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ABSTRACT

The QRD RLS algorithm is one of the most promising RIS algorithms, due to its robust
numerical stability and suitability for VLSI implementation based on a systolic array archi-
tecture. Up to now, among many techniques to implement the QR decomposition, only the
Givens rotation and modified Gram-Schmidt methods have been successfully applied to the
development of the QRD RLS systolic array. It is well-known that Householder transfor-
mation (HT) outperforms the Givens rotation method under finite precision computations.
Presently, there is no known technique to implement the HT on a systolic array architecture.
In this paper, we propose a Systolic Block Householder Transformation (SBHT) approach,
to implement the HT on a systolic array as well as its application to the RLS algorithm.
Since the data is fetched in a block manner, vector operations are in general required for
the vectorized array. However, by using a modified HT algorithm, a two-level pipelined
implementation can be used to pipeline the SBHT systolic array both at the vector and
word levels. The throughput rate can be as fast as that of the Givens rotation method.
Our approach makes the HT amenable for VLST implementation as well as applicable to
real-time high throughput applications of modern signal processing. The constrained RLS
problem using the SBHT RLS systolic array is also considered in this paper.

Submitted to IEEE Transaction on ASSP: EDICS - 7.1.4 - Systolic and wavefront
architectures.
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1 Introduction

Least-squares (LS) technique constitutes an integral part of modern signal processing and
communications methodology as used in adaptive filtering, beamforming, array signal pro-
cessing, channel equalization, etc. [6]. Efficient implementation of the LS algorithm. partic-
ularly the recursive LS algorithm (RLS). is needed to meet the high throughput and speed
requirements of modern signal processing. There are many possible approaches such as fast
transversal method and lattice method which can perform RLS algorithm efficiently [1,6].
Unfortunately, these methods can encounter numerical difficulties due to the accumulation
of round-off errors under a finite-precision implementation as summarized in [2]. This may
lead to a divergence of the computations of the RLS algorithm [2]. A new type of systolic
algorithm based on the QR decomposition (QRD) known as the QRD RLS was first pro-
posed by McWhirter in [18]. This algorithm is one of the most promising algorithms in that
it is numerical stable [1,12] as well as suitable for parallel processing implementation on a
systolic array [6,18].

Up to now, most of the QRD RLS implementations were based on the Givens rotation
method and modified Gram-Schmidt method which both are rank-1 update approaches [2.4,
7,13,16,18,9]. Tt is well-known that the Householder transformation (HT), which is a rank-k&
update approach, is one of the most computationally efficient methods to compute QRD.
The error analysis carried out by Wilkinson [25.8] showed that the HT outperforms the
Givens method under finite precision computations. Presently, there is no known technique
to implement the HT on a systolic array parallel processing architecture. since there is a
belief that non-local connections in the implementation are necessary due to the vector
processing nature of the Householder transformation. One of the purposes of this paper
is to show that we can implement the HT on a systolic array with only local connections.
Thus, it is amenable to VLST implementation and is applicable to real-time high throughput
applications of modern signal processing.

In this paper, we first propose a systolic Householder algorithm called a systolic block
Householder transformation (SBHT) to compute the QRD with an implementation on a
vectorized systolic array. Then a RLS algorithm based on the SBHT called SBHT RLS
algorithm is proposed to perform RLS operations on the array. We shall show that the
SBHT array and the SBHT RLS array are generalizations of Gentleman-Kung’s QRD array
[4] and McWhirter’s QRD RLS systolic array [18] (see Fig.1) respectively. The difficulty in
the applications of the above arrays is mainly due to the the vectorized operations of the
processing cells. This results in a high cell complexity as well as a high I/O bandwidth. By
using a modified HT algorithm proposed by Tsao [24], a two-level pipelined implementation
of the SBHT RLS algorithm can be achieved. That is, the algorithm is pipelined at the
vector level as well as at the word level. The complexity of the processing cell as well as the
I/0 bandwidth are thus reduced. In general, the cell complexity of the SBHT array is higher
and the system latency is longer than that of the conventional Givens rotation implemen-
tations. With the two-level pipelined implementation, the throughput of the SBHT RLS
systolic array is as fast as that of McWhirter's Givens rotation array, and it offers better
numerical property than the Givens method. In addition, an extension of the SBHT RIS
array to MVDR beamformation, which is a constrainted RLS problem, is also considered.

