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Abstract

We study the minimal free resolution of the Veronese modules, S, 41 =
@i>0k+id, where S = Klz1,...,zy], by giving a formula for the Betti
numbers in terms of the reduced homology of some skeleton of a sim-
plicial complex. We prove that S, 4 is Cohen-Macaulay if and only
if £ < d, and that its minimal resolution is pure and has some lin-
earity features when k > d(n — 1) —n. We prove combinatorially
that the resolution of Sy 4 is pure. We show that HS(Sy, 4x;2) =

1 dnfl zk:+n71
(n—1)!dzn=1 | 1—2d

Betti diagrams of the Veronese rings K|z, y, 2] @, for d = 4,5, and
K[z, y, z,u]®).

]. As an application, we calculate the complete

Given a graded ring S = @;0S;, the Veronese subring S@ is defined as
®i>05iq and the Veronese modules S,, 4, which are modules over the Veronese
SllbI‘iIlg, are @i205k+id-

In this paper, we set S = K[z1, ..., z,], where K is a field, and we deal with
the syzygies of the Veronese modules. Since S@ can be presented as R/I,
where R is a polynomial ring and [ a binomial ideal, in the following, we will
consider S, 45 as an R-module (see Section 1).

There has been a lot of effort already to find the graded Betti numbers of
the Veronese ring S¥. The problem can be really hard, namely, in [10], Ein
and Lazarsfeld showed that for d > 0 the graded Betti numbers 3; ;(S@) # 0
for many j if ¢ is large: in particular, they proved that, for d > 0 there exist
l1, 15 such that 8,,., # 0 for all p in the range [;d9™! < p < (d:”) — lod™ 1.

It is known (see references in [17]) that §; = f; (i41)a, for all @ > 0, in
the cases n = 2 or (d,n) = (2,3). Instead, when d = 2 and n > 3, we have
that the equality holds for ¢ < 5. In addition, for d = 2, all Betti numbers
have been determined. In case n,d > 3, Ottaviani and Paoletti (in [17])
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also proved that 8; # f3; (i41)q, for all i > 3d — 3, and conjectured that the
equality holds for ¢ < 3d — 3. They proved their conjecture for n = 3 and
(d,n) = (3,4). Bruns, Conca and Rémer, in [4], provided another proof for
n=.3.

Moreover, in [12], Goto and Watanabe proved that the Veronese module
Sh.ak is Cohen-Macaulay when k < d, and that the canonical module of S ()
is given by the Veronese module S, 44—n (these results can also be found in
[5, Section 3]).

Furthermore, in [1], Aramova, Barcanescu and Herzog proved that the
resolution of S, 45 as S@-module is linear.

In [8], Campillo and Marijuéan showed a way to compute the Betti num-
bers of numerical semigroup rings in terms of homology of a certain simplicial
complex. Later, in order to calculate the Betti numbers of affine semigroup
rings, Bruns and Herzog, in [6], reintroduced Campillo and Marijuén’s sim-
plicial complex, calling it squarefree divisor complez, A, (see Section 1). In
particular, they gave a formula for 3; ;(S (@) in terms of the dimension of the
reduced homology of A.. Recently, in [18], Paul gave another description
of the graded Betti numbers of semigroup rings (actually he worked in a
more general environment) in terms of the reduced homology of a simplicial
complex, I'¢, called pile sitmplicial complex.

In this paper, we concentrate on the syzygies of S, 4. We will use com-
binatorial methods, and precisely we will relate the Betti numbers of the
Veronese modules to the simplicial complex introduced by Paul. We would
like to point out that some of these results may be as well obtained using
alternative approaches and using methods, like the Koszul cohomology. We
are pursuing the combinatorial approach, due to the simple proofs that it
leads us to. It is worth to mention a few papers that deal with syzygies of
commutative rings using similar simplicial complexes: for instance, Vu, in
[22], uses squarefree divisor complexes for proving the Koszul property of the
pinched Veronese varieties; similiar approaches can also be found in [7] and
[20], in relation with toric ideals, and in [16] and [19] in relation, respectively,
with chessboard complexes and with N-solutions to linear equations.

The key result of the paper generalizes Paul’s and Bruns-Herzog’s formu-
las to the Veronese modules.

Theorem 3.1. Let S = @;>05; and Spar = Pi>05%+id- If ¢ is a vector in



Z" such that |c| = k + jd, then
Bie(Snan) = dimg H;_y (TY 1K),

where TY™Y s the (j — 1)-skeleton of I'c. Moreover, ;c(Snaxr) = 0 when
lc| # k+ jd, for all j.

