
SZZ Revisited: Verifying When Changes Induce Fixes

Chadd Williams
Pacific University
2043 College Way

Forest Grove, OR 97116
chadd@pacificu.edu

Jaime Spacco
Colgate University

13 Oak Dr
Hamilton, NY, 13346

jspacco@mail.colgate.edu

ABSTRACT
Automatically identifying commits that induce fixes is an
important task, as it enables researchers to quickly and effi-
ciently validate many types of software engineering analyses,
such as software metrics or models for predicting faulty com-
ponents. Previous work on SZZ, an algorithm designed by
Sliwerski et al and improved upon by Kim et al, provides a
process for automatically identifying the fix-inducing prede-
cessor lines to lines that are changed in a bug-fixing commit.
However, as of yet no one has verified that the fix-inducing
lines identified by SZZ are in fact responsible for introducing
the fixed bug. Also, the SZZ algorithm relies on annotation
graphs, which are imprecise in the face of large blocks of
modified code, for back-tracking through previous revisions
to the fix-inducing change.

In this work we outline several improvements to the SZZ
algorithm: First, we replace annotation graphs with line-
number maps that track unique source lines as they change
over the lifetime of the software; and second, we use DiffJ,
a Java syntax-aware diff tool, to ignore comments and for-
matting changes in the source. Finally, we begin verifying
how often a fix-inducing change identified by SZZ is the true
source of a bug.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

1. INTRODUCTION
Automatically identifying commits that induce fixes is an

important task, as it enables researchers to quickly and effi-
ciently validate many types of software engineering analyses.
Previous work on SZZ, an algorithm designed by Sliwerski
et al [4] and improved upon by Kim et al [2], provides a
process for automatically identifying the fix-inducing prede-
cessor lines to lines that are changed in a bug-fixing commit.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEFECTS’08, July 20, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-051-7/08/07 ...$5.00.

SZZ is currently the best available algorithm for automat-
ically identifying fix-inducing commits. The goal of the SZZ
algorithm is first to identify the lines modified in a bug-
fixing commit, and then to identify the fix-inducing change
immediately prior to each line of the bug-fixing commit. A
major remaining open question regarding the SZZ algorithm
is whether the lines identified as fix-inducing by SZZ are ac-
tually the source of defects. It’s possible that we need to
trace the ancestry of the identified lines farther back to find
the true source of bugs, or that the source of bugs are lines
changed in other revisions that are control-dependent on the
lines SZZ identifies as fix-inducing. Whatever the case, an
empirical assessment of the accuracy of the SZZ algorithm
will help improve the state of the art.

This paper makes three contributions.

• SZZ uses annotation graphs, which are imprecise at
tracking lines across large hunks of modified lines, [6]
to trace lines back through previous revisions of files.
We use a line-number mapping approach described by
Williams and Spacco in [5] (which is in turn based
on work by Canfora et al [1]) to track unique lines
as they evolve across multiple revisions. The added
precision of line-number maps will help for cases where
annotation graphs are unable to identify the true fix-
inducing line.

• SZZ employs several heuristics to disregard certain types
of cosmetic changes, such as changes to whitespace,
indentation, comments, and some changes that split
and merge source lines. However, it is not clear that
their techniques can ignore all cosmetic changes in gen-
eral, and they are unable to identify changes that are
clearly not cosmetic but have no effect on the out-
come of the program, such as import statements in
Java or the re-naming of method parameters. We ap-
ply DiffJ[3], a Java syntax-aware diff tool, to ignore
all non-executable modifications, such as changes to
whitespace or comments, as well as to identify other
semantic-preserving changes, such as modifications to
import statements as well as re-ordering of method
parameters.

• Finally, we begin the arduous process of verifying which
lines identified by SZZ are true fix-inducing lines and
which are false positives, and report on our results.

32

Figure 1: Annotation graph for a large modification.
Note that the ancestry of each line in R2 could be
any line in R1.