In section 2, a brief review of the QRD RLS algorithm is given. In section 3, the SBHT is
presented while the SBHT RLS algorithm is considered in section 4. The two-level pipelined



implementation of the SBHT RLS systolic array is discussed in section 5. Finally, in section
6, the constrained RLS problem, as applied to MVDR beamformation, using an extension
of the SBHT RLS array is presented.

2 QRD RLS Algorithm

A full rank m X p, m > p, rectangular matrix X can be uniquely factorized into two matrices
Q and R such that X = QR., where Q is an m X p matrix with orthonormal columns and R
is an p X p upper triangular matrix. Several different approaches of the QRD systolic arrays
have been proposed by Gentleman and Kung [4], Heller and Ipsen [7], Luk [16], Ling, etc.
[13], and Kalson and Yao [9]. The first three approaches are based on the Givens rotations
methods, while the last two are based on the modified Gram-Schmidt orthogonalization.
Given an m X 1 vector y, the LS problem is to minimize the norm of the residual vector ¢

lle(m)]] = || X(m)w(m) - y(m)]|

by choosing an optimal weight vector w. If the matrix X and vector y grow in time, then
the problem of minimizing the norm of the residual vector recursively becomes the RLS
problem. Until recently, it appears that only Givens and modified Gram-Schmidt methods
have been considered for RLS computations. Some recent RLS problems based upon the
use of Householder transformation have appeared [3.15]. In [18], McWhirter showed that a
QRD RLS systolic array, which was based on the Gentleman-Kung’s array, can be designed
without first computing the weight vector of the RLS problem. This approach is useful
for high throughput applications in various modern signal processing problems such as
adaptive filtering and beamforming since optimal residuals are of direct interest while the
weight vector needs not be computed. The basic idea of the QRD RLS systolic array in
[18] is to update the p x p matrix R using a sequence of Givens rotation matrices when a
new row of data arrives. Suppose we have the QRD of the data matrix X at time m and
expressed as X(m) = Q(m)R(m). Define

) QT(m) : 0
Q'(m)=| - - —— ————
oT 1

When a new row of data arrives., we then have

R(m)

Ql(m)A(m+1) = 0

T2, alp
This new row of data can be zeroed out by applying a sequence of Givens rotations
G=G, -GG

where the (m + 1) X (m + 1) transformation matrix G, is defined by
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where ¢ and b are elements of vectors in the it" and (m + 1)** rows under rotation.

Fig.la shows the systolic array proposed by McWhirter in [18]. It consists of a QRD
triarray and a linear response array (RA). The rotation parameters are propagated from
the boundary cells to the right for internal cells to update their contents, and the cosine
parameters are also cumulated and propagated down diagonal boundary cells. Each skewed
input row of data is zeroed out by the QRD triarray. The optimal residual is then obtained
by the multiplication of the cumulated cosines and the rotated output of the desired response
at the response array (see Fig.1la) [18].

3 Systolic Block Householder Transformation

The Givens rotation method discussed above is a rank-1 update approach since each input
consists of one row of data. For the systolic block Householder transformation (SBHT), we
need a block data formulation. Denote the data matriz as

X7
X7 X(n—-1)
X(n)=| . |=| —== | € g0 (1)
. XT
X3
and the desired response vector as
Y1
Vs y(n—1)
yin) = | | =] —-- | €%, (2)
: Vo
y’ll
where X7 is the & x p i*" data block matrix,
T
X¥—1)k+1
Xi—1)k+2 )
X,zr = . (=Dt = [Xi.l Xi9 e X'i.p] (3)
X



Tli-1)k+1,1 TE=1)k4+12 " T(E=Dk+1,p

_ fc(i—l)k+2,1 i”L'(i—l)k+2,2 ‘l‘l"(i——l)l;+2,p c RkxP (4)
Tik,1 Tik,2 Tt Tk
and y; is the k x 1 " desired response block vector.
YE-1)k+1
yi = | DR g (5)
it

k is the block size and p is the order(i.e.. number of columns) of the system.
For a rank-£ update QR decomposition, suppose we have

