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Abstract

Background: The T1 Mapping and Extracellular volume (ECV) Standardization (T1MES) program explored T1 mapping
quality assurance using a purpose-developed phantom with Food and Drug Administration (FDA) and Conformité
Européenne (CE) regulatory clearance. We report T1 measurement repeatability across centers describing sequence, magnet,
and vendor performance.

Methods: Phantoms batch-manufactured in August 2015 underwent 2 years of structural imaging, B0 and B1, and “reference”
slow T1 testing. Temperature dependency was evaluated by the United States National Institute of Standards and Technology
and by the German Physikalisch-Technische Bundesanstalt. Center-specific T1 mapping repeatability (maximum one scan per
week to minimum one per quarter year) was assessed over mean 358 (maximum 1161) days on 34 1.5 T and 22 3 T magnets
using multiple T1 mapping sequences. Image and temperature data were analyzed semi-automatically. Repeatability of serial
T1 was evaluated in terms of coefficient of variation (CoV), and linear mixed models were constructed to study the interplay of
some of the known sources of T1 variation.
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Results: Over 2 years, phantom gel integrity remained intact (no rips/tears), B0 and B1 homogenous, and
“reference” T1 stable compared to baseline (% change at 1.5 T, 1.95 ± 1.39%; 3 T, 2.22 ± 1.44%). Per degrees
Celsius, 1.5 T, T1 (MOLLI 5s(3s)3s) increased by 11.4 ms in long native blood tubes and decreased by 1.2 ms in
short post-contrast myocardium tubes. Agreement of estimated T1 times with “reference” T1 was similar across
Siemens and Philips CMR systems at both field strengths (adjusted R

2 ranges for both field strengths, 0.99–1.00).
Over 1 year, many 1.5 T and 3 T sequences/magnets were repeatable with mean CoVs < 1 and 2% respectively.
Repeatability was narrower for 1.5 T over 3 T. Within T1MES repeatability for native T1 was narrow for several
sequences, for example, at 1.5 T, Siemens MOLLI 5s(3s)3s prototype number 448B (mean CoV = 0.27%) and Philips
modified Look-Locker inversion recovery (MOLLI) 3s(3s)5s (CoV 0.54%), and at 3 T, Philips MOLLI 3b(3s)5b (CoV
0.33%) and Siemens shortened MOLLI (ShMOLLI) prototype 780C (CoV 0.69%). After adjusting for temperature
and field strength, it was found that the T1 mapping sequence and scanner software version (both P < 0.001 at
1.5 T and 3 T), and to a lesser extent the scanner model (P = 0.011, 1.5 T only), had the greatest influence on T1

across multiple centers.

Conclusion: The T1MES CE/FDA approved phantom is a robust quality assurance device. In a multi-center setting, T1
mapping had performance differences between field strengths, sequences, scanner software versions, and manufacturers.
However, several specific combinations of field strength, sequence, and scanner are highly repeatable, and thus, have
potential to provide standardized assessment of T1 times for clinical use, although temperature correction is required for
native T1 tubes at least.

Keywords: T1 mapping, Standardization, Calibration, Phantom, Repeatability, Extracellular volume

Introduction
T1 mapping aids clinicians in the assessment and diagno-

sis of myocardial disease. However, measurement needs to

be stable over time with transferable values. Knowledge of

normal reference ranges would benefit from not requiring

local healthy subject scanning, and the pooling of multi-

scanner datasets would have advantages such as increasing

available sample sizes for the detection of subtle effects or

subgroup analysis and increasing result robustness and

generalizability, lowering the chance of unforeseen bias

when compared to single-center data [1]. Combining re-

sults however introduces sequence, magnet, and field

strength bias [2]. The field of T1 mapping would therefore

benefit from a “T1 standard” to enable cross-center T1

mapping data pooling and delivery [3]—like the inter-

national normalized ratio (INR) which makes it possible

to adjust the dosing of vitamin K antagonists regardless of

which laboratory has performed the test [4].

The T1 Mapping and Extracellular volume (ECV)

Standardization (T1MES) phantom program was estab-

lished to explore T1 mapping quality assurance at 1.5 T and

3 T and understand the feasibility of delivering a “T1 stand-

ard” [5]. The first step toward the goal was development

and mass-production of a phantom [5] and its European

Union Conformité Européenne (CE) and United States

Food and Drug Administration (FDA) regulatory clearance.

In September 2015, cardiovascular magnetic resonance

(CMR) centers worldwide joined the T1MES consortium

and committed to submit a minimum of 12months of

center-specific T1 mapping data. Data submitted have now

been analyzed to explore phantom performance.

We report phantom data at 1 and 2 years using various

T1 mapping sequences, temperature sensitivity, and in-

clude platform performance, although we emphasize that

comparison of different T1 methods and systems was

not the main aim, rather investigating long-term stability

towards the “T1 standard”. This involved modeling some

of the potential sources of the T1 variation longitudinally

and between T1MES centers to identify the most influ-

ential factors.

Methods
The development and description of the T1MES phan-

tom (Fig. 1) has been previously reported [5]. Briefly, the

T1MES phantom was designed to be field-strength spe-

cific (i.e., separate 1.5 T and 3 T models). Each phantom

contains four tubes representing human native blood/

myocardial T1 and T2 values (i.e., pre-gadolinium-based

contrast agent [GBCA] values) and five tubes represent-

ing human post-GBCA blood/myocardial values. While

the main aim of the present study was the collection and

analysis of the multi-center data (see the “Methods part

2—Multi-center phantom testing” section), some other

tests were applied to a small number of the phantoms

during the 2 years to explore the utility of T1MES as a

quality assurance device, and these tests are described

here first (“Methods part 1—Evaluation of the phan-

tom”). Imaging biomarker terms used follow the recom-

mendations of the Quantitative Imaging Biomarkers

Alliance (QIBA) of the Radiological Society of North

America (RSNA) [6].
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Methods part 1—Evaluation of the phantom

Structural integrity

Gel integrity and aging were checked at each submission

time point for participating sites through the manual in-

spection of localizers that formed part of the minimum

dataset requirement for participation. In addition, a high-

resolution, isotropic, three-dimensional (3D) gradient echo

sequence (0.42mm3) was run on four phantoms (three 1.5

T phantoms; one 3 T phantom) at baseline (October 2015)

and at 2 years post manufacturing in each case using a 3 T

MAGNETOM Skyra (Siemens Healthineers, Erlangen,

Germany; software syngo MR D13C). The sequence ac-

quired two overlapping slabs (due to scanner software con-

straints), each with two directions of phase encoding, a

slow repetition time (repetition time, TR = 17ms), and nar-

row sampling bandwidth (250Hz/pixel) for better signal-

to-noise ratio (SNR). This sequence had weak T1 and T2

image contrast and was only for structural examination.

“Reference” rT1 and rT2 data

Baseline (October 2015) “reference” T1 and T2 values (rT1,

rT2) were acquired at the Royal Brompton Hospital CMR

Unit using basic single-slice TR = 10 s inversion recovery

spin echo (IRSE, 8 inversion times [TI] from 25 to 3200

ms) and single-slice repetition time (TR) = 10 s SE (8 echo

times [TE] from 10 to 640ms) [5] respectively. These se-

quences were identically repeated at 2 years on the same

three 1.5 T phantoms and on the same three 3 T phantoms

sampled from the production batch. The identifying serial

numbers of the three 1.5 T phantoms were 15E031,

15E033, and 15E034, and these phantoms were scanned on

a 1.5 T MAGNETOM Avanto [Siemens Healthineers; soft-

ware syngo MR B17A]. The three 3 T phantoms were

30E001, 30E017, and 30E018, and they were scanned on a

3 T MAGNETOM Skyra [Siemens Healthineers; software

syngo MR D13C].