Using this tool, in Theorem 3.4, we show that the Betti numbers of S, 4
can be non-zero only in degrees k + id for ¢ < n; we also characterize when
these modules are Cohen-Macaulay.

Theorem 3.5. The Veronese module S, 4 is Cohen-Macaulay if and only
if k < d. Moreover if S, a1 ts not Cohen-Macaulay, then it has maximal

projective dimension, that is (d+zfl) —1.

Later, in Theorem 3.7, we prove that if & > d(n — 1) — n, then the
resolution of the Veronese module S, 4 is pure (and actually 5; = 5; k1id)-

We also find a general way to compute the rational form of the Hilbert
series of the Veronese modules. Indeed we prove that:

Theorem 2.1. d%HS(Sn,d,k; 2) =nHS(Sni1.dk-1; %)

Hence,

1 n—1 k+n—1
HS(Sdeﬁ;Z) = d |:Z :|

(n—1Dldzn=1 |1 — 24

This allows us to write a closed formula for HS(S, 4x;2) for n < 3 (see
equations (3) and (4)) and, by differentiating, one could get the Hilbert
series for larger n.

Moreover, in Section 4 we give an alternative proof to the following the-
orem about the Betti table for Sy 4, for k < d.

Theorem 4.1. If k < d, the Veronese module Ss 41 has pure resolution and
the Betti table is:

| 0 L ...k k+1 k+2 ... d—1
Eolk+1 k() .. () o 0 ... 0
k+1] 0 0 ... 0 (1) 2L .. (@=1-k)()

Namely, Bi(S2,ax) = Bijkvia(S2.ax) = (k+1—1) ((j) fori <k, and B;(S2.4x) =
Bikt(i4+1)d(S2,a%) = (1 — k) (ifl) fori > k.
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This result can be obtained as a consequence of Corollary (3.a.6) in [14].

Finally, for k£ > 0, we prove the linearity of the first step of the minimal
resolution of S, 4% (see Corollary 3.14).

The first section provides a summary of results about the Veronese rings
and the definition of Veronese modules. In the second section we concentrate
on their Hilbert series. Later, in Section 3, we prove our theoretical result
on the Betti numbers of the Veronese modules, we characterize the cases in
which they are Cohen-Macaulay, and we give a sufficient condition for the
linearity of their minimal graded free resolution. In Section 4, we deal with
the case n = 2, describing the Betti diagrams of 53 4. Finally, in Section 5,
we calculate the Betti tables of S540, S350 and Sy3.

1 Preliminaries

In this section, we recall the definition of Veronese subring and Veronese
modules. We give also a short summary of some of the results, known in
literature, that relate these with the squarefree divisor complex, given by
Campillo and Marijudn in [8] and by Bruns and Herzog in [6], and with the
pile simplicial complez, given by Paul in [18].

Definition 1.1. Let A be the set {(a1,az,...,a,) € N*| Y°"  a; =d}. The
Veronese subring of S is the algebra S'Y = K[x?| a € A.

A presentation of S is given by

oKy, ...,uyn] — Klzg,..., 2,
Yy > XM

with a; being the i-th element of A with respect to the lexicographic order,

and N = (d+2_1) being the cardinality of A. From now on, we will use the

notation R for K[yi,...,yn], and S for K[zy,...,z,]. Thus, S@ = kgdf

Let us consider the affine numerical semigroup H C N” generated by the

set A.

Definition 1.2. Given an element h € H, we define the squarefree divisor
complex to be the simplicial complex

Ah - {{ai17 s aik} g Al Xail+.n+aik divides Xh} .



The following result was proved by Bruns and Herzog (see [6, Proposition
1.1]) in a more general setting, here we are only stating the version for the
Veronese subrings.

Theorem 1.3. Leti € Z and h € H, then
ﬁz,h(s(d)) = dimg H;_;(Ap, K).
Let us define the partial ordering in Z" as a < b if and only if b—a € N".

Definition 1.4. The pile simplicial complex of A is
I.={F CA| Zagc}.
acF
This simplicial complex is equal to the squarefree divisor complex, when c

belongs to the semigroup generated by A.

In [18, Theorem 1], Paul first proved a duality formula (proved previously in
9]), namely: . .
Hi*l(FcaK) = Hanfifl(FéaKy/a (1>

where t =) _,aand ¢ =t —c — 1. Then, in [18, Theorem 7|, he applied
the isomorphism above to obtain the following result.