R(n -1)
Qn—-1)X(n-1)= - . (6)
0
Denote
Q(n—-1) 0
Qr(n—1)= - = - (7)
o” I,
then we have
R(n-1)
Qk(n—l)X(n): 0 . (8)
_}zT_
If we can find a matrix H(n) such that
R(n)
H(n)Qxln - )X(n)= | === |, (9)
0
then the new Q(n) is B
Q(n)=H(n)Qr(n —1). (10)
An n x n Householder transformation matrix T is of the form
2271
T=1-222_ (11
2? )

where z € R™ [5]. When a vector x is multiplied by T, it is reflected in the hyperplane
defined by span{z}+. Choosing z = x % [|x||.e1, where e; = [1,0,0.---,0] € ", then x is
reflected onto e; hy T as

Tx = &||x]||ze1. (12)



That is, all of the energy of x is reflected onto unit vector ey after the transformation. We

can zero out XI by applying successive Householder transformations as follows,

RE-D(n - 1) [
H(i)(n) 0 _
0,--+,0,x\7D .. oD 0,
fori=1,---,p, where ngz)- = Xn . R(O)(n —1)=R(
is

where each H()(n) represents a Householder transformation which zeros out the 4t
of the updated X7,

To obtain H!

where rq7 is the (1,1) element of R(n — 1), 0% = 7%, + ||x,1||?

where hgll)(n) is a scalar. hg)(n,) is a k x 1 vector. hg)(n) =

matrix given by

i.e., X

H(n) =

(i~1)

n,?

)(n), denote

L= - o

hgll)( n)

H(n) = 0

| b (n)

HE) (n)HP-Y) (n)

T
0(77,—«1)1:——1

OT

Iip—1)k-1

0

RO(n—1)
0
i).
L] 03 Ov Xn‘z.}_la

(1)(7z)

T
XTL.l Y

Y (n) |

. Then from (11)

n — 1), and the resultant matrix H(n)

(13)

column

(14)

hg)(‘n), and Hg)(n) isakxk

2X, 1%L
HY)(n) = I - L (15)
oz,
with U%l = |lz1]|3 = 2(¢f — o1711). Define ¢; = 0f — oy7q1. (15) can be rewritten in a form
without multiplication of the number 2 as
T
Xy 1X;
H.(;z)(n) =, — Tl
(e
In general,
H{T (n) 0 H{3 (n)
H(m)(n) — 0 I(n—l)k—-p 0 , (16)
i Hg?)(n) 0 Hggl)(n) ]




where H:(lT)(n) € RPXP is an identity matrix except for the m*™ diagonal entry; H(lgq')(n) €
RPXE {5 a zero matrix except for the mth row; HgT)('n) = HggL)T(n); and

(m), X;mn;l)xq(%mﬂg—l)T
Hy'(n) = [ - =0 ¢ R (17)
ILVTTL
is symmetric with ¢, = 02, — omrmm, where of, = 17, + HX%{I)HQ. It can be easily
seen that ngz)(n)ngl)(n) = O,ngl)(n)H%)(n‘) = 0, for Vi # j. Thus we have the following
lemma,
Lemma 1: The Householder transformation matrix, H(n) € R7%*"* is orthogonal and
is of the form

Hyi(n) : 0 . Hia(n)
Hm)=| 0 i Ipgpe, ¢ 0 | =HOE )" M), (18)
L Hyi(n) 0 : Ha(n) |
with
Hi(n) = HP(m)--HY B ()
Hi(n) = Hg];)(n)--~H(2?2)(72)Hg12)('n).ﬂ (19)

For the block size of & = 1, then the Givens rotation method reduces to the special case of
the rank-1 update Householder transformation [5], and the H matrix in Lemma 1 becomes
a Givens rotation matrix G of the form [18]

K(n) | 0 | h(n)
G(n) = 0 | Li,x | O
Wiy | 0 | A

where K(n) is a p X p matrix, h(n) is a p X 1 vector, and ~(n) is a scalar given by
y(n) = [T e;i(n), n > p where ¢;(n) is the cosine parameter associated with the i Given
rotation,