Separate rT1 and rT2 data were acquired on the

same 3 T phantom (30E021) at the German National

Metrology Institute, Physikalisch-Technische Bunde-

sanstalt (PTB) over a period of 1041 days (64 scans)

commencing September 2015 (3 T MAGNETOM

Verio (Siemens Healthineers; software syngo MR

B17A). Sequences used for rT1 and rT2 were respect-

ively basic single-slice TR = 8000 ms IRSE (IRSE, 7 TI

from 25 to 4800 ms) and single-slice TR = 3000 ms SE

(5 TE from 24 to 400 ms).

Temperature sensitivity

The following three methods were used:

First, controlled-temperature experiments over the

range 10–30 °C were conducted at the United States Na-

tional Institute of Standards and Technology (NIST) on

six loose T1MES tubes at 1 year (Fig. 2i). T1 and T2 were

measured at 10, 17, 20, 23, and 30 °C on an VnmrJ4

Fig. 1 Left panel: Exemplar high-resolution (0.42 mm isotropic) imaging conducted at 3 T on 5 bottles (15E031; 15E033; 15E034 shown here;
30E017; 30E018 shown here) sampled out of the original batch in August 2017 (this is 2 years post manufacture) confirmed their structural
integrity. The whole length of the phantom was imaged (three exemplar slices only shown here, represented by the green dashed lines). The
internal tubes are labeled. Surrounding the tubes is a speckled pattern due to high density polyethylene (HDPE) macrobeads in an agarose/NiCl2
mixture . Confluent bright patches between tubes represent patches of agarose/NiCl2 mixture due to displacement of macrobeads. There were no
signs of structural deterioration of the phantoms 2 years after manufacture. Middle panel: The nine tubes are supported on a translucent resin base
composed of unsaturated polyester/styrene. The matrix fill is packed with compact HDPE pellets and agarose/NiCl2 mixture. Right panel: The outer
physical appearance (front and back surfaces) of a phantom (30E018) at 2 years post manufacture (the plastic packaging wrap around the bottle cap
dates back to the time of manufacture). HDPE, high-density polyethylene; NiCl2, nickel chloride; PE, polyethylene; PVC, polyvinyl chloride
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small-bore scanner operating at 1.5 T (Varian Medical

Systems, Palo Alto, California, USA) in a temperature-

controlled environment using a fiber optic temperature

probe. T1 was measured by IRSE (TR = 10 s, TI = 50–

3000 ms) and T2 by SE (TR = 10 s, TE = 15–960 ms).

Second, controlled-temperature experiments at 19, 21,

and 25 °C were conducted at the PTB laboratory on

T1MES phantom 30E012 at 1 year (also Fig. 2i). T1 and T2

were measured on a 3 T MAGNETOM Verio scanner

(Siemens Healthineers; software syngo MR B17A) using a

Pt100 resistance thermometer. T1 was measured by IRSE

(TR = 8000ms, TI = 25–4800ms) and T2 by SE (TR =

3000ms, TE = 24–400ms).

Third, for each T1MES phantom scan at all centers,

temperature was measured using liquid crystal ther-

mometers adhered to every phantom. These measure-

ments were pooled and analyzed to derive temperature-

correction algorithms (see Statistical Analysis).

B0 and B1 uniformity

These uniformities and the fundamental distortion of B1

by water dielectric permittivity especially at 3 T had been

tested at baseline (October 2015, previously reported [5]).

These uniformities were mapped later to check against

“cracking” of the gel and subsequent impact of air gaps on

B0 in particular, while potential “clumping” of the plastic

beads over time might in theory affect the B1 [5]. We

therefore considered it prudent to check whether anything

unexpected occurred over the long term.

B0 uniformity was therefore mapped at 2 years in six

phantoms, in the transverse slice, midway along the length

of the tubes, using a multi-echo gradient echo sequence,

based on the phase difference between known TEs [7]. A

frequency range of ± 50Hz across the phantom was consid-

ered acceptable, based on published T1 mapping off-

resonance sensitivity [8]. B1 homogeneity was similarly eval-

uated using flip angle (FA) maps (double angle method

using FA 60° and 120° [θ1, 2 × θ1] with long TR [8 s], and 4

ms sinc [− 3π to + 3π] slice excitation profiles to minimize

error due to FA variation through the slice).

Methods part 2—Multi-center phantom testing

Serial, multi-center T1 mapping data

The T1MES user manual (https://doi.org/10.6084/m9.fig-

share.c.3610175_D1.v1) defined strict scanning instructions

(scanning and shim volume strictly at isocenter, use of same

supporting materials, etc.). Each contributed T1MES dataset

(localizers, sets of inversion recovery images, and inline

scanner-generated T1 maps, Fig. 3) underwent initial quality

assurance, checking orientation, and isocenter (through vis-

ual inspection of localizers and maps and semi-automatically

by inspecting metadata contained in Digital Imaging and

COmmunications in Medicine [DICOM] headers “ImagePo-

sitionPatient” and “ImageOrientationPatient”) and to exclude

Fig. 2 Temperature experiments (i) performed at two national metrology institutes: the US National Institute of Standards and Technology (NIST)
laboratory after 1 year on six loose tubes from T1MES and at Physikalisch-Technische Bundesanstalt (PTB) on phantom 30E012. ii and iii indicate
to which field-strength device the tested tubes belong. At NIST, T1 and T2 were measured on a Varian/Agilent small bore scanner operating at
1.5 T in a temperature-controlled environment. Temperatures were measured using a fiber optic probe. At PTB, T1 and T2 were measured on a 3 T
MAGNETOM Verio scanner (Siemens Healthineers; software syngo MR B17A). The phantom was always stored, moved, and scanned while resting
in a Styrofoam box to ensure that the temperatures picked at bottle hull reflects the tube temperature. At scan time, the box was placed in the
head coil (12 ch) of the PTB 3 T scanner. Temperatures were measured using a Pt100 resistance thermometer. Similar to temperature dependency
results immediately after phantom manufacture, [5] short-T1 tubes (modeling post-GBCA myocardium and blood) are more stable with
temperature than very long-T1 tubes (native blood) where T1 increases more significantly with temperature

Captur et al. Journal of Cardiovascular Magnetic Resonance           (2020) 22:31 Page 4 of 17

https://doi.org/10.6084/m9.figshare.c.3610175_D1.v1
https://doi.org/10.6084/m9.figshare.c.3610175_D1.v1


image artifacts. All Siemens sequences except MyoMaps

product variant and all Philips (Philips Healthcare, Best, the

Netherlands) sequences except CardiacQuant product vari-

ant were prototypes. Any tubes with artifacts detected by op-

erator inspection of the submitted T1 maps were excluded

from the analysis. Software version changes were captured

automatically from DICOM headers (“StationName” and

“SoftwareVersion”).

The T1 measurements from T1MES datasets (directly

using only the parametric maps submitted, not by any T1 fit-

ting applied centrally to the submitted sets of T1 recovery

images) were carried out using a bespoke MATLAB pipeline

(The MathWorks Inc., Natick, Massachusetts, USA, R2012b)

assembled in collaboration with the US National Institutes of

Health. From the data, T1 for each of the nine tubes was

measured in identically sized regions of interest (ROI) occu-

pying the central 50% by area of each tube (accommodating

~ 40 independent pixels) and collated in a dedicated research

electronic data capture instrument (REDCap [9, 10]).

Methods part 3—Statistical analysis

Analysis was performed using R (version 3.0.1, R Foundation

for Statistical Computing, Vienna, Austria). Descriptive data

are expressed as mean± standard deviation (SD) and stand-

ard error of the mean (SEM) as appropriate. Distribution of

data were assessed on histograms and using the Shapiro-

Wilk test.

