
*T: A Multithreaded Massively Parallel Architecture

R. S. lVZkhZl 00 G. M. Papadopoulos 01 Arwind 11

Digital Equipment Corp.

Abstract

What should the architecture of each node in a general pur-

pose, massively parallel architecture (MPA) be? We frame

the question in concrete terms by describing two fundamen-

tal problems that must be solved well in any general purpose

MPA. From this, we systematically develop the required log-

ical organization of an MPA node, and present some de-

tails of *T (pronounced Start), a concrete architecture de-

signed to these requirements. *T is a direct descendant of

dynamic dataflow architectures, and unifies them with von

Neumann architectures. We discuss a hand-compiled exam-

ple and some compilation issues.

1 Introduction

There appears to be widespread consensus that general pur-

pose supercomputers of the future will be Massively Parallel

Architectures (MPA’s) consisting of a number of nodes in

a high speed, regular interconnection network. This view

has been eloquently summarized in the slogan “attack of

the killer micros” by Eugene Brooks of Lawrence Livermore

Laboratories [8]. In this paper, we focus on the organization

of each node in such an MPA.

In an MPA, inter-node communication latency is ex-

pected to be high and caching global locations is difficult.

In Section 2 we present this issue in concrete terms by de-

scribing two specific latency-related problems that must be

performed well by MPA nodes. In Section 3 we systemati-

cally develop the logical node organization of *T, that ad-

dresses these problems. Pronounced Start, it is named after

00 This work ~a~ done while the author was at MIT. Address: Dig-

ital Cambridge Research Laboratory, One Kendall Square, Bldg

700, Cambridge, MA 02139, USA;

eraatl: nikhil@crl. dec .com; phone: 1 (617) 621 6639

01,11 ~ddre~~: MIT Laboratory for Computer Science,

545 Technology Square, Cambridge, MA 02139, USA;

errsad: {greg, arvind}(fmit. edu; phone: 1 (617) 253 {2623,6090}

Funding for the work at MIT is provided in part by the Advanced

Research Projects Agency of the Department of Defense under

Office of Naval Research contract NOO014-89-J-1988.

Permlsslon to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the publicatmn and

Its date appear, and notice is gwen that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish.

requires a fee and/or speclflc pemusslorr.

tiIT MIT

the principal communication instruction in the machine. It

can also be read as an acronym for “multi- (*) Threaded”,

a principal feature of the machine. In Section 4 we present

some instruction set details of the logical organization of *T,

and in Section 5 we discuss the coding of DAXPY. In Sec-

tion 6 we discuss possibilities for physical implementation of

*T, and we conclude in Section 7 with some discussion of

compilation issues.

*T is the latest step in the evolution of dynamic dataflow

architectures, starting with the MIT Tagged-Token Dataflow

Architecture (TTDA, [5, 7]), the Manchester dataflow ma-

chine [16] and the ETL SIGMA- I [19]. In 1987-88, the as-

sociative waiting-matching store of these machines was re-

placed by an explicitly managed, directly addressed token

store, by Papadopoulos and Culler in the Monsoon architec-

ture [25, 10]. Nikhil and Arvind’s P-RISC architecture [24]

then split the “complex” dataflow instructions into separate

synchronization, arithmetic and fork/control instructions,

eliminating the necessity of presence bits on the token store

(also known as “frame memory”). P-RISC also permitted

the compiler to assemble instructions into longer threads,

replacing some of the dataflow synchronization with conven-

tional program counter-based synchronization (in retrospect,

Monsoon could also be viewed in this light [26]). *T is the

latest step in this direction, eliminating the prior distinction

between processor and I-structure nodes, land attempting

also to be compatible with conventional MPA’s based on

von Neumann processors.

Throughout this evolution, our system vzew of’ an MPA

(I.e., viewing each node of an MPA as a black box) has

remained constant, and is in fact quite unique to dataflow

architectures. Inter-node traffic consists of tokens (i. e., mes-

sages) which contain a tag (or conttnuatwm, a pair com-

prising a context and instruction pointer) and one or more

values. All inter-node communications are performed with

splzt-grhase transactions (request and response messages);

processors never block when issuing a remote request, and

the network interface for message handling is well integrated

into the processor pipeline. Thus, TTDA, Monsoon, P-RISC

and *T are properly viewed as steps in the evolution of the

node architecture of dataflow MPA’s.

Important architectural influences in our thinking have

been the seminal Denelcor HEP [30] and Iannucci’s

Dataflow/von Neumann Hybrid architecture [20], which in-

corporated some dataflow ideas into von Neumann proces-

sors for MPA’s (similar ideas were also expressed by Buehrer

and Ekanadham [9]). ETL’s EM-4 [28], Sandia’s Ep-

silon [15], Dennis and Gao’s Argument-Fetching Dataflow

machine [14], and Dennis’ multithreaded architecture [13]

are also dataflow machines supporting threads. Fiually, the

Network Interface Chip by Henry and Joerg [18] has had a

direct influence on our implementation of *T.

@ 1992 ACM 0.89791 -509-7/92/0005/0156 $1.50 156

Software considerations, Z.e., compiling, have played an

equally important role in the design of *T. Compilation of

the high-level parallel programming language Id has been

central to our research since the beginning [7]. Nikhil, in [23],

and Culler et al in [1 I] proposed P-RISC-like compilation

models extended to allow additional instruction sequencing

constraints, making explicit the notion of a thread. Culler’s

model, the Threaded Abstract Machine (TAM) has been im-

plemented by his group and has been in use for almost two

years, providing a wealth of data on the nature of threads,

locality and synchronization [29]. This experience has di-

rectly influenced the *T design.

Many researchers have arrived at similar mechanisms

starting from other vantage points (e. g., Halstead and Fu-

jita’s MASA [17] and Maurer’s SAM [22]). There are very

interesting comparisons to be made between *T and re-

cent multithreaded architectures, notably the Tera Com-

puter System [3] (a descendant of the HEP), Alewife [I] and

the J-Machine with Message Driven Processors (MDPs) [12].

Undoubtedly, aspects of these machines will influence con-

crete *T designs.

2 Fundamental Problems in an MPA

A general purpose Massively Parallel Architecture (MPA)

consists of a collection of nodes that communicate using a

pipelined, message based interconnection network (see Fig-

ure I). Each node contains a processor and some local mem-

Interconnection
Network

dlPM ● ● ●

b

PM

Node Ncde

Figure 1: Structure of a massively parallel architecture.

ory. Given a node N, we refer to its own memory as local

memory and to other memories as ~ernote memortes.

A consequence of message based communication is that

remote accesses must be structured as split transactions. If

node N1 wants to read the contents of location A in node

N2, it involves two messages: a request message from N1 to

N2 carrying the address A and a return address identifying

Nl, followed by a response message from N2 to NI carrying

the contents of location A.

Memory addressing: although we believe it is important,

we do not consider here the issue of whether the memories in

the different nodes belong to a single, global address space or

whether the memory in each node has its own local address

space. We also do not consider here the issue of virtual

memory.

Localzty and memory latenczes: In an MPA, the latencies

of local vs. remote memory accesses typically vary by orders

of magnitude. Further, remote memory latencies grow with

machine size— the best-case scenario is that remote access

time will vary with log N, where N is the number of nodes.

We now present two problems which, we hope the reader

will agree, a general purpose MPA must solve efficiently in

order to have good performance over a wide variety of ap-

plications [6].