3.1 Vectorized SBHT QRD Systolic Array

Now we propose a vectorized systolic array to implement the QRD based on the SBHT.
Similar to the QR triarray of Gentleman-Kung [1]. this array has both boundary and internal
cells. The boundary cell takes an input of block size k& from the abhove internal processor or

dirvectly from the input port, updates its content and generates the reflection vector, and
sends it to the right for the internal cell processing (see Fig.2a). Define

_(i-1)T . . . -7 E ‘
X =1 0i-1 ¢ i Oy <=t ] , t=1,--,D,

n.



_(i=1)

and z; = X,,; ' — o;e;, where e; is a zero vector except for a unity at the it position.
When an internal cell receives the reflection vector, instead of forming the matrix z;z! and
performing matrix arithmetics. it performs an inner product operation to update its content
r;; by doing

i ~(i—1 —(i~=1 Z;, ~(i—1 . . .
HO(n)x7Y = 2071~ ¢(z?-xg7j N, j=i+1,...p, (20)
and sends the reflected data x, ; downward for further processing. Fig.2 shows the SBHT
QRD array architecture and the processing cells. When the block size is & = 1, this

vectorized array degenerates to the Gentleman-Kung’s Givens rotation triarray.

4 SBHT RLS Algorithm

The LS problem is to choose a weight vector w(n) € RP, such that the block-forgetting norm
of

ei(n)
ey(n)

e(n) = : = X(n)yw(n)—y(n) (21)
e.(n)

is minimized. The optimal weight vector w(n) satisfies

min [ld(mlla, = [X(n)W(n) = y(n)]a,. (22)
where
le(m)]la, = [[Ax(n)e(n)]]2 = JZ/\Z(”““ - lei(n)l[3. 0<A<l (23)
i=1
Aj(n)is a block-diagonal exponential weighting matrix of the form,
A ... 00
As(n) = S A =y oL (24)
0 - M, 0
0 e 00 Iy
and || - ||2 is the Euclidean norm,
k \
lei(l13 = D leqimnyra ()] (25)
j=1

The exponential forgetting weighting A is incorporated in the RLS filtering scheme to avoid
overflow in the processors as well as to facilitate nonstationary data updating.

The QRD of the weighted augmented data matriz at time n (in the block sense. it is
equivalent to nk snapshots), is given by

(26)

At [X()Ey()] = [@f (m)i@ (0] [ R0 © () } |

0 - v(n)

~1



where

Q1(n)
Q(n) = - - 9
Qz(n)

constitutes an orthogonal transformation matrix with Q;(n) € RP*"** spanning the column
space of the weighted data matrix Agp(n)X(n) and Qg(n) € R(k=p)X7k ghanning the null
space, R(n) € RP*P is an upper triangular matrix and

Q(n)y(n) = [ u(n) ] .

v(n)
The optimal weight vector can be obtained by solving
R(n)W(n) = u(n). (27)
Obviously, Ax(n)X(n) = QT (n)R(n). As a result, the weighted optimal residual of (21) is,
Ar(n)E(n) = Qf(n)R(n)W(n) - Qf (n)u(n) — QF (n)v(n)
= —QI(mv(n), (28)

which lies in the null space of the weighted data matrix.
Now, suppose we have the data matrix up to time n —1 and the QRD of Ay(n—1)[X(n—

1) i y(n—1)], then the recursive LS problem is to efficiently compute the optimum residual
at time n from the results we have at time n — 1. In particular, we are interested in the
new n** block of the optimal residual,

én(n) = ng(n) =~ ¥Yn (29)

From (8), (9) and (18), (26) can be expressed as

. . 17 . ]
Hyi(n) 0 : His(n) AR(n—-1) : Au(n-1)
R e — | S
) . (n) = 0 D Tmtyhep 0 ‘ 0 oAv(n—1)
0 v(n) e S IR e
| Hyi(n) 0 © Hypn) | | XT : Yo oo |

