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We describe the T ¼ 0 quantum phase transition in heavy-fermion systems as an orbital-selective Mott

transition (OSMT) using a cluster extension of dynamical mean-field theory. This transition is charac-

terized by the emergence of a new intermediate energy scale corresponding to the opening of a pseudogap

and the vanishing of the low-energy hybridization between light and heavy electrons. We identify the

fingerprint of Mott physics in heavy electron systems with the appearance of surfaces in momentum space

where the self-energy diverges and we derive experimental consequences of this scenario for photoemis-

sion, compressibility, optical conductivity, susceptibility, and specific heat.
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Heavy-fermion materials containing electrons in open

4f or 5f shells and in broad spd bands, continue to be a

subject of great interest in condensed matter physics [1].

The description of the antiferromagnetic-paramagnetic

transition in these systems is highly nontrivial, because,

in addition to the fluctuations of the magnetic order pa-

rameter, one has to take into account the changing charac-

ter, from itinerant to localized, of the f electrons [2,3].

Recent publications [4,5] have debated whether the quan-

tum phase transitions observed in heavy fermions can be

described as an orbital-selective Mott transition (OSMT),

i.e., a Mott transition taking place in the f orbitals with the

spd orbitals remaining itinerant. Some finite temperature

aspects of this phenomena are captured by single-site

dynamical mean-field theory (DMFT) [4,6,7], a method

that captures well the peculiar dynamics of the Mott tran-

sition assuming a purely local approximation. In

Refs. [5,8,9] however, the authors have shown by means

of slave boson techniques that going beyond the local

approximation is an essential ingredient to obtain an

OSMT at zero temperature.

In this Letter we overcome the spatial limitation of

DMFT by using one of its cluster extensions (the cellular

DMFT, CDMFT [10]), which takes into account short-

ranged correlation, and we demonstrate the existence of a

T ¼ 0 OSMT. In Ref. [11], we have fully characterized the

phase diagram of a heavy-fermion model across a quantum

critical phase transition, separating a strongly renormal-

ized Fermi liquid from an antiferromagnetic phase. Here,

by constraining the mean-field nonordered solution, we

focus on the qualitative evolution of the electronic struc-

ture. In this way, we isolate the physics that stems directly

from the localization of the f electrons from the physics of

the magnetic order that intervenes at low temperature in a

given material.

We show, in particular, that at the transition a new

energy scale emerges. In this energy range a pseudogap

opens in the f spectra and the hybridization between heavy

f and light spd electrons goes to zero, leading to a com-

plete decoupling of the two bands. Beyond this energy

range the f-spd hybridization remains finite. These phe-

nomena have a clear interpretation in terms of an OSMT,

revealed by the appearance of surfaces of diverging self-

energy in momentum space, fingerprint of a Mott mecha-

nism (Mottness [12]). In the conclusions, we derive a set of

experimental consequences relevant for the normal state of

real materials close to the quantum critical point at tem-

peratures above the ordered state.

We study the quantum phase transition driven by a

hybridizing parameter V in the periodic Anderson model,

which describes free spd electrons locally hybridized to

nondispersing strongly correlated f electrons. The

Hamiltonian is

H ¼
X

k

ð"k ��Þdy
k�dk� þ V

X

k

ðfy
k�dk� þ H:c:Þ

þ ðEf ��Þ
X

k

fy
k�fk� þU

X

i

fyi"fi"f
y
i#fi#; (1)

where dy
k� [fy

k�] creates an spd [f] electron with momen-

tum k and spin �. The conduction band dispersion is "k ¼

� 1
3 ðcoskx þ cosky þ coskzÞ, the other parameters U ¼

10,� ¼ 0:2 and Ef �� ¼ �5:7. The spd and f electrons

Green’s functions can be written in terms of the f electron

self-energy �:

G�ð!;kÞ ¼

�

!þ X�ðk; !Þ �
V2

!þ Y�ðk; !Þ

�

�1
; (2)

where � ¼ f, spd, Xfðk; !Þ ¼ �� Ef ��ðk; !Þ,

Yfðk; !Þ ¼ �� "k and Xspd ¼ Yf, Yspd ¼ Xf.

