen Formula may synergistically regulate these signaling 
pathways to treat cardiovascular diseases effectively (Li et al., 
2012b). Therefore, multi-target drugs of TCM are likely to be 
involved in alternative pathways or biological processes to treat 
complex disease effectively instead of single-target drugs.

Combinations of Herbal Compounds Acting on 

Multiple Organs
TCM is a part of holistic medicine, which concentrates on 
systematic health care for the whole human body rather than one 
part of the body (Figure 6A) (Ventegodt et al., 2014); however, 
to understand the mechanisms of action of TCM at a systems 
level is still difficult. Indeed, there are two key problems: 1) If 
the compound and the person are considered as whole entities, 
how do they interact with each other? 2) How do the molecules, 
tissues, and organs of the body respond to different molecules or 
molecule groups in a formula under holistic frameworks? To solve 
these problems, in the previous studies, we have examined the 
molecular basis of some diseases associated with different organs, 
such as cardio-cerebral diseases and cardiovascular diseases 
(CVDs) and gastrointestinal disorders (GIDs). The systems 
pharmacology model consists of four modules (Figure 6B): 1) an 
ADME evaluation model, including oral bioavailability prediction, 
drug-likeness evaluation, human intestinal absorption, half-life, 
and BBB permeability prediction; 2) network target fishing and 
pathway analysis; 3) compound–pathway analysis; and 4) drug–
organ enrichment and interaction model (Wang et al., 2015).

Take Xinnaoxin Pill and Sanhe Decoction as examples; with 
the help of systems pharmacology, we dissected the scientific 
connotations of simultaneous treatment for cardio-cerebral diseases, 
and CVDs and GIDs. More specifically, we found that several 
components in Xinnaoxin Pill exhibited good BBB permeability, 
suggesting that it may be beneficial for the cardiovascular system. 
Besides, it could act on several organs involved in multiple biological 
processes and multiple pathways associated with multiple functions, 
such as inflammation, myocardial contraction, and angiogenesis, 
thus allowing the simultaneous treatment of cardio-cerebral diseases.

Moreover, by ADME system evaluation, we identified 59 
potential active compounds in Sanhe Decoction (Zhang et al., 
2016). Seventy target proteins of these compounds were predicted 
by target fishing. The compound–pathway network analysis 
revealed that multiple drugs were simultaneously involved in 
several pathways, such as calcium ion signaling pathway, cGMP–
dependent protein kinase (PKG) signaling pathway, and vascular 
smooth muscle contractions (Figure 7A), suggesting that these 
drugs tend to exhibit multi-target synergetic or additive effects. 
The target tissue distribution network indicated that the 
compounds of Sanhe Decoction acted on multiple tissues or 
organs simultaneously, the majority of which were associated 
with heart and stomach, thereby achieving therapeutic effects on 
CVDs and GIDs (Figure 7B). Furthermore, Sanhe Decoction 
significantly alleviates the myocardial conditions compared 

with those of the control group in a rat model of myocardial 
ischemia, verifying the reliability of the theoretical model 
(Zhang et al., 2016).

In conclusion, the systems pharmacology approach provides 
a holistic strategy for rational drug design for complex associated 
diseases, promoting the drug development.

Bidirectional Regulation of TCM for the Treatment of 

Diseases
Reduning injection, derived from the experience of ancient 
Chinese medicine doctors, consists of three herbs: Artemisia 
annua L. (genus Artemisia, Asteraceae), Gardenia jasminoides 
J.Ellis (genus Gardenia, Rubiaceae), and Lonicera japonica Thunb. 
(genus Lonicera, Caprifoliaceae), which are mainly used for the 
treatment of influenza-like diseases, including viral infections, 
fever, respiratory diseases, and inflammation (Yang et al., 2014). The 
target network indicated that different diseases may have the same 
symptoms and can be cured by the same combination of herbs (Lin, 
1998). The mechanisms of reduning injection were illustrated by 
systems pharmacology. The compound–target network of reduning 
injection is shown in Figure 8. We noticed that arachidonate 
5-lipoxygenase (ALOX5) is one of the key enzymes in the formation 
of proinflammatory eicosanoids from arachidonic acid (Albert et 
al., 2002), which transforms essential fatty acids into leukotrienes 
(such as leukotriene B4, C4, D4, and E4). Actually, leukotriene B4 
is an effective activator of the chemotactic reaction in white blood 
cells. In the network, ALOX5 is a common pharmaceutical target 
against various diseases that interacted with several compounds, 
such as quercetin and luteolin. Moreover, reduning injection might 
also control the virus infection by directly targeting viral proteins, 
such as DNA topoisomerase 2-alpha (TOP2A) to inhibit the virus 
replication (Wang et al., 2012). The cell experiments also showed that 
the herbal ingredients reduced the inflammatory response through 
the regulation of inflammatory cytokines and proinflammatory 
mediators, such as IL-6, IL-8, TNF-α, and COX2. More importantly, 
the bioactive compounds in reduning can directly kill the virus 
through the inhibition of virus expression. In summary, the systems 
pharmacology-based analysis revealed that the dual regulation 
of reduning injection not only inhibited virus replication but also 
exerted anti-inflammatory activities to promote body recovery.