By recursion on n, we relate Q(n) and Q(n — 1) using (10) and have

Hn('n) 0 H12(72) Ql(n - 1) 0
Q(n) = 0 Lin-1)k=p 0 T Qun—1) 0
| Hoy(n) 0 D Hapn) | | O oL



= Qa(n — 1) : 0 . (30)

| Hoi(n)Qu(n—1) ©  Hyp

We can see that Qz(n) is updated from Qy(n — 1) and Qs(n — 1) by

Qun)=| ——————- ——— | (31)
Ho1(n)Qi(n—1) @ Hy
On the other hand, the updated [u”(n),vT(n)]T is

u(n) y(n—1)
Q(r)Ak(n) | - -~
v(n) Yn

AHyi(n)u(n — 1) + Hya(n)y,

(

= Av(n—~1) , (32)
Vo
where
v, = AHgi(n)u(n — 1) + Haa(n)ys,. (33)

Therefore, from (28), (31), and (32), the weighted optimal residual vector can be obtained
from parameters at time n — 1 by

é(n—1|n) “AQT(n—1v(n-1)- QT (n - DHL (n)v,
Amin) = | == | =] —mme e os . (Y
é,(n) —H§2(7z)vn

where &(m|n) denotes the estimate of € at time m, m < n, given all of the data up to time
n. The new n*”* block of the optimal residual is then obtained as

ép(n)= —Hsz(n)vn = —Hgg)(n)ngz)(n) . ~H(27;)(n)vn. (35)

For the block size of & = 1, all vector parameters in (35) become scalars and can be expressed
as

P
en(n) = — H Cilp, (36)
=1

which was first shown by McWhirter in [18]. Note that there are some differences between
the optimal residuals estimated by SBHT and Givens rotation methods. To be specific, the
optimal residual vector in (35) is given by



en—-1)k1((n — Dk + 1|nk)
e,(n) = :
(n) enk—1(nk — 1|nk)
enn(nk|nk)

while, the optimal residual estimated by the Givens rotation method in (36) is
én(n) = e(n|n). (38)

In this sense, the SBHT RLS gives a better estimate of the residual since it uses more
data samples to estimate the optimal residual. As an example, consider & = 2. Then
the optimal residuals obtained from the SBHT RLS and Givens methods are [eg,_1((2n —
1)|2n), e2,(2n]2n)] and [e2,—1((2n —1)|(2n—1), €2,(2n|2n)] respectively. It is clear now that
the SBHT RLS method gives a better estimate for the previous residual than the Givens
rotation method because the former makes use of the future data sample at time 2n to
estimate the residual at time 2n — 1, while the latter does not.

4.1 Vectorized SBHT RLS Array

In order to obtain the RLS filtering residual vector in the systolic array, we can use two pos-
sible approaches. The first approach is to generalize the architecture of McWhirter’s Givens
rotation approach [18]. A SBHT QRD array with a RA based on this approach is shown
in Fig.3. Since the v, in (33) results from the reflection computation in (32), therefore v,
is obtained naturally from the output of RA. Each boundary cell then forms the matrix
ng) and propagates it down the diagonal boundary cells. Since Hg:,) is generated earlier

than Hg]; for ¢ < j, equation (35) has to be computed from left to right involving matrix-
matrix multiplications. As a result, each boundary cell performs the matrix multiplication
to cumulate ng) when it is propagated down diagonal boundary cells. The matrix multipli-
cations needed in the boundary cells in this approach are ohjectionable since they not only
slow down the throughput but also increase the complexity of the boundary cells. We note,
McWhirter’s original approach based on Givens rotation worked well since only scalars need
to be propagated down the diagonal boundary cells and the order of multiplications for the
scalars is irrelevant.

