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Syzygies, multigraded regularity and toric varieties

Milena Hering, Hal Schenck and Gregory G. Smith

Abstract

Using multigraded Castelnuovo–Mumford regularity, we study the equations defining a
projective embedding of a variety X. Given globally generated line bundles B1, . . . , B� on
X and m1, . . . ,m� ∈ N, consider the line bundle L := Bm1

1 ⊗· · ·⊗Bm�
� . We give conditions

on the mi which guarantee that the ideal of X in P(H0(X,L)∗) is generated by quadrics
and that the first p syzygies are linear. This yields new results on the syzygies of toric
varieties and the normality of polytopes.

1. Introduction

Understanding the equations that cut out a projective variety X and the syzygies among them
is a central problem in algebraic geometry. To give precise statements, consider the morphism
ϕL : X → P(H0(X,L)∗) induced by a globally generated line bundleL onX. Let S = Sym•H0(X,L)
be the homogeneous coordinate ring of P(H0(X,L)∗), and let E• be a minimal free graded resolution
of the graded S-module R =

⊕
j�0H

0(X,Lj) associated to L. Following [GL85], we say that L
satisfies (Np) for p ∈ N provided that E0

∼= S and Ei =
⊕
S(−i− 1) for all 1 � i � p. Thus, ϕL(X)

is projectively normal if and only if L satisfies (N0) and ϕL(X) is normal. If L satisfies (N1), then
the homogeneous ideal of ϕL(X) is generated by quadrics and (N2) implies that the relations among
the generators are linear. In [Mum70], properties (N0) and (N1) are called normal generation and
normal presentation, respectively.

Although it was shown in [Gre84b] that any sufficiently ample line bundle on an arbitrary
variety satisfies (Np), it is normally difficult to determine which multiple of a given ample line
bundle suffices. When X is a smooth curve of genus g, it was proved in [Gre84a] that a line bundle
L of degree at least 2g + 1 + p satisfies (Np). This is recovered from an analogous statement for
finite sets in [GL88]. When X is a smooth variety of dimension n and L is very ample, it was shown
in [EL93] that the adjoint line bundles of the form KX + (n+ 1 + p)L satisfy (Np). Explicit criteria
for (Np) are also given in [GP99, GP01] for surfaces and in [Par00, PP04] for abelian varieties; we
refer to [Laz04, § 1.8.D] for a survey. The primary goal of this paper is to produce similar conditions
for toric varieties.

To achieve this, we use multigraded Castelnuovo–Mumford regularity. Fix a list B1, . . . , B� of
globally generated line bundles on X. For u = (u1, . . . , u�) ∈ Z�, set Bu := Bu1

1 ⊗· · ·⊗Bu�
� and let B

be the semigroup {Bu : u ∈ N�} ⊂ Pic(X). We say that a line bundle L is OX-regular (with respect
to B1, . . . , B�) if H i(X,L⊗B−u) = 0 for all i > 0 and all u ∈ N� with |u| := u1 + · · ·+ u� = i. Our
main technical result is the following.

Theorem 1.1. Let w1,w2,w3, . . . be a sequence in N� such that Bwi ⊗B−1
j ∈ B for 1 � j � � and

set mi := w1 + · · · + wi for i � 1. If Bm1 is OX-regular, then Bmp satisfies (Np) for p � 1.
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The case � = 1 is Theorem 1.3 in [GP99]. Our proof is a multigraded variant of the arguments
in [GP99]. Applying Theorem 1.1 with � = 1 to line bundles on toric varieties yields the following.

Corollary 1.2. Let L be an ample line bundle on an n-dimensional toric variety. If d � n− 1+ p,
then the line bundle Ld satisfies (Np).