Temperature sensitivity

Linear regression equations were used to relate

temperature (predictor variable in degrees Celsius) and

the response variable, phantom T1, by the formula: T1 =

Intercept + (β ∗ [Temperature − 21 ° C]), with β represent-

ing the temperature correction, and 21 °C our arbitrarily

chosen temperature for cross-center comparison.

Correlation with rT1 times

Correlations between estimated and rT1 times were de-

rived using linear regression. Tests for significant inter-

sequence and cross-vendor correlation differences

(setting null value to 0.001) were conducted with alpha

0.01 and confidence level 0.95 [11].

T1 repeatability

After considering the normal values for native myocardial

T1 reported in the published literature (e.g., in [12–16] as

mean ± 1SD, though a 95% reference range is approximately

± 2SD), where 1 SD of the mean native myocardial T1 is

generally ~ 20–30ms at 1.5 T and ~ 50ms at 3 T, we arbi-

trarily pre-defined as repeatable (and suitable for clinical/re-

search use), T1 mapping approaches where the estimated

variance of serial T1 data did not exceed ½ of the above

in vivo 1SD. For T1 mapping at 1.5 T, this was ≤ 10ms, i.e.,

CoV ≤ 1%; for T1 mapping at 3 T ≤ 25ms, i.e., CoV ≤ 2%.

The CoV between serial repeat T1MES scans was cal-

culated as the ratio of the SD to the mean. We appraised

CoV as a compound measure of all causes of change in

the estimated T1 of all nine tubes before and after

temperature correction. We also appraised CoV after

temperature correction separately for the four native

and five post-GBCA tubes. Sequence-specific differences

between the nine temperature-adjusted CoVs were cal-

culated using paired t test with P value adjustment for

multiple comparisons by the Bonferroni method (taking

two-tailed P < 0.01 as significant).

Sources of T1 variation

Using temperature-adjusted T1 values of the “Medium”

native myocardium tubes (tubes “F” and “M” respectively),

we constructed linear mixed models to study the interplay

of some known sources of T1 variation in multi-center

phantom data. We did this separately for 1.5 T and 3 T

phantom data. Considering temperature-adjusted T1 time

as the response variable of interest, we examined the influ-

ence of phantom ID with and without the added effect of

phantom age, as the combined fixed effect. With this, we

then tested the following random effects:

i) Main effects and interactions of scanner vendor/

scanner model (Siemens, Philips or General Electric

Fig. 3 Representative maps exactly as they were submitted by collaborating sites, showing the 3 commonly used T1 mapping sequences appraised in
T1MES: MOLLI 5s(3s)3s [448B], ShMOLLI 5b(1b)1b(1b)1b [1041B], and SASHA VE 11A
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[GE; General Electric Healthcare, Waukesha,

Wisconsin, USA]; e.g., for Siemens: MAGNETOM

Aera vs. Avanto vs. Espree, etc.);

ii) Main effects and interaction of sequence/scanner

software version (considering all submitted variants

of native modified Look-Locker inversion recovery

[MOLLI] [17] sequences, shortened MOLLI [18]

[ShMOLLI], native saturation-recovery single-shot

acquisition [19] [SASHA], and saturation method

using adaptive recovery times for cardiac T1 map-

ping [20] [SMART]; e.g., for Philips: R4.1.3SP2 vs.

R5.1.7SP2 vs. R5.2.0SP2, etc.).

The response variable T1 fitted a normal probability

distribution, so we estimated model parameters using

maximum likelihood. ANOVA function using a type II

Wald chi-square test evaluated the significance of fixed

effects in the model. To compare models, Akaike and

Bayesian information criteria (AIC, BIC) with the

“smaller-is-better” criterion as well as chi-square values

from inter-model ANOVA tests were used. The formu-

las used for model fitting and more definitions of the ap-

plied statistical tests are provided in Table 3.

Software upgrades

To explore whether software upgrades resulted in an

abrupt “step” change in the temperature-adjusted T1

reads, we performed piece-wise linear regression to

check for any segmented relationship between the co-

variates “scan day” and “tube T1” (considering tube

“F” at 1.5 T and “M” at 3 T) [21]. For any broken-line

relationship discovered, we defined slope parameters

and break points where the linear relation/s changed

and temporally correlated these with DICOM software

metadata.

Results part 1—Evaluation of the phantom

Structural integrity

Individual inspection of all the localizers submitted by

sites with each phantom dataset revealed no visible gel

rips or tears down any of the tubes. At baseline and at 2

years following batch manufacturing (Supplementary

Movie 1), phantoms were free of air bubbles and suscep-

tibility artifacts at both field strengths. High-resolution

imaging showed no evidence of gel rips or tears down

any of the tubes, and the gels were intact in the mid

slice—the piloted location for serial mapping (Fig. 1, left

panel). T1 maps collected through the midline of the

phantom, using the specified T1MES scan setup, were

free from off-resonance artifacts.

“Reference” rT1 and rT2 data

Phantom measurements (averaged across all tubes) collected

at the Royal Brompton Hospital showed that temperature-

corrected rT1 and rT2 values at 2 years were stable com-

pared to baseline. At 1.5 T, the 2-year temperature-adjusted

%T1 change was 1.95 ± 1.39% SD, 0.37% SEM. At 3T, the 2-

year temperature-adjusted %T1 change was 2.22 ± 1.44% SD,

0.25% SEM. Three tesla measurements at PTB showed a 2-

year temperature-adjusted %T1 change of 0.80 ± 0.49%, SEM

0.16% (Supplementary Figure S1A). Although not the aim of

this work, all reference T2 parameters remained stable with

relative < 1% change at PTB (temperature-adjusted %T2

change over 2 years at 3 T = 1.65 ± 0.26% | 0.09%, Supple-

mentary Figure S1B) and < 2% change over 2 years at Royal

Brompton Hospital.

Sequences from Siemens and Philips at 1.5 T collected

at Royal Brompton Hospital showed strong correlation

with rT1 times with small offsets, as shown in Fig. 4 (left

panel). There were no statistically significant differences

between the rT1 correlations for a given sequence when

comparing Siemens to Philips platforms (Supplementary

Table 1, panel C) or when individual sequences were

compared on Philips (Supplementary Table S1, panel B).

However, on Siemens, rT1 correlations for SASHA were

significantly stronger than for both MOLLI and

ShMOLLI (Supplementary Table S1, panel A).

Sequences from Siemens and Philips at 3 T showed

strong correlation with rT1 times but with visibly imper-

fect absolute measurement of T1 across tubes of longer

T1 times as shown in Fig. 4 (right panel). The correla-

tions between absolute measurements of T1 and rT1

were similar for MOLLI and SASHA on Philips (Supple-

mentary Table S2, panel B). On Siemens, the correlation

between absolute measurements of T1 and rT1 was sig-

nificantly stronger for SASHA when compared to

MOLLI and ShMOLLI (Supplementary Table S2, panel

A). The correlation between absolute measurements of

T1 and rT1 for SASHA was significantly stronger on Sie-

mens compared to Philips (Supplementary Table S2,

panel C). Comparison of errors at 3 T relative to 1.5 T

showed no significant difference (average SEM 5.49 vs.

4.04 respectively, P = 0.428).