Theorem 1.5. Let i € Z and c € Z™, then
57;,.:(5(6[)) = dim I:IN—n—i—l(Féa K)

From now on, given a vector ¢ = (¢q,...,¢,) in Z", |c| = c1+co+---+¢,
denotes the total degree of c.

Definition 1.6. Let n,d, k € N, the Veronese modules, S,, 4, are defined as
Sn.dk = Pi>0Sk+id-

By the Auslander-Buchsbaum formula (see [5, 15]), we have that
pdim(S,, 4.x) + depth(S,, 4x) = depth(R)

and depth(R) = dim(R) = emb(S@). Moreover ¥, is always a non zero-
divisor with respect to S, 4% and so

1 < depth(S,.ax) < dim(S, qx) =n
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and then

In particular S, 4 is Cohen-Macaulay if and only if it has depth n, i.e. pro-
jective dimension N — n.

In the following sections, we are going to state that some resolutions are
linear even if they are not according to the standard definition (see [21]).

Definition 1.7. Let A be a polynomial ring, I a graded ideal in A, and let
T = A/I. Consider the minimal free resolution of T by free A-modules:

0— @iﬁilA(_dpi) — @ZﬁélA(—dh) —A—->T— O7

the ideal I has a pure resolution if there are dy, ..., d,, with d; < d; 11, such
that dli = d17 . ;dpi = dp fO’/’ all 1.

We recall the definition of linearity of the resolution of a module, as given
by Eisenbud and Goto in [11].

Definition 1.8. Let M be a finitely generated graded S-module. The module
M has p-linear resolution, over the polynomial ring S, if its minimal free
graded resolution has the form:

o S(—p =) == S(—p— 1) = S(—p) - M — 0.

Definition 1.9. The module S, 4 has a pseudo-linear resolution if its mini-
mal free resolution is pure and, in addition, B; = B k+iqa for all i.

Remark 1.10. Throughout the paper, we are letting the generators of Sy 4
have degree k and the generators of S'Y have degree d. If instead we choose
0 for the degree of generators of the module S, 45 and 1 for the degree of the
generators of S, we would have that the resolution is pseudo-linear when
Bi(Snak) = Bii(Snak). In the last case, the definition of pseudo-linearity
coincides with the definition of linearity, given in [11], in fact Sy ax would
have a 0-linear resolution.

Finally, let us recall a result by Goto and Watanabe on the canonical
module of Veronese ring.

Theorem 1.11 (Corollary 3.1.3 in [12]). The canonical module of S'@ is
Sn,d,d—n-



2 The Hilbert series of the Veronese modules

Let us fix some notation. We denote by HS(M;z) the Hilbert series of
the module M. The Hilbert series of S, 45 as an R-module is equal to
h(z)/(1 — 2)¥, where in the numerator we have the polynomial P(z) =
> i (1) iy

In the literature, there has been some work trying to find an explicit
formula for the Hilbert series and Hilbert polynomial of the Veronese rings.
Recently, Brenti and Welker showed (see [3, Theorem 1.1]) that the Hilbert
series of Sy, 4, is

Y, Cld—1,n,id) 2"

N (1 —zd)n 7

where C(d—1,n,id) = #{a € N" : |a] = id,a; < d—1 for any j}. One could

compute the polynomial P(z) by multiplying the numerator by (1 — z%)N—".
One observes that h(z) = > i, N;z"" where a = LWJ and, using

Remark 3.2 in [2] one knows that if k < d

Ni:Z;(_l)S(JZ) <N—1+Nd<_¢1—s)+k>_

In one variable it is easy to see that the Hilbert Series of S} 4 is

HS(Sh.a0;2)

Zk

HS(SLC“Q;Z) = 11— Zd‘

(2)

We want to find a direct formula for the Hilbert series of .S, 45 and we use
the following property.

Theorem 2.1. dL‘iHS(Smd,k; 2) =nHS(Snt1.dk-1;%)-

Proof. By definition of S,, 4 the Hilbert series is

HS(Sy s 2) = Z (k +id+ (n — 1)) kerid

, n—1
>0
Let us consider the first derivative

iHS(Sn,d,k; z) = Z (k +id+(n - 1)) (k 4 di)2~rid=t

dz : n—1
>0



k+id71’ ie.