The case p = 0, an ingredient in our proof, was established in [EW91]; other proofs appear
in [BGT97, LTZ93, ON02]. On a toric surface, it was proved in [Koe93] that L satisfies (N1) if
the associated lattice polygon contains more than three lattice points in its boundary. In [GP01],
a criterion was given for (Np) on smooth rational surfaces which, when restricted to toric surfaces,
shows that L satisfies (Np) if the associated polygon contains at least p + 3 lattice points in its
boundary. This result extends to all toric surfaces and is sharp; see [Sch04]. Related results on toric
surfaces appear in [Fak02] which studies multiplication maps and in [Har97] which studies (N0) for
anticanonical rational surfaces. For an arbitrary toric variety, it was shown in [BGT97] that R is
Koszul when d � n and this implies that Ld satisfies (N1) when d � n. Assuming n � 3, Ogata
established in [Oga03] that Ln−1 satisfies (N1) and, building on this in [Oga04], he proved that
Ln−2+p satisfies (Np) when n � 3 and p � 1.

We can strengthen Corollary 1.2 by using additional invariants. Let

hL(d) := χ(Ld) =
n∑

i=0

(−1)i dimH i(X,Ld)

be the Hilbert polynomial of L and let r(L) be the number of integer roots of hL.

Corollary 1.3. Let L be a globally generated line bundle on a toric variety and let r(L) be the
number of integer roots of its Hilbert polynomial hL. If p � 1 and d � max{deg(hL)−r(L)+p−1, p},
then the line bundle Ld satisfies (Np).

If X = Pn and L = OX(1), then we have hL(d) =
(d+n

n

)
and r(L) = n. In particular, we

recover [Gre84b, Theorem 2.2] which states that OPn(d) satisfies (Np) for p � d. On the other
hand, [OP01, Theorem 2.1] shows that, for n � 2 and d � 3, OPn(d) does not satisfy (N3d−2) and
it is conjectured that this is sharp.

Using the dictionary between lattice polytopes and line bundles on toric varieties, Corollary 1.3
yields a normality criterion for lattice polytopes. A lattice polytope P is normal if every lattice
point in mP for m � 1 is a sum of m lattice points in P . Let r(P ) be the largest integer such that
r(P )P does not contain any lattice points in its interior.

Corollary 1.4. If P is a lattice polytope of dimension n, then (n− r(P ))P is normal.

Theorem 1.1 also applies to syzygies of Segre–Veronese embeddings.

Corollary 1.5. If X = Pn1 ×· · ·×Pn�, then OX(d1, . . . , d�) satisfies (Np) for p � min{di : di �= 0}.
The Segre embedding OX(1, . . . , 1) satisfies (Np) if and only if p � 3; see [Las78, PW85] for

� = 2, and [Rub02, Rub04] for � > 2. An overview of results and conjectures about the syzygies of
Segre–Veronese embeddings appears in [EGHP06, § 3].

Inspired by [EL93], we also examine the syzygies of adjoint bundles. Recall that a line bundle on
a toric variety is numerically effective (nef) if and only if it is globally generated, and the dualizing
sheaf KX is a line bundle if and only if X is Gorenstein.

Corollary 1.6. Let X be a projective n-dimensional Gorenstein toric variety and let B1, . . . , B�

be the minimal generators of the Nef cone Nef(X). Suppose that w1,w2, . . . is a sequence in N�

such that Bwi ⊗ B−1
j ∈ B for 1 � j � � and mi := w1 + · · · + wi for i � 1. If X �= Pn and p � 1,
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then the adjoint line bundle KX ⊗Bmn+p satisfies (Np). If X = Pn and p � 1, then KX ⊗Bmn+1+p

satisfies (Np).