Temperature sensitivity

Temperature experiments at both NIST and PTB using spin

echo, long TR, and sequences (Fig. 2i) consistently showed

that short-T1 tubes (modeling post-GBCA myocardium and

blood) were more stable with temperature than very long-T1

tubes (native blood), where T1 increased more significantly

with temperature. T1 increased by ~ 11ms/°C for a typical

MOLLI 5s(3s)3s 1.5 T dataset in tube “B” (normal native

blood). Conversely, T1 decreased by ~ 1.2ms/°C in tube “G”

(short post-GBCA myocardium). Temperature corrections

for each of the nine tubes at both field strengths from the

pooled multi-center analysis are presented separately (Sup-

plementary Table S3) from temperature sensitivity
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experiments of NIST and PTB due to the latter’s use of be-

spoke standard operating procedures.

B0 and B1 uniformity

B0 uniformity at 2 years was delivered to within ± 9 Hz

at 1.5 T and ± 10 Hz at 3 T (Fig. 5a–b). At 2 years after

manufacture, the B1 field distortion caused by the phan-

tom, continued to be adequately flattened to within 10%

of the B1 at the center of the phantom, at both 1.5 T and

3 T (Fig. 5c–d).

Results part 2—Multi-center phantom testing

Thirty-four of the magnet systems appraised were 1.5 T

and 22 were 3 T (see Supplementary Data File and

Supplementary Table S4) with manufacturers being 35

Siemens, 18 Philips, and 3 GE. Scan frequencies are re-

ported in the Supplementary Data File. The planned

program was 1 year, but 24 centers voluntarily extended,

resulting in mean longitudinal data of 358 days, and the

longest 1161 days.

Quality assurance of the contributed DICOM image

files identified significant protocol deviations or se-

quence reconstruction failures in nine submissions, the

majority of which took place at the start of the study

(examples in Supplementary Fig. S2). These were ex-

cluded with subsequent advice sent to centers permitting

later inclusion in most cases, except where a tube

artifact affecting > 25% of a single center’s series led to

exclusion of that tube from pooled analysis (see Supple-

mentary Data File).

Fifty-two magnets non-exclusively contributed MOLLI

datasets, 16 ShMOLLI, and 12 SASHA, and 2 magnets

contributed SMART T1 maps. Center-, session-, and

sequence-specific T1 mapping contributions are detailed

in Supplementary Data File. During the project, there

were three software upgrades at centers: two Siemens

and one GE (details in Supplementary Fig. S4).

Fig. 4 T1 times in the nine tubes for the three main sequence types (modified Look-Locker with inversion recovery (MOLLI), shortened MOLLI (ShMOLLI),
saturation recovery single-shot acquisition (SASHA)) at 1.5 T (left) and 3 T (right) split according to vendor (Siemens, Philips). At 3 T, the contributed Philips
MOLLI 5b(1b)1b(1b)1b was missing the iterative/data dropping steps in map creation as per Siemens ShMOLLI, so these data are not shown. Measured T1

times by the 3 sequences (mean of multiple centers, no temperature correction) are represented by symbols. The line of identity, i.e., “reference” rT1 times
by slow inversion recovery is represented as a discontinuous gray line. For each sequence, correlations between absolute measurements of T1 and rT1

times are shown. Correlations for the much sparser GE data (MOLLI, ShMOLLI, SMART each n= 1) are not reported. Vertical error bars within each shape
represent standard error of the mean. aR, adjusted R

2; GE, General Electric Healthcare
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T1 repeatability

For serial multi-center data, temperature-unadjusted

CoV per tube, per phantom, per sequence, and per mag-

net are detailed in the Supplementary Data File.

Temperature-adjusted CoV for the various native

sequences together with inter-sequence and cross-

platform differences, at 1.5 T and 3 T, are summarized

in Tables 1 and 2 respectively and data for post-GBCA

in Supplementary Tables S5 and S6. Results of native

and post-GBCA sequence/scanner software version re-

peatability are provided in Tables 1 and 2 and in Supple-

mentary Tables S5 and S6 respectively.

Based on these temperature-adjusted data, mean (x)

CoV were generally higher (implying poorer repeatability)

at 3 T than at 1.5 T and for the much sparser GE data over

Siemens/Philips. Over 1 year, many 1.5 T and 3 T

sequences/magnets were repeatable with x CoV < 1%

and < 2% respectively. For sequences optimized for native

T1 mapping applied to T1MES native tubes, we observed

excellent repeatability for several sequences, for example,

Siemens MOLLI 5s(3s)3s 448B (x CoV = 0.27%) and Phi-

lips MOLLI 3s(3s)5s (x CoV 0.54%) at 1.5 T (Table 1) and

Philips MOLLI 3b(3s)5b (x CoV 0.33%) and Siemens

ShMOLLI (x CoV 0.69%) at 3 T (Table 2).

Among sequences optimized for post-GBCA T1 map-

ping applied to T1MES post-GBCA tubes, excellent re-

peatability was observed for several sequences, for

example, Siemens ShMOLLI 1041B (x CoV 0.21%) and

Fig. 5 a B0 field homogeneity at 2 years post manufacture across the nine phantom compartments as a measure of off-resonance in hertz at 1.5
T (blue, averaged for three phantoms) and 3 T (green, averaged for another three phantoms). These are extremely small shifts in frequency (e.g.,
10 Hz = 0.08 ppm at 3 T) and should not be regarded as significantly different between the tube compartments. b Diagonal profiles of the B1 field
at 2 years post manufacture as per red discontinuous lines (right panels) in six phantoms: three at 1.5 T scanned on 1.5 T MAGNETOM Avanto
(Siemens Healthineers; software syngo MR B17A); example field map (c) and three at 3 T scanned on 3 T MAGNETOM Skyra (Siemens Healthineers;
software syngo MR D13C); example field map (d)
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Table 1 Temperature-adjusted (normalized to 21 °C) native T1 and CoV (%) at 1.5 T summarized by vendor and sequence
Summary table of x̅ CoV of T1 (%) across 4 tubes Order of tube IDs follows their orientation in the scanned bottle

Siemens MOLLI 5s(3s)3s [448B] 0.27

Philips MOLLI 3s(3s)5s 0.54

Siemens SASHA 0.56

Siemens ShMOLLI 5b(1b)1b(1b)1b [1041B] 0.64

Philips SASHA 0.92

Philips ShMOLLI 5b(1b)1b(1b)1bc 1.04

General Electric MOLLI 5b(1b)1b(1b)1bd 1.28

General Electric SMART 3.00

Platform Sequence [prototype, #] x̅’ CoV of T1 (%), global x̅ ± SD of T1 according to native tube ID [tube rT1 by slow IR]

F [1090 ms] E [1333 ms] D [803 ms] B [1489 ms]

Siemens MOLLI MyoMaps product 5s(3s)3s [5] 1.07, 1041 ± 23 1.38, 1273 ± 35 0.85, 771 ± 6 1.45, 1538 ± 46

MOLLI 3b(3s)3b(3s)5b [448, 3] 0.87, 1019 ± 11 1.08, 1225 ± 17 0.65, 765 ± 6 1.19, 1462 ± 21

MOLLI 5b(3s)3b [448, 3] 0.18, 1005 ± 13 0.53, 1217 ± 24 0.26, 762 ± 6 0.74, 1464 ± 23

MOLLI 5b(3s)3b [448B, 2] 0.65, 1052 ± 7 0.82, 1289 ± 10 0.61, 784 ± 4 1.00, 1555 ± 16

MOLLI 5b(3s)3b [780, 2] 0.70, 1048 ± 14 1.18, 1276 ± 20 0.61, 776 ± 6 sic. 1.15, 1536 ± 24

MOLLI 5b(3s)3b [780B, 4] 0.76, 1043 ± 9 0.99, 1279 ± 17 0.67, 776 ± 6 1.45, 1550 ± 37

MOLLI 5s(3s)3s [448, 2] 0.89, 1035 ± 10 1.51, 1261 ± 25 1.04, 770 ± 9 1.44, 1538 ± 24