2.1 The Latency of Remote Loads

The remote load situation is illustrated in Figure 2.

Variables A and B are located on nodes N2 and N3, respec-

N1

CTXT

1 I

c

VA

VB

B

PA 6A

pB &B

Figure 2: The remote load problem: Node N1 to compute

difference of variables in nodes N2 and N3

tively, and need to be brought to node NI in order to com-

pute the difference A-B in variable C. The basic intent of

the computation is expressed by the following statement se-

quence executing on NI:

VA = rload pA

VB = rload pB

C= VA-VB

where PA and pB are pointers to A and B, respectively. The

first two statements perform remote loads, copying values

from A and B into VA and vB, respectively. The last statement

computes the difference and stores it in C.

The figure also shows a variable CTXT, which is the contest

of the computation on NI. It could be, for example, a stack

pointer, a frame pointer, a “current-object” pointer in an

object-oriented system, a process identifier, etc. In general,

variable names like vA, VB and C are interpreted relative to

CTXT .

The key issue in remote loads is how to deal with the

long latencies in the communication system, Z.e., how to

avoid idling NI’s processor during the remote load opera-

tions. Note that in most architectures, these latencies are

predictable because they depend mainly on the distance be-

tween the nodes.

2.2 Idling due to Synchronizing Loads

We extend the remote load problem by now assuming that A

and B are computed by concurrent processes, and we are not

sure exactly when they will be ready for node NI to read.

We need some form of synchronization to ensure that the

remote loads from N1 read the values only after they have

been produced. This is an example of producer-consumer

parallelism.

157

Unlike the remote load problem, the latency here is not

just an architectural property— it also depends on schedul-

ing, and the time it takes to compute A and B, which may

be much longer than the transit latency. In particular, the

unpredictable Iatencies of synchronizing loads are a problem

even when they are local.

3 Solutions

3.1 Caches

Classically, caches are used to mask memory latency, and

we could add a cache to each node to hold copies of remote

locations. However, cache coherence is a then significant

problem: multiple copies of a location residing in different

nodes’ caches must be kept consistent. Further, a processor

may still idle when there is a cache miss. A possible solution

for the distributed cache coherence problem is to use direc-

tories; and for the cache miss problem, to multiplex between

a small number of contexts to cover cache loading. Imple-

menting this appears non-trivial (see MIT’s MASA [17] and

Alewife [I], and Stanford’s DASH [21], for example). In any

case, the proposals in this paper may be seen as orthogonal

to cacheing solutmns. Further, while distributed cacheing

helps in the remote load situation, it does not offer anything

for the synchronizing load problem.

3.2 Multithreading

Another solution is to multiplex amongst many threads:

when one thread issues a remote load request, the processor

begins work on another thread, and so on. Clearly, the cost

of thread-switching should be much smaller than the latency

of the remote load, or else the processor might as well wait

for the remote load’s response.

Contmuatzons on messages: A consequence of multi-

threading is that messages should carry contznuatzons. Sup-

pose, after issuing a remote load from thread T1, we switch

to thread T2 which also issues a remote load. The responses

may not arrive in the same order— for example, the re-

quests may travel different distances, through varying de-

grees of congestion, to destination nodes whose loads differ

greatly, etc. Thus, each remote load and response should

carry an identifier for the appropriate thread so that it can

be re-enabled on the arrival of a response. We refer to these

thread identifiers as continuations.

Adequate contznuatz’on namespace: The longer the la-

tency of remote loads, the more threads we need to avoid

idling the processor. Thus, it is important that we have

a continuation rumnespace that is large enough to name an

adequate number of threads waiting for remote responses.

The size of this namespace can greatly affect the pro-

gramming model. If the latency of a single remote load is 1,

we would expect that at any given time, we need no more

than about 1 active threads in the processor to cover remote

loads. However, if the programmer (or compiler) cannot pre-

dict the scheduling of these threads precisely, he may need

many more than 2 threads in the hope that, dynamically,

1 of them are ready to run at any given time. Thus, if the

continuation namespace is too small, it requires more precise

scheduling of threads, which in turn limits tlhe programming

model.

If we generalize our remote transaction model to include

not just remote loads, but (a) synchronizing remote loads

and (b) remote parallel procedure calls, then it becomes ex-

tremely difficult for the programmer/compiler to schedule

threads precisely. Therefore, it is essential to have a large

continuation namespace.

The size of the hardware-supported continuation names-

pace varies greatly in existing designs: from 1 in DASH [21],

4 in Alewife [1], 64 in the HEP [30], and 1024 in the Tera [3],

to the local memory address space in Monsoon [25], Hybrid

Dat aflow/von Neumann [20], MDP [12] and *T. Of course,

if the hardware-supported namespace is sm all, one can al-

ways virt ualize it by multiplexing in software, but this has

an associated overhead.

3.3 Fine Grain Multithreading: forks and joins

So far, we have only talked about efficie d multiplexing

amongst existing threads. However, if thread creation and

synchronization are also sufficiently cheap, the multithread-

ing idea can be advantageously taken further. Instead of the

rload-rload-subtract sequence earlier, we could fork sepa-

rate threads for the two rloads and synchronize them when

both have completed. Then, instead of taking four message-

transit times, we could perhaps do it in two (since they occur

in parallel):

fork Ml

Li : VA = rload PA ; (A)

jump M

Ml : VB = rload pB ; (B)

jump M

Ii: join 2 J ; synchronizat ion of responses

C= VA-VB

This kind of parallelism is available in all dataflow architec-

tures [4]. Fork initiates a new thread at label HI. The parent

thread continues at L1, issuing the remote load (A), which

suspends to await the response. This allows the just-forked

thread at Ml to run, which issues the remote load (B), which

also suspends to await the response. When the first response

arrives (say, (A)), the first thread resumes, completing the

instruction at L1 by storing the arriving value into vA, and

jumps to N. Similarly, when the second response arrives (B),

the second thread resumes, completing the instruction at Ml

by storing the arriving value in VB and also jumping to N.

The join instruction at N is executed twice, once by each

thread. Each time, it increments J (initialized to O, we as-

sume) and compares it to the terminal count (2). If J < 2,

the thread dies, otherwise it continues. In general, if the

terminal count is c, then c – 1 threads arriving at ~ will die

and the only the last one continues to perform the sequel.

Again, the cost of fork and join should be small com-

pared to the latencies of the remote loads that we are trying

to cover. Note that modern RISC techniques such as de-

layed loads, cache prefetching, etc. are also modest, “peep-

hole” examples of the use of fork-join parallelism to overlap

long-latency loads with useful computation, lbut they do not

generalize well to remote loads in MPA’s.

158

The behavior at m is called a join synchronizahon, and is

very important. A significant number of messages entering a

node may be destined for join synchronizations. In an inner-

product, at each index we remote load A[j’] and B[j], join the

responses, and multiply. Note that for all but the last thread

entering a join, the amount of work done is very small— the

thread increments a counter, tests it and dies. For a two-way

join, this may be as small as testing and setting one bit. It

is important that the processor not take a large hiccup to

do this.

Exactly the same kind of join synchronization is also

needed for softwa~e reasons. For example, a function that

sums the nodes of a binary tree may have exactly the same

structure as the above program with the two rloads simply

replaced by remote function calls to sum the left and right

subtrees, respectively, and the subtraction in the final line

replaced by addition. Now, the latencies include both com-

munication and the time to perform the subcomputations.