In [EL93], it was proved that for a very ample line bundle L and a nef line bundle N on a smooth
n-dimensional algebraic variety X �= Pn, KX ⊗Ln+p⊗N satisfies (Np). Corollary 1.6 gives a similar
result for ample line bundles on possibly singular Gorenstein toric varieties. Specifically, if L is an
ample line bundle such that L ⊗ B−1

j ∈ B for 1 � j � � and N is a nef line bundle on X �= Pn

then KX ⊗Ln+p ⊗N satisfies (Np). For an ample line bundle L on a ruled variety X, § 5 in [But94]
demonstrates that KX ⊗ Ln+1+p need not satisfy (Np) for p = 0 and 1. Hence, the conclusions of
Corollary 1.6 are stronger than one can expect for a general variety. The proof of Corollary 1.6
combines Theorem 1.1 with Fujita’s freeness conjecture for toric varieties, see [Fuj03].

Conventions. We work over a field of characteristic zero and N denotes the nonnegative integers.

2. Multigraded Castelnuovo–Mumford regularity

This section reviews multigraded regularity as introduced in [MS04]. Fix a list B1, . . . , B� of globally
generated line bundles on X. For u := (u1, . . . , u�) ∈ Z�, set Bu := Bu1

1 ⊗ · · · ⊗ Bu�
� and let B be

the semigroup {Bu : u ∈ N�} ⊂ Pic(X). If e1, . . . ,e� is the standard basis for Z�, then Bej = Bj.
Let F be a coherent OX-module and let L be a line bundle on X. We say that F is L-regular

(with respect to B1, . . . , B�) provided that H i(X,F ⊗ L ⊗ B−u) = 0 for all i > 0 and all u ∈ N�

satisfying |u| := u1 + · · · + u� = i. When X = Pn, this definition specializes to Mumford’s version
of regularity (see [Mum66]) and as Mumford says, ‘this apparently silly definition reveals itself as
follows’.

Theorem 2.1. If the coherent sheaf F is L-regular, then for all u ∈ N�:

(1) F is (L⊗Bu)-regular;

(2) the map H0(X,F ⊗L⊗Bu)⊗H0(X,Bv) → H0(X,F ⊗L⊗Bu+v) is surjective for all v ∈ N�;

(3) F ⊗ L⊗Bu is globally generated provided that there exists w ∈ N� such that Bw is ample.

When X is a toric variety, this follows from results in [MS04, § 6]. Our approach imitates the
proofs of Theorem 2 in [Mum70] and Proposition II.1.1. in [Kle66].

Proof. By replacing F with F ⊗ L, we may assume that the coherent sheaf F is OX-regular.
We proceed by induction on dim(Supp(F )). The claim is trivial when dim(Supp(F )) � 0. As
each Bj is basepoint-free, we may choose a section sj ∈ H0(X,Bj) such that the induced map
F ⊗ B−ej → F is injective (see [Mum70, p. 43]). If Gj is the cokernel of this map, then we have
0 → F ⊗ B−ej → F → Gj → 0 and dim(Supp(Gj)) < dim(Supp(F )). From this short exact
sequence, we obtain the long exact sequence

→ H i(X,F ⊗B−u−ej) → H i(X,F ⊗B−u) → H i(X,Gj ⊗B−u) → H i+1(X,F ⊗B−u−ej) → .

By taking |u| = i, we deduce that Gj is OX-regular. The induction hypothesis implies that Gj is
(Bj)-regular. Setting u = −ej +u′ with |u′| = i, we see that F is (Bj)-regular and part (1) follows.

For part (2), consider the following commutative diagram.

H0(X,F ) ⊗H0(X,Bj) ��

��

H0(X,Gj) ⊗H0(X,Bj)

��
0 �� H0(X,F )

����������������
�� H0(X,F ⊗Bj) �� H0(X,Gj ⊗Bj)
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Since F is OX-regular, the map in the top row is surjective. The induction hypothesis guarantees
that the map in the right column is surjective. Thus, the Snake lemma (see, e.g., [Bou80, Proposi-
tion 1.2]) implies that the map in the middle column is also surjective. Therefore, part (2) follows
from the associativity of the tensor product and part (1).

Finally, consider the following commutative diagram.