MOLLI 5s(3s)3s [448B, 1]a 0.14, 1051 ± 1 0.38, 1282 ± 5 0.17, 783 ± 1 0.38, 1553 ± 6

MOLLI 5s(3s)3s [780B, 2] 0.81, 1043 ± 15 0.69, 1277 ± 15 0.42, 771 ± 6 0.90, 1546 ± 25

MOLLI 5s(3s)3s [1041, 1] 1.11, 1045 ± 12 0.69, 1285 ± 9 0.81, 772 ± 6 0.96, 1560 ± 15

MOLLI 5s(3s)3s [1041B, 1] 1.27, 1033 ± 13 1.80, 1232 ± 22 0.66, 771 ± 5 1.47, 1494 ± 22

ShMOLLI 5b(1b)1b(1b)1b [448, 1] 1.01, 989 ± 10 1.39, 1223 ± 17 0.60, 729 ± 4 1.50, 1510 ± 23

ShMOLLI 5b(1b)1b(1b)1b [448C, 1] 0.61, 983 ± 6 0.64, 1218 ± 8 0.63, 727 ± 5 1.57, 1507 ± 22

ShMOLLI 5b(1b)1b(1b)1b [780B, 3] 2.16, 945 ± 34 3.29, 1147 ± 62 0.98, 711 ± 11 3.70, 1392 ± 85

ShMOLLI 5b(1b)1b(1b)1b [1048, 1] 0.70, 972 ± 7 0.71, 1208 ± 9 0.68, 715 ± 5 1.01, 1489 ± 15

ShMOLLI 5b(1b)1b(1b)1b [1041B, 1]a 0.59, 978 ± 6 0.67, 1201 ± 8 0.43, 721 ± 3 0.86, 1501 ± 13

SASHA [4] 0.39, 1104 ± 17 0.65, 1362 ± 27 0.47, 814 ± 8 0.73, 1522 ± 30

Philips MOLLI CardiacQuant product 5s(3s)3s [2] 0.53, 1025 ± 13 0.86, 1265 ± 19 0.50, 760 ± 7 1.04, 1516 ± 28

MOLLI 3b(3s)3b(3s)5b [2] 0.47, 1006 ± 17 0.94, 1247 ± 39 0.46, 751 ± 6 1.25, 1503 ± 46

MOLLI 3s(3s)3s(3s)5s [1] 0.94, 1026 ± 10 1.66, 1251 ± 21 0.69, 765 ± 5 2.15, 1450 ± 31

MOLLI 3s(3s)5s [1]a 0.20, 936 ± 2 1.11, 1100 ± 12 0.27, 722 ± 2 0.59, 1323 ± 8

MOLLI 5b(3s)3b(3s)2b [1] 6.78, 1168 ± 79 6.32, 1374 ± 87 3.04, 816 ± 25 6.53, 1665 ± 109

MOLLI 5b(3s)3b [1] 1.18, 1027 ± 12 1.48, 1265 ± 19 0.67, 758 ± 5 1.16, 1522 ± 18

MOLLI 5 s(3s)3s [3] 0.89, 1012 ± 17 1.35, 1233 ± 31 1.20, 756 ± 9 1.76, 1456 ± 58

ShMOLLI 5b(1b)1b(1b)1bc [1] 0.89, 1027 ± 9 1.37, 1270 ± 17 0.50, 753 ± 4 1.41, 1522 ± 21

SASHA [2] 1.02, 1057 ± 44 0.89, 1336 ± 84 0.87, 798 ± 30 0.89, 1505 ± 33

General Electric MOLLI 5b(3s)5b [1] 11.18, 653 ± 73 7.69, 853 ± 66 8.45, 591 ± 50 6.68, 1319 ± 88

MOLLI 5b(1b)1b(1b)1bd [1]a 1.40, 575 ± 8 1.76, 642 ± 11 0.78, 543 ± 4 1.19, 1002 ± 12

SMART [1] 2.05, 1063 ± 22 4.76, 1273 ± 61 0.95, 798 ± 8 4.22, 1430 ± 60

The term sequence refers to either MOLLI, ShMOLLI, SASHA, or SMART
MOLLI/ShMOLLI protocol nosology has the number of inversions per experiment as the total count of numbers outside brackets, image cycles are outside brackets, pause
cycles are within brackets, and cycle lengths defined in terms of either heart beats (b) or seconds (s)
CoV coefficient of variation, ID identity code, GBCA gadolinium-based contrast agent, GE General Electric, MOLLI modified Look-Locker inversion recovery, rT1 “reference”
slow inversion recovery T1, SASHA saturation-recovery single-shot acquisition, SD standard deviation, ShMOLLI shortened MOLLI, SMART saturation method using adaptive
recovery times for cardiac T1 mapping, T Tesla
aDenotes the T1 mapping sequence|software combination with lowest overall CoV% for a given vendor where multiples exist. P values for differences in CoV between
sequences/vendors are reported for this highly repeatable sequence where multiples exist. Less favorable CoVs (> 1%, see the “T1 repeatability” section) are in italics.
Post-GBCA tubes are not shown here as their data are reported separately in relation to post-GBCA sequences in Supplementary Table 5
bDenotes the number of different magnets submitting that particular sequence from which the average CoVs were derived
cUsing iterative/data dropping steps in map creation as per ShMOLLI
dIn the absence of iterative/data dropping steps in map creation as per ShMOLLI
x ̅= average CoV across the 4 native tubes for a given sequence
x’̅ =where more than one sequence type was submitted, individual CoVs were then averaged to derive x’̅ CoV; while for single sequence submissions x’̅ CoV is from the
global mean T1 ± SD for that one sequence
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Siemens MOLLI 4s(1s)3s(1s)2s 448B (x CoV 0.26%) at

1.5 T (Supplementary Table S5) and Siemens MOLLI

4b(1s)3b(1s)2b 448B (x CoV 0.10%) and Siemens

ShMOLLI (x CoV 0.28%) at 3 T (Supplementary

Table S5).

Sources of T1 variation

Linear mixed models which excluded centers that had

experienced a software change during the time of data

collection (Table 3 and Supplementary Tables S7 and

S8) indicated that temperature-adjusted T1 differs sig-

nificantly between sequences and software versions at

both field strengths (P < 0.001 all) and between magnet

models at 1.5 T (P = 0.011). Notably, phantom age had

no significant effect on T1 (model A2).

Software upgrades

The two software upgrades on Siemens both occurred to-

wards the end of longitudinal data submissions (Supple-

mentary Fig. S4A, 15E031; 4B, 30E017), so the paucity of

data points post-upgrade events precluded statistical test-

ing for significant T1 shifts. For the software upgrade on

GE, however, differences between pre- and post-linear re-

gression slopes (Supplementary Fig. S4C, 30E012) indicate

a marginally significant T1 shift event (P = 0.024).

Discussion
To our knowledge, this is the first multi-center study

using a wide range of T1 mapping methods to study the

interplay of some of the known sources of measured T1

variation. The basis of this work is the T1MES phantom,

and a major aim of this work was to evaluate how this

Table 2 Temperature-adjusted (normalized to 21 °C) native T1 and CoV (%) at 3 T summarized by vendor and sequence

Summary table of x̅ CoV of T1 (%) across 4 tubes Order of tube IDs follows their orientation in the scanned bottle

Philips MOLLI 3b(3s)5b 0.33

Siemens ShMOLLI 5b(1b)1b(1b)1b [780C] 0.69

Siemens MOLLI 5b(3s)3b [448B] 0.95

Siemens SASHA 1.29

Philips SASHA 3.76

GE SMART 3.76 sic.