Application of Systems Pharmacology in 
the Examination of “Jun-Chen-Zuo-Shi” in 
the Combination Principles of Formula
“Jun-Chen-Zuo-Shi” Combination Principle of 

Mahuang Decoction and Yujin Formula
“Jun-Chen-Zuo-Shi” is one of the basic principles of herbal 
formulae. It has been found that there was a clear difference in the 
structure and biological activity of each ingredient in different herbs 
and even ingredients in the same herb; however, only some bioactive 
compounds exhibit therapeutic activities (Zhao et al., 2010). Given 
the numerous components of a TCM, the interpretation of the rules 
of combination is difficult. In the previous study, taking Mahuang 
Decoction as an example, we explored the scientific connotation 
of the combination principle of TCM (Yao et al., 2013). Mahuang 
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Decoction consists of four herbs: ephedra, cinnamon, almond, and 
licorice. By the developed systems pharmacology model, the different 
roles of the four herbs in the prescription were deciphered through 
the integration of pharmacokinetic interactions, the drug–target 
network, and the target–disease network from the molecular level 
to the systems level (Figure 9). The main findings were as follows: 
1) 45 active compounds were screened by ADME system; among 
these, 14 potential bioactive compounds belonged to ephedra, 
including ephedrine, pseudoephedrine, N-methyl ephedrine, and 

quercetin; 10 compounds were from cinnamon, including cinnamic 
aldehyde, cinnamic acid, and coumarin; and 9 compounds were 
from almonds, such as bitter amygdalin and soybean sterol. Licorice 
has 12 active molecules, which include glycyrrhizic acid, 18-beta-
glycyrrhizic acid, and glycyrrhizin; 2) the herb ephedrine plays a 
prominent role as the “Jun” herb, which mainly stimulates the body 
heat and asthma through targeting on epinephrine receptor; 3) the 
“Chen” herb cinnamon can act on the same targets as the “Jun” herb 
ephedrine, which enhances therapeutic effects. For example, the 

FIGURE 6 | Multi-organ interactions of the multiple compounds in TCMs. (A) The holistic herb–human interactions. (B) The strategy of systems pharmacology of 

TCMs for the treatment of complex diseases (Wang et al., 2015).
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FIGURE 7 | Composition of TCMs has effects on a combination of multiple organs. (A) Pathways and therapeutic modules associated with cardiovascular–

gastrointestinal diseases. (B) The target organ location map; the node represents the organ where the target is located (Zhang et al., 2016).

FIGURE 8 | Bidirectional regulation of TCM for the treatment of diseases; the target–disease network of the reduning injection. It is composed of 49 target nodes 

(round, purple) and 11 disease nodes (square, green), and the size of the circle is the degree of the node (Yang et al., 2014).
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herb cinnamon also acted on both the beta 1-adrenergic receptor 
and the beta 2-adrenergic receptor, thus reducing the dose of the 
“Jun” herb ephedrine required. 4) The “Zuo” and “Shi” herbs almond 
and licorice helped to improve the bioavailability of the “Jun” and 
“Chen” herbs and to coordinate all the drug activities to promoting 
synergistic effects of four herbs.

Moreover, we have dissected the famous prescription Yujin 
Formula for treating cardiovascular diseases to clarify the “Jun-
Chen-Zuo-Shi” combination principle in Chinese medicine (Li 
et al., 2012a). From the Yujin Formula, 58 potential bioactive 
compounds were identified by ADME screening. The compound–
target network indicated that the “Jun” herb Curcuma aromatic 
possessed the most bioactive compounds, which acted on the 
targets associated with CVDs; the “Chen” herb Fructus Gardeniae 
has fewer bioactive compound and targets and shared 15 targets 
with the “Jun” herb C. aromatic to enhance the therapeutic effects; 
both the “Zuo” “Shi” herbs musk and borneol play assistant 

roles by decreasing the toxicity and targeting the ingredients 
to corresponding organs. In the Yujin Formula, target–disease 
network (Figure 10B) showed that most targets were associated 
with CVDs (44/147); moreover, they were distributed in tumors 
(40/147), neurological diseases (13/147), and nutritional metabolic 
diseases (9/147). These results indicated that Yujin Formula may 
be applied not only for the treatment of CVDs but also for tumors, 
nervous system diseases, nutritional or metabolic disease, and 
other diseases. In summary, the scientific connotations of the “Jun-
Chen-Zuo-Shi” combination principle were illustrated, which are 
of great significance for understanding the mechanisms of TCM.