We implement CDMFT on a two-site cluster [11]. We

believe this is the minimal unit able to capture the physics

close to the transition point. The Hamiltonian in Eq. (1) is

mapped onto an effective two impurity Anderson model
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(2IAM) and solved self-consistently via the Lanczos

method [13], which introduces a finite energy resolution

on the Matsubara axis [14] !n ¼ ð2n� 1Þ�=�, with � ¼
100.

In order to physically interpret our results, we extract the

momentum dependent lattice self-energy �ðk; !Þ in Eq.

(2) from the cluster quantities, restoring the cubic lattice

symmetry. Various methods have been proposed in the

literature [14]. Close to the transition, where particles

tend to localize, it has been shown [15] that a suitable

quantity to adopt is the cluster cumulant M̂ð!Þ ¼ ½ð!þ

�� EfÞ1̂� �̂ð!Þ��1. In our case we have MðkÞ ¼ M0 þ
1
3M1ðcoskx þ cosky þ coskzÞ where M0 ¼ M11 ¼ M22

and M1 ¼ M12 ¼ M21, and �ðk; !Þ ¼ !þ�� Ef �

Mðk; !Þ�1. A stringent self-consistent test of this period-

ization can be obtained by recalculating the local f elec-

tron Green’s function
P

kGfðk; !Þ, via Eq. (2), and

confronting it with the cluster counterpart, direct output

of the CDMFT calculation. In Fig. 1 we show the low-

energy imaginary parts of the local f Green’s functions

(the density of states DOS). The good agreement between

the periodized f DOS and the cluster f DOS validates

our procedure. Moreover, we show the DOS for the spd
electrons and the effective hybridization ReGf�spd ¼
P

kReGf�spdð!;kÞ [6]. These quantities demonstrate

that, as a function of the tuning parameter V, the system

undergoes a phase transition. The numerical uncertainties

become greater near the transition, hence we cannot deter-

mine whether the transition is second order, as predicted in

a scaling theory [16] (in which case the best fit of the

pseudogap scaling with a power law gives an exponent

z�� 0:33), or first order as found in a recent Guzwiller

treatment [3]. For V > V� � 0:58 the system is in the

heavy-fermion phase where the f electrons present a

Kondo peak at the Fermi level ! ¼ 0 and take active

part in the conduction. The strong hybridization with the

spd electrons is evident in the suppression of the spd DOS

and in the nonzero value of the effective hybridization f�
spd close to ! ¼ 0. The intensity of the f peak reduces

approaching V�, while at the same time the spd spectral

weight enhances. For V < V� the system is in an orbital-

selective Mott state where the f electron spectrum has a

gap. The f electron spectral weight is not completely

transferred from low energy to the Hubbard bands (placed

around !��5) but rather to a new intermediate energy

scale, giving rise to a pseudogap. Within this pseudogap

the spd electrons recover the free band DOS and the

effective hybridization is zero. This shows that the spd
band at low energy is completely decoupled from the f
band, but the effective hybridization remains active at a

finite intermediate energy scale.

We can now display the quasiparticle bands along some

specific cuts in the !� k space. From Eq. (2), we notice

that Gf transforms into Gspd upon the exchange of Ef �

�ðk; !Þ with "k. The poles of the f and spd Green’s

function are therefore the same, provided the Im�k is

small as in Fermi liquid theory, and the same resolving

equation is obtained for either � ¼ f, spd:

!þ�� Ef � Re�ðk; !Þ ¼ V2=ð!þ�� "kÞ: (3)

The spectral-weight contribution to the electronic bands

coming from f and spd electrons are, however, very differ-

ent. In Fig. 2 we show the f (top row) and spd (bottom

row) spectral functions� 1
�
ImGf½spd�ðk; !Þ along the path

X ¼ ð�; 0; �Þ ! � ¼ ð0; 0; 0Þ ! � ¼ ð�;�;�Þ of mo-

mentum space, for varying hybridization-parameter V
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FIG. 1 (color online). The local density of states (DOS) as a

function of the hybridization V in a low-energy window around

the chemical potential (Hubbard bands are out of the picture at

!��5). Black continuous lines are the cluster f-electron DOS.
The red dashed (green dot-dashed) lines are the f½spd�-electron
DOS� 1

