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string being attached at each infinitesimal step. The deformation then acts as a derivation

on the whole operator algebra, satisfying the Leibniz rule. We derive an explicit equation

which allows for the analysis of UV divergences, which may be absorbed into a non-local

field renormalization to give correlation functions which are UV finite to all orders, satis-

fying a (deformed) operator product expansion and a Callan-Symanzik equation. We solve

this in the case of a deformed CFT, showing that the Fourier-transformed renormalized

two-point functions behave as k2∆+2λk2 , where ∆ is their IR conformal dimension. We

discuss in detail deformed Noether currents, including the energy-momentum tensor, and
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this picture.
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1 Introduction

In recent years the deformation of a 2d local quantum field theory by a term in the action

proportional to the determinant det T of the stress tensor, commonly referred to as TT [1],

has been of interest for a number of reasons. It gives an example of a UV completion of

such a theory which is not itself a local QFT, although it retains several desirable features

of such (as well as some undesirable ones). It is equivalent to coupling the theory to a form

of 2d gravity [2]. Within the framework of AdS/CFT duality, there is strong evidence that

it corresponds to moving a finite distance into the AdS3 bulk from the boundary CFT [3, 4].

In addition, some properties of the deformed theory are exactly calculable given the

data of the undeformed theory, whether it is integrable or not. Despite the fact that the

deformation parameter λ has the dimensions of (length)2 and the deformation is apparently

non-renormalizable, many quantities are UV finite, including the partition function on

– 1 –



J
H
E
P
1
2
(
2
0
1
9
)
1
6
0

a torus [5, 6] and the related finite-size energy spectrum [1], the thermodynamics, the

spectrum of asymptotic states in a massive theory, and their S-matrix which acquires only

CDD phase factors [7–9].

This solvability of the deformation may be explained in various equivalent ways, in-

cluding but not limited to:

1. factorization, that is the factors in det T , which is quadratic in the components of T ,

are independent of their separation, up to derivatives of local fields [1];

2. the deformation is equivalent to coupling the theory to Jackiw-Teitelboim [10, 11]

gravity [12];

3. the deformation is equivalent to coupling the theory to a random flat metric, whose

action is a total derivative [5];

4. detT itself is a total derivative if the conserved current T is expressed as the curl of

a (semi-local) field [13]. In this paper we shall use this method, and also describe a

fourth based on Green functions (section 5).

The fact that, for example, the spectrum becomes independent of the finite size R

for |λ| ≫ R2 suggests that on this length scale the deformed theory is non-local. It is

therefore an interesting question to understand the fate of local fields and their correlation

functions under the deformation. Unlike the above global quantities these are strongly UV

divergent and require a short-distance cut off |ε| ∼ Λ−1 to make them finite. The question

is then whether there exists a sensible non-trivial renormalized theory in which the cut off

may be removed. Usually for a non-renormalizable deformation this is not the case, as UV

divergences proliferate uncontrollably at higher orders in perturbation theory. However,

we shall argue that, because of the above special properties of the det T deformation, the

important divergences are controllable, and, moreover, have a nested form which allows for

a renormalization procedure, albeit unconventional.

Our analysis is based on the evolution equation for a general correlation function in

R
2 of fields {Φn(xn)} in the deformed theory [8]:

∂λ〈
∏

n

Φn(xn)〉λ =

∫
〈detT λ(x)

∏

n

Φn(xn)〉cλd2x , (1.1)

where detT is regularized by point-splitting. Our first result is that this may be cast in

terms of the evolution of each field:

∂λ〈
∏

n

Φn(xn)〉λ =
∑

n

〈∂λΦλ
n(xn)

∏

m 6=n

Φλ
m(xm)〉λ , (1.2)

that is, the deformation ∂λ satisfies the Leibniz rule acting on a product of local fields,

and is therefore a derivation on the associative algebra of such fields. This property is a

consequence of the partial solvability of the TT deformation, and would not hold for a

general deformation. Moreover we have the explicit formula

∂λΦ
λ(x) = 2πǫabǫij

∫ X

x
T λ
ai(x

′ + ε)dx′j ∂xbΦλ(x) , (1.3)
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where ε is the point-splitting regulator, and the integral is along any path from x to an

arbitrarily chosen point X which avoids all the other arguments. The full result (1.2) is

then independent of the paths and of X.

The fact that the insertion of det T λ integrated over R
2 may be reduced to an inte-

gration of a single insertion of T λ along a one-dimensional curve is a result of the partial

solvability of the deformation. (1.3) is non-trivial because it involves the updated stress

tensor T λ of the deformed theory, which itself obeys an equation of the same form, with an

additional term arising from the explicit change in the action, which is necessary to ensure

continued conservation of T λ.

Eq. (1.3) allows us to analyze the UV divergences order by order in λ, since new ones

arise only from the ε → 0 limit, and thus their form may be deduced from knowledge of the

OPE between T λ(x′) and Φλ(x). Although in principle this may contain arbitrarily high

negative powers of |x′−x|, leading to potential power law divergences, as for a conventional

non-renormalizable deformation, we argue that these are in fact absent in this regularization

scheme, a result which is confirmed by a first order calculation about a CFT.

The O((x′−x)−1) terms in the OPE, however, lead to more interesting logarithmic di-

vergences. They are fixed by the Ward identity and rotational symmetry, and are therefore

universal. For a generic field we then find that

∂λΦ
λ(x) = (log Λ)∇2

xΦ
λ(x) + less divergent terms. (1.4)

The appearance of such logarithmic divergences in first order perturbation theory was

noticed in [4], but here we find that they occur to all orders, and moreover, the coefficient

is universal and independent of λ since it is fixed by the Ward identity. If we now ignore

the remainder and solve (1.4) in Fourier space

Φλ(k) = e−λ log(Λ/µ)k2 Φ0(k) (1.5)

(where µ is some arbitrary normalization scale) this resums all the leading terms of the

form λN (log Λ)N
′

with N ′ = N : the remainder all have N ′ < N . Thus there is a non-trivial

scaling limit where Λ → ∞ with λ log Λ fixed in which all the other terms vanish and the

deformed correlation functions are simply those of the undeformed theory convoluted with

the Fourier transform of the heat kernel in (1.5). Thus, in this limit, and for λ > 0, the

deformation is equivalent to the arguments xn of the fields executing independent Brownian

motions with a diffusivity O(log Λ).1

To go beyond this weak-coupling limit, we may instead try to define renormalized fields

by inverting (1.5);

Φ̂λ(k) ≡ eλ log(Λ/µ)k2 Φλ(k) . (1.6)

Using (1.4) we may then show that correlators of Φ̂λ are indeed finite as the regulator ε ∼
Λ−1 is removed. Moreover they satisfy a deformed version of the OPE, and both correlators

and OPE coefficients satisfy a Callan-Symanzik-type RG equation. The solutions, however,

1This is different from the diffusive motion in moduli space of the partition function discussed in [5],

which has diffusivity O(1).
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are peculiar: for example the two-point functions of a scalar field in a deformed CFT behave

in k-space like

Ĉ(k) ∝ e2λ(log(k
2/µ2)k2 (1.7)

. Taking the Fourier transform of this is difficult, but in section 4.3 we argue that it

gives an asymptotic expansion in powers of λ log |x|/x2 for large x, while for |λ| ≫ |x|2
the correlation function behaves like e−x2/4λ log(4λ2µ2/x2) for λ > 0 (the case with Hagedorn

behavior), while it oscillates on the scale µ−1 for λ < 0.