_ k+id+n—1)! .
)(k—irdz) = ((n—l)!(k—kid))!(k—i_Zd)
(k+id+n—1)!
")k +id — 1)!
an—1y+m+4v

n

and we analyze the coefficient of z
(k +id+ (n—1)

n—1

As a consequence, we get a direct expression:

Corollary 2.2. The Hilbert series of the Veronese modules is
1 dn—l Zk+n—1

(n—1)!dznt {1 - zd]

21 one finds HS(Snak; 2)-

1—24

HS(Sdeﬁ; Z) =

Therefore, by differentiating

Using the computer program Maple,
(1/(n-1) D *diff(z" (k+n-1)/(1-z"d) ,z$ (n-1));

one could compute the Hilbert series up to n = 95 in 0.970 second. (We are
using a Dell OptiPlex 790 with Intel Core i7-2600 (3.40GHz, 8MB)
and 16 GB memory, Ubuntu 12.04.4 LTS 64-bit). In the paper, though,
we are going to deal only with the cases n = 2,3, since, already for n = 4,
the formulas of the Hilbert series and of the polynomial P(z) are quite long
and not elegant.

Let us write down the general formula for HS(S5 4x; z) and HS(S5 4.x; 2):
Pl+k+(d—Fk—1)29

HS(Syak;2) = e N
and
K
HS(S34;2) = (];:J i)i’;);i— 2)

SN2k + Dk +2) +d(2k +3 + d)]

+ 2(1 — 24)3 (4)
Ak + 1) (k +2) —d(2k +3 — d)]

" 2(1 — zd)3



Therefore one could compute the polynomials P(z). Namely, the polynomial
P(z) of Sy 4k is

d
P — -1 i+l k 1 k+zd.
=i+ )()-
Moreover, the polynomial P(z) of S3 4 is

L ) R )

)

where a = (k+1)(k+2), b= d(2k+3+d), c = d(2k+3—d) and N = (*}?).
We are going to use these polynomials to compute the Betti numbers of
the Veronese module in the next sections.

3 The Betti table of the Veronese modules

This section contains our main theorem, which gives the connection between
the syzygies of the Veronese modules and the pile simplicial complex.

Theorem 3.1. If ¢ is a vector in Z™ such that |c| = k + jd, then
Bie(Snax) = dimg H;_(TY 1K),

where Féj_n is the (j — 1)-skeleton of I'c. Moreover, B;c(Snar) = 0 when
lc| # k + jd, for all j.

Proof. In order to compute the Betti numbers of M = S, 4%, we need to
consider the homology of K, the Koszul complex of M. The i-th module in the
Koszul complex is denoted with K; and it is equal to A'M = ©&Mej, A---Aej,,
so its non zero graded components lie in degrees (k +id, k + (i + 1)d,---).
Given a multidegree ¢ such that |c| # k + jd, for all j, one notices that
dim(K;). =0, i.e. B (M) =0, for all 7.

Now, let us take ¢ with |c| = k + jd, for some k € N, we aim to prove that:

(Ki)e = Ciy (DY, K),

where C“Z-_l(rff"”) is the (i —1)-th chain group. We notice that dim(K;). # 0

if and only if i < j; similarly, by the definition of skeleton, dim(C;_; (" g _1>)) =+
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0 if and only if ¢+ < j. This implies that f; j4+;q4(M) = 0, for all ¢ > j.

Let us consider the case ¢ < j, and let 0 # me;, A--- Aej, € (K;)e, where
m = xP with b € N*. This means that b + j; + --- + j; = ¢, which implies
that j; + -+ + j; < ¢, in each component, i.e. {ji,...,J;} € I'c, moreover
{j1,-..,Ji} is also a face of the (j — 1)-skeleton, because we were suppos-
ing that ¢ < j. Therefore, it is enough to consider the isomorphism that
sends mej, A--- Aej, to the face {j1,...,;}. Then, it is easy to see that the
differentials in the two complexes are defined in the same way. O

Remark 3.2. When k < d, we have that H;(TY ™", K) = H;(Te, K), for all
c with |c| =k + jd.

Example 3.3. We are going to show that B210(S234) # 0. Here, k =4 >
d = 3 and we show that B (37)(S234) = 1 by computing the first reduced

homology of Féé?n. In Figure 1 we show I'37) and its 1-skeleton.
(3,0) (2,1) (3,0) (2,1)
(0,3) (0,3)
(1,2) (1,2)
1

Figure 1: On the left side: the complexes I'(3 7). On the right side: its 1-skeleton FE3>7>.

As we remarked in the previous proof the Betti number ;. = 0 if |c| #
k + jd for all 5. So, in the rest of the paper, we will consider the following
more compact version of the Betti table.