This leads to another observation: for messages that ar-

rive at highly unpredictable times (as in the tree sum) or at

widely separate times (even if predictable) the rendezvous

point J for join synchronization must typically be Zn mem-

ory, not regtstem. The reason: processor utilization will

be low if registers remain allocated to a process for unpre-

dictable and possibly very long durations.

3.4 Messages and Message-Handling

Our first approximation to a message format is:

MA: < rzsg.type, argl , arg2, . ..>

Node address NA is used for routing, and may be consumed

in transit. ~sg-type specifies how the message should be han-

dled. The remaining arguments depend on the message type.

Figure 3 shows the messages for an rload where &A and *A

mean the address and contents of A, respectively.1 The val-

N1
N2 : <rload_request,

&A, Nl, Ll, C’IXT>

4

N1 : <rload_response, n

Ll, CTXT *A>

Figure 3: Messages to perform a remote load.

ues NI, L1 and CTXT together constitute a continuation, i.e.,

a complete specification of the thread awaiting the response.

For fast vectoring to a message handler, it is convenient

for the “message type” field to be the instruction pointer of

the handler:z

HA: < 1P, argl, arg2, . ..>

To keep up with high incoming message rates, a hardware

network interface can accept and queue them, to be con-

sumed by the processor at its convenience (Figure 4). Of

1Figure 3 depicts the logical information in messages; Clever en-

coding can compress it significantly.

2 Dally’s Message Driven Processor [12] also uses an 1P in the first

field of a message.

From
Network

L

H
KKr-

Message

queue 71
I

Processor

HIP

1 1

Fl
RI
R2

● *

se

● *

hLoczl Memory

Figure 4: A node with network interface.

To
Network

course, this may add to the latency of a remote load. The

message formatter constructs outgoing messages.

The actual handling of an rload request at N2 is simple

and short: read location A and send the response message

to NI. Handling the response at N1 may be broken into

two parts: (a) completing the unfinished rload instruction,

and (b) continuing the execution of the thread. Part (a) is

always brief. Part (b) is also brief if it just executes a failing

join.

Both N1 and N2 will typically be executing some other

thread when these messages arrive. How can we handle

these messages quickly (so that latency is low) and with

minimum disruption, Z.e., how well is message-handling in-

tegrated with normal processing in the node? The answer to

this question is crucial to the eficient operation of an MPA.

The overhead can vary from hundreds of instruction-times

in Thinking Machines’ CM-5 and Intel’s Touchstone, where

message-handling is not well integrated, down to under ten

instruction-times in the MDP [12], and further down to a

single instruction-time in machines like Monsoon [25] and

the EM-4 [28] where message-handling is totally integrated

into the processor pipeline.

There is good reason to insist that message-handling

should not compromise excellent single-thread performance

in an MPA node. First, existing SIMD/SPMD applications

have long sequential threads. Second, even in more dynamic

applications, certain sequential critical sections (such as stor-

age allocators) must be executed as quickly as possible.

Third, users may wish to develop code on a l-node MPA.

Fourth, uniprocessor libraries should be portable to MPA

nodes without degrading their performance. We note that

159

competitive single-thread performance is an important goal

in the Alewife [1] and Hybrid Dataflow/von Neumann [20]

machines.

Interrupts are inadequate: An arriving message could

interrupt the processor, which responds, and then resumes

normal computation. Modern processors achieve high speeds

through deep pipelining and more processor state (registers,

caches), and any change in context incurs a large penalty

draining, saving, flushing, reloading, etc. Thus, frequent

short threads, such as rload handlers and messages that go

into failing joins are likely to be severely disruptive. This

may be alleviated by replicating processor state so that the

main thread’s state does not have to be saved and restored

during interrupts. Still, the main thread’s performance is af-

fected adversely, because each incoming message takes away

cycles and may require processor pipelines to drain and re-

fill. Frequent interrupts for message handling are thus not

desirable.

Separate Coprocessor: We can offload the burden of

short, simple handlers into separate, asynchronous copro-

cessor, as shown in Figure 5. This is only a functional

decomposition, or logical organization of the node; we will

discuss physical organizations in Section 6.

We will refer to the original, conventional main proces-

sor as the data processor (Dl?). It executes threads supplied

through the corztznuatton queue and is optimized for long,

sequential runs.

The remote memory request coprocessor RMEM handles

incoming rload requests. lt accesses local memory, and

sends the response directly, without disturbing DP. Simi-

larly, RMEM also handles rstore requests.

The synchronization coprocessor SP handles rload re-

sponses returning to this node. The contents of the message

are loaded directly into its registers, with the first message

field (1P) loaded into its PC, so that it is vectored directly

to the appropriate handler. The basic action of SP is thus to

repeatedly load a message from its message queue and run

it to completion; the run is always non-suspensive and is ex-

pected to be very short. SP completes the unfinished rload

by storing the value from the message (now in sVI) into the

destination location. After this, it places the <Ll+l ,CTXT>

continuation into the continuation queue, to be picked up

later by the main processor DP. Even better, if the next

instruction is a join, SP executes it and enqueues the con-

tinuation only if it succeeds. Thus, the main processor dP

does not have to execute disruptive join instructions at all.

3.5 Handling Synchronized Loads

We observed the need for synchronization if the remote loads

for A and B must wait for corresponding producer computa-

tions. We follow the well-known idea of appending presence

bn$s to each memory location indicating whether it is FULL or

EMPTY.3 The variables A and B are initially marked EMPTY.

When values are written there, they are marked FULL, e.g.,

by the RMEMS when they perform the stores. Thus, the re-

mote loads should succeed only after the locations become

FUi.IL ,

3 Our development does not depend on it— presence bits could be
interpreted in ordinary memory.

Busy wading: When N1’s rload request for A arrives, N2

could simply return the entire location, presence bits and

all. N1 would then test the response, and may choose to

try again, perhaps after some delay. Unfortunately, this can

waste network bandwidth, and may also wi~ste cycles on N1

in order to test and perform the retries. This is essentially

the solution in the Tera [3] and Alewife [I], using traps in-

stead of explicit tests.

A data driven solution: We extend the presence bits to

have an additional state, PENDING. For a remote synchro-

nizing load, node N1 executes an iload instruction instead

of rload:

L1 : VA = iload pA

The only difference in the request message is a different

1P:

N2: <iload~equest , &A, NI ,Ll ,CTXT>

At N2, the iloadzequest handler tests the presence bits of

A. If FULL, it responds just like the rload-request handler. If

EMPTY, it attaches the arguments (Hi ,Ll, ,CTXT) to location

A, marks it PENDING, and produces no response. When the

producer later stores the value at A, N2 iigain checks the

presence bits. If EMPTY, it simply stores the value there and

marks it FULL. If PENDING) it not only stores the value there,

but also constructs and sends the response to the waiting

load. In all cases, N2’s response message fcn an iload looks

identical to an rload response.

In general, many loads may be pending at A, so N2 needs

to remember a set of pending requests at location A. Thus,

one of the costs is that N2 must perform some storage man-

agement to construct this set. However, a simple free-list

strategy may be used, since set components are of fixed size

and are not shared. Thus, it does not matter if the remote

load request arrives before the value is ready— it simply

waits there until it is ready. There is no additional message

traffic for the synchronizing remote load, and N1 does no

busy waiting at all. As far as NI is concerned, an iload is

just an rload that may take a little longer–- the interface is

identical.