H0(X,F ⊗Bu) ⊗H0(X,Bv) ⊗ OX

��

�� H0(X,F ⊗Bu+v) ⊗ OX

βu+v

��
H0(X,F ⊗Bu) ⊗Bv

βu⊗id �� F ⊗Bu+v

Applying part (2), we see that the map in the top row is surjective. By assumption, there is w ∈ N�

such that Bw is ample. If v := kw, then Serre’s vanishing theorem (see, e.g., [Laz04, Theorem 1.2.6])
implies that βu+v is surjective for k � 0. Hence, βu is also surjective which proves part (3).

We end this section with an elementary observation.

Lemma 2.2. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence of coherent OX-modules. If F
is L-regular, H0(X,F ⊗ L ⊗ B−ej) → H0(X,F ′′ ⊗ L ⊗ B−ej) is surjective for all 1 � j � �, and
F ′′ is (L⊗B−ej)-regular for all 1 � j � �, then F ′ is also L-regular.

Sketch of the Proof. Tensor the exact sequence 0 → F ′ → F → F ′′ → 0 with L⊗Bu and analyze
the associated long exact sequence. The argument is similar to the proof of Theorem 2.1(1).

3. Proof of the main theorem

The proof of Theorem 1.1 combines multigraded Castelnuovo–Mumford regularity with a cohomo-
logical criterion for (Np). Given a globally generated line bundle L on X, there is a natural surjective
map evL : H0(X,L) ⊗ OX → L and we set ML := Ker(evL). Hence, ML is a vector bundle on X
which sits in the short exact sequence

0 →ML → H0(X,L) ⊗ OX → L→ 0. (†)
It is well known that ML governs the syzygies of ϕL(X) in P(H0(X,L)∗). Specifically, L satisfies
(Np) if and only ifH1(X,

∧q ML⊗Lj) = 0 for q � p+1 and j � 1; see [GL88, Lemma 1.10] or [Laz89,
Proposition 1.3.3]. In characteristic zero,

∧k ML is a direct summand of M⊗k
L , so it suffices to show

that H1(X,M⊗q
L ⊗ Lj) = 0 for q � p+ 1 and j � 1 in our situation.

Proof of Theorem 1.1. Set L := Bmp and let ML be the vector bundle in (†). We first prove, by
induction on q, that M⊗q

L is (Bmq)-regular for all q � 1. Since Bm1 is OX-regular, Theorem 2.1(2)
implies that H0(X,Bm1+u) ⊗ H0(X,Bv) → H0(X,Bm1+u+v) is surjective for all u,v ∈ N�. In
particular, the maps H0(X,L)⊗H0(X,Bm1−ej ) → H0(X,L⊗Bm1−ej ) for 1 � j � � are surjective
because Bm1 ∈ ⋂�

j=1(Bj ⊗ B). Combining Theorem 2.1(1) and Lemma 2.2, we see that ML is

(Bm1)-regular. For q > 1, tensor the sequence (†) with M
⊗(q−1)
L to obtain the exact sequence

0 → M⊗q
L → H0(X,L) ⊗ M

⊗(q−1)
L → M

⊗(q−1)
L ⊗ L → 0. The induction hypothesis states that

M
⊗(q−1)
L is (Bmq−1)-regular. Since Bwq ⊗ B−1

j ∈ B for all 1 � j � �, Theorem 2.1(2) shows

that H0(X,M⊗(q−1)
L ⊗ Bmq−ej) ⊗ H0(X,L) → H0(X,M⊗(q−1)

L ⊗ L ⊗ Bmq−ej ) is surjective for
1 � j � �. Again by Theorem 2.1(1) and Lemma 2.2, M q

L is (Bmq)-regular.

As observed above, it suffices to prove that H1(X,M⊗q
L ⊗ Lj) = 0 for q � p + 1 and j � 1.