However an assumption in the above analysis, indeed in all the literature on TT , is that

the deformed stress tensor itself T (λ) continues to have its usual properties, in the sense that

it is finite (up to possible derivative terms which may be removed by improvement), remains

conserved, and satisfies the correct Ward identities. We argue that this is indeed the case

for any Noether current Jc corresponding to a symmetry of the deformed action. This

is despite the fact that such a field satisfies the same non-local evolution equation (1.3).

However in general there is an additional contribution to the current coming from the

explicit deformation of the action, which ensures its continued conservation. It turns out

that this extra term is such as to modify (1.3) to

∂λJ
c(x) = 2πǫcbǫij∂xb

∫ X

x
dx′jT

λ
ai(x

′ + ε)Jλ
a (x) , (1.8)

so that, although this is UV divergent as ε → 0, these are in total derivatives and moreover

do not affect the divergence of the current, so it continues to satisfy its Ward identity. The

same is true for the deformed stress tensor.

However, the derivative ∂l in eq. (1.3) also suggests another interpretation. Instead of

deforming the field we deform its argument: ∂λΦ
λ
n(xn) = Φλ

n(∂λxn) where

∂λx
l
n = 2π

∫ X

xn+ε
ǫklǫijT λ

kj(x
′) dx′i . (1.9)

This is a strange looking equation, as it appears to imply a field-valued coordinate trans-

formation, but it makes at least formal sense in correlation functions. Moreover if we quan-

tize the theory on x0 = constant, and run the integration along this axis, with X = ∞,

this becomes

∂λx
1
n = −2π

∫ ∞

x1
n+ε

T λ
00(x

′) dx′1 , ∂λx
0
n = 2π

∫ ∞

x+ε
T λ
10(x

′) dx′1 , (1.10)

so the spatial coordinate x1n gets shifted by an amount proportional to the integrated

energy density to the right of the point xn, while the time coordinate x1n gets shifted by

an amount proportional to the integrated momentum density to its right. In the Hilbert

space formulation, these may then be viewed as a state-dependent diffeomorphism, an

interpretation already pointed out for classical theories in [16, 17]. It is also consistent

with the form of the CDD factors e−iλ
∑

a,b ǫ
abp0ap

1

b [2].

So far, the TT deformation of correlation functions has received relatively little at-

tention. Kraus, Liu and Marolf [4] computed correlators of the stress tensor to lowest
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nontrivial order about a CFT, and also the 2-point functions of generic fields to first or-

der. Their motivation was a comparison with the holographic interpretation. Aharony and

Vaknin [18] discussed a different limit from the present paper, in which λ → 0, c → ∞,

with λc fixed.

The outline of this paper is as follows. In section 2 we consider the example of a

deformation J1 ∧ J2, where J1 and J2 are a pair of commuting vector symmetry currents.

This is also a total derivative of a semi-local field, and so has much in common with the det T

deformation but is simpler in some respects, notably in that it is a marginal rather than a

UV relevant deformation. We first explore its effect on correlators in first order perturbation

theory, then more generally, using the OPE. It turns out that the deformation induces

logarithmic correlations between fields which carry both non-zero charge and vorticity. In

fact this deformation has much in common with the θ-term considered some time ago in

a dimensionally reduced version of FF̃ in 4d gauge theory [19–21]. In section 3 we then

repeat the exercise for the det T deformation, derive the main results (1.2), (1.3) and extend

these to the deformation of conserved currents. We then (section 4) use these to analyze

the UV divergences to all orders, use these to resum leading logs to find the diffusive

scaling limit, and then show how to define renormalized fields whose correlation functions

are finite to all orders. This leads to the RG analysis and the solution (1.7) for the 2-point

function. We also discuss the deformed OPE satisfied by these renormalized fields. In

section 5 we describe an alternative method of factorizing the det T deformation, which

reproduces both our eq. (1.3) and also Zamolodchikov’s equation [1] for the deformation

on the cylinder, and which should be useful for other 2d manifolds. Finally in section 6 we

show how the interpretation of the deformation as a field- (or state-) dependent coordinate

transformation arises from the perspective of this paper, and end with some conclusions

and open problems.

2 J
1
∧ J

2 deformation

Before discussing the TT deformation it is useful to consider this simpler deformation

as much of the analysis is similar. Consider a 2d euclidean quantum field theory in flat

space with two commuting conserved vector currents Ja
i (a = 1, 2), which are conserved

apart from possible localized sources corresponding to operator insertions, where the charge

∂iJa
i 6= 0, and point vortices, around which the circulation

∮
Ja
i dx

i 6= 0. Note that although

∂iJa
i = 0 except at the sources, the bulk vorticity ǫij∂iJ

a
j does not vanish in general, since

this would imply that the complex components Jz (Jz̄) are (anti-)holomorphic as in a CFT.

The action is deformed infinitesimally by a term

− δλ ǫab

∫
Ja(x) ∧ Jb(x) d2x = −δλ ǫabǫ

ij lim
ε→0

∫
Ja
i (x) ∧ Jb

j (x+ ε) d2x , (2.1)

where we have defined the product by point-splitting, in anticipation of possible divergences

in correlators as ε → 0. In principle we should average over directions of ε in order to

maintain rotational invariance:

lim
|ε|→0

∫
Ja
i (x) ∧ Jb

j (x+ ε)dε/|ε| (2.2)
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although in practice this is unnecessary (except when showing that symmetry of Tai is

preserved by the deformation in section 3.3.1). As for the TT deformation, the currents,

when expressed in terms of the fields of the undeformed theory, might depend on the

deformation parameter λ, but it is important that they continue to be conserved. If

they are Noether currents of some symmetry, this should therefore be respected by the

deformation. An example would be U(1) × U(1). In the absence of sources and point

vortices we may write, locally

Ja
i = ǫik∂

kχa , (2.3)

where the χa (a = 1, 2) are semi-local scalar fields, sometimes referred to as prime forms.2

In terms of these

ǫabJ
a(x) ∧ Jb(x+ ε) = ǫabǫ

ijǫjkJ
a
i (x)∂

kχb(x+ ε) (2.4)

= ǫabJ
a
i (x)∂

iχb(x+ ε) = ǫab∂
i
x[J

a
i (x)χ

b(x+ ε)] . (2.5)

The main point is that this is a total derivative and, in the absence of sources, integrates

to either a boundary term, or, for a closed manifold, is non-zero only when there is non-

trivial homotopy allowing winding for the fields χb. As discussed in [13] this gives a non-zero

contribution to the deformation of the torus partition function

∂λ logZ = −ǫabǫ
ij〈Qa

iQ
b
j〉 , (2.6)

where Qa
i is the charge corresponding to Ja circulating around the cycle i.