Pathogenesis of Vitiligo and Its Treatment by 

Qubaibabuqi Formula
Vitiligo is an acquired, pigmentary skin disease that is disfiguring 
and difficult to treat. Clinically, many TCM prescriptions possess 
significant effects on vitiligo. Previously, we examined the 

FIGURE 9 | Schematic diagram of the principle of “Jun-Chen-Zuo-Shi” combination principle of Mahuang Decoction. The Eph represents the “Jun” herb ephedra, 

the RC is the “Chen” (minister) herb cinnamon, the SAA is the “Zuo” (adjuvant) herb almond, and the RG represents the “Shi” (guide) herb licorice (Yao et al., 2013).
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potential pathogenic mechanisms of vitiligo and its treatment 
by Qubaibabuqi formula by the systems pharmacology (Pei 
et al., 2016). Fifty-six active ingredients were identified as the 
active compounds, including buritin, bubonin, kaempferol, 
and cholesterol, which played important roles in the treatment 
of vitiligo. They acted on 83 target ADCY1 (adenylate cyclase 
type 1), SCD (stearoyl-coenzyme A desaturase), and BCHE 
(butyrylcholinesterase) to enhance immune response, increase 
melanin synthesis, and equilibrate the nervous system. In 
addition, the analysis of the target network and integration of 
vitiligo pathways showed that the Qubaibabuqi formula may be 
involved in modules such as immune-related modules, nervous 
system-related modules, and melanin synthesis-related modules, 
exhibiting synergistic effects on vitiligo. The study systematically 
analyzed the potential molecular mechanisms of Qubaibabuqi 
formula and pathogenesis of vitiligo from the molecular, network, 
and pathway levels, deepening our understanding of vitiligo and 
extending the application of TCM in modern medicine.

DISSECTION OF SYNDROME 
DIFFERENTIATION THEORY 
AND QI-BLOOD THEORY

TCM is derived from ancient medical practices that integrate 
the integrity of the body and the natural environment. 
The concept of entirety and the method of treatment with 
syndrome differentiation in TCM is distinctive, which 
provides a basis for the diagnosis and treatment of diseases 
(Jiang et al., 2012). More importantly, syndrome differentiation 
has always been an important pharmacological principle to 
guide the prescription. For example, Liuwei Dihuang Pill 
and Jinkui Shenqi Pill were developed under the guidance of 
the syndrome. However, owing to little evidence of the link 
between diseases and efficacy, the therapeutic strategies under 
syndrome are still lacking.

With the aid of systems pharmacology, the “drug–gene–
targets–disease subtype” network associated with CVDs  was 
established. Therein, the drugs, targets, and multi-level 
interactions were illuminated, and the complex interactions 
between disease genes and CVDs’ subtypes were discovered 
(Li et al., 2014). To uncover the biological basis of CVDs’ 
syndrome, “CVDs syndrome of qi stagnation, blood stasis, 
qi deficiency, and blood deficiency” were implemented. 
Combined with the related TCM and refined prescription, the 
“syndrome–gene–target–drug” network was established to 
clarify the molecular network and pathways in coronary heart 
disease with the characteristic of qi stagnation and blood 
stasis (Zhou and Wang, 2014).

Furthermore, we identified that the qi-tonifying medicines 
were involved in the enhancement of immunity, the promotion 
of energy metabolism, and blood circulation, whereas 
blood-tonic Chinese herbs tended to improve and promote 
the function of hematopoietic stem cells (Figure 11). A 
computational method was built to distinguish the molecular 
characteristics of qi-tonifying and blood-tonic molecules, 
with a prediction accuracy higher than 80%, providing a new 

tool for the material-based analysis of qi-blood theory and the 
discovery of new drugs (Liu et al., 2013b).