2. FIX INDUCING CHANGES
Fix inducing changes, edits that are later changed during a

bug fix, are found using a slight variant of the SZZ algorithm
outlined in [4]. The SZZ algorithm first identifies bug fixing
commits and the source lines changed in those commits. Fix
inducing commits are commits previous to a bug fix commit
that modify the same lines as the bug fixing commit.

2.1 SZZ Algorithm
The SZZ algorithm identifies commits that fix bugs by

matching bug numbers listed in commit messages with bugs
in the bug database that have been marked as FIXED. The
SZZ algorithm specifies regular expressions for identifing
probable bug numbers in commit messages and for iden-
tifying keywords that are likely to indicate a bug fix has
occurred. Each commit that contains a probable bug num-
ber is given a score to reflect how likely the commit actually
is to contain a bug fix. There are a number of analyses
that are applied that can raise this score. Once such anal-
ysis uses the name of the committer and the name of the
person who has been assigned the bug in the bug database.
If these names match, the score for the commit is raised.
The bug database we used for Eclipse did not contain the
names of the committers so we skipped this analysis when
determining which commits were likely to contain bug fixes.

To identify fix inducing commits, the original implementa-
tion of SZZ used the CVS annotate command to determine
where a line changed in a bug fix commit was previously
changed. Rather than use CVS annotate, we use the line
mapping algorithm described by Williams and Spacco [5] to
trace a changed line back through the revision history to the
point of its previous change. Revisions to this line mapping
algorithm are described in the following section.

The original implementation of SZZ was done against the
Eclipse and Mozilla projects. This raises concerns that the
regular expressions used to identify bug numbers and key-
words in commit messages may be tuned to a particular set
of developers. In this work we study the Eclipse project, so
any concerns of this nature, while valid in general, should
not affect this work.

3. LINE MAPPING ALGORITHM
The primary advantage of line number maps over anno-

tation graphs is that annotation graphs cannot track indi-
vidual lines across large modifications. For example, in Fig-
ure 1, lines 1-4 are all changed betwen revision R1 and R2.
An annotation graph representation is unable to determine
the precise ancestry of each line and therefore must conser-

Figure 2: Line Number Map for a large modifica-
tion. We are able to match each line in R2 with the
corresponding line in R1 that is most likely to be
its ancestor, allowing us to trace lines beyond large
modifications.

Figure 3: Normally, only lines 1 and 4 would match
(as they are below the 0.4 normalized edit distance
threshold). We can improve the line-mapping re-
sults by allowing lines 2 and 3 to match because
they are bookended by matching lines.

vatively assume that any line in R1 could have spawned any
other line in R2. Figure 2 demonstrates how, if the edit
distance betwen lines is not too large, line number maps
could reconstruct the correspondances between these lines
and therefore track the sources of changes farther back into
the past. This enables us to peer beyond large modifications
to find additional fix-inducing commits.

We used the line mapping algorithm described by Williams
and Spacco [5], with slight modifications, to trace the his-
tory of a particular line of code across multiple revisions of
the file to determine when fix inducing changes happened.

As in the original algorithm, the mapping was done on
a per method and per class basis. The DiffJ tool used to
generate syntactic diffs is also used by the line mapper to
identify renamed methods and classes. The normalized Lev-
enstein edit distance was used to compare lines in adjacent
revisions as in Figure 4. These values were used to weight
edges in a bipartite graph connecting the lines in the two
revision. A minimum weight bipartite matching is found to
determine the best matching between the two version of the
code. Pairs of lines in this graph with a normalized edit dis-
tance of less than or equal to 0.4 were deemed to be the same
line (the value 0.4 was found experimentally and agrees with
[1]). These lines are said to be a valid mapping.