Platform Sequence [prototype, #] x̅’ CoV of T1 (%), global x̅ ± SD of T1 according to native tube ID [tube rT1 by slow IR]

M [1260ms] L [1499ms] K [1010ms] J [1872ms]

Siemens MOLLI MyoMaps product 5s(3s)3s [4] 1.28, 1182 ± 20 1.61, 1367 ± 29 1.02, 955 ± 13 2.42, 1831 ± 62

MOLLI 3b(3s)3b(3s)5b [448, 1] 1.16, 1092 ± 13 1.92, 1252 ± 24 0.56, 889 ± 5 1.58, 1724 ± 27

MOLLI 5b(3s)3b [448B, 1]a 0.36, 1233 ± 4 0.78, 1449 ± 11 0.76, 986 ± 7 0.86, 2012 ± 17

MOLLI 5b(3s)3b [780B, 2] 0.99, 1204 ± 14 1.13, 1410 ± 18 0.74, 970 ± 9 1.50, 1912 ± 28

MOLLI 5s(3s)3s [780B, 1] 1.46, 1222 ± 18 2.36, 1435 ± 34 1.76, 980 ± 17 3.04, 1916 ± 58

ShMOLLI 5b(1b)1b(1b)1b [780B, 2] 1.17, 1155 ± 27 1.62, 1361 ± 35 0.80, 922 ± 17 2.45, 1882 ± 41

ShMOLLI 5b(1b)1b(1b)1b [780C, 1]a 0.78, 1109 ± 9 0.89, 1322 ± 12 0.64, 888 ± 6 1.51, 1892 ± 29

SASHA [2] 2.04, 1284 ± 30 1.15, 1534 ± 27 0.70, 1025 ± 13 1.27, 1949 ± 35

Philips MOLLI 3b(3s)3b(3s)5b [4] 1.64, 1147 ± 52 2.42, 1343 ± 80 1.05, 923 ± 29 3.90, 1785 ± 115

MOLLI 3b(3s)5b [1]a 0.01, 1055 ± 1 0.49, 1217 ± 6 0.05, 862 ± 1 0.78, 1710 ± 13

MOLLI 3s(3s)5s [1] 5.41, 1175 ± 64 3.72, 1392 ± 52 7.13, 937 ± 67 3.56, 1833 ± 65

MOLLI 5b(3s)3b [3] 4.18, 1098 ± 48 5.44, 1286 ± 73 4.37, 868 ± 42 6.33, 1784 ± 106

MOLLI 5s(3s)3s [6] 2.40, 1131 ± 70 2.41, 1320 ± 108 2.60, 906 ± 34 2.71, 1727 ± 131

MOLLI 5b(1b)1b(1b)1bc [2] 2.98, 948 ± 97 4.53, 1082 ± 137 0.96, 794 ± 60 6.29, 1286 ± 282

SASHA [2] 3.11, 1290 ± 46 3.40, 1826 ± 171 2.11, 1054 ± 38 6.41, 2157 ± 267

General Electric SMART [1] 2.85, 1150 ± 33 4.13, 1227 ± 51 2.04, 973 ± 20 6.03, 1419 ± 86

Less favorable CoVs (> 2%, see the “T1 repeatability” section) are in italics. Post-GBCA tubes are not shown here as their data are reported separately in relation to
post-GBCA sequences in Supplementary Table 6
sic = text is quoted exactly as it stands in the original, i.e., this is not a typo. Abbreviations as in Table 1
aDenotes the T1 mapping sequence|software combination with lowest overall CoV% for a given vendor where multiples exist
bDenotes the number of different magnets submitting that particular sequence from which the average CoVs were derived
cIn the absence of iterative/data dropping steps in map creation as per ShMOLLI
x ̅= average CoV across the 4 native tubes for a given sequence
x’̅ = where more than one sequence type was submitted, individual CoVs were then averaged to derive x’̅ CoV; while for single sequence submissions x’̅ CoV is
from the global mean T1 ± SD for that one sequence
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performed in use at multiple centers. The phantom ap-

pears sufficiently robust for T1 mapping quality assur-

ance purposes. Based on our data, estimated phantom

T1 values may show substantial variation between differ-

ent T1 mapping sequences, scanner software versions,

and potentially also scanner models, and temperature

correction, at least for native T1 tubes, is necessary to

achieve the desired repeatability. Inspection of the Sup-

plementary Table also suggests that there are occasional

performance variations producing outliers even within a

given T1 mapping sequence prototype/software combin-

ation across different magnets. In spite of this variation,

however, several specific combinations of field strength,

sequence, and scanner generally exhibit excellent repeat-

ability. Given the choices, the CMR community may

prefer to standardize and use combinations with high

repeatability for future clinical and research use, e.g.,

CoV < 1% at 1.5 T and < 2% at 3 T, while seeking to

optimize less repeatable combinations. Less data were

available for GE in T1MES, so the observed variability

requires verification in a larger more representative

sample.

Agreement with “reference” slow scanning, rT1 times

was slightly greater for SASHA compared to MOLLI or

ShMOLLI, which both slightly underestimated T1,

mainly from the known T2-related underestimation

which is larger when measuring the myocardium [13–

15], (Fig. 4, Supplementary Tables S1 and S2) and not

due to magnetization transfer, which is negligible in

these agar phantoms [22].

The phantom data presented here suggest that the “T1

standard” framework remains possible, but the wide

Table 3 Linear mixed models for 1.5 T and 3 T multi-center temperature-adjusted T1 mapping data (normalized to 21 °C, considering
the “Medium” native myocardium tubes “F” and “M” respectively). The best model is “A5” at 1.5 T and “A3” at 3 T

Model fitting formulas AIC BIC Log likelihood χ2 P value Best model

1.5 T model A1: T1 ~ sequence + (1|ID) 5850.3 5920.8 − 2909.1 “ref” “ref” “ref”

A2: T1 ~ sequence + (1|ID/age) [worse fit with age] 5852.3 5927.2 − 2909.1 0.0 1.000 –

A3: T1 ~ sequence × software + (1|ID) 5725.4 5883.9 − 2826.7 164.9 < 0.0001 –

A4: T1 ~ sequence × software + vendor + (1|ID) [vendor non-
contributory to fit]

5725.4 5883.9 − 2826.7 0.0 1.000 –

A5: T1 ~ sequence × software + model + (1|ID) 5723.4 5890.8 − 2823.7 5.9 0.051 A5

A6: T1 ~ sequence × software + vendor × model + (1|ID)
[vendor non-contributory to fit]

5723.4 5890.8 − 2823.7 0.0 1.000 –

Final model (A5) parameters Variance SD χ2 P value

Random effects ID 2547.2 50.47 “ref” “ref”

Fixed effects Sequence (β range − 32.3 to 455.6a) / / 1101.0 < 0.0001

Software (β range 385.1 to 522.3a) / / 63.8 < 0.0001

Model (β range − 161.8 to 16.0a) / / 11.2 0.011

Sequence: Software (β range − 161.8 to − 6.9a) / / 149.6 < 0.0001

3 T model A1: T1 ~ sequence + (1|ID) 4390.4 4447.0 − 2181.2 “ref” “ref” “ref”

A2: T1 ~ sequence + (1|ID/age) [worse fit with age] 4392.4 4453.1 − 2181.2 0.0 1.000 –

A3: T1 ~ sequence × software + (1|ID) 4238.3 4339.4 − 2094.2 174.1 < 0.0001 A3

A4: T1 ~ sequence × software + vendor + (1|ID) [vendor non-
contributory to fit]

4238.3 4339.4 − 2094.2 0.0 1.000 –

A5: T1 ~ sequence × software + model + (1|ID) 4239.2 4348.4 − 2092.6 3.1 0.212 –

A6: T1 ~ sequence × software + vendor × model + (1|ID)
[vendor non-contributory to fit]