This is essentially the dataflow notion of I-structures [7],

but we note that it is more general— a variety of other syn-

chronization primitives (such as Fetch-and-d [2]) could be

implemented using the same methodology. Finally, note that

these message handlers are still simple enough to be handled

entirely by the RMEM coprocessor, without disturbing DP.

4 *T Instruction Set Architecture

Figure 5 depicts the logical view of a *T node with three

separate, asynchronous coprocessor, each of which can be

regarded as a conventional (e. g., RISC) processor with a

few extensions. In this section, we flesh out this view by

describing these extensions. Since RMEM and SP are very

similar, our description here will not distinguish them (we

postpone to Section 6 a more detailed discussion of physical

implementations that may separate or multiplex them).

Both SP and DP execute instruction streams. For clarity,

we distinguish labels for the two coprocessor by the sub-

scripts S and D, respectmely (e. g., Ls-, LD, Ms, MD , . . .)

160

From

Net work

We will look

now it is enough

IL
Network

Interface

b
Message

Formatter

h Mess.,. ‘i’

t

?

r Message

7

queue - queue

Memory
Request
C.nrwe.mr 1-l—.=..
(RMem) SIP

SIT
Svl
SV2

●

9

●

1111

Continuation
Que..
(<IP,FP> psi,,)

I
Lccsl Memmy I

Figure 5: A *T node: separate coprocessor for short threads.

at messages in more detail shortly, but for

to know that each message has the form:

<1P, Address, Valuel , Value2 , . ..>

Address is a global address that identifies a unique destina-

tion node in the MPA, and is typically a frame pointer FP or

an address of a location in the heap. The message is auto-

matically routed there. Of course, messages from a node to

itself are short-circuited back directly.

We assume that a corstezt for a computation is repre-

sented simply by an address in memory. In the spaghetti

stack model, this may be a stack pointer or a pointer to a

frame in the stack. In an object oriented model, this may be

a pointer to an object. For uniformity, we will use the term

Frame Pointer FP to refer to a context.

We assume that frames or contexts do not span nodes

in the MPA, i.e., each context restdes entirely wzthin one

node of the MPA. Thus, FP may be regarded as a pointer

to the collection of local variables of that context. A frame

pointer encodes a node number. Thus, a continuation is

given by <1P, FP> where 1P is a pointer to an instruction on

the same node encoded by FP. This model of locality is not

restrictive in any way— parallel procedure calls and loop

iterations may be distributed to different nodes by giving

them separate contexts (see [23] and [11, 29] for more on

programming and compilation).

It may be desirable to allow contexts to migrate across

MPA nodes for load balancing and locality reasons. How.

ever, that capabihty is orthogonal to our discussion here and,

for simplicity, we assume that frames, once allocated, do not

migrate (a virtual-to-physical FP mapping, plus forwarding,

may be added in the manner of the

4.1 The Data Processor

To
Network

MDP [12] or Empire.4

The Data Processor DP is a superset of a conventional

RISC processor, with a conventional repertoire of register-to-

register instructions and ability to manipulate local memory

using conventional load and store instructions. Its program

counter is called dIP (“Data processor Instruction Pointer”).

one of its registers, called dFP, is assumed, by convention,

to contain the current Frame Pointer for the thread being

executed by the DP. Being a conventional RISC processor,

the Data Processor is optimized to run sequential threads

efficiently. It obtains the starting points of these threads

from the continuation queue using a next instruction. Each

such thread is run to completion, i.e., there is no concept of

a thread “suspending” in the Data Processor. On comple-

tion of a thread, if there is no new thread available from the

continuation queue, the Data Processor simply waits until

one is available.

In addition to conventional RISC instructions, the Data

Processor can execute a few additional instructions which are

summarized in Figure 6. (The notation Register [j] refers to

the j’th DP register.) Most of them send messages into the

network. These are non-blocking, i. e., the Data processor

continues executing after sending a message (so, they are

implicit forks). The message can cause threads to be sched-

uled on the other nodes or on the same node, and a later

response may deposit values in the sender’s frame.

The start instruction starts a new thread in a different

4Empire was the machine being built at IBM Research based on
Iannucci’s Dataflow/von Neumann Hybrid Architecture [20].

161

D P instruction Semantics

start rIP, rFP, rV Send message: <L.s, FP, V>

next Load (LD,FP’)

I from continuation in

Icontinuation queue

into registers (dIP, dFP)

(so, execution continues at L~)

rload rIP, rA Send message:

<rload_handler~, A. L~ , FP>

rstore rA, rV, rIP \ Send message:

<rstoreJandlerS, A, V, L.s, FP>

L.s = Register [rIP], FP = Register [rFP],

V = Register [rV] , A = Register [rA]

Figure 6: DP extensions to conventional instruction set.

context. For example, suppose function F calls another func-

tion G. The frames for these functions may be on different

nodes (hence, different contexts). Thus, start instructions

are used by F to send arguments and initiate threads in

G, and start instructions are used by G to to send results

and resume threads in F. Since start instructions are non-

blocking, it is possible to perform parallel function calls and

coroutines. Note that instruction pointer L5 on the start

message is a label for the target node’s sP, not DP.5

The next instruction terminates the present DP thread

by loading a new continuation, after which the DP is execut-

ing a new thread. Note that there is no implicit saving or

restoring of registers. In general, at the beginning of a new

thread, no assumptions can be made about the contents of

any DP registers except dFP. We also say that registers are

“volatile” or “ephemeral” across threads. This instruction is

similar in effect to Monsoon’s STOP instruction [25] and the

MDP’s SUSPEND [12].

We will discuss the rload and rstore instructions shortly,

after describing the Synchronization Coprocessor.

4.2 The Synchronization Coprocessor

sP, the Synchronization Coprocessor, also looks very much

like a conventional RISC microprocessor— it has a program

counter sIP, general purpose registers, and it can load and

store to local memory. Unlike a conventional RISC, it is

tuned for very rapid disposition of incoming messages in-

stead of the computation of arithmetic expressions. In par-

ticular, some of its registers (sIP, sFP, sVI, sV2, . ..) are loaded

directly from messages, there is datapath support for join

operations, and it can post <FP ,Ln> pairs into the continu-

ation queue. In the following, we do not distinguish it from

RMEM, which is very similar.

Like a dataflow processor, SP is triggered by the arrival

of a network message (it simply waits, if there is none avail-

able). When it picks up a message, its registers sIP, sFP, sVI,

SVZI, etc. are loaded with the corresponding values from the

5A start message corresponds exactly to a dynamic dataflow to-
ken [7]— FP is the context or color, L5 is the instruction pointer or
statement number and, of course, V is the value on the token.

sP instruction Semantics

start rIP) , rFP, rV Send message: <~.s, FP’ , V>

next Load (Ls,A,VI,V2, . ..)

I \ from message in

I Imessage queue into registers

SIP, SFP, SV1, SV2,, . . .

I I (s0, eXeCUtiOn continues at Ls). .
post rIP, rFP Post <FP’ , LD>,-

I into continuation rlueue

join ctr, t., rIP ?Iemory [FP + ctrl : =

Memory [FP + ctr] + 1

If Memory [FP + ctr] > tc then

Post <FP, LD>

into continuation queue

Hemory [FP + ctr] := O

Ls = Register [rIP>] , LD = Regisiter[rIP],

Fp> = Register [rFP] , FP = Register [sFP]

V = Register [rV], A = Register [rA]

Figure 7: SP extensions to conventional instruction set.