Obviously, we prefer to compute (35) from right to left such that only inner product

(

computations are performed. Instead of forming the matrix H2'2) and propagating it down,

another approach is to use the facts that H(QQ) can be expressed by using (17) and the
reflection vectors are sent to the right from boundary cells as described in Section 3.1. From
these observations, (35) can be computed in similar manners as performed by the internal
cells. A new architecture shown in Fig.4 is thus introduced to circumvent this problem.
A column array of internal cells called backward propagation array (BPA) is added at the
right hand side to perform the backward propagation of v,,. Each row, say the ith one, needs
2(p — 1) delayed buffers as shown in Fig.4. The v, obtained at the output of RA is then
backward propagated through the BPA. From (17). each cell of this array performs the
operation

(i-1)
i - - Xy fm - . . .
HY (n)¥0 = ¥ = =2 (7 Vo) i 2L (39)

10



where v, is an updated v,,. This is a subset of the operations performed by the internal cell
shown in (20). The residual vector is obtained from the top of the newly appended column
array.

The costs for this proposed architecture are: an increased latency time from (2p+ 1)1, of
McWhirter’s Givens method to 3pt,, where t, represents the processing time for the scalar
operations used in the Givens rotation method and ¢, is the processing time for vector
operations used in the SBHT method; the number of delay elements needed increases from
pto 02(p—1) = p(p—1); and p additional internal processing cells. The operations of
the boundary and internal cells are still given in Fig.2b. These results clearly show that II'T
can be implemented simply on a systolic array to achieve massive parallel processing with
vector operations. This provides an efficient method to obtain a high throughput rate for
recursive LS filtering by using the HT method.

5 Two-level Pipelined Implementations

The SBHT QRD array and the RLS array discussed in the above sections are derived using
the conventional Householder transformation as shown in (11). Due to the vector processing
nature of the conventional method, the cells of both arrays perform vector operations such
as inner products. This means the complexity of each cell is high and the I/O bandwidth
is large in order to achieve an effective vector data communication. FEach cell, due to
the complexity of vector processing, may require a large processor. Clearly, this is not a
desirable property for VLSI implementation. Thus, we are motivated to find a suitable
algorithm to pipeline the data down to the word level such that the I/O bandwidth as well
as the complexity can be reduced. In addition, we still wish to achieve a high throughput
which is needed in many modern signal processing applications.

The conventional approach in computing Householder transformation, y = Tq, based
on (11) is to first form z and ||z||* from x and then z”q/||z||? and q — 2z(z7 q/}|z|?) as
considered before. It can be stated in the following form:

HT Algorithm (Conventional)

Step 1. S, = [|x]|%
Step 2. If S, = 0, theny = q.

Step 3. If S, # 0 then

(1) s =+/Sper 2=x%x+[5,0,0,---,0]7,
(2) ¢ = Spw + 521, Sz = zTq,
(3)d=5:4/¢ y=q—dz

In [24], Tsao pointed out that by skipping the computation of ¢ and avoiding the
cumbersome intermediate steps of forming vector z for further computations, a modified
algorithm with smaller round off error and less operations can be obtained. Only Step 3 of
the conventional algorithm is modified as follows:

Modified HT Algorithm (Tsao, 1975)

Step 3. If S, # 0 then
(1) s =/ Spzr =121+ 5,

11



(2) Sug =xTq,
(3)y1 = =5efs. d=(q1— )]0, yi = ¢ —dui. i=2,--,n.

With this algorithm, the operations of the cells of the vectorized systolic arrays can be
modified as shown in Fig.5. As we can see, for the boundary cell, the vector u, which
consists of the weighted diagonal element of the upper-triangular matrix and one colnmn
of the input data block (updated or not), can be sent out immediately when the input x is
available without waiting for any computations as required in the implementation using the
conventional algorithm. Due to this advantage and the modified operations in the internal
cells, we can then pipeline the vector operations down to the word level such that each cell
only performs scalar operations which will significantly reduce the complexity of the cell.