However in this paper we consider mainly the infinite euclidean plane, where the λ-

dependence of the partition function is trivial but the correlation functions of local fields

with non-zero charge and vorticity are not. This is because the fields χa,b are singular at

the sources of the currents, and also non-single valued due to their vorticity. In fact, close

to each singularity (chosen for convenience to lie at the origin) we have

Ja
i ∼ (1/2π)(qaxi/x

2 + q̃aǫijxj/x
2) + · · · , (2.7)

where (qa, q̃a) are the charges and vorticity respectively. (2.7) may also be viewed as the

leading terms in the OPEs of the currents with local fields which insert the sources, and

the omitted terms are less singular. In complex coordinates, it reads

Ja
z ∼ (1/4π)(qa + iq̃a)/z + · · · , Ja

z̄ ∼ (1/4π)(qa − iq̃a)/z̄ + · · · . (2.8)

2.1 First order deformation about a CFT

In order to see the structure of the integral
∫
〈J1 ∧ J2〉d2x, it is useful first to examine the

first order in perturbation theory in λ about a CFT. In complex coordinates we have

ǫab

∫
〈Ja(x+ ε) ∧ Jb(x)〉 d2x = 2iǫab

∫
〈Ja

z (z + ε)〉〈Jb
z̄(z̄)〉d2z , (2.9)

2For a conserved symmetric tensor this idea goes back to Airy in 1863 [14]. See [15].
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where, by the Ward identity,

〈Ja
z (z)〉 = (1/4π)

∑

n

qan + iq̃an
z − zn

, (2.10)

〈Ja
z̄ (z̄)〉 = (1/4π)

∑

n

qan − iq̃an
z̄ − z̄n

, (2.11)

for sources (qan, q̃
a
n) at (zn, z̄n). The first order contribution to the correlation function

is then
iλǫab
(4π)2

∑

m,n

[(qam + iq̃am)(qbn − iq̃bn)

∫
d2z

(z − zm + ε)(z̄ − z̄n)
− c.c.] . (2.12)

The integral is IR divergent. With a cut-off |z−zm| < R ≫ |zm−zn|, it is ∼ π log(R/|zm−
zn|) for m 6= n and ∼ π log(R/|ε|) for m = n. However the R-dependence cancels on

summing overm,n if we assume overall neutrality of charge and vorticity, so (2.12) becomes

− iλǫab
(4π)2

∑

m 6=n

[(qam + iq̃am)(qbn − iq̃bn)− c.c.]π log(|zm − zn|/|ε|)

=
λ

4π

∑

m 6=n

ǫabq̃
a
mqbn log(|zm − zn|/|ε|) . (2.13)

Note that the correlation function between m and n vanishes if both vorticities are zero.

It is also worth noting directly from (2.12) that the coefficient of the log |ε| divergence is

(λ/4π)
∑

n

ǫabq̃
a
nq

b
n log |ε| . (2.14)

The origin of this logarithmic divergence may of course be traced to the singular terms in

the OPE (2.7) with the source fields

ǫabJ
a
z J

b
z̄ ∼ ǫabq̃

a
nq

b
n/zz̄ + · · · . (2.15)

Note that these terms are prescribed by the Ward identity and therefore exist independently

of perturbation theory.

2.2 Beyond perturbation theory

We now assume that the original QFT has been deformed by a finite amount and we

consider the additional deformation of the correlators of source fields under an infinitesimal

change λ → λ+ δλ.

As before, except near the sources or where the fields χa have discontinuities, we may

write the deformation in the form

ǫab

∫
Ja
i (x+ ε)∂iχb(x)d2x = ǫab

∫
∂i[Ja

i (x+ ε)χb(x)]d2x− ǫab

∫
∂i[Ja

i (x+ ε)]χb(x)d2x ,

(2.16)

but we should recall that χb(x) is not single-valued if there is non-zero circulation around

the sources. In order to deal with this we insert non-intersecting curves Sn from each source

– 7 –
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X

S
1

S
2

S
3

Figure 1. The potential χb is made single-valued by removing the union of paths Sn from each

argument xn to an arbitrarily chosen point X.

C

x XS

Figure 2. The discontinuity [χb(x)] across Sn is given by the flux of Jb across a contour C

surrounding xn.

xn to a prescribed point X (with |X − xn| ≫ |ε|) and restrict the integration to R
2 \ ∪nSn

(see figure 1). The first term in (2.16) then integrates to

−
∑

n

ǫab

∫

Sn

Ja
i (x+ ε)[χb(x)]ǫijdxj , (2.17)

where [χb(x)] is the discontinuity in χb across Sn. This, in turn, may be written

[χb(x)] =

∮

Cn(x)
ǫklJb

k(x)dxl , (2.18)

where Cn(x) is a contour beginning and ending at x on Sn and surrounding xn (figure 2).

Because Jb is conserved, this is independent of the precise contour, and in fact it simply

measures the total b-charge inside Cn(x). Since Ja is assumed to commute with Jb, this

charge is just that of the source qbn, giving

− ǫabq
b
n

∫

Sn

Ja
i (x+ ε)ǫijdxj . (2.19)

The second term in (2.16) is proportional to ǫabq
a
nχ

b(xn − ε). Again, χb(xn − ε) may

be written in terms of a contour integral of Jb around xn, which, as ε → 0 is given by the

flux qb. Thus this term is ∝ ǫabq
aqb = 0.
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The whole contribution of Sn is therefore given by (2.19), where the line integral is

simply the flux of Ja across Sn. Because Ja is conserved, the integral is independent of

the path of Sn, and the sum over n is independent of X, assuming total charge neutrality.

However this integral is in general a non-trivial fluctuating quantity. From (2.7) it

diverges as ε → 0 like ∼ (1/2π)q̃a log |ε|, and we expect the remainder to be finite, but

only if Ja is also curl-free (as happens in a CFT) is its value determined by the near-field

circulation. Thus the contribution from Sn is

− (1/2π)ǫabq
b
nq̃

a
n log ε+ finite as ε → 0 . (2.20)

The full result for the infinitesimal deformation is therefore of the form

(δλ)
∑

n

ǫabq
b
n × 〈flux of Ja across Sn〉 . (2.21)

If we shift X → X ′, the change is proportional to
∑

n q
b
n × flux of Ja between X and X ′

and therefore vanishes if we have overall charge neutrality. Moreover the paths of the

strings may be distorted so as to cross a source, for each time that happens there is an

extra contribution ∝ ǫabq
b
n

∮
Γn

Ja
i (x

′)dn′i = ǫabq
a
nq

b
n, which vanishes.

For two equal and opposite sources at x1, x2

(δλ)ǫabq
b〈flux of Ja across (x1 + ε, x2 − ε)〉 . (2.22)

The leading logarithmic divergence is determined by the behavior of 〈Ja(x)〉 as x → x1, x2,

and is therefore ∝ q̃a, in agreement with the perturbative calculation (2.14), but the

O(1) term may depend on less universal details, as well as the deformation parameter λ.

However, since this is dimensionless in this case, for a deformed CFT the 2-point function

can only depend on the separation r = |x1 − x2| through the ratio r/ε, so therefore has

a universal log(r/ε) leading term. Moreover the possibly λ-dependent remainder is itself

proportional to ǫabq
b.

3 TT deformation

The infinitesimal “TT” deformation is, in Cartesian coordinates, defined by adding3

4πδλ

∫
detTd2x = 2πδλ

∫
ǫabǫijTai(x+ ε)Tbj(x)d

2x (3.1)

to the action, which is formally the same as the J1∧J2 deformation with the identification

Ja
i → Tai. However there is an important difference in that Tai is a rank 2 current with di-

mension 2, so the deformation parameter λ has dimension (length)2, and the corresponding

‘charges’ transform as vectors.