—

message, after which it begins executing instructions from

the address in sIP. The unconventional instructions of SP are

summarized in Figure 7. (The notation Register [j] refers to

the j’th SP register.)

The start instruction is identical to the Data Proces-

sor’s start instruction— it starts a new thread in a different

context. This allows it to respond to incoming messages di-

rectly. For example, in an rload request message, the 1P

field points to rload~andlers, the address field contains the

address to be read, and the VI and V2 fields contain the re-

turn continuation (return 1P, return FP). The handler code

looks like this:

rload_handler S:

load rX, sFP [01 -- sFP has addr to read (A)

start sVI, sV2, rX -- create response message

next -- done; handle next message

Similarly, here is the handler for remote stores (the message’s

VI, V2 and V3 fields contain the value to be stored and the

return continuation, respectively):

rstore~andlers:

store sFPIO] , sVI -- sFP has addr to write (A)

start SV2, SV3, o -- create acknowledgment me9sage

next -- done; handle next message

The acknowledgement may be used to ensure serial

consistency— the destination thread executes under a guar-

antee that the store has completed— or to return miscella-

neous status information. Omitting the return continuation

from the message and the start instruct~on from the han-

dler implements unacknowledged stores. Similar handlers

may also be coded on the MDP [12].

The next instruction ends the present SP thread by

reloading its registers from the next message, after which

it is executing that message’s handler.

The post instruction allows SP to post a thread to DP by

inserting a continuation into the continuation queue. Recall,

this thread will be executed by the DP when it is popped off

162

the continuation queue by the DP issuing a next instruction.

Here is a typical SP code sequence that executes for an in-

coming message that loads label Ls into sIP (for example,

this message may be the response to a remote load):

L.s:

store sFP[T] , sV1 -- store incoming vat at frame offset T

post LD , sFP -- enable thread LD with
.- thz9 frame m DP

next -- done; handle next message

The DP thread at LD is assured that the remote load has

completed.

The join instruction allows fast join synchronization us-

ing synchronization counters in the frames. Because this is a

very frequent operation for the sP, we provide special hard-

ware support to accelerate join operations. The join instruc-

tion implements an atomic test-and-increment semaphore

on a location in the current activation frame called a join

counter. The join instruction conditionally posts a thread to

the continuation queue only if incrementing the join counter

causes it to reach the terminal count (given by tc). It is

assumed that a newly allocated activation frame will have

all of its join counter locations initialized to zero. Observe,

the join instruction implements a self-cleaning protocol by

returning the counter to zero after the terminal count has

been reached (this is similar to the wait-match operation in

dataflow architectures [4]).

SP message handlers correspond almost exactly to relets

in the TAM model [1 I]. This style of message handling is

also easy to code for the MDP [12], although there is no ded-

icated logic for fast n-ary join synchronization. The salient

difference is that in *T the message handlers (inlets) and the

computation threads are processed by two logically distinct

and asynchronous processors.

Turning back to DP, it can initiate remote loads and

stores using rload and rstore instructions, each of which

sends a message. The destination node is implicit in the

global address A, which is used to route the message there.

We have already shown the remote rload handler code. Ob-

serve, the response contains FP in its address field, so it is

routed back to the node that issued the rload. Since rload

and rstore are also forks, we can initiate many remote ac-

cesses before receiving any response. The responses may

return in any order,

Note that the typical rload sequence copies a remote

value into a local fiarne location, and not a register. Al-

though this means that another (local) load instruction is

necessary to move it from the frame to a register, the choice

is deliberate: it allows the thread that issued the rload to

easily relinquish DP before the result comes back. Our choice

recognizes the fact that storing the value in the frame would

be necessary anyway if rload returned to a failing join or if

it was a synchronizing load.

Address Hashing: It is useful to have different kinds of

address maps for different kinds of objects. For example, we

may wish to interleave large data structures such as vectors

and matrices across the MPA nodes. On the other hand,

we may wish code segments, stack frames and small objects

to be addressed linearly within a node’s local memory. Of

course, these variations in address hashing could be per-

formed in software, but with large overhead. In *T we in-

tend to provide hardware support for address randomization

in a manner similar to the IBM RP3 [27] or the Tera [3]. A

logical place for this mapping is in the Message Formatter.

5 An example: DAXPY

DAXPY is the inner loop of the Linpack benchmark:

fori=l toNdo

Y[i] = a * X[i] + Y[i]

We assume that the current frame (context) contains the fol-

lowing data, with symbolic names for the frame slots shown

at left (in the codes below, the dFP and sFP registers point

at this frame):

8
XP

YP

A

YL im R
...
Loop trip

pointer to X[l]

pointer to Y [1]

loop constant A

pointer to Y [N]

. . .

5.1 Uniprocessor Code

Uniprocessor *T code for the DAXPY loop is shown below

(in a uniprocessor, there is only local memory, which con-

tains arrays x and Y). We use names beginning with “r” as

symbolic names for general purpose registers. For clarity,

the loop has not been unrolled (a compiler would typically

do this).

load rXP, dFP [XP] -- load ptr to X

load rYP, dFP [YPI -- load ptT to Y

load rA, dFP [A] -- load loop const: a

load rYlim, dFP [YLim] -- load loop const: Y ptr limtt

Czlp rB ,rYP, rYLirz

j gt rB , OUT

LOOP :

load rXI, rXP

load rYI, rYP

add rXP, rXP, 8

fmul rTmp , rA, rXI

f add rTmp, rTmp ,rYI

store rYP, rTmp

add rYP, rYP,8

cmp rB, rYP, rYLim

j le rB, LOOP

OUT:

. . . loop sequel . .

The code runs entirely

-- compare ptr to Y wzth linut
-- zero- trap loop if greater

-- X[i] mto rXI (Ll)

-- Y[i] mto rYI (L2)

-- mcr ptr to X

-- a*X[i]

-- a*X[i] + Y[i]

-- sto~e znto Y[i] (S1)

-- zncr ptv to Y
-- compave pir to Y wzth limzt

-- fall out of loop zf greater

within the Data Processor (in a

uniprocessor, SP plays no role).

5.2 Multiprocessor Code: Using rloads to

Mask Latency

Suppose X [11 and Y [1] are on remote nodes of a multipro-

cessor. The two loads (Ll) and (L2) need to be changed

to remote loads. We will issue rloads to initiate the move-

ment of X [i] and Y [i] into the local frame, and we will free

up the processor to do other work. Each response arrives

at sP, deposits the value into the frame, and tries to join

with the other response at frame location CI. When the join

163

succeeds, SP enables the thread in the Data Processor that

computes with these data, executes an rstore and continues

to the next iteration.