A two-level pipelined implementation of the modified HT algorithm is given in Fig.6a.
The boundary cell performs three major functions: square-and-cumulate, square root, and
addition. For each data block, the boundary cell fetches one data sample, cumulates the
square of the sample, and sends the data to the right for internal cell. When all the data of
the block are processed, the content of S is then sent down for square-root operation. The
resultant s is sent to the right for internal cell as well as sent down to obtain o, which is
then sent to the right when available. At the same time, when an internal cell receives a
u;, it multiplies u; with an input z; and cumulates all these products to obtain 5. When §
is available, it is sent down for division operation with s, which arrives at the same time,
to obtain ¢; then ¢ is sent down and o again arrives at the same time to compute d. To
compute y; of (3) in Step 3, we need registers to store u; and z; temporarily. Since data
from the next block is continuously being sent into the system, each internal cell needs
2(k + 3) registers to store u; and 2; as indicated in Fig.6a. When d is available. y; is then
obtained one by one and sent down for further processing. For data from the next block,
it goes through the same processing. When a new d is available in the internal cell, the
corresponding z; and u; are already waiting in the registers. Therefore the vector operations
are successfully pipelined down to the word level. This means that by using the modified
HT algorithm, we have not only pipelined the SBHT arrays at the vector level but also at
the word level. The input data is now skewed in the word level as shown in Fig.6a rather
than in the vector level as shown in Fig.4. The function descriptions of the processing cells
for two-level pipelined implementation are given in Fig.Gb.

Since the most time consuming operation of this two-level pipelined implementation is
the square root operation which is also the critical operation in McWhirter’s Givens rotation
implementation, the throughput of this two-level pipelined implementation is as fast as that
of the McWhirter’s Givens array. However, with a longer pipeline, a longer system latency
for the SBHT method is obtained. This is due to the fact that the registers of the internal
cells have to be all filled before we can obtain the residual vector. For the SBIIT RLS
systolic array of order p. we have (p? + 3p)/2 internal cells, including the BPA. Thus, there
are a total of (p? + 3p)(k + 3) registers for the whole system. The system latency is given by
ts = 2p(k + 4), which is linearly proportional to p and k. However, for the Givens rotation
method, the system latency is only t; = 2p + 1. Comparisons of both RLS arrays based on
the SBHT and Givens rotation are summarized in Table 1. In general, the throughput of
the SBHT RLS systolic array is as fast as the Givens rotation method. Of course, while the
cell complexity of the SBHT array is higher, it does offer better numerical property [25]. A
detailed backward error analysis carried out by Wilkinson showed that for an n x n matrix
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A, after n(n — 1)/2 Givens rotations, the roundoff error in the upper-triangular matrix is in
the order of O(r,n/?p||A||) [25. pp. 138], while a series of (n—1) HT gives O(xpnpul|All) [25.
pp. 160], with r, and xj being constants and p a machine floating computation precision.

6 Constrained RLS Problems

In the above sections, we have dealt with an unconstrained RLS problem. The RLS systolic
array considered there was motivated originally by the sidelobe canceller beamformation
problem [18]. Other practical motivation could have come from the adaptive filtering proh-
lem [6]. However, there are other signal processing applications which are modeled by a con-
strained RLS problem. The MVDR beamformation constitutes such an example [19,20,22].
It is interesting to determine whether a systolic array for an unconstrained RLS problem can
also be used for a constrained RLS problem. In [19], McWhirter and Shepherd showed an
extension of the unconstrained RLS array to the MVDR beamforming problem. Based on
their approach, we shall also demonstrate the implementation of a MVDR beamformation
problem using a SBHT RLS array.
The MVDR beamforming problemn is to minimize

) = IX(n)ywO@)ja. (=1.---,L, (40)
subject to the linear constraints of
c(ﬂ)TW‘é)(7z) =38Y, (=1,..., L, (11)
where L is the number of constraints. We are interested in the a posteriori residual vector
& (n) = Xgw(n). (42)
The optimal solution of the weight vector is known [19] to be given by

BOM-1n)c®  BOR-Y(n)al)(n)
cOTM~1(n)cl 0= lal®(n)|[?

wl(n) = (43)

where M = XT(n)Ai(n)X(n) is the weighted covariance matrix, R(n) is the upper trian-
gular matrix resulted from the QRD of the weighted data matrix AyX(n), and

a@(n) =R T(n)c®. (41)
Therefore the optimal residual vector at time » is
3 e
n (n) = _ XIR(n)al(n). (45)
a2

A crucial step needed is for the efficient recursive updating of al®) ( ). A novel approach
was proposed for performing this updating [19]. Specifically, from (8), (9), and (44),

D = RTm-1)abmn-1)
AalO(n —1)

= AP ART(n—-1) § 0T i X, || AUn-1) |, (46)