0 (N —n) (N—n+1) (N 1)
k Bo,k <o BNonk+(N-n)d BN-n41,k+(N—nt1l)d - BN-1kr(N-1)d
k+1 Bo,k-+d oo BNomkt(N—nt1)d BN-ntlkt(N—ntiil)d --- BN—-1,k+Nd
k+i Bo,k-+id <o BNonk+(N—nti)d BN-nt1k+(N—ntlti)d -+ BN-1k+(N—1+i)d
E+n—1] Bok+n-1)a -+ BN-nk+(N-1)d BN—n+1,k+Nd oo BN—1k4(N4n—2)d

Remark 3.4. As a direct consequence of Theorem 3.1 and of equation (1),
one can show that the compact Betti diagram of S, ar has at most n rows.
(This gives a bound on the reqularity.) This can be also obtained by means
of Koszul cohomology.
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It is known that S, 40 is Cohen-Macaulay (see [18, Proposition 9]) and it is
possible to study the projective dimension of \S,, 4 via local cohomology tech-
niques (see Chapter 3 in [5]). Let us characterize the Cohen-Macaulayness
of the Veronese modules S, 4, using our combinatorial approach.

Theorem 3.5. The Veronese module S, 41 is Cohen-Macaulay if and only
if k < d. Moreover if S, a1 ts not Cohen-Macaulay, then it has maximal
projective dimension, pdim S, 4, = N — 1.

Proof. We know that N —n < pdim S,, 4 < N — 1. We are going to show
that if £ < d then pdim S,, 4, = N —n and if £ > d then pdim S,, 4, = N — 1.

Let k < d. We want to prove that Sy_pt1 k+(N—n+1+id = 0 for all i. For
simplicity let « = (N —n+1+1) and |c| = k+ da. We note that dimT'. < «
and thus T2 " = I',. Using Theorem 3.1, we know that

ﬁN7n+1,c(Sn,d,k) = dlmK IiIN,n(FéNin+i> 3 K) = dlmK I:Ian(Fca K) (5)
Applying (1), we get
BN-n+1,c(Snax) = dimg Hy_(Te, K) = dimg H_»(Te, K) = 0.

Now we prove that if & > d then pdim S, 4, = N — 1. To prove our
statement, it is enough to show that Sy_1 kr(v—1)a(Sn,4k) 7 0. Since

BN -1+ (N=1)d(Sn,ak) = Z dimg Hy_o(T 2 K),
|c|=k+(N—-1)d

it is sufficient to prove that for some ¢, dimg ﬂN_Q(F §N72>, K) # 0.

Let |c| = k + (N — 1)d and assume for simplicity that |c| is a multiple
of n. Consider the case ¢ = (w, . W) Then Féme is the
boundary of an N — 1 dimensional simplex. Indeed, we denote by F; the

face of cardinality N — 1 over the N vertices with a; = (iy,...,%,) missing:
deg Fy = (W04 g D44y Ginee A= > (V-bd > (N-1)d — 1

F; e FéN_2> for any 1.
If |c| is not a multiple of n, write |c| = mn + s and prove (in a similar

way) that Féf*\f—% is the boundary of an N — 1 dimensional simplex with
c*:m1+(31,...,sn)andzjsj:s,ogsjgl. O
Remark 3.6. The equalities in (5) hold for all i > 1 also for k > d. This
follows from the fact that fori > 0 it is always true that IjIN_n(FéN_n+i>, K) =
ﬁN_n(Fc,K). Instead, for i = 0, I'c could not be the same of TN This
implies that, for k > d, B; k+ia(Snak) #0 fori=0,...,N —n+1.
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3.1 Pseudo-Linearity of 5, 4

By studying the dimension of the pile simplicial complex one also obtains
a sufficient condition for the pseudo-linearity of the resolution. Namely, as
a straightforward application of Theorem 3.1 and of Paul’s duality formula,
we can prove the following statement. Also in this case, though, Koszul
cohomology can also be used to show such result.

Proposition 3.7. If k > d(n — 1) — n, then the Veronese module S, 4 has
a pseudo-linear resolution.

Example 3.8. For S; 35 we have that k = d(n—1)—n and using Macaulay2
[13] for calculating the Betti numbers one can see that the resolution is not
even pure.

Remark 3.9. Ifk > d—1, then the Veronese module Sy 4 has pseudo-linear
resolution. Moreover, by the knowledge of the Hilbert series (see Section 2)
and using the fact that the resolution is pure, we have that

Biktid(S2.ax) =i — (kK + 1) (f)

Similiarly, when k > 2d — 2, then the Veronese module Ss 45 has pseudo-
linear resolution. In this case the Betti numbers are

Binia(Ss.ax) = '% (a (N z_ 3) — (b — 2a) (7:13) +(a—c) (]j__;))

where a, b, ¢ have been defined in Section 2.