When the loop completes, it gives up the Data Proces-

sor by executing a next instruction. Meanwhile, the rstore

acknowledgments all arrive at SP and join at frame location

.2. The continuation of this join is the loop sequel; the se-

quel executes only after all rstores have completed. Here is

the augmented frame layout and the new code (it is easier

to start reading the code at the Data Processor section):

N

XP

YP

A

YL im

XI

YI

cl

C2

. . .
Loop trip

pomtm to X[ll

pointer to Y[l]

loop constant A

pointer to Y[N]

copy O} XII]

copy of YII]

join counter for rloads

~ozn counter for rstores

;;
;; SynchTontzatton Processor Message Handlers

;;
LIs:

store sFPIXI] , rvl --

join cl, 2, CONTIIWED --

next .-

L2~:

store sFPIYI] , rvl --

join cl, 2, CONTINUED -–

next --

si~:

load rN, sFP[N] --

join c2, rN, OUTD --

;;

; ; Data %ocessor Threads

;;

load rXP, dFP [XP] --

load rYP, dFP [YP] --

load rYlim, dFP [YLim] --

-Crop rB, rYP, rYLim --

j gt rB, OUTD .-

LOOPD :

rload rXP , LIs .-

Tload rYP, L2s --

next

COIiTINUED :

load

load

load

load

load

load

fmul

fadd

rXI, dFPIXI] --

rYI, dFPIYI] --

rA, dFP[A] --

rXP, dFP[XP] --

rYP, dFP [YP] --

rYLim, dFP [YLim] --

rTmp, rA, rXI --

rTmp, rTmp, rYI --

rstore rYP, rTmp, SIS --

add rXP, rXP, 8 -.

add rYP, rYP, 8 -.

store dFP[XP] , rXP --

store dFP[YP] , rYP --

-crop rB, rYP, rYLim --

store away incoming X [1]

attempt continuation of loop

next message

store away mcomzng YII]

attempt continuation of loop

next message

total number of 9toves

sequel when all stores complete

load ptT to X

load ptr to Y

load loop const: Y ptr hm~t

cOmpaTe ptT to Y wtth hmtt

Zt?TO-tT%p [OOP Zf gTr72teT

initiate [oad X[i] (Ll)

mztzate load Y[i] (L2)

load COpy of X [1]

load COPY of Y [1]

load loop const: a

load ptr to X

load pt7 to Y

load loop const: Y ptr lzmtt

a*X [i]

a*X[i] + Y[i]

store mto YII] (S1)

%ncvement ptr to X

zncTement ptr to Y

store pt? to X

store ptT to Y

compaTe ptr to Y with limit

jle rB, LOOPD -- fall out of loop zf greate?

next

OUTD :

. . . loop sequel . . .

5.3 Analysis of Multiprocessor Code

Here we see the clear and unpleasant consequence of our

choice that rloads deposit into the frame iind not into reg-

isters. Nowl the Data Processor performs more loads and

stores on the current frame than in the uniprocessor case.

The reason is that since we relinquish the Data Processor

at the next instruction after the rloads, the registers may

have changed by the time we get the Data Processor back

at label CONTINUED. Thus, we have to repeatedly reload the

the x and Y pointers and the loop constants A and YLim, and

repeatedly store the incremented x and Y pointers back.

Now, in a multiprocessor, all these extra instructions

may actually pay off when compared with nodes built with

conventional processors, because none of them are long la-

tency operations, they are all local. Suppose we have

an MPA built with conventional processors and the same

load/store instructions are used for remote locations (z. e.,

the code looks like the uniprocessor code presented earlier).

Here is a comparison of the dynamic instruction counts of

the Data Processor for the body of the inner loop for the

two codes, generalized for k-way unrolling:

Arith Br Local

-

Remet e

Ld St Ld St

Convent ional l+4k 1 0 0 2k k

processor

*T l+4kl 2 4+2k 2 12k k
I

Ld = load, St = store, k = degree of unrolling

Of the five arithmetic operations in the loop body, only the

cmp is not replicated on loop unrolling. For *T, even in an

unrolled loop, the two loop constants and the two pointers to

X and Y need to be loaded only once and the two incremented

pointers need to be stored only once; also, we count the next

instruction as a branch.

Assume that arithmetic, branch and local loads and

stores cost one time unit. For the conventional processor,

assume that the remote loads cost an average of 1 units (the

processor stalls waiting for the reference to complete), and

assume that each remote store costs only 1 unit because it

is likely to find the just-loaded Y [i] in the cache. For *T,

we charge one unit for rloads and rstores, since they are

non-blocking message sends. We charge no additional cost

for the thread switch at next, assuming sufficient ~arallelism

in the continuation queue to keep the processor busy with

other work. Therefore, *T will take less ,overall execution

time when,

9k+!2<2kl+5k+2

If the loop is unrolled 8 times (k = 8) then the *T code is pre-

ferred whenever the average global penalty is 1>2.4. That

is, if the expected value of the remote load/store penalty

is about 3 units or more, then the extra local instructions

executed by the multiprocessor code are worth it.

As a calibration point, consider a cache coherent multi-

processor with miss penalty of 100 units (see for example the

164

Stanford DASHIZI]). If the cache miss rate exceeds about 2–

3% then the multithreaded code would be prefered to relying

on the cache.

5.4 Other Optimization

Speculative Avozdance of the extra load’s and store ‘s: The

multithreaded code and coherent caching are not mutually

exclusive. If fact, as Culler has observed [1 1], the multi-

threaded code overhead can be mitigated by speculating that

the rloads and rst.res will hit the cache. We only pay the

cost of a thread switch in case the cache misses. In many

ways, this is the same tradeoff offered by the April processor

used in Alewife [1]. Here is the modified code.

;;

; ; .$ynchronzzatzon Processor Message HandleTs

;;
LI,s:

store sFPIXI] , rVl --

join cl, 3, CONTIMUED --

next -.

L2.s:

store sFPIYI] , rvl --

join cl, 3, CONTINUED --

next .-

L3,s:

join cl , 3, CONTINUED --

next --

Sls:

load rN, sFP [N] --

join c2, rN, OUTD --

next --

i;

; ; Data PToces80r Threads

;;

load rXP, dFP [XP] --

load rYP, dFP [YP] --

load rA, dFP [A] --

load rYlim, dFP [YLim] --

Crup rB, rYP, rYLk --

j gt rB , OUTD --

LOOPD :

rload rXP, L1.s --

rload rYP, L2s --

load rCl , dFP[cl] --

-Crop rB, 2, rCl --

store away inc0m2ng

attempt continuation

next message

9t0re away incoming

attempt continuation

next message

attempt continuation

next message

XII]

of loop

Y [1]

of loop

of loop

total number of stores

sequel when all stores complete

next message

load ptr to X

load ptr to Y

load loop const: a

load loop const: Y ptr lzmit

compare ptr to Y with limit

zero-trip loop if greater

inztmte load X [i] (Ll)

znztzate load Y [i] (L2)

load loin counter (L3)

TVJO responses armmd? (Cl)

jeq rB, FAST_CONTIBNJED -- yes, skip saue/mstore (Jlj

gamble failed; save modified regs--

store dFP [XP] , rXP --

store dFP[YP] , rYP --

start L3s, dFP, O --

next --

CONTINUED : --

load rA, dFP[A] --

load rXP, dFP [XP] --

load rYP, dFP [YPI --

load rYlim, dFP [YLim] --

store ptr to X (s2)

store ptr to Y (s3)

start 3rd synch thread (S4)

do somethmg else

gamble failed; restore regs

load loop const: a

load ptv to X

load ptr to Y

load loop const: Y ptr limit

FAST-CONTINUED : -- directly here If gamble succeeds

store dFP[cl] , 0 -- re-mitialzze ~o~n counter

load rXI, dFPIXI] ‘- load COp?j of XII]

load rYI, dFPIYI] -- load copy of YII]

fmul rTmp ,rA ,rXI -- a*X[i]

f add rTmp, rTmp, rYI -- a*X[i] + Y[i]

rstore rYP, rTmp, Sls --

add rXP , rXP ,8 --

add rYP ,rYP, 8 -—

Czlp rB, rYP, rYLim --

jle rB, LOOPD --

next

OUTD :

loop sequel .

store into Y[i] (s1)

zncs-ement ptr to X

increment ptr to Y

compare ptr to Y with lamzt

fall out of loop zf greater

Unlike the previous version, the data processor now loads

all relevant values into regist em before the loop, including

the loop constants a and ylim, gambling that it can keep

them there. After issuing the two rloads in statements L1

and L2, it peeks at the join counter c1 (L3, Cl). If the

two rload responses have already arrived (say, because of a

cache hit), CI will have been incremented from O to 2; the

gamble succeeds and we jump directly to FAST-CONTINUED.