4239.2 4348.4 − 2092.6 0.0 1.000 –

Final model (A3) parameters Variance SD χ
2 P-value

Random effects ID 372.4 19.3 “ref” “ref”

Fixed effects Sequence (β range − 114.5 to 38.5a) / / 732.8 < 0.0001

Software (β range − 203.0 to 32.7a) / / 46.0 < 0.0001

Sequence: Software (β range − 48.8 to 267.3a) / / 189.0 < 0.0001

The symbol (1|ID) in the model formulas refers to the random effect of individual phantoms (by identity number). At 1.5 T models, A5 and A6 have equal AIC/BIC
but given the lack of statistically significant χ2 improvement from A5 to A6 (P = 1.0); A5 is considered the most parsimonious model
Age refers to phantom age at scanning since date of manufacture, AIC Akaike information criterion, BIC Bayesian information criterion, χ2 chi-square, ref reference,
SD standard deviation
aComplete list of β coefficients for model A5 at 1.5 T and A3 at 3 T are provided in Supplementary Tables 7 and 8 respectively
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variety of different sequence options, vendors, and field

strengths distributed the data over too many categories

for reliable modeling, unlike the “locked-down” ap-

proach mentioned below which does have that strong

advantage. Further work will explore the transferability

of clinical measurement based on in vitro phantom

calibration.

T1MES is but one of a number of phantom objects that

have been used or proposed to support T1 mapping qual-

ity assurance (elaborated in Table 4). Some alternatives

that target native and post-GBCA myocardial and blood

relaxation times in support of T1 mapping work are (1)

Brompton phantom by Vassiliou et al. [23], (2) Hyper-

trophic Cardiomyopathy Registry [24] phantom (HCMR)

by Piechnik et al., and (3) International Society for Mag-

netic Resonance in Medicine (ISMRM)/NIST MR imaging

phantom [25].

At 1 year, CoV for T1 tubes of the Vassiliou [26] phan-

tom on a single Siemens scanner ranged from 1.0 to

3.6% using only the native MOLLI 5s(3s)3s sequence,

compared to 0.27 to 3.0% in T1MES (for 1.5 T MOLLI

5s(3s)3s [448B] on Siemens to SMART on GE respect-

ively). This within sequence precision heterogeneity, as

already alluded to by Kellman et al. [27], linked to proto-

col modifications within MOLLI, may partly explain

some of the higher CoV for specific MOLLI sequences

compared to ShMOLLI where centers obligatorily

scanned using a fixed 5b(1b)1b(1b)1b sequence with

conditional fitting. As mentioned above for the disper-

sion of T1MES results, this “real-world” heterogeneity of

T1 mapping sequences highlights that while T1 mapping

research and innovation calls for multiple flexible proto-

types, the resultant diversity poses a nontrivial challenge

to multi-center standardization. Conversely, the more

“locked-down” approach like that adopted for ShMOLLI,

albeit less editable by external researchers, potentially fa-

cilitates standardization.

The design of phantoms for this purpose (although

often seen as trivial) is challenging: to have a large suffi-

cient ROI in each sample tube and a good number of

sample tubes in the main jar of the phantom, the overall

size of the phantom increases to the point that B1 non-

uniformity at 3 T due to the dielectric permittivity of any

water-based phantom becomes problematic. While of

course B1 is non-uniform in vivo, one purpose of phan-

tom tests is to eliminate uncertainty or at least enable

Table 4 Comparison of recently reported phantoms for cardiac T1 mapping quality assurance

Dedicated T1 device Combined T1/T2 device

Phantom HCMR (cardiac specific) Brompton (cardiac specific) T1MES (cardiac specific) ISMRM/NIST system phantom (not
cardiac specific)

Field
strength
specificity

Tube
ingredients

NiCl2-doped agar +
carrageenan

NiCl2-doped agar NiCl2-doped agar NiCl2-doped water, MnCl2-doped
agar

Structure 9 T1/T2 tubes in an
amber PVC sealed jar
that is ~ 25% smaller in
total volume compared
to T1MES.

Air-filled box containing 4
duplicate T1/T2 glued glass tubes
(total 8) requires cylindrical MRI
test bottles on either side for B1
field/reference frequency
calibration.

9 plastic T1/T2 tubes in an amber
PVC sealed jar with inter-tube gaps
packed with a carefully specified
agarose/ HDPE plastic macrobead/
NiCl2-doped fill that flattened the
B1 field and provided sufficient B0
homogeneity to obviate the need
for side phantoms.

A layer of 14 T1 spheres and a
separate layer of 14 T2 spheres so
no unified T1/T2 compartment
representing the relaxation
parameters of the human heart.

Cardiac T1/
T2
coverage

Health and disease, 9
biologies but limited T2
coverage (57 and 75
ms).

Health only, 4 biologies: (1) native
myocardium, (2) native blood, (3)
post-GBCA myocardium, and (4)
post-GBCA blood.

Health and disease, 9 biologies and
broad T2 coverage (1.5 T, 44, 48, 50,
155, 189, and 243ms). Also see
Supplementary Table 3.

Health and disease, but of the 14
T1 spheres (ranging from 21 to
2038 ms), half are not useful to
cardiac T1 mapping as T1 times are
too short for either native or post-
GBCA myocardium/blood. Half the
T2 spheres (ranging from 11 to
581ms) are also anti-physiological
for cardiac mapping. Also, the T1/
T2 ratio is not representative of car-
diac tissue.

MT
coverage

– – – –

Regulatory
clearance

– – FDA, CE-mark –

Developers Piechnik et al. Vassiliou et al. Captur et al. NIST/ISMRM

CE Conformitée-Europeen, FDA Food and Drug Administration, HDPE high-density polyethylene, MT magnetization transfer, PVC poly vinyl chloride
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controlled testing of factors such as B1 rather than intro-

duce their own errors. Conversely, if the phantom is

made very small, then the truly acquired pixel size of

in vivo T1 mapping methods (which obviously must not

be modified or adapted [28] for the phantom scans) be-

comes important compared to the sample tube inner di-

ameters leading to questions over SNR [29] and the

impact of Gibbs artifact, for example.

Another obstacle for relaxation time phantoms (on top

of basic water T1 and T2 temperature and pressure varia-

tions, gel instabilities [30, 31], small leakages, dehydra-

tion, or ion migration effects over time) is the differing

temperature dependence of each species of paramagnetic

ion’s relaxivity (r1, r2) and furthermore frequency disper-

sion in all of these physical properties between 60MHz

and 120MHz [32–36]. Efforts to use alternative chemis-

try have so far not provided the range of T1 and T2

needed for this application.

The results confirmed, as is widely known in the field,

that the T1 measured by even nominally identical mapping

sequences can differ significantly between software revi-

sions. Scanner software upgrades are not uncommon in

centers, and we encountered three such events among

contributing partners. There was a measurable shift on at

least one system, with potentially important implications

for the field as alluded to in the 2017 consensus statement

on multi-parametric mapping by the Society for Cardio-

vascular Magnetic Resonance (SCMR) [37]. Future work

using phantoms at scale, across vendors and over time,

would ideally continue monitoring center-specific data be-

fore and after potential shift events to more fully under-

stand their impact on T1 allowing the community to set

up mitigation approaches.