3The sign and factors of 2 are chosen so that λ/π is the same as −α of [1, 8] and −t of [5]. Thus for

λ > 0 the theory exhibits a Hagedorn behavior in its high energy density of states, while λ < 0 corresponds

to ‘going into the bulk’ in AdS3.
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3.1 First-order deformation about a CFT

Again it is instructive to consider first the perturbative result to first order in a CFT. In

complex coordinates the deformation of the action is −16πλ
∫
T (z + ε)T (z̄)d2z. The first

order correction to a CFT correlator 〈∏pΦp(xp)〉 is therefore

16πλ

∫
〈T (z + ε)T (z̄)

∏

p

Φp(zp, z̄p)〉d2z . (3.2)

We assume that |zm − zn| > ε if m 6= n, but make no assumption on the conformal spins

of the fields, or whether they are primaries.

This is given by the conformal Ward identity as4

16πλ

(2π)2

∑

m,n

∫ ∑

r,s≥1

d2z

(z − zm + ε)r(z̄ − z̄n)s

〈
(Lr−2Φm)(Ls−2Φn)

∏

p 6=m,n

Φp(zp, z̄p)

〉
. (3.3)

The integral in the term r = s = 1, proportional to ∂zm∂z̄n〈
∏

pΦp〉, was already encoun-

tered in section 2, and is π log(R/|ε|) if m = n and π log(R/|zm − zn|) otherwise. These

terms then sum to

− (4λ)
∑

m 6=n

log(|zm − zn|/|ε|)∂zm∂z̄n〈
∏

p

Φp(zp, z̄p)〉 , (3.4)

where we have used translational invariance
∑

m ∂zm〈
∏

pΦp〉 =
∑

n ∂z̄n〈
∏

pΦp〉 = 0.

In fact all the other terms are zero. Those with r ≥ 2 and s ≥ 2 are proportional to

derivatives ∂r−1
zm ∂s−1

z̄n of the r = s = 1 integral and therefore vanish. If r = 1, s ≥ 2 we may

shift the integration variable giving

∫
d2z

z(z̄ − z̄nm)s
, (3.5)

where z̄nm = z̄n − z̄m − ε̄. For |z| < |znm| the integrand may be expanded in powers

z̄k/zz̄k+s
nm , and for |z| > |znm| in powers of z̄knm/zz̄k+s, with k ≥ 0. But all these terms

vanish on angular integration.5 Similarly if r ≥ 2, s = 1.

We conclude that the first order correction to the CFT correlation function is

− (4λ)


∑

m 6=n

log(|zm − zn|/|ε|)∂zm∂z̄n


 〈
∏

p

Φp(zp, z̄p)〉+O(ε), (3.6)

or, in Cartesian coordinates,

− λ


∑

m 6=n

log(|xm − xn|/|ε|)∂xi
m∂xi

n


 〈
∏

p

Φp(xp)〉 . (3.7)

4We do not incorporate the conventional factor 2π in the definition of Tji.
5The above manipulations are delicate since the integrals are not absolutely convergent. This may

however be addressed by introducing a second UV cutoff |z − zm| > ε′, |z̄ − z̄n| > ε′ with ε′ ≪ ε.
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If we want to isolate only the ε-dependence, this is

λ(log |ε|)
∑

m 6=n

∂xi
m
∂xi

n
〈
∏

p

Φp(xp)〉 = −λ(log |ε|)
∑

n

∇2
xn
〈
∏

p

Φp(xp)〉 , (3.8)

using translational invariance. Note that this comes from the O(1/zz̄) term in the OPE

and so is universal, as we shall see in the next section. Also, if any of the Φp is holomorphic

(or antiholomorphic), as for a conserved current in a CFT, then its first-order variation

vanishes identically.

Finally we record the result for the two-point function Cλ(x) = 〈Φ(x1)Φ(x1 + x)〉, as
also found in [4]:

Cλ(x) =
(
1 + 2λ log(|x/ε|)∇2

x +O(λ2)
)
C0(x) . (3.9)

3.2 Beyond perturbation theory

The analysis of the J1 ∧ J2 deformation may be translated almost line by line, with the

identification Ja
i → T a

i , with an important difference: since

∂xi
T b
i (x)Φn(xn) = δ(2)(x− x′)∂xb

n
Φn(xn) , (3.10)

the “charge” qb associated with T b is a spatial derivative ∂b, and all fields, including T a,

carry charge under this symmetry current.

We may however still take over the results of section 2 to argue that the bare evolution

equation for a generic correlation function has the form

∂λ〈
∏

p

Φp(xp)〉λ = 2π
∑

n

ǫabǫij
∫ X

xn

dx′j〈T λ
ai(x

′ + ε) ∂xb
n

∏

p

Φp(xp)〉λ . (3.11)

The solution of this equation is

〈
∏

p

Φp(xp)〉λ = 〈
∏

p

Φλ
p(xp)〉λ , (3.12)

where

∂λ〈
∏

p

Φλ
p(xp)〉λ =

∑

n

〈∂λΦλ
n(xn)

∏

p 6=n

Φλ
p(xp)〉λ , (3.13)

and

∂λΦ
λ
n(xn) = 2πǫabǫij

∫ X

xn

dx′jT
λ
ai(x

′ + ε) ∂xb
n
Φλ
n(xn) , (3.14)

with Φλ=0
n (xn) = Φn(xn).

Although by conservation (3.14) is invariant under local deformations of the path

Sn connecting xn to X, it is also unchanged if, say, Sn is deformed through some other

argument xm. For then the residual extra term is of the form ǫab
∮ ∮

Tai(x
′)Tbj(x

′′)dn′idn′′j ,

where the contours surround xm, and this vanishes by antisymmetry. Similarly (3.11) is

unchanged if some of the paths happen to cross one another. The only constraint is that the

arguments should not actually lie on a path. This is another consequence of the topological

nature of the detT deformation.
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In addition, if we act with the derivative ∂Xl
on the sum over n in (3.11) we get

something proportional to

ǫabǫilT λ
ai(X + ε)

∑

n

∂xb
n

∏

p

Φλ
p(xp) = ǫabǫilT λ

ai(X + ε)
∑

n

∮

xn

T λ
bkdn

k
∏

p

Φλ
p(xp) . (3.15)

The contours around each argument may be distorted to one around a large circle at infinity,

which vanishes in a translationally invariant state, plus one around X, which vanishes by

the same antisymmetry argument as above.

Eq. (3.14) is the main result of this paper. It shows that fields which are local in the

undeformed theory evolve into semilocal fields, very similar to disorder or twist fields in

conventional QFT. That the evolution of the correlation function may be expressed simply

in terms of an evolution of each field is a non-trivial consequence of the partial solvability

of the detT deformation, which allows the insertion of
∫
detTd2x to be written as a sum

over an integral along Sn times one around each argument xn. In particular (3.13) shows

that the deformation acts on a product of fields by the Leibniz rule, and is therefore a

derivation on the algebra of such fields. We stress, however, that T λ is to be evaluated in

the λ-deformed theory, and that it describes the bare evolution of fields Φn, in the sense

that it is assumed that their definition is λ-independent. In particular, if we define the

correlators as functional derivatives with respect to sources, these source terms should be

added into the deformed action, not to the undeformed theory, because they would then

enter into the definition of det T λ. In the case of conserved currents, including the stress

tensor itself, there are additional terms coming from the explicit change in the action, to

be discussed below.