Since M⊗q
L is (Bmq)-regular, Theorem 2.1(1) implies that M⊗q

L is (Bmp)-regular for 1 � q � p;

1502



Syzygies, multigraded regularity and toric varieties

as OX is (Bm1)-regular, Theorem 2.1(1) also implies that OX is (Bmp)-regular. It follows that
H1(X,M⊗q

L ⊗ Lj) = 0 for q � p and j � 1. Moreover, Theorem 2.1(2) shows that

H0(X,L) ⊗H0(X,M⊗p
L ⊗ Lj) → H0(X,M⊗p

L ⊗ Lj+1)

is surjective and the exact sequence 0 →M
⊗(p+1)
L ⊗Lj → H0(X,L)⊗M⊗p

L ⊗Lj →M⊗p
L ⊗Lj+1 → 0

implies that H1(X,M⊗(p+1)
L ⊗ Lj) = 0 for j � 1.

4. Applications to toric varieties

In this section, we apply the main theorem to line bundles on an n-dimensional projective toric
variety X. Consider a globally generated line bundle L on X and its associated lattice polytope
PL. Let r(L) be the number of integer roots of the Hilbert polynomial hL(d) = χ(Ld). Since the
higher cohomology of Ld vanishes and the lattice points in the polytope dPL = PLd form a basis for
H0(X,Ld), it follows that hL(d) is equal to the Ehrhart polynomial of PL. In other words, hL(d) is
the number of lattice points in dP . If r(PL) is the largest integer such that r(PL)PL does not contain
any interior lattice points, then Ehrhart reciprocity (see, e.g., [Sta97, Corollary 4.6.28]) implies that
the integer roots of hL(d) are {−1, . . . ,−r(PL)} and r(PL) = r(L).

Lemma 4.1. If L is a globally generated line bundle on a toric variety X and r(L) is the number of
integer roots of its Hilbert polynomial hL, then Ldeg(hL)−r(L) is OX-regular with respect to L.

Proof. We must establish thatH i(X,Ldeg(hL)−r(L)−i) = 0 for all i > 0. If deg(hL)−r(L)−i � 0, this
follows from the vanishing of the higher cohomology of globally generated line bundles on a complete
toric variety; see [Ful93, § 3.5]. When deg(hL) − r(L) − i < 0, we follow the proof of Theorem 2.5
in [BB96]. Let X ′ be the toric variety corresponding to the normal fan to PL. There is a canonical
toric map ψ : X → X ′ and an ample line bundle A on X ′ such that H i(X,Lr) ∼= H i(X ′, Ar) for
all r ∈ Z. A toric version of the Kodaira vanishing theorem establishes that Hj(X,L−u) = 0
for u > 0 and j �= deg(hL) = dimPL = dimX ′ (combine Serre duality from [Ful93, § 4.4]
with [Mus02, Theorem 3.4]). In particular, we have H i(X,Ldeg(hL)−r(L)−i) = 0 for i �= deg(hL).
When i = deg(hL), we also have 0 = hL(−r(L)) = χ(L−r(L)) = (−1)i dimH i(X,Ldeg(hL)−r(L)−i).

Proof of Corollary 1.3. In light of Lemma 4.1, the claim is the special case of Theorem 1.1 with
� = 1, B1 = L, w1 = max{deg(hL) − r(L), 1} and wi = 1 for i > 1.

Proof of Corollary 1.2. The case p = 0 is in [EW91]; for p � 1, it follows from Corollary 1.3.

The following well-known examples illustrate that Corollary 1.3 is sharp in some cases.

Example 4.2. Let L be the ample line bundle on the toric variety X corresponding to the polytope
conv{(1, 0), (0, 1), (1, 1), (2, 2)} ⊂ R2. The homogeneous ideal of X in P3 = P(H0(X,L)∗) is gener-
ated by the cubic x3

2 − x0x1x3 which implies that L does not satisfy (N1). Calculations in [GS06]
show that L2 satisfies (N3) but not (N4).