0
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where b(®)(n — 1) is an arbitrary ((n — 1)k — p) x 1 vector. Then from Lemma 1, (8), and
(9), we have

AaO(n - 1)

C(' = /\_2 [ /\RT(n _ 1) OT X, JHT(N)H(‘R) /\b“)(n - 1)

0
= RT(n)- A"} (AHyy(n)a Y (n - 1)). (47)

Thus. a(® (n) = A2(AHyi(n)a(n — 1)) can be obtained by updating al*)(n — 1) in a
way similar to that u(n) is obtained by updating u(n — 1) using (32). The only diflerences
are the input for updating al¥(n — 1) is a zero vector and a scaling factor A™2. Due to
the structure of H in Lemma 1, the vector b(f)(-) plays no role in the updating of al*) ().
Furthermore, from (27) and (29), we have

é,(n) = XIR Y (n)u(n) - y,. (48)

From (32), we see that u(n) results from the update of [y(n— 1) ! y,], where y,, is the new
input. Now replacing u(n) with a¥)(n) and y,, with a zero vector, we have

én(n) = XIR~Y(n)al(n). (19)
and from (45)., we then obtain
34
5()(n) = AN 50
e’ (n 5 -€,(n !
S PEIETERR o

This equation reveals that by the proper scaling of &,(n), which can be obtained from
the SBHT RLS systolic array, we can obtain the a posteriori residual vector, éff)(n), of
the MVDR beamformation. Fig.7 shows an extension of the SBHT RLS array for the
new problem. Now one more data channel is needed for the RA to pipeline cumulation of
lal®(n)||2. and the scaling of the residual vector is done at the bottom of the RA when a
alf)(.))|? is available. Each RA/BPA pair in Fig.7 represents one of the A constraints.
The optimal a posteriori residual vector of each linear constraint is obtained at the output
of the corresponding backward propagation array.

As pointed out in [19], there are two ways to initialize the array. One method is to set
R(0) = 61, where é is a small scalar, and thus from (44), a®(0) = § 1@, (=1,-.-, L.
Another method is to obtain R(n) to some time n, then use (44) to obtain aD(n). The
details of a two-mode operation required for this initialization procedure are also considered

in [19].

new

7 Conclusions

In this paper, we have shown that the Householder transformation can be implemented
on a systolic array. By using a two-level pipelined implementation. the thronghput of the
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SBHT RLS systolic array can be as fast as that of the original Givens array in [18]. While,
the system latency is longer for the SBHT, it provides a better numerical stability than
the Givens method. Clearly, the Givens array is a special case of the SBHT array with a
block size of one. In general, the block size is an important variable. A larger block size
results in a better numerical stability, while the system latency is increased. Many known
properties of the Givens array are also applicable to the SBHT array. For example. the real-
time algorithm-based fault-tolerant scheme proposed in [14] can also be easily incorporated
into the SBHT RLS array. From the results described in this paper, it appears that the
Householder transformation method is useful in real-time high throughput applications of
modern signal processing as well as in VLSI implementation.
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Figure Captions:
Fig.1a QRD RLS systolic array using Givens rotation method.
Fig.1b Processing cells of the Givens rotation method.
Fig.2a SBHT QRD systolic array.
Fig.2b Processing cells of the SBHT QRD systolic array.

Fig.3 SBHT RLS systolic array obtained by direct generalization of the Givens rota-
tion array.

Fig.4 New matrix multiplication free SBHT RLS systolic array.

Fig.5 Operations of the processing cells by using modified Householder transforma-
tion.

Fig.6a A architectures of the processing cells for two-level pipelined implementation.

Fig.6b Functional descriptions of processing cells for two-level pipelined implemen-
tation.

Fig.7 MVDR beamforming systolic array.

Table 1 Comparisons of the SBHT and Givens rotation methods.
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Givens rotation SBHT
Number of cells (pZ3p)/2 (p2+5p)/2
Number of delay elements p p(p-1)
Number of registers 0 (P*+3p)(k+3)
System latency 2p+1 2pk+4)
Cell complexity less higher
Numerical stability good better

Table 1