3.2.1 Example: 2-point function

Since the general result (3.14) is rather telegraphic, it is worth exhibiting how it applies to

the simplest case of a two-point function. Taking the two arguments to lie on x0 = 0, (3.13)

and (3.14) give, in Cartesian coordinates

∂λ〈Φ(0,x1)Φ(0,y1)〉λ=2πǫabǫi1

(∫ X

x1+ε
dx′1∂xb

+

∫ X

y1+ε
dx′1∂yb

)
〈Tai(0,x

′
1)Φ(0,x1)Φ(0,y1)〉λ

=2πǫab

∫ y1−ε

x1+ε
dx′1(∂xb

−∂yb)〈Ta0(0,x
′
1)Φ(0,x1)Φ(0,y1)〉λ , (3.16)

using translational invariance. The term with (ab) = (10) vanishes by symmetry, and we

are left with

∂λ〈Φ(0, x1)Φ(0, y1)〉λ = 2π

∫ y1−ε

x1+ε
dx′1(∂x1

− ∂y1)〈T00(0, x
′
1)Φ(0, x1)Φ(0, y1)〉λ , (3.17)

− 2π

∫ y1−ε

x1+ε
dx′1(∂x0

− ∂y0)|x0,y0=0〈T10(0, x
′
1)Φ(x0, x1)Φ(y0, y1)〉λ .

(3.18)

The insertions
∫ y1−ε
x1+ε Ta0(0, x

′
1)dx

′
1 are the energy and momentum circulation between the

two points (cut off close to them), and (3.17), (3.18) measure how this is correlated with
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moving them an infinitesimal distance apart. Alternatively, they give the response of the

separation of the two points to the insertion of an infinitesimal time delay and boost

between them. This interpretation will become more clear in section 6.

3.3 Deformation of conserved currents

We now see how the above argument should be modified when the field Φ(x) is a conserved

current Jc(x). In considering deformed symmetry currents, there are three important issues

to address: does the deformed current remain conserved (which it should if the deformation

does not break the symmetry); is it finite (apart from possible total derivatives); and does

it still have the correct OPE with charged fields, as dictated by its Ward identity? We

proceed inductively, that is, assume that Jλ
c has the desired properties, and ask whether

these continue to hold for Jλ
c + (δλ)∂λJ

λ
c .

First consider a conserved vector current Jλ
c . We have from (3.14) that its deformation

due to the insertion of
∫
detT λ d2x is given by

∂λJ
λ
c (x) = 2πǫabǫij

∫ X

x
dx′jT

λ
ai(x

′ + ε) ∂xbJλ
c (x) . (3.19)

As it stands, even if Jλ
c is conserved, its deformation is not, ∂λ∂xcJ

λ
c (x) 6= 0, since ∂xc also

acts on the lower limit of integration. In fact

∂λ∂
cJλ

c (x) = −2πǫabǫicT λ
ai(x+ ε)∂bJ

λ
c (x) (3.20)

= 2πT λa
i (x+ ε)∂iJλ

a (x)− 2πT λa
a(x+ ε)∂iJλ

i (x) = 2π∂c[T λa
c (x+ ε)Jλ

a (x)] .

This result may be checked by directly computing the OPE of the point split version of

detT with Jc.

Thus we should incorporate this into the right hand side of (3.19) to define the con-

served infinitesimally deformed current by

DλJ
λ
c (x) = 2πǫabǫij

∫ X

x
dx′jT

λ
ai(x

′ + ε)∂bJ
λ
c (x)− 2πT λa

c (x+ ε)Jλ
a (x) , (3.21)

which, using the identity ǫabJc = ǫcbJa + ǫacJb, is

2πǫcbǫij
∫ X

x
dx′jT

λ
ai(x

′+ε)∂bJ
λ
a (x)−2πT λa

c (x+ε)Jλ
a (x)= 2πǫcbǫij∂xb

∫ X

x
dx′jT

λ
ai(x

′+ε)Jλ
a (x) .

(3.22)

This last form shows explicitly that Dλ∂
cJλ

c (x) = 0 even in the presence of sources: the

deformation of the current is purely transverse, affecting only its circulation and not its

divergence. Thus it continues to satisfy the appropriate Ward identity, and the total charge,

given by space integral of Jλ
0 , is not deformed.

Now consider the dependence of DλJ
λ
c (x) on the cut-off ε. In this case we cannot

simply incorporate any power law divergences into a multiplicative renormalization, since

its overall normalization should be fixed. However a simple argument shows that DλJ
λ
c (x)

is in fact UV finite. Acting with ∂εl on the right hand side of (3.22) gives something

proportional to

ǫcbǫil∂xb [T λ
ai(x+ ε)Jλ

a (x)] . (3.23)
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In principle this OPE is singular. However, assuming that T λ
ai is neutral under Jλ

c (for

example, it is an internal rather than a space-time symmetry), the OPE between them,

expanding in a basis of fields depending on x+ ε rather than on x, should be non-singular:

Jλ
a (x) · T λ

ai(x+ ε) =:JaTai:
λ(x+ ε) + o(|ε|0) , (3.24)

so that, if Jλ
c (x) is finite as ε → 0, so is its infinitesimal deformation ∂λJ

λ
c (x). Thus the

deformation of a conserved symmetry current, when properly defined, is both finite and

satisfies the Ward identities.

3.3.1 Deformation of the stress tensor

Turning to the case of the stress tensor T λ
dc itself, much of the above argument may be

carried over. The analogs of (3.21), (3.22) are

DλT
λ
dc(x) = 2πǫabǫij

∫ X

x
dx′jT

λ
ai(x

′ + ε)∂bT
λ
dc(x)− 2πT λa

c (x+ ε)T λ
da(x) , (3.25)

= 2πǫcbǫij∂xb

∫ X

x
dx′jT

λa
i (x

′ + ε)T λ
da(x) . (3.26)

Note that if we use the more symmetric form (2.2) of point splitting, then from (3.25) if

T λ
dc is symmetric in its indices, as expected for a Lorentz invariant theory, then so is DλT

λ
dc,

although this is hidden in (3.26). Also, in complex coordinates, the last term in (3.25)

adds a term ∝ TT to the deformation of the trace, as expected since the action itself

is deformed [4]. Once again, the form in (3.26) ensures that T λ
dc continues to satisfy its

Ward identity.

However, the argument above that the deformation of a conserved current that com-

mutes with T λ
ai is UV finite does not carry through, since T λ

ai is itself charged under T λ
dc.

Indeed, if we take the derivative with respect to εl of (3.26) we find something propor-

tional to

∂xb

ǫcbǫ
il[T λa

i (x+ ε)T λ
da(x)] , (3.27)

where, since because we should symmetrize and therefore need only the piece which is odd,

this is given by the Ward identity term in the OPE

T λa
i (x+ ε)T λ

da(x) = (1/ε2)
(
εi∂a − ǫaf ǫikεk∂f

)
Tda , (3.28)

giving

(1/ε2)∂xb

ǫcbǫ
ilǫaf ǫikεk∂fTda = (εl/ε

2)∂b∂bTdc . (3.29)

On integration, this gives a log |ε| divergence which, as we shall see in the next section,

afflicts all fields of the deformed theory. However, consistently with (3.26), this does not

affect its Ward identity, and can if wished be subtracted off as a further improvement, since

it is a total derivative. This point of view will be expanded in section 4.2.
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4 Analysis of divergences

Let us rewrite eq. (3.14) as

∂λΦ
λ(x) = 2πǫabǫij

∫ X

x+ε
dx′jT

λ
ai(x

′) ∂xbΦλ(x) . (4.1)

This in general exhibits explicit UV divergences as ε → 0. These may be analyzed by using

the OPE with T λ. Although we have shown that T λ may be deformed in such a way that

it has the correct properties, (4.1) also contains implicit divergences in Φλ on the right

hand side. However its nested form allows us to treat these iteratively. The OPE of T λ
ai(x

′)

with ∂xbΦ(x) in principle contains arbitrarily high order terms O(λN/|x′ − x|k+2N ), and

those with k + 2N > 1 lead to power law divergences which may proliferate as with any

non-renormalizable deformation. However we now argue that such terms do not contribute

to (4.1), just as for the first order CFT calculation in section 3.1.