CONCLUSIONS AND PROSPECTS

TCM is a complex mixed system with multiple components and 
multiple targets; thus, the identification of the potential bioactive 
molecules and the dissection of the underlying mechanisms of action 
to establish the optical drug combinations are the essential tasks of 
TCM. Fortunately, the advent of systems pharmacology framework 
provides powerful tools for TCM studies: 1) new methods for 
identification of active components/groups of TCM from the whole 
perspective. More than 10 mathematical models, including PreOB 
and PreHF, have been developed, which overcome the limitation 
of TCM in pharmacokinetic and pharmacodynamic experiments, 
providing convenient approaches for the discovery of effective 
substances; 2) large-scale target prediction systems of TCM, with 
three approaches (SysDT, WES, and Pred-binding) as new tools for 
drug target discovery; 3) the probability ensemble approach (PEA) 
model as a novel tool for the dissection of mechanisms of action and 
the prediction of new indications of TCM; and 4) a novel network 
of elementary subgraphs and a dynamic model was proposed for the 
large-scale screening of weak-binding compound in TCM.

With the aid of the systems pharmacology method above, we 
have built a systems pharmacology database and analysis platform 
for TCM, which has been applied for the illustration of the synergetic 
effects of drug combinations, the synergetic effects of multiple targets, 
pathways and organs, and the bidirectional regulation of Chinese 
medicine. Moreover, the systems pharmacology of TCM provides 
methodological guidance for the dissection of the combination 
principle and syndrome differentiation of herbal formulae, as well 
as the interpretation of the qi and blood basis of TCM from the 
molecular level to the systems level. It is of great significance to 
both the modernization of TCM and the development of modern 
medicine.

Although the systems pharmacology approach has achieved 
certain applications and results, the theory and methods require 
further improvements in the future; for example, the dose of 
herbs should be added into the model because the efficacy 
of the same herb obviously differs with different dosages. 
Therefore, it is necessary to integrate the drug dosage into the 
systems pharmacology models to provide guidance for clinical 
applications and further validation. In addition, the systems 
pharmacology models were constructed predominantly based 
on computer predictions; however, the reliability and validity 
of these models still need to be verified by experiments and 
clinical practice. Besides, the quality of TCM is one of the most 
important factors for modernization of Chinese medicines, 
so the study on its genuineness is of great significance for 
the efficacy of TCM. How to assess the quality of TCM and 
integrate it into the in silico model should be considered. 
Furthermore, the development of precision medicine, TCM 
combination, or a combination of TCM and Western medicine 
(WM) has obvious advantages. Mass clinical data showed 
that the complementary advantages of combined TCM and 
WM can significantly improve the efficacy of treatment for 
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FIGURE 10 | Dissection of the “Jun-Chen-Zuo-Shi” combination principle of Yujin Formula. (A) The potential molecule–target networks constructed by 58 potential active components (triangles) and 32 potential targets 

associated with cardiovascular diseases (CVDs) (round). (B) Target–disease network, linked by 32 potential targets (the middle circles were marked with a variety of colors, as in Figure 2) and 147 kinds of diseases (red 

squares), which were divided into 16 types (black triangles) (Li et al., 2012a).
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many diseases and contribute to the development of precision 
medicine (Wang and Zhang, 2017). Therefore, how to predict 
the drug combination of these TCM and WM and assess the 
efficacy and side effects is valuable for novel drug design. At 
present, RCTs have been generally used to assess the clinical 
efficacy of TCM (Hu et al., 2017). For example, a meta-
analysis of RCTs has shown that TCM significantly improved 
analog scale, Western Ontario and McMaster Universities 
Osteoarthritis Index (WOMAC), and total effectiveness rates 
of knee osteoarthritis. In addition, TCM showed a lower risk 
of adverse events than did standard western treatments (Chen 
et  al., 2016). Studies have shown that TCM is effective in 
treating atrial fibrillation and has relatively few side effects, but 
the mechanism of action is still unclear (Wang et al., 2011; Liu 
et al., 2014; Cai et al., 2017). However, respective RCTs of TCM 
are limited, because there has been no English meta-analysis of 
TCM treatment for some diseases.

In the future, we will further improve systems pharmacology 
and provide extended guidance for the modernization of Chinese 
medicine and the development of new drugs.
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FIGURE 11 | Study of the mechanism of disease and syndrome and the theory of qi and blood. (A) The relationship at the molecular level between the different 

subtypes of cardiovascular disease and the distribution of targets on the pathway; blue indicates blood stasis syndrome, and red indicates qi deficiency syndrome. 

(B) Study of the material basis of qi and bloods (Liu et al., 2013b).
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