Clearly, sources of T1 variance and drift over time and

between centers are numerous. Some T1 variance is re-

lated to differences between sequences and magnet plat-

forms: to the scanner itself (equipment drift or

equipment shifts from updates of software, replacement

of parts, routine service recalibrations, etc.), to the envir-

onment (temperature, pressure, humidity), and to the

operator (phantom positioning inside scanner bore). In a

phantom study, some T1 variance may additionally have

been due to intra-phantom differences (liquid/agar sta-

tus over time collectively contributing to phantom aging)

and inter-phantom manufacturing variations. In T1MES,

we mitigated potential inter-phantom manufacturing

variations by exercising extreme caution in design and

prototyping and by the strict batch manufacturing pro-

cesses to medical device grade standards. Drifts in the

system setup (long-term stability) would tend to be “ad-

justed” out by the shim and center frequency (CF) and

transmitter B1 reference (TxREF) adjustments that could

otherwise bias estimated T1. Any receiver coil or gain

changes would most likely cancel out of T1 maps as

constant across the series of input images to T1 deriv-

ation (appearing in A and B maps instead). It is consid-

ered unlikely that gradient performance would drift

significantly, and any significant sudden changes in that

are also unlikely even when the eddy-current compensa-

tion is adjusted on routine service visits. However, we

have shown how unforeseen software changes could po-

tentially cause “step-wise” changes in the estimated T1

records. To directly model the interplay between all

these potential sources of T1 variation in longitudinal

phantom studies would be a daunting task, and we con-

sidered only a subset of these sources in our analyses.

Though B0 and B1 homogeneity tests in T1MES (Fig. 5)

were stable, we did measure slightly greater field in-

homogeneity at the phantom edge and corners com-

pared to the core (phantom corners and edges are the

zones which our T1MES data flagged up as areas of least

B0/B1 homogeneity). The tubes with the highest T1 times

are the tubes most susceptible to such field inhomogene-

ities, and this suggests that a future iteration of T1MES

could be further optimized by rearrangement to position

such tubes in the most uniform regions.

The results of this study are relevant to clinicians or

researchers choosing sequences for T1 mapping, and we

highlight 3 take home messages as follows:

i. Sequence/software combinations in Tables 1 and 2,

with a CoV ≤ 1% and 2% respectively, are

sufficiently repeatable for clinical/research use (see

rationale in the “Methods part 3—Statistical

analysis” and “T1 repeatability” sections). For the

native myocardium T1MES tube at 1.5 T (reference

T1 ~ 1037 ms by MOLLI), a ≤ 1% CoV is well

within ± 1SD of normal values for T1, meaning that

small-magnitude biological changes (e.g., diffuse

myocardial fibrosis), will be resolvable with high

precision [37]. By contrast, CoVs of 3 or 6% at 1.5

T (variance of 31 and 62 ms respectively) will

undermine a center’s ability to resolve small-

magnitude changes, and they may also impact the

resolution of large-magnitude biological changes

[37] (like amyloid, iron overload, Fabry disease,

acute myocardial injury). Our data indicate that

many of the investigated sequences for Siemens and

Philips at 1.5 T exhibited CoVs ≤ 1%. At 3 T,

MOLLI (Siemens and Philips), ShMOLLI (Siemens),

and SASHA (Siemens) exhibited CoVs ≤ 2%. The

absence of GE from this list is due to limited

participation.

ii. For developers, the highlighting of sequence

performance may encourage work to refine

sequences in some cases.

iii. The prospect of using phantom calibration to

remove the need for local reference ranges [37] is
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potentially becoming more tangible than before, yet

more work is needed to deliver such calibration.

These data may facilitate the use of T1 mapping as a

useful clinical biomarker. T1 standardization will also be

important to facilitate clinical research. At the present

time, there are 25 registered clinical research studies

using T1 mapping (clinicaltrials.gov accessed January

2019).

Limitations

Presented results are not intended to compare the SNR

obtained in the phantom setup in different machines but

are aimed at studying long-term stability. In spite of our

outreach to advertise enrollment at study start, GE cen-

ters are under-represented. The scarcity of multi-center

data for many of the specific T1 mapping sequence, soft-

ware, and field-strength combinations has limited our

ability to deliver a “T1 standard”. Eight centers enrolled,

received a phantom, but then could not deliver the serial

phantom scans, and four centers did not meet the 1 year

minimum data submission requirement. Each center

provided legitimate justifications for the missing data,

and furthermore, we highlight that contributions to

T1MES were entirely voluntary, with no center receiving

remuneration for any staff or scanner time invested in

the program.

In total, 3 magnets deviated from the prescribed nom-

inal intervals in some of their initially submitted data-

sets. Phantom repeatability studies represent an in vitro

experiment. Some sequences and scanners that per-

formed well in vitro may exhibit greater variability in the

face of biological tissue (magnetization transfer, flow,

motion), patient characteristics (fast/slow heart rates,

heart rate variability, breath-hold length, implanted

metal devices), and scanning process (non-isocentering,

scanning in multiple planes). The T1MES phantom does

not capture magnetization transfer. The biomarker per-

formance that was measured here accounts for T1 map-

ping in vitro. While this is obviously related to

diagnostic performance in vivo, cardiac motion, etc.,

introduce yet another degree of freedom, and different

hardware/software combinations might deal with this

differently. In addition, CoV as a single metric may not

be the best way to pick a pulse sequence for repeatability

when the data is only derived from a static phantom. A

very precise (reproducible) T1 sequence that requires

long breatholds or is heart rate-variability-sensitive

might perform very well with the T1MES phantom setup

but perform poorly in patients with varying biology, e.g.,

that cannot hold their breath well or who are in atrial

fibrillation. The phantom has no intracellular/extracellu-

lar component, so any researcher seeking to model

“ECV” using pre- and post-GBCA T1 mapping values

derived from T1MES (see example data in Supplemen-

tary Table S9) must bear this in mind.

The phantom design, ROI size, and coil setup instruc-

tions all aimed to make the fundamental image noise

SNR an irrelevant factor in the CoV results. The artifi-

cially high and “clean” SNR of a phantom setup (if with-

out phantom-related distortions, as we have shown in

the “B0 and B1 uniformity” section) is clearly not directly

an indicator of satisfactory in vivo performance. It con-

tains many sequence-related factors that may have dif-

ferent consequences in vivo [29], and such SNR

comparisons are not the aim of this work. Ideally, par-

ticipating sites would have proved this by sending mul-

tiple T1 maps per session. However, contributions were

already voluntary, and further demands on sites could

not be supported. For the same reason, it was not feas-

ible to demand long reference T1/T2 data for each par-

ticipating site, and this was never part of the original

enrollment commitment. As some indication of the typ-

ical short-term thermal noise random jitter, the raw

(temperature-unadjusted) T1 values from some sites that

did anyway submit several repeated T1 maps each ses-

sion are plotted in Supplementary Fig. S3.

Conclusion
The T1MES phantom developed to CE/FDA manufac-

turing standards for T1 mapping is a robust quality as-

surance device. T1 mapping can now be quality assured

on a multi-center scale, fulfilling a key requirement for

the use of T1 mapping in clinical decision-making or as

a surrogate endpoint in drug trials. A good number of

T1 measurement sequence/scanner model/vendor/field

strength combinations are remarkably repeatable, but

some combinations less so, with coefficients of variation

exceeding 1–2% over 1 to 2 years. Given the alternatives,

we recommend that combinations with poor repeatabil-

ity are deprioritized for clinical and research use. In spite

of the use of a large number of different sequence proto-

types and products in this study, a number of agree-

ments and encouraging results are reported. Phantom

calibration of T1 mapping which obviates the need for

local reference ranges, enabling the establishment of a

“T1 standard” to facilitate multi-center T1 studies, comes

closer, with further work required to address this.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12968-020-00613-3.

Additional file 1: Supplementary Movie 1. High-resolution imaging
of phantom 30E017 at baseline (October 2015, Left panel) and at two
years post manufacturing (Right panel). (MP4 69,750 kb)

Additional file 2: Supplementary file containinglist of Supplementary
Tables and Figures referenced in the main text.
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