Example 4.3. Let e1, . . . ,en be the standard basis of Rn and let L be the ample line bundle on
the toric variety X corresponding to P = conv{0,e1, . . . ,en−1,e1 + · · · + en−1 + (n − 1)en} ⊂ Rn.
Since X is n-dimensional and singular, the morphism X → Pn = P(H0(X,L)∗) is obviously not an
embedding. The natural map S → R is not surjective and (n− 2)P is not normal because (1, . . . , 1)
lies in 2(n− 2)P but cannot be written as an integral combination of two lattice points in (n− 2)P .
For n = 3, calculations in [GS06] show that L2 satisfies (N1) but not (N2).
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Proof of Corollary 1.4. Given a lattice polytope P , let X be the corresponding toric variety and L
the associated ample line bundle on X. Since P is normal if and only if L satisfies (N0), the result
follows from Corollary 1.3 and the fact that r(P ) = r(L).

Proof of Corollary 1.5. Let πi : X → Pni be the ith projection and set Bi := π∗i (OPni (1)). If I :=
{i ∈ {1, . . . , �} : di �= 0}, then OX(d1, . . . , d�) ∼=

⊗
i∈I B

di
i . Let d := min{di − 1 : i ∈ I} and let B be

the semigroup generated by {Bi : i ∈ I}. Proposition 6.10 in [MS04] proves that OX is OX-regular
with respect to B1, . . . , B�. Thus, Theorem 2.1 shows that

⊗
i∈I B

di−d
i is OX-regular with respect

to {Bi : i ∈ I} and lies in
⋂

i∈I(Bi ⊗ B). Since
⊗

i∈I Bi ∈
⋂

j∈I(Bj ⊗ B), Theorem 1.1 applies with
w1 = (d1 − d, . . . , d� − d) and wj = (1, . . . , 1) for j � 2.

Now assume that B1, . . . , B� are the minimal generators of Nef(X). To apply our techniques to
adjoint bundles, we need to find u with KX ⊗Bu ∈ B = Nef(X). Inspired by Fujita’s conjectures,
Corollary 0.2 in [Fuj03] provides the following necessary criterion: Let X be a projective toric variety
(not isomorphic to Pn) such that the canonical divisor KX is Q-Cartier. If D is a Q-Cartier divisor
such that D · C � n for all torus invariant curves C, then KX +D is nef.

Proof of Corollary 1.6. IfX = Pn, then KX = OX(−n−1); Corollary 1.3 proves thatKX⊗Bmn+1+p

satisfies (Np). For general X, Theorem 3.4 in [Mus02] shows that KX ⊗Bmn+1 is OX-regular with
respect to B1, . . . , B�. For any torus invariant curve C, there is a Bi such that Bi · C > 0. Since
Bmn = Bn

i ⊗B′ where B′ is globally generated, Corollary 0.2 in [Fuj03] implies that KX⊗Bmn ∈ B.
It follows that KX ⊗Bmn+1 ∈ ⋂�

j=1(Bj ⊗ B) and Theorem 1.1 proves the claim.

The singular cubic surface in Example 4.2 also demonstrates that Corollary 1.6 can be sharp;
see [GP99] for more examples of this type.

Example 4.4. Let (X,L) be the normal cubic surface and ample line bundle defined in Example 4.2.
It follows that K−1

X = L and L is the minimal generator of Nef(X). Example 4.2 shows that
KX ⊗ L2 = L does not satisfy (N1). Hence, Corollary 1.6 provides the smallest m ∈ N (namely
m = 3) such that KX ⊗ Lm satisfies (N1).

For toric surfaces, it follows from [Sch04] that all of our corollaries are not optimal for p � 2.
Specifically, given an ample line bundle L � OP2(1) on a Gorenstein toric surface X, KX ⊗ Lm

satisfies N3(m−2) for m � 2 and m �= 4, and KX ⊗ L4 satisfies N5.
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