In this case, we only load the values that arrived on the

message; the loop constants and x and Y pointers are already

in registers. Note also that after the two pointer increments

(add instructions), we no longer store the pointers back into

the frame.

If the gamble fails (CI < 2 in statement Cl), we save

modified registers (S2, S3), start a third (trivial) message

handler in SP which will synchronize with the returning

rload responses (S4), and switch to another thread. In sP,

when the three message handlers at L1 ,S L2.s, and L3,s have

executed (two rload responses, one started locally at S4),

the data processor thread at CONTINUED is initiated, which

reloads the two loop constants and the two pointers into

registers before proceeding.

A number of tricks could be used to improve the prob-

ability that the gamble succeeds. Other useful instructions

could be executed after the rloads and before peeking at the

join counter. For example, if the loop is unrolled n times, all

2rz rloads could be issued before looking for the responses

for the first pair. We could even busy-wait a little, polling

the join counter a few times before giving up.

Loop splitting: The loop can be split into several loops

working on independent chunks of the arrays, so that the

remote loads of one loop are overlapped with computation

in other loops, and vice versa.

Clearly, there are a number of challenging compilation

issues. We will discuss some software issues in Section 7.

6 Implementation Considerations

So far, *T should be viewed as a logical model for a node

in a multithreaded MPA; specialized, separate coprocessor

are otherwise familiar RISC processors extended wit h in-

structions for the rapid creation and consumption of network

messages, and for the efficient synchronization and schedul-

ing of lightweight threads (in fact, many of the “extended”

instructions can be realized as memory-mapped operations).

In this section we explore possible physical realizations of the

*T node architecture.

165

6.1 Coprocessor Data Sharing and Loading Is-

sues

All three coprocessor share the same local memory, and

their view must be consistent. Generally speaking, there is

a significant sharing of data between the SP and DP, but rel-

atively little sharing between either of these and the RMEM.

The data values on every message handled by the SP are

written into frames and are subsequently read by the DP.

It is also likely that the DP will initialize join counters (or

query them) which are subsequently modified by the sP. In

contrast, data sharing between the DP and RMEM is lim-

ited to those structures which are both globally accessed by

other nodes using split phase transactions, and locally ac.

cessed using traditional load/store operations. Thus, if the

three coprocessor are implemented as distinct units (pre-

sumably with each having a cache for local memory) then

we can expect a large volume of coherence traffic between

the SP and DP coprocessor.

The relative load among the coprocessor will also influ-

ence an implementation. The SP typically executes several

more threads than the DP but the threads are apt to be

proportionately shorter. Assuming an average join arity of

about four messages corresponding to an average data thread

length of approximately 15 instructions, then the two copro-

cessor should execute roughly the same number of instruc-

tions (assuming three or four instructions per SP message

handler).

In terms of network messages, the accounting is straight-

forward. Every rload or rstore request generated by a DP

is processed by some RMEM which subsequently generates a

start message for the requester’s sP. Added to the remote

memory traffic are 13P-generated start messages correspond-

ing to function arguments and results. For many applica-

tions the remote memory traffic dominates this extra traffic.

Thus, assuming a uniform distribution of remote memory

requests, an RMEM will process about as many messages as

an sP.

6.2 Multiplexing the Coprocessor

While the workload appears nicely balanced among the co-

processor, engineering considerations may suggest multi-

plexing them on common resources, For example, we are

actively pursuing a design where the SP and DP are com-

bined onto a single chip. The pipeline and caches are time

multiplexed on a thread-by-thread basis. By sharing the

same data cache the sP–DP coherence traffic is eliminated.

Obviously, the throughput of the node will suffer because we

will not be able to exploit concurrency between the SP and

DP. A more subtle consequence is pressure on the incoming

message queue. Data processor threads are typically several

times longer than message handlers. If data threads exe-

cute to completion before executing message handlers, then

the variance on message service times will cause increased

queuing of network messages.

In the ETL EM-4 [28], the Fetch and Matching Unit

(FMU) corresponds to our SP and the Execution Unit (EU)

corresponds to our DP. There is no separate RMEM— its

function is performed by the EU. Further, the FMU is not

programmable like our sP; rather, it is specialized for vari-

ous watt-match operations similar to Monsoon [25] (two-way

joins on frame presence bits, accompanied by a single frame

read/write). Also, the FMU and the EU share a single port

to local memory,

An implementation might go further and multiplex all

three coprocessor onto the same shared resource (as in the

MDP). This might be considered when remote memory op-

erations are network bandwidth limited anyway. However,

we would still consider this an improvement over, say, a

CM-5 node (represented by Figure 4), because it still pro-

vides exceptionally efficient support for join, start, rload,

rstore, and next. That is, we distinguish *T architectures by

their direct implementation of synchronization and schedul-

ing primitives for a potentially large set of very lightweight

threads in addition to a tightly integrated network interface

wherein internode communication is exposed to the com-

piler.

An orthogonal dimension of multiplexing is that multi-

ple threads can be interleaved in the processor pipeline, as in

the HEP [30], the Tera [3] and Monsoon [25]. This can sim-

plify the pipeline, since the pressure due to inter-instruction

dependencies is less, but it also degrades single thread per-

formance by the degree of multiplexing.

7 Software for *T

We believe that *T will efficiently support code developed

for HEP/Tera, the J-machine, EM-4, etc., because in each

case it provides a superset of their capabilities. Thus, any

compiler techniques developed for these machines are di-

rectly applicable to *T. Further, we believe that all these

architectures will efficiently support SIMD/SPMD program-

ming models, again because they are more general.

The real challenge is to provide general purpose pro-

gramming models in which applications can have much more

dynamic structure. Here, the problem is the extraction of

ezcess parallism, i.e., parallelism that is reasonably greater

than the number of nodes in the MPA. This will allow each

node to have sufficient threads so that even though some may

be waiting for incoming messages, there is a high probability

that other threads are ready to run.G.

A very promising approach is to start with declar-atzve

languages where the compiler can effortlessly extract large

amounts of fine grain parallelism. Nikhil [23] and Culler

et al [1 I] have proposed compiler flowgraph formalisms

which, inspired by dataflow graphs and the P-RISC model,

make explicit the notion of threads as a unit of scheduling.

Culler’s Threaded Abstract Machine (TAM) has been imple-

mented and is in use for over two years on a variety of plat-

forms (RISC uniprocessors, shared memory multiprocessors,

NCUBE/2, etc.). His experiments have provided much data

on achievable thread lengths, frequency of synchronization,

instruction counts, comparisons with dataflow instructions,

etc., all of which have had a strong influence on *T, which

almost directly mirrors the TAM compilation model. The

TAM work is an existence proof that compilation of large,

non-trivial programs with massive amounts of parallelism

eA MIMD is a terrible thing to waste!