Taking ∂εk to expose any divergences

− 2πǫabǫikT λ
ai(x+ ε) ∂xbΦλ(x) . (4.2)

However (4.1) is independent of the direction of εk, so (4.2) is parallel to εk and we may

average uniformly over it to obtain

− |ε|−1

∮
dεkǫ

abǫikT λ
ai(x+ ε) ∂xbΦλ(x) (4.3)

= |ε|−1

∮
dεaT λb

a(x+ ε) ∂xbΦλ(x)− |ε|−1

∮
dεbT λa

a(x+ ε) ∂xbΦλ(x) (4.4)

The first term gives, by the Ward identity, |ε|−1∂xb
∂xbΦλ(x), in agreement with the first-

order CFT calculation in section 3.1 on integrating back with respect to |ε|. As far as any
singular terms are concerned, the second term is equivalent to

− |ε|−1

∮
dεbT λ

aa(x) ∂xbΦλ(x− ε) = |ε|−1

∮
dεbT λ

aa(x) ∂εbΦ
λ(x− ε) , (4.5)

which vanishes.

A more explicit way of deriving the logarithmic divergence in (4.1) is as follows. The

relevant terms in the OPE are completely determined to be of the form

(2π)T λ
bj(x) Φ(0) = (xj/|x|2)∂bΦ(0) + ξ(ǫjkx

k/|x|2)ǫba∂aΦ(0) + · · · , (4.6)

where the first term is fixed by the Ward identity ∂jT λ
bj(x)Φ(0) = δ(2)(x)∂bΦ(0), and the

form of the remainder, which is orthogonal to xj , is fixed by rotational symmetry and

parity. Conservation, or symmetry under b ↔ j, then fixes ξ = −1. In the language of

section 2, the first term gives the “charge”, which is now a vector field q ∼ ∂b, and the

second term gives the vorticity q̃ ∼ −ǫba∂
a. Note that the contribution from the trace T j

j

vanishes on the right hand side, and in fact these terms in the OPE have the same form

as in a CFT, a peculiar property of two-dimensional field theories.
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Inserting the OPE (4.6) into the integral along Sn we find

∂λΦ
λ(x) = −(log |ε|)∇2

xΦ
λ(x) + · · · . (4.7)

Again, the leading term in (4.7) is in agreement with the perturbative calculation (3.8).

The remainder is in general different, but is finite when expressed in terms of Φλ.

At this point, there are two paths we may take: either regard the Φλ=0
n as the physical

fields of the effective theory, and try to resum the UV divergences in their correlation

functions to obtain closed form results; or to redefine the evolution of the Φλ
n so that their

correlators are finite to all orders.

4.1 Resummation of leading logs

The iterative structure of (3.14) allows us to make the following argument. Together

with (4.7), this shows that if we expand an arbitrary correlation function in powers of λ,

the structure is

〈
∏

n

Φn(xn)〉λ =
∞∑

N=0

(λN/N !)(AN ({xn})(− log |ε|)N +BN ({xn})(− log |ε|)N−1 + · · · ) ,

(4.8)

where

AN ({xn}) =
∑

n

∇2
xn
AN−1({xn}) , (4.9)

BN ({xn}) =
∑

n

∇2
xn
BN−1({xn}) + · · · , (4.10)

so that

〈
∏

n

Φn(xn)〉λ =
∞∑

N=0

(−λ log |ε|)N/N !)(AN ({xn})− λBN+1({xn}) + · · · ) . (4.11)

Apart from the factor ∇2
xn

this very like what one would see in a locally renormalizable

theory, except that λ retains its canonical dimension. Therefore we may introduce a length

scale µ−1 and take a scaling limit

εµ → 0 , λµ2 → 0 with λ̃µ2 = −λµ2 log |εµ| fixed, (4.12)

in which only the leading terms AN survive, and the correlation functions exactly satisfy

a 2n-dimensional diffusion equation with respect to their arguments. The solution is then

〈
∏

n

Φn(xn)〉λ =

∫ ∏

n

G(xn − yn; λ̃)〈
∏

n

Φn(yn)〉0
∏

n

d2yn , (4.13)

where

G(x− y; λ̃) = (4πλ̃)−1e−(x−y)2/4λ̃ (4.14)

is the 2d heat kernel. Note that further subtractions would need to be made, using the OPE

of the undeformed theory, if there are non-integrable singularities in the above equation.

However, at least in an infinite system, this diffusive behavior makes sense only for

λ̃ > 0, that is λ > 0 (the sign corresponding to Hagedorn behavior.) For the ‘wrong’ sign,

the IR behavior immediately diverges.
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4.2 Beyond leading logs: renormalization

An alternative point of view is to try to define deformed fields whose correlators are fi-

nite to all orders, similar in spirit to the renormalization program in a conventional local

renormalizable field theory. Returning to (3.14)

∂λΦ
λ(x) = 2πǫabǫij

∫ X

x
dx′jT

λ
ai(x

′ + ε) ∂xbΦλ(x) , (4.15)

we may regard this as a Schrödinger-like equation (without the i) with λ playing the role

of time, and 2πǫabǫij
∫ X
x dx′jT

λ
ai(x

′ + ε) ∂xb being a time-dependent ‘hamiltonian’ acting

on the vector space of fields of the theory (in a CFT this would be a Virasoro module).

In the leading log approximation,

∂λΦ
λ(x) ≈ − log |ε|∇2

xΦ
λ(x) , (4.16)

so that Φλ(x) ≈ e−λ log |ε|∇2
xΦ0(x). This suggests that we take into account the corrections

by going to an ‘interaction picture’, defining

Φ̂λ(x) ≡ eλ log |µε|∇2
x Φλ(x) , (4.17)

and similarly6

T̂ λ
ai(x

′ + ε) ≡ eλ log |µε|∇2

x′ T λ
ai(x

′ + ε) e−λ log |µε|∇2

x′ . (4.18)

Here µ is an arbitrary renormalization scale with dimensions of inverse length. Note that

e±λ log |µε|∇2
x commutes with

∫
x dx

′
j and ∂xb , and that, by (3.29), this kills the leading log

divergences in T λ
ai in the same manner as for those in Φλ.

Φ̂λ(x) then satisfies

∂λΦ̂
λ(x) = 2πǫabǫij

∫ X

x
dx′j T̂

λ
ai(x

′ + ε) ∂xbΦ̂λ(x) + log |µε|∇2
xΦ̂

λ(x) . (4.19)

Now the O(1/|x′ − x)) terms in the OPE of T̂ λ
ai(x

′) with Φλ(x) are the same as those of

T λ
ai(x

′), and are given by the Ward identity (3.29). This is because these terms are all of

the form ∂x′ log |x′ − x|, and are annihilated by ∇2
x′ . Thus the last term in (4.19) exactly

cancels this divergence, and if the correlators of Φ̂λ(x) are finite, so are those of ∂λΦ̂
λ(x).