3.1 Improvements to the Line Mapping Algo-
rithm

This approach works well when the total change to a line
between revisions is small, relative to the total size of the
line. Large edits to a line prevent a valid mapping to be
made where one should be (false negative). To map these

33

Figure 4: Lines 1-4 of R1 are matches with 1-4 or
R2 based on the normalized edit distance between
the lines. Lines y and z are new lines added in R2.

heavily edited lines, their neighbors are consulted. For each
highly edited line its immediate neighbors above and be-
low are insptected. If the neighbors have a valid mapping
(weight <= 0.4), and the line’s connection to the next re-
vision does not cross another connection, the line is marked
as a probable mapping. If either neighbor does not exist, i.e.
the unmapped line is the first or last line in a method, but
the other neighbor has a valid mapping, then line is marked
as a possible mapping. For the work outlined in this paper,
only lines marked Valid or Probable were considered to have
successfully matched.

3.2 Generalization
There are many cases where a hunk of lines are highly

edited and do not produce a valid mapping using the weight
<= 0.4 rule. Clearly, in this case the immediate neigbhors
will not have a valid mapping. We generalize the above
modification to not just look at the immediate neighbors
but rather to start with the immediate neighbors and move
further out line by line until either a valid mapping is found
or a line is found whose connection participates in a crossing.
In the latter case the mapping fails and the line under con-
sideration is left as an invalid mapping. If a valid mapping
is found above and below the line under consideration with
not intervening crossings, the line is marked as a probable
mapping. The possible mapping works in likewise manner.

4. IDENTIFYING CHANGE TYPES
We see 23,322 changes to a source line that are fix in-

ducing instances. The break down of change types in the
fix inducing commit are shown in Table 3. The changes
that have a change type of NULL indicate lines that have
changed in the file but for which we were unable to find a
corresponding diffj change type due to minor inconsistencies
in how our line number mapping algorithm and DiffJ match
source lines across files. In general, our line number map-
ping algorithm does a better job matching lines and DiffJ
overmatches. For example, in Figure 5 a change is shown
where a large number of lines are changed around a single
line that remains unchanged. In the change that creates re-
vision 24897, lines 651 and 653-656 are removed. DiffJ lists
the changes as codeRemoved 648-652 and code removed 653-
656. No distinction is made for line 652 (or line 655 which is
equivalent). DiffJ markes this entire range as a removal of
code. Our line mapping algorithm correclty maps line 646
in revision 24897 to line 652 in revision 24863. Line 645 in
revision 24897 is mapped to line 647 in the previous revision.

By inspecting the DiffJ change types of each line we can
remove cosmetic changes that cannot be part of a bug fix,

Table 1: Breaking across multiple lines
int x = foo() + bar(3);

int x =

foo() +

bar(3);

Table 2: Change Types in Bug Fix Lines
Count Change Type

55827 methodAdded
29606 codeChanged
25103 codeAdded
21892 methodRemoved
12638 codeRemoved
6600 importAdded
3936 importRemoved
3802 innerClassAdded
2732 fieldAdded
2488 innerClassRemoved
1143 typeDeclarationAdded
1067 NULL
1044 fieldRemoved
687 parameterAdded
520 constructorAdded
445 codeChanged
431 accessChanged
244 returnTypeChanged
235 parameterTypeChanged
233 throwsAdded

Table 3: Change Types in Fix Inducing Lines
Count Change Type

9203 methodAdded
6633 codeChanged
4388 codeAdded
696 typeDeclarationAdded
611 innerClassAdded
463 fieldAdded
423 importAdded
292 NULL
196 parameterAdded
81 returnTypeChanged
67 accessChanged
57 constructorAdded
50 throwsAdded
38 parameterTypeChanged
29 variableChanged
24 importSectionAdded
23 parameterNameChanged
13 parameterReordered
12 methodBlockAdded
8 accessAdded

34

Figure 5: Code Removal
/trunk/org.eclipse.jdt.debug.ui/ui/org/eclipse/jdt/internal/debug/ui/JDIModelPresentation.java

revision 24863
647 } else {

648 descriptor = new JDIImageDescriptor(JavaDebugImages.DESC_OBJS_SCOPED_BREAKPOINT, flags);

649 }

650 } else {

651 if (exception.getFilters().length == 0) {

652 descriptor = new JDIImageDescriptor(JavaDebugImages.DESC_OBJS_ERROR, flags);