Y

Using the Eagon-Northcott resolution, it is well known that K[z, 3](¥) has
a linear resolution. We provide another proof for this fact:

Corollary 3.10. The resolution of the Veronese subring K[z, y]? is linear.

Proof. Since K|z, y](d) is Cohen-Macaulay, it is enough to show that Si_1 (441)a-
By using (1), ﬁd—l,(d—f—l)d = dlmK Hd_g(FC,K) = dlIIl]K ﬁ_l(Fé,K) = O, since
lc| = —2. O

In general, we are able to say that the resolution of S, 4 is always pseudo-
linear in the first step. In particular this is true for the canonical module of
S@. The Betti number £y;(M) of a graded module M gives the number of
generators of M in degree i. Thus Bo(Sn.ax) = Bok(Sndak) = (’”Zﬁl).

In the following, we will prove that £1(Sn.ax) = B14+d(Sn.dk)-
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Definition 3.11. Given two vectors v,w € N", we say that v is obtained
from w with an elementary move if v = w + (e; — e;), where e; denotes the
standard vector in N™.

Proposition 3.12. The pile simplicial complezes T'c are connected for |c| =
k+id fori>1, k#0.

Proof. We remark that T'Y is the set of vertices of the pile simplicial complex.
Given two vertices in v,w € Y one gets w from v by a finite number of
elementary moves and this implies that the graph of elementary moves on
I’ém is connected.
Therefore, it is enough to prove if v, w € Y such that v = w + (ej —e),
then there exists u € T such that {v,u} and {w,u} are edges of I',.

For simplicity, set i =2, j =l and [ = 2, ie. v =w+ (1,-1,0,...,0).
Such u should respect the following inequalities:

u+v; < ¢, 1 <1< n.

but v; = wy; + 1 and so the sufficient constrains are

u +w < cq,
wF+w; < ¢, 2<t<n.

Let us choose u; = ¢; —w;, 2 <i<n,and u; =d — Zg u;: note that u; =
¢y —k—id+d—wy, 80 uj+wy =c;+d(2—1i)—k < ¢q, when k # 0 and i > 2.
This choice does not work in case u; < 0, that is d+-wa++ - -+w, < o+ +cp.
In this circumstance, we set u; = 0, u; = min{d — Z;;ll u;,¢; — w;} and

Uy = d— Z;:ll u;, and this vector u satisfies the inequalities above. Namely,

it can happen that u; = ¢; —w;, for 2 <j <4, and u; =d —uy — -+ — u;_y,
then in this case u; 1 = -+ = u, = 0, and the inequalities are satisfied. The
other case is when u; = ¢; —w; for2<j<n—-1land u, =d—u; —--- —uy,,
then v, +w, =d+wy +---4+w, —cg — -+ —c,_1 < ¢,, and the other
inequalities are also trivially satisfied. O]

Corollary 3.13. Ifk > 0, then By k+a(Sn.ax) # 0 and that By gria(Sn.ax) =0,
for all i > 1.

Proof. The statement follows using Theorem 3.1 and from the previous propo-
sition applied to B kria(Sn.dk)- O
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Corollary 3.14. For k # 0, the first step of the resolution of S, 4 is pseudo-
linear, and the first three entries of the Betti table, By, B1k+da and B2 kt24,
can be then determined with the Hilbert series.

The previous result can be derived using Koszul cohomology. Nevertheless,
this combinatorial proof shows how the topological properties of the pile sim-
plicial complex can imply trivially algebraic features of the Veronese modules.

4 The resolution of Sy 4}

Let us consider the Veronese modules Sy 4. By Theorem 3.5 these modules
are Cohen-Macaulay if and only if £ < d. In this section, we are going to
give a full description of their Betti diagram using the methods introduced
in the previous sections.

It is important to remark that this result can be also obtained as a con-
sequence of Corollary 3.a.6 and Theorem 1.b.4. in [14], by means of Koszul
cohomology.

Theorem 4.1. If k < d, the Veronese module Ss 41 has pure resolution and
the Betti table is:

| 0 1 ...k k41 k+2 ... d—1
kolk+1 k() ... () o0 0 ... 0
E+1) 0 0 ... 0 (%) 2G%) .. d=1-k)(

Namely, B;(Sa.ax) = Biktria(S2ax) = (k+1—14)(9) fori <k, and B;(Saax) =
Bi k(4 1)d(S2,4%) = (1 — k) (ifl) fori > k.

For a given f-dimensional simplicial complex A, we denote by A(7) the
i-th pure skeleton of A, for 0 < i < f.