We have therefore shown, generalizing (4.13), that, to all orders

〈
∏

n

Φn(xn)〉λ =

∫ ∏

n

G(xn − yn;λ)〈
∏

n

Φ̂n(yn)〉λ
∏

n

d2yn , (4.20)

where

G(x− y;λ) = (4πλ| log |µε||)−1e−(x−y)2/λ| log |µε|| (4.21)

and 〈
∏

n Φ̂n(yn)〉λ is finite as we remove the cut-off ε → 0.

As an example, to first order about a deformed CFT, we find from (3.6) that

∂λ〈
∏

n

Φ̂n(yn)〉λ = −
∑

m 6=n

log(µ|xm − xn|)∂xi
m∂xi

n
〈
∏

n

Φ̂n(yn)〉CFT +O(λ) . (4.22)

6In this picture the stress tensor plays a dual role, as the kernel of the evolution operator, and as a field

acted on by this operator. Of course, this is familiar from conventional hamiltonian dynamics.
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4.3 Renormalization group

The fact that the bare correlation functions 〈
∏

nΦj(xj)〉λ do not depend on the renor-

malization scale µ, allows us, as usual, to infer a Callan-Symanzik equation, most simply

written in terms of the Fourier transform in k-space

0 = µ∂µC({kn};λ, ε) = µ∂µ

[
∏

n

eλ log(µε)k2n Ĉ({kn};λ, µ)
]
, (4.23)

so

[µ∂µ + λ
∑

n

k2n]Ĉ({kn};λ, µ) = 0 . (4.24)

Specializing to the two-point functions of a deformed massless theory, where C(k;λ =

0) ∼ k2∆, by dimensional analysis,

[µ∂µ + k∂k − 2λ∂λ − 2∆]Ĉ(k;λ, µ) = 0 , (4.25)

so that, at fixed µ [
k∂k − 2λ∂λ − 2λk2 − 2∆

]
Ĉ(k;λ, µ) = 0 . (4.26)

This linear first order PDE has the solution matching onto λ = 0

Ĉ(k;λ, µ) = k2∆(k/µ)2λk
2

(4.27)

In fact, having made this analysis, we may choose µ = |λ|−1/2 as long as we now treat λ

as fixed away from zero. This gives the form quoted in the abstract.

In real space we then have, at least formally,

Ĉ(x;λ, µ) =

∫
k2∆eλk

2 log(k2/µ2)−ik·xd2k (4.28)

The formal perturbative expansion agrees with (3.6) to first order in λ, and is an asymptotic

expansion valid for |x| ≫
√
λ. The fact that the integral appears to diverge for large real

k if λ > 0 may be controlled by suitably distorting the contour in k as λ is continued from

negative values, just as for the simpler gaussian integral without the log factor. For either

sign the interesting limit is when |x| ≪
√
λ. This limit, and the large order behavior of the

perturbative expansion, are given by a saddle point of the integral, which occurs at

2λkc(1 + log(k2c/µ
2)) = ix (4.29)

There are two solutions, one with kc ∼ ix/
(
2λ log(−x2/4λ2µ2)

)
which gives rise to

a behavior

∼ e−x2/
(
4λ| log(x2/4λ2µ2)|

)
(4.30)

times prefactors. The second solution has log(k2c/µ
2) ≈ −1 and gives rise to damped

oscillatory behavior in x on the scale µ−1, independent of λ. A more careful analysis

reveals that the first solution is appropriate for λ > 0 and the second for λ < 0. It is

tempting to associate the first with the Hagedorn growth in the density of states in finite

volume, and the second with the phenomenon that all energies become imaginary with the

same real part, but to make this identification systematic would require computing the

correlation functions on the cylinder.
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4.4 Deformed OPE

We have argued that the TT deformation acts as a derivation on the algebra of local fields,

that is it satisfies the Leibniz rule when applied to correlators of products of fields at

distinct points. Although it therefore preserves the fusion algebra of the OPEs, it will in

general modify the OPE coefficients and the conformal blocks. Given the short distance

OPE in the undeformed theory

Φm(x1) · Φn(x2) =
∑

l

C l
mn(x12)Φl(x̄) , (4.31)

(where x̄ = (x1 + x2)/2, x12 = x1 − x2) we may ask whether the deformed OPE

Φ̂λ
m(x1) · Φ̂λ

n(x2) =
∑

l

Cλl
mn(x12)Φ̂

λ
l (x̄) (4.32)

makes sense inside deformed correlators defined by (4.19).

Much of this structure may already be seen at first order. Taking |x12| ≪ |x1n| for
n ≥ 3 in (4.22),

∂λ|λ=0 〈
∏

p

Φ̂p(xp)〉λ ∼

−


log(|x12|µ)∂xb

1

∂xb
2 +

∑

n≥3

log(|x1n|µ)∂xb
1

∂xb
n +

∑

n≥3

log(|x2n|µ)∂xb
2

∂xb
n + · · ·





∑

l

C l
12(x12)〈Φl(x̄)

∏

n≥3

Φn(xn)〉CFT


 , (4.33)

which should be equated to

∑

l


∂λ[C

l
12(x12)]〈Φl(x̄)

∏

n≥3

Φn(xn)〉+ C l
12(x12)∂λ〈Φl(x̄)

∏

n≥3

Φn(xn) .〉


 (4.34)

Writing ∂x1,2
= 1

2∂x̄ ± ∂x12
, the first term on the second line of (4.33) is ∝ 1

4∇2
x̄ − ∇2

12.

Of these two pieces, the first modifies the coupling to ∇2Φl, and therefore the conformal

block, while the second is a contribution to ∂λ[C
l
12(x12)]. The remaining terms, in the

above limit, contribute correctly to ∂λ〈Φl(x̄)
∏

n≥3Φn(xn)〉. Thus we have, to first order,

∂λC
l
mn(x) = log(µ|x|)∇2

xC
l
mn(x) , (4.35)

thus simply generalizing (3.9) for the two-point function.

To go beyond this, first consider the deformed OPE in the cut-off bare theory

Φλ
m(x1) · Φλ

n(x2) =
∑

l

Cλl
mn(x1 − x2; ε)Φ

λ
l (x̄) , (4.36)
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where x̄ = (x1+x2)/2. Now apply ∂λ to both sides, using the Leibniz rule and (3.14), and

defining the string operator Sb(x) ≡ 2πǫabǫij
∫ X
x dx′jT

λ
ai(x

′ + ε)

∂λ

(
Φλ
m(x1) · Φλ

n(x2)
)
= ǫab

(
Sb(x1)∂xb

1

+ Sb(x2)∂xb
2

)(
Φλ
m(x1) · Φλ

n(x2)
)

= 1
2ǫ

ab
(
(Sb(x1) + Sb(x2))(∂xb

1

+ ∂xb
2

) + (Sb(x1)− Sb(x2))(∂xb
1

− ∂xb
2

)
)

(4.37)

×
∑

l

C l
mn

λ
(x1 − x2)Φ

λ
l ((x1 + x2)/2) (4.38)

= ǫabSb(x1)∂xb
1

(Φλ
m(x1)) · Φλ

n(x2) + Φλ
m(x1) · ǫabSb(x2)∂xb

2

(Φλ
n(x2)) (4.39)

= ǫab
(
Sb(x1)∂xb

1

+ Sb(x2)∂xb
2

)∑

l

C l
mn

λ
(x1 − x2)Φ

λ
l ((x1 + x2)/2) (4.40)