653 } else {

654 //currently do not have scoped icon

655 descriptor = new JDIImageDescriptor(JavaDebugImages.DESC_OBJS_ERROR, flags);

656 }

657
658 }

revision 24897
645 } else {

646 descriptor = new JDIImageDescriptor(JavaDebugImages.DESC_OBJS_ERROR, flags);

647 }

Table 4: Change Types in Fix Inducing Lines,
Deleted Lines in Bug Fixes

Change Type Count

codeChanged 1043
codeAdded 695
methodAdded 608
fieldAdded 120
importAdded 110
NULL 71
typeDeclarationAdded 36
innerClassAdded 35
parameterAdded 32
returnTypeChanged 20
throwsAdded 15
accessChanged 14
parameterTypeChanged 11
variableChanged 11
constructorAdded 8
parameterNameChanged 5
accessAdded 5
innerInterfaceAdded 2
importSectionAdded 2
methodBlockAdded 2

thus reducing both the number of lines of the commit that
need to be inspected, as well as reducing the number of
outliers thrown out by the modified SZZ algorithm. In par-
ticular, the change types parameterReordered and parame-
terNameChanged are highly unlikely to actually be part of
the bug fix. Additionally, formatting changes are already ig-
nored by the DiffJ tool. These include whitespace and com-
ment changes as well as breaking a single statement across
multiple lines as shown in Table 1.

The break down of change types in the bug fix commits
are shown in Table 2. Only the first 20 most common DiffJ
change types are shown. Again, by inspecting the change
types various lines can be disregarded as bug inducing. The
change types that can be ignored are similar to those listed
above.

We see 15,003 unique lines that are deleted in bug fix
commits that map back to a line in a fix inducing commit.
This set of changes is interesting because it is the last change
to a line before it is deleted to fix a bug. The break down
of change types in the fix inducing commits are shown in
Table 4.

5. MANUAL VERIFICATION
Kim et al [2] describe the results of manually inspecting

the commits marked as bug fix commits to confirm that
SZZ was finding the correct commits. We did this as well
with a small sample of commits. Additionally we inspected
the fix-inducing changes that were identified to determine
if they contained changes that induced the later fix. We
randomly selected 25 bug fix commits mined from the first
37,000 commits applied to the trunk of the Eclipse project.
These 25 commits contained a total of 50 changed lines that
were mapped back to a fix-inducing commit.

As expected, 43 of the 50 lines changed in the bug fix
commits appear to actually fix a bug. This result is not sur-
prising in light of the previous manual verfication discussed
above. We also inspected the changes that were marked
as fix inducing. Of the 43 lines that are likely bug fixes,
33 of the associated fix inducing lines contained a change
that lead to the bug being fixed. Four of the false positive

35

fix inducing lines already contained the bug when the com-
mit was made. The rest of the false positives stem from
DiffJ not quite producing an accurate set of change and the
source lines being lost by the line mapper. In instances of
the former, DiffJ occasionally does not produce accurate line
number information around large changes in the file. For the
line mapper to lose a line, a few things can occur. The line
can change radically from one revision to the next, a similar
line can be added near the line, or a large number of lines
can be added before the line. These are all weaknesses we
need to study further.

6. THREATS TO VALIDITY
We have not fully validated our line number mapping

algorithm by measuring its precision and recall. Anecdo-
tally, we have seen that revisions that add a large number
of lines around existing lines can cause the algorithm prob-
lems. Specifically, it is possible that some of the added lines
will match to existing lines and cause the true descendents
of those exisiting lines to be marked as new. Since we are
only looking at small changes in this work, the line mapping
for the revisions we are inspecting are unlikely to exhibit
this problem. However, it is possible that previously in the
history of the inspected line a large addition of lines has
introduced this error, thus confusing the history of the line.