�

P

kGf½spd�ðk; !Þ. The bottom panels show the effective

hybridization
P

kReGf�spdð!;kÞ (blue continuous line).
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FIG. 2 (color online). Evolution across the transition point

(V� � 0:58) of the f- (top row) and spd- (bottom row) electron

spectral functions along the path X ¼ ð�; 0; �Þ ! � ¼
ð0; 0; 0Þ ! � ¼ ð�;�;�Þ in momentum space. The color scale

(bottom legend) is h ¼ 1:0½2:0� for f½spd� electrons.
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(from left to right). For V ¼ 0:67> V� the band crossing

the Fermi level has predominantly f character at low

energy and a strongly renormalized effective mass. In

approaching the transition point the f electron contribution

quickly reduces until disappearing completely from the

Fermi level for V � 0:58 ¼ V�. In addition, beyond the

transition the f band shifts to negative energies. In describ-

ing the localization of the f electrons therefore, the double

effect of suppression and translation of the f band has to be

taken into account. Our result is a prediction that can be

observed in photoemission experiments. At the same time,

in crossing the transition, the effective mass of the spd
electrons is reduced to the free value.

Recent studies [15] have shown that insights into quan-

tum phase transition phenomena can be attained by study-

ing not only the Fermi surface (i.e., poles of the Green’s

function), but also surfaces of zeroes in the Green’s func-

tions (i.e., poles of the self-energy). We first remark that in

our model there is always a Gf ¼ 0 surface in momentum

space, corresponding to the free conduction electron Fermi

surface FS0 (given by "k �� ¼ 0). Further surfaces of

zeroes ZS inGf can appear in k-space if there are k points

for which �ð ~k; 0Þ ! 1. In this case we observe that Gspd

reduces to the free conduction electron Green’s function

[Eq. (2)]. We show that this latter phenomenon indeed

takes place in approaching the transition point V�. In

Fig. 3 we present the Fermi Surface FS [determined by

! ! 0 in Eq. (3)], FS0 and ZS for different values of the

hybridizing coupling V across the transition point. For

convenience sake, only the lower half of the three-

dimensional Brillouin zone is shown. In the heavy-fermion

phase V ¼ 0:67>V�, only FS and FS0 are visible at ! ¼
0 and far apart in momentum space. In this case FS0 is not

relevant for the low-energy physics of the system. As soon

as V & V�, however, a small ZS appears around the point

k ¼ ð0; 0; 0Þ which pushes FS to collapse onto the free

FS0. Since at FS0 Gf ! 0, this effect originates the strong

suppression and disappearance of the f spectral weight at

the Fermi level (see Fig. 2). The appearance of ZS can be

already seen in the cluster quantities, which are displayed

in the V � i!n space in the bottom of Fig. 3. At V ¼ V� a

divergence takes place for !n ! 0 [11] in the even eigen-

value of the cluster self-energy �ev (left panel), which, via

the periodization procedure, corresponds to the lattice self-

energy at k ¼ ð0; 0; 0Þ. By further reducing V below V�,

ZS travels from k ¼ ð0; 0; 0Þ to k ¼ ð�;�;��Þ, where the
divergence appears in�odd for V ¼ 0:43 (right panel). The
position in k-space of the FS remains unchanged for V <
0:58, numerically overlapping with FS0. This indicates that

at the Fermi level Gf ¼ 0, i.e., the f electrons remain in a

Mott state, and Gspd reduces to the free Green’s function.