Lemma 4.2. Let |c| = |(c1,¢2)| =k + (k+1)d and ¢; < ¢p. If dim T = k,
then ag = (0,d) is a vertex of I'¢(k).

Proof. We observe that if £ > d — 1, then the statement is trivially true. So
let us assume that k¥ < d — 1.

We denote by a; = (i,d —i). Since dimI'. = k, then there exists a
k-dimensional face (facet)

F= {aj()’aj17 s 7ajk}7
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where jo < j1 < -+ < Jg. If jo =0, then ay € F and this implies ag € T'¢(k).
Let us assume that ag ¢ F. Since F' € I'¢(k), then

Jot i+t = o —m, (6)
(k+1)d— o+ +-+jx) = ca—my, (7)

for some m; € N such that m; +my = k.

We are going to show that there exists a facet G € I'c(k) with m; = 0
(and so ms = k). To do that we increase as much as possible ji, jr_1, etc
(notice that jr < d, jr—1 < d—1and ji_; < d—1). This is possible in all the

cases where
k

> (d—1) = ju > K, (8)
1=0
because m; can be at most k.
The condition ¢; < ¢y, implies equation (8). Indeed, if Zfzo(d—l)—jk_l =
k, then

Rk + 1
o = %+1M—~iétl—k+nm
k(k + 1
cg = k+%+m2.

Imposing ¢; < ¢, one gets d < k + 1, against the initial assumption.
Let G = {ag,,a,,,...,a4}. If go <k, then we consider

H = (G\{ag}) U{ao}

and this facet belongs to I'¢(k).

If go > k, we produce a facet L = {a;, : 0 <i < k} with [p <k, m; =0
and mo = k. To do that we decrease the value of gy by one and we add one
to gk, if gx is not maximal, or to gp_1, if gx_1 is not maximal, etc. We repeat
this procedure until gy < k.

To show that this method always work, note that gy — k is at most d — k.

We need that .

> (d=1)—jey>d—k (9)

=0

Again, with similar computation, the condition ¢; < c¢o, implies equation
(9). m
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Proof of Theorem 4.1. From the Hilbert series, we know that By xyk+1)a —
Brt1k+(k4+1)d = 0. We are going:uo prove that Byi1pr@k+1a = 0, where
Bttt (k+1)d = D)=t (ot 1)a Dimx Hig(L'e, K).

If for some ¢, dim(I'c) < k, then the k-th reduced homology is 0. In
the other cases, we can use the fact that Hy(I'¢, K) = Hy(I¢(k),K). Let us
denote by Ay, the k-th pure skeleton I'c(k).

By Lemma 4.2, we know that ag € Ag.

The idea of the proof is to decompose A, into the union of two subcomplexes
and then relate their reduced homology with the one of Ayj. Namely,

Agp=CUD,

with C = {F € Ayy| dim(F) =kandag € F}and D = {F € Ayy| dim(F) =
k and ag ¢ F'}.

We will prove by induction on k£ and d that the k-th reduced homology of
Agy is zero. To do this, by Mayer-Vietoris long exact sequence, it is enough
to prove that both D and C' have zero k-th reduced homology and that their
intersection has zero (k — 1)-reduced homology. The bases of this double
induction are k = 0, and d = 1: when k = 0, Sy 4, is the Veronese ring, and
the assertion is trivial; for d = 1, since k < d this implies the case k = 0.
Now let us consider k and d, with & < d, and let us assume that I:Ik(Ang, K) =
0 for all ¥/ < k and d' < d.

The complex C is always a cone over ag, thus H;(C,K) = 0, for all j.

The simplicial complex D has zero k-th reduced homology by induction on
d. A facet {a;,,...,a; } contained in D satisfies the inequalities:

cl—kSio—l—---—i—ikScl.

Moreover, since ag ¢ D, 7; > 1, for all j. Thus, we may consider b;, =
A, — (1,0) = (ZO — ].,d-’io),.‘.,bik = a;, — (1,0) = (lk — ]_,d—lk), and we
get that {a;,,...,a; } € D if and only if {b,,,...,b;, } belongs to the simpli-
cial complex I'c_ (11,0 (on vertex set {(0,d—1),(1,d—2),...,(d—1,0)})(i.e.
lc— (k+1,0)| = k+ (k+1)(d — 1)). Thus H,(D,K) = 0 by induction on d.