7. RELATED WORK
The original SZZ algorithm was defined in [4] and mod-

ified in [2]. In the second paper, a number of needs are
detailed to provide improvements to the original SZZ algo-
rithm. The first is the need to track individual source lines
across revisions. Included with this is the need to identify
function renaming. The second is the fact that not all mod-
ifications are fixes. Some changes are cosmetic changes such
as comment or formatting changes or variable name renam-
ing. To deal with the latter issue changes caused by com-
ments, blank lines, and format changes are ignored. The
former issue is dealt with by using annotation graphs [6].
Annotation graphs map lines from one version to the next
using results return by GNU diff. The weakness in this ap-
proach is that large changes are not mapped between the
two revisions of the file. A large change is defined in terms
of the percent of the file affected by the change or the ra-
tio of the length of the left and right side of the change as
specified by diff. This is a potential weakness because the
ancestory of a line cannot be traced back through a large
change.

As discussed above, our line number mapping algorithm
shares characteristics with the algorithm described in [1].
Their algorithm starts with the output of CVS/SVN diff
which produces sets of lines that are added and deleted from
the previous revision to create the new revision. The intu-
ition is that parts of the hunks of adds and deletes actu-
ally represent modifications to the file. Similar hunks are
matched using a weighted vector of tokens extracted from
the hunk. Once similar hunks are identified, individual lines
within the pairs are mapped using the normalized Leven-
shtein edit distance. Our line mapping algorithm starts
by pairing methods across revisions and using a normalized
Levenshtein edit distance to weight the edges in a bipartite
graph mapping individual lines across versions. A minimum
weight bipartite matching is then found to map each line in

the previous reviions to a line in the new revision (if possi-
ble).

8. CONCLUSIONS
Automatically identifying fix inducing commits as well as

bug fixing commits is an important task as we try to under-
stand software by studying its revision history. In this paper
we have discussed our implementation of the SZZ algorithm.
Our implementation relies on our line number mapping al-
gorithm rather than annotation graphs to track source code
lines back through the revision history. We have shown how
with our algorithm more of the lines can be mapped to a
previous revision. The weakness of the annotation graphs
are large hunks of code that are heavily modified. In the fu-
ture, we may be able to combine the two methods to track
lines through the revision history. The annotation graphs
may be applied on a macro scale and use our line number
mapping algorithm on a micro scale to fine tune the results,
especially in large areas of heavily modified code.

Also we have used a Java-syntax aware diff tool to allow
us to ignore a large variety of formatting changes. These in-
clude white space changes, changes to comments, and break-
ing a statement across multiple lines. This also helps to
identify renamed methods to allow lines to be mapped back
through a method renaming. While the DiffJ tool is not as
accurate as we would like now, we are confident that it can
be improved in the future.

Finally, we have begun to verify the intuition that the
change previous to a bug fix introduces the bug. Our small
sample has so far shown positive results, 33 of 43 lines
mapped to a bug fix show evidence of the bug entering the
code in the previous change. Clearly the sample size is too
small to drawn conclusions from but we feel this does show
that this is worthy of further work. We expect the results
of this manual verification will provide guidance on how to
continue to refine this technique.

9. REFERENCES
[1] G. Canfora, L. Cerulo, and M. D. Penta. Identifying changed

source code lines from version repositories. In MSR ’07:
Proceedings of the Fourth International Workshop on
Mining Software Repositories, page 14, Washington, DC,
USA, 2007. IEEE Computer Society.

[2] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead.
Automatic identification of bug-introducing changes. In ASE
’06: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, pages
81–90, Washington, DC, USA, 2006. IEEE Computer
Society.

[3] J. Pace. A tool which compares java files based on content.
http://www.incava.org/projects/java/diffj, 2007.

[4] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? SIGSOFT Softw. Eng. Notes,
30(4):1–5, 2005.

[5] C. Williams and J. Spacco. Branching and merging in the
repository. In MSR ’08: Proceedings of the Fifth
International Workshop on Mining Software Repositories,
Leipzig, Germany, 2008.

[6] T. Zimmermann, S. Kim, A. Zeller, and
J. E. James Whitehead. Mining version archives for
co-changed lines. In MSR ’06: Proceedings of the 2006
international workshop on Mining software repositories,
pages 72–75, New York, NY, USA, 2006. ACM.

36