The appearance of a divergent self-energy proves that

Mottness is the physical mechanism governing the local-

ization of f-electrons. In an OSMT not all orbitals undergo

a localization. In the metallic phase all the orbitals partici-

pate in determining the Fermi volume, but, after the transi-

tion took place, some ‘‘selected’’ orbitals do not contribute

to the Luttinger counting anymore. Across this transition a

change in the compressibility of the system is expected as

localized orbitals become incompressible. This is observed

in the actinide series, where the Mott transition can be

driven, e.g., by pressure [17]. A Mott transition is also

characterized by a significant rearrangement of the elec-

tronic structure, since there is a transfer of spectral weight

from low to high energies. In our case the spectral weight is

not entirely transferred from the Fermi level to the

Hubbard bands, but to an intermediate energy scale giving

rise to a pseudogap. The resulting modifications of the

quasiparticle dispersion can be understood in terms of

divergence of the self-energy similarly, e.g., to the pseu-

dogap of cuprates (see Ref. [15]). Hence, in general, both a

Fermi volume change and a significant rearrangement of

the bands are expected when a material undergoes a Mott

transition. Experimentally this would be detected by jumps

in the Hall coefficient [18] and in the de Haas–van Alphen

frequencies [19]. Measuring the phonon dispersions as a

function of temperature is another powerful probe of the

orbitally selective Mott transition, as suggested in

Ref. [20]. Furthermore the analysis of the 2IAM under-

lying our self-consistent solution [11] suggests other ex-

perimental predictions. Close to the transition the particle-

hole symmetry breaking in the lattice model generates a

leading irrelevant operator which is forbidden in the sym-

FIG. 3 (color online). Evolution of the Fermi Surface (FS, red)

and the surface of diverging self-energy (ZS, blue) across the

transition point V�. An important role is played by the free

conduction electron Fermi Surface (FS0, green). The Mott

character of the transition is marked by the divergence of the

self-energy, detected by the cluster self-energy eigenvalues �ev

at V � 0:58 and �odd at V � 0:43, as shown in the V � i!n

space (bottom panel).
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metric case and that causes a logT divergence in the

specific heat coefficient at high temperature [21], together

with a logT divergence in the staggered spin susceptibility

and in the pairing susceptibility. On the other hand, the

formation of singlet correlations on the energy scale of the

pseudogap in the Mott-insulating phase implies a depres-

sion of the uniform spin susceptibility at low temperature

which has been observed, for example, in CeRhIn5 but not
in CeCoIn5 [22,23]. Since these effects originate from the

competition of Kondo screening and RKKY interaction,

we expect them to take place below a temperature compa-

rable to (the largest of) these two energy scales (roughly

10�3 the bandwidth, corresponding approximately to 10 K

in CeRh½Co�In5). This can be understood considering that

CeRhIn5, unlike CeCoIn5, is antiferromagnetic at zero

temperature and hence lies on the Mott selective side of

the transition. Optical conductivity (not shown) displays a

clear hybridization gap in the delocalized phase which is

absent in the phase where the f electrons are localized.

This is consistent with the experimental assignment of

CeRhIn5 to the localized side and CeCoIn5 to the itinerant

side of the transition [24].

To summarize, we have discussed the evolution of the

momentum resolved spectra of the periodic Anderson

model across the quantum phase transition, showing its

orbital-selective Mott character. We have described how

the electronic structure undergoes dramatic reconstruction:

at the transition the f spectral weight is completely sup-

pressed at the chemical potential and a new energy scale

emerges in the form of an f-electron pseudogap. Within

this latter energy range, the spd band reduces to the free

band. f and spd electrons become totally decoupled at

low-energy while retaining a finite hybridization at higher

energies. We have finally shown that the concept of a

surface of diverging self-energy is useful for the under-

standing of this phenomenon.

It is important to stress that the orbital-selective Mott

phase studied here is not a stable phase at T ¼ 0 because

the f electrons order magnetically as soon as they decouple

at low energy from the conduction band [11]. In our

calculations the magnetic ordering originates from an in-

stability of the orbital-selective Mott state and not from an

instability of the itinerant paramagnetic heavy-fermion

state. This supports the interpretation of the magnetic

transition as a byproduct of the OSMT (see also

Ref. [3]). Our CDMFT study improves previous DMFT

studies [4], where the local character of the theory forbids

the T ¼ 0 OSMT, and previous slave boson studies

[5,8,25,26], where a finite bandwidth in the f electrons

must be introduced in order to have an exchange mecha-

nism that is not killed by the vanishing of the effective

hybridization. In our case such a term is not needed,

because retaining the full frequency dependence of the

self-energy allows to have a vanishing effective hybridiza-

tion at the Fermi level, but at the same time an exchange

mechanism generated by the nonvanishing hybridization at

finite frequency.
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[1] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev.
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