Now, let us prove that the (k — 1)-th reduced homology of C'N D is zero.
First of all, notice that dim(C' N D) < k — 1. If dim(S N D) < k — 1, then
we are done. Thus we assume that dim(C N D) = k — 1. Let us consider a
facet F' = {a;,,...,a;,} € CND. Since F' € D, there exists j # 0 such that
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FU{a;} € D, thus F satisfies the inequality:
1+t <c — 1

On the other hand, F' € C, so FU{ap}, thus ¢; — k < iy + -+ ig.

Thus if we consider (¢; — 1,¢co — d) we have that S N D is isomorphic to
Liei—1,0-a)(k — 1), with [(c; — 1,¢c, — d)| = k — 1 4 kd. Thus, by induction
on k, H,_1(C N D,K) 0. O

5 Applications in three and four variables

In this section we calculate the Betti tables of the Veronese rings, S3.40, S350
and Sy 30, using the knowledge of the Hilbert series and the regularity (see
Remark 3.4). By duality, these give also the Betti tables of their canonical
modules, 5541, S352 and Sy 3.

The number of rows of the Betti tables for these Veronese rings and modules
is three. By using Macaulay2, we are able to compute the first row of the
Betti table of S341, S352 and Sy39. Finally, by knowing the polynomials
P(z) of S540, S350 and Sy 30, we derive all their Betti numbers. The results
obtained support the conjecture that the resolution of the Veronese ring is
linear until homological degree 3d — 3 (see [10, 17]).

The Betti table of S540. The first row of the Betti table of S5 4 is:

0o 1 2
total: 3 24 55
1: 3

.24

~NOoO O WwWN

. 55
We compute the polynomial P(z) of S 40:
h(z) =1—T752* +536 2° — 1947 2* + 4488 2° — 7095 2° + 7920 2"+

—6237 2% + 3344 2° — 1089 2'° + 120 2" + 55212 — 24 213 4 3 214,

Hence the compact Betti table of S 4 is:
0 1 2 3 4 5 6 7 8 9 10 11 12
1

. 75 536 1947 4488 7095 7920 6237 3344 1089 120
55 24 3

N = O
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The Betti table of S35,. The first row of the Betti table of S5 4, in the
compact form, is:

0 1 2 3 4 5 6
2: 6 90 595 2160 4200 2002

The polynomial P(z) of S350 using the formula in Section 2 is:

h(z) =1 — 16522 + 183023 — 10710z% 4 416162° — 1173002 + 25092027+
— 417690 28 + 548080 z° — 568854 210 + 464100 2 — 291720 212 + 134640 213+
— 39780 2% + 2856 21° + 3825 216 — 2160 217 + 595 218 — 90 212 + 6 220.

The following is the compact Betti table of S35 .

1 2 ... 12 13 14 15 16 17 18
0: 1 . . . . . . .
1: . 165 1830 ... 134640 39780 4858 375 . R
2: 2002 4200 2160 595 90 6

The Betti table of Sy30. First of all, since Sy 30 is Cohen-Macaulay, we
prove that 16193 = 0. Indeed, using (1),

616,57 = Z dlm ]:115(Fc) = Z dlm lfl_l(Fc) = O
le|=57 le|=-1

These implies that the compact form of the Betti table has only three rows.
In this case, we compute the polynomial P(z) of Sy30 by differentiating
#*/(1-2%) (see Corollary 2.2) and by multiplying the numerator by (1 — 23)1:

h(z) =1 —126 22 4+ 1200 2% — 5940 z* 4 19152 2° — 43680 2% + 73008 z7 — 90090 z® + 80080 z°+
— 46332 2'0 + 9360 2! + 12012 2'2 — 15120 2! + 9360 2% — 3696 21° + 945 216 — 144217 + 10218,

The first line of the compact Betti diagram of Sy 3 is:

0 1 2 3 4 5 6 7 8 9 10
1: 10 144 945 3696 9360 15120 14003 5400 1650 220

Finally the Betti numbers of Sy 3 are:

0 1 ... 6 7 8 9 10 11 12 13 14 15 16
0: 1 e . . . . . .
1: . 126 ... 73008 90090 80300 47982 14760 1991 . . . .
2: 220 1650 5400 14003 15120 9360 3696 945 144 10
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In principle, the procedure could be extended to other cases, S3 40 with d > 6
(since the regularity is still 2), or even to cases, like Sy 40 with d > 4, where
the regularity is 3: these last cases could be obtained by calculating the first
row of the Betti diagram of the Veronese ring, the first row of the Betti di-
agram of its canonical module, and, by the knowledge of the Hilbert series,
one could get the second row of the Betti table of the Veronese ring. Un-
fortunately, with our computers (see Section 2 for more details about our
equipment), we were not able to go any further in computations.
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