166

for *T is possible. Nevertheless, there remain serious re-

search issues concerning dynamic storage management, load

balancing, etc.

Acknowledgements: MIT and Motorola, Inc. are collabo-

rating on the design and construction of a real *T machine.

Bob Greiner and Ken Traub of Motorola have contributed

significantly towards the architecture and software systems,

respectively.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

A. Agarwal, B.-H. Lim, D. Kranz, and J. Kub]atowicz.

APRIL: A Processor Architecture for Multiprocessing. In

Proc. 17th Ann. Intl. Symp. on Computer Archafecture,

Seattle, WA, pages 104–114, May 1990.

G. S. Almasi and A. Gottlieb. Hzghly Parallel Computing.

Benjamin\ Cummings, Redwood Cit y, CA, 1989.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz,

A. Porterfield, and B. Smith. The Tera Computer System.

In Proc. Intl. Conf. on Supercomputing, Amsterdam, June

1990.

Arvind and D. E. Culler. Dataflow Architectures. In Annuat

Reviews m Compute. Science, volume 1, pages 225–253. An-

nual Reviews Inc., Palo Alto, CA, USA, 1986.

Arvind, D. E. Culler, R. A. Iannucci, V. Kathail, K. Pingali,

and R. E. Thomas. The Tagged Token Dat aflow Architec-

ture. Technical report, MIT Lab. for Computer Science, Aug.

1983. Revised October, 1984.

Arvind and R. A. Iannucci. Two Fundamental Issues in Mul-

tiprocessing. In Proc. DFVLR - 1987 Cont. on Parallel Pro-

cessing in Science and Engineering, Bonn-Bad Godesberg,

W. Germany (Springer. Verlag LNCS 295), June 1987.

Arvind and R. S. Nikhil. Executing a Program on the MIT

Tagged-Token Dataflow Architecture. IEEE Trans. on Com-

puters, 39(3):300–318, Mar. 1990.

E. Brooks. The Attack of the Killer Micros, 1989. Teraflop

Computing Panel, Supercomputing ’89, Reno, Nevada.

R. Buehrer and K. Ekanadham. Incorporating Dataflow

Ideas into von Neumann Processors for Parallel Execution.

IEEE Trans. on Computers, C-36(12):1515-1522, Dec. 1987.

D. E. Culler and G. M. Papadopoulos. The Explicit Token

Store. J. Para[lei and Di.trzbuted Computing, Dec. 1990.

D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and

J. Wawrzynek. Fine-grain Parallelism with Minimal Hard-

ware Support: A Compiler-Controlled Threaded Abstract

Machine. In Proc. lth Intl. Conf. on Arch. Srspport for Pro-

gramming Languages and Systems (A SPLOS), Santa ClaTa,

CA, pages 164–175, Apr. 1991.

W. Dally, L. Chao, A. Chlen, S. Hassoun, W. Horwat, J. Ka-

plan, P. Song, B. Tott y, and S. Wills. Archlt ecture of a

Message-Driven Processor. In Proc. Ilth. Ann. Intl. Symp.

on Computer Architecture, Pztt.burgh, PA, pages 189–196,

June 1987.

J. B. Dennis. The Evolution of “Static” Data-Flow Archi-

tecture. In Adaanccd Topscs m Data-flow Computing, J-L.

Gaudiot and L. Bzc (cd..), pages 35–91. Prentice-Hall, 1991.

J. B. Dennis and G. R. Gao. An Efficient Pipelined Dataflow

Processor Architecture. In PTOC. SupeTcomputing, Orlando,

FL, pages 368–373, Nov. 1988.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

V. Grafe, G. Davidson, J. Hoch, and V. Holmes. The Ep-

silon Dataflow Processor. In Proc. 16th. Ann. Intl. Symp.

on Computev Architectu?z, Jem&salem, Imzel, pages 36–45,

May 1989.

J. R. Gurd, C. Kirkham, and I. Watson. The Manch-

ester Prototype Dataflow Computer. Comm. of the A CM,

28(1):34–52, Jan. 1985.

R. H. Halstead Jr. and T. Fujita. MASA: A Multithreaded

Processor Architecture for Parallel Symbolic Computing.

In Proc. 15th Ann. Intl. Symp. on Computer Arch~tecture,

Honolulu, Hawaii, June 1988.

D. S. Henry and C. F. Joerg. The Network Interface

Chip. Technical Report CSG Memo 331, MIT Laboratory

for Computer Science, 545 Technology Square, Cambridge

MA 02139, June 1991.

K. Hirakl, K. Nishida, S. Sekhychl, T. Shimada, and

T. Yuba. The SIGMA-1 Dataflow Supercomputer: A Chal-

lenge for New Generation Supercomputing Systems. J. of

Information Proce.smg, 10(4):219–226, 1987.

R. A. Iannucci. Toward a Dataflow/von Neumann Hybrid

Architecture. In Proc. 15th Ann. Intl. Syrnp. on Computer

Architecture, Honolulu, Hawau, pages 131–140, June 1988.

D. Lenoskl, J. Laudon, K. Gharachorloo, A. Gupta, and

J. Hennessy. The Directory-Based Cache Coherence Pro-

tocol for the DASH Multiprocessor. In Proc. 17th. Ann.

Intl. Symp. on Computer Ar-chztetecture, Seattle, WA, pages

148–159, May 1990.

P. M. Maurer. Mapping the Data Flow Model of Compu-

tation onto an Enhanced von Neumann Processor. In Proc.

Intl. Con!. on Parallel Processing, pages 235-239, Aug. 1988.

R. S. Nikhil. The Parallel Programming Language Id and

its Compilation for Parallel Machines. In Proc. Wkshp. on

Massive Parallelism, Amal& Italy, October 1989.

R. S. Nikhil and Arvind. Can dat aflow subsume von Neu-

mann computing? In Proc. 16th. Ann. Intl. Syrnp. on Com-

puteT Archztectu7e, Jerusalem, Israel, pages 262–272, May

1989.

G. M. Papadopoulos. Implementation of a Genend Purpose

Dataflow Multiprocessor. MIT Press, 1991.

G. M. Papadopoulos and K. R. Traub. Muhithreadlng: A

Revisionist View of Dataflow Architectures. In Proc. 18th.

Intl. Symp. on Computer Architecture, Toronto, Mar. 1991.

G. Pfister, W. Brantley, D. George, S. Harvey, W. Klein-

felder, K. McAuliffe, E. Melton, V. Norton, and J. Weiss.

The IBM Research Parallel Processor Prototype (RP3): In-

troduction and Architecture. In PTOC. IntL Conf. on PaTallel

PTocessmg, pages 764–771, Aug. 1985.

S. Salrai, Y. Yamaguchir K. Hirakl, and T. Yuba. An Archi-

tecture of a Dataflow Single Chip Processor. In Proc. 16th

Ann. Intl. Symp. on Computer Architecture, Jerusalcm, Is-

rael, pages 46-53, May 1989.

K. E. Schauser, D. E. Culler, and T. von Eicken. Compiler-

Controlled Multithreadlng for Lenient Parallel Languages.

In Proc. 5th ACM Conf. on Functional Pmgmmmmg

Languages and ComputeT Architecture, Cambmdge, MA

(Spr%nger- Verlag LNCS 523), pages 50-72, Aug. 1991.

B. J. Smith. A Pipelined, Shared Resource MIMD Computer.

In PTOC. Inti. Conf. on Parallel Processing, pages 6–8, 1978.

167