= ǫab
∑

l

(
(Sb(x1)− Sb(x2))∂bC

l
mn

λ
(x1 − x2)Φ

λ
l ((x1 + x2)/2) (4.41)

+ [(1/2)(Sb(x1) + Sb(x2))− Sb((x1 + x2)/2)]C
l
mn

λ
(x1 − x2)∂bΦ

λ
l ((x1 + x2)/2)) (4.42)

+(Sb((x1 + x2)/2)C
l
mn

λ
(x1 − x2)∂bΦ

λ
l ((x1 + x2)/2))

)
. (4.43)

We recognize the last line (4.43) as involving the deformed field Φλ
l , while (4.41), (4.42)

describe the evolution of the OPE coefficients. (4.42) involves the derivative field ∂bΦ
λ
l ,

so may be seen as a correction to the conformal block. (4.41) thus gives the evolution of

the coefficients:

∂λC
lλ
mn(x1 − x2) = 2πeab

∫ x2

x1

Tai(x
′ + ε)ǫijdx′j ∂bC

lλ
mn(x1 − x2) , (4.44)

which, however, is still field valued, acting on Φλ
l ((x1 + x2)/2)). It is also logarithmically

divergent. However, this is canceled in passing to the renormalized version in which Φn

is replaced by Φ̂n and C l
mn by Ĉ l

mn, leaving behind a factor of log(µ|x12|). The less

singular terms in the OPE then contribute to descendent fields. Therefore (4.35) is exact

for deformed primary fields, although the conformal blocks deform nontrivially.

This result may also be derived from the RG, demanding that the bare OPE (4.36)

be independent of µ. This leads to a Callan-Symanzik equation for the OPE coefficients,

with a solution in k-space (see (4.27))

Ĉ l
mn(k, λ, µ) = clmnk

∆m+∆n−∆l(k/µ)2λk
2

+ · · · , (4.45)

in agreement with (4.35). Both of these exhibit unphysical short-distance behavior if λ > 0.

5 Green function method

We now describe an alternative method for decoupling the TT and similar deformations,

which leads to the same main equation (3.14) but avoids the use of semi-local fields and

gives a closer correspondence to the CFT calculation of section 3.1. It also works in some

other geometries. As before, we need to evaluate
∫
detTd2x, regularized by point splitting,

when inserted into a correlation function. We may write this as

2π

∫
ǫabǫijδ(2)(x− x′)T λ

ai(x+ ε)T λ
bj(x

′)d2xd2x′ . (5.1)
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Introducing the Coulomb Green function satisfying −∇2
xG(x − x′) = δ(2)(x − x′), with

suitable boundary conditions, this becomes

2π

∫
ǫabǫij [∂xk∂x′

k
G(x− x′ − ε)]T λ

ai(x)T
λ
bj(x

′)d2xd2x′ . (5.2)

Now use ǫij∂x′

k
= ǫkj∂x′

i
+ǫik∂x′

j
(≡ ǫjk∂xi

+ǫik∂x′

j
when acting on G(x−x′)), and integrate

by parts to get two terms

− 2π

∫
ǫabǫik[∂xkG(x− x′ − ε)]T λ

ai(x)[∂x′

j
T λ
bj(x

′)]d2xd2x′ (5.3)

− 2π

∫
ǫabǫjk[∂xkG(x− x′ − ε)][∂xi

T λ
ai(x)]T

λ
bj(x

′)d2xd2x′ . (5.4)

Under the interchange (xai) ↔ (x′bj), these two terms are equal aside from ε → −ε.

We may now use the Ward identity (4.6) to evaluate ∂x′

j
T λ
bj(x

′) acting on a general

correlator 〈
∏

nΦn(xn)〉. There are terms where this acts on T λ
ai(x), which however vanish:

∫
ǫabǫik[∂kG(−ε)]∂bTai(x)d

2x+ (ε → −ε) = 0 . (5.5)

Acting on
∏

pΦp(xp) it gives

− 2π

∫
d2xǫabǫik

∑

n

[∂xkG(x− xn)]T
λ
ai(x+ ε) ∂xb

n
+ (ε → −ε) . (5.6)

The connection with (3.14) is now found by writing, in the case of the full plane, ∂xkG(x−
xn) = (x− xn)k/|x− xn|2 and noting that, by conservation, the radial integral

∫ ∞

0
ǫik((x− xn)k/|x− xn|)T λ

ai(x+ ε)d|x− xn| (5.7)

is in fact independent of the direction of x− xn. Thus, apart from a factor of 2π, we may

fix a particular direction. (5.6) is then equivalent to (3.14) if we take Sn to lie along the

radial direction from xn to X = ∞.

However, (5.6) may be manipulated further by a second integration by parts, giving

∂λ〈
∏

p

Φp(xp)〉λ = 2π

∫
d2xǫabǫik

∑

n

Gε(x− xn)∂kT
λ
ai(x+ ε) ∂xb

n
(5.8)

= 2π

∫
d2x

∑

n

Gε(x− xn)∂xbT λ
aa(x+ ε) ∂xb

n

− 2π

∫
d2x

∑

n

Gε(x− xn)∂xaT λ
ab(x+ ε) ∂xb

n
, (5.9)

where Gε(x) = (1/4π) log(|x|2 + |ε|2). Using the Ward identity again in the second term,

∂λ〈
∏

p

Φp(xp)〉λ = −
∫

d2x
∑

n

(xb − xbn)∂xb
n

|x− xn|2 + ε2
〈T λa

a(x)
∏

p

Φp(xp)〉λ

−
∑

m,n

Gε(xm − xn) ∂
xb
m∂xb

n
〈
∏

p

Φp(xp)〉λ + (ε → −ε) . (5.10)

The second term generalizes the CFT result (3.6) to finite λ, and the first gives non-local

corrections to it when the trace T λa
a 6= 0. However, from (4.6), it is non-singular as ε → 0.
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5.1 Other geometries

For an infinitely long cylinder, parametrized by −∞ < x1 < ∞ and 0 ≤ x2 < R identified

periodically, it is simpler to decouple (5.1) only in (x1, x′1) by using the Green function

G = |x1 − x′1|. Integrating over x′1 by parts from x1 to x1 + y1 now leads to

ǫabǫij
∫

T λ
ai(x

1, x2)T λ
bj(x

1, x2)dx1dx2 = ǫabǫij
∫

T λ
ai(x

1, x2)T λ
bj(x

1 + y1, x2)dx1dx2 (5.11)

for all y1, which is Zamolodchikov’s identity, leading to the well-known Burgers equation for

the energy levels. Note that if we apply this method to a correlation function 〈Φ(x1)Φ(x2)〉
we need to evaluate the string expectation value

∫ x2−ε

x1+ε
〈Φ(x1)T22(x

′)Φ(x2)〉dx′1 , (5.12)

which is non-trivial, since T22 is not diagonal in the energy eigen-basis.

For a torus, the Coulomb Green function is not single-valued, so we already get a

contribution for the partition function. The computation and result is similar to that in [5]

and we do not repeat it here.

6 Interpretation as a field-valued diffeomorphism

We now return to the main result (3.14) and reinterpret it as a field-dependent coordinate

transformation. This point of view has been extensively discussed at the classical level, and

extended to similar deformations in integrable models, by Conti, Negro and Tateo [16, 17].

∂λΦ
λ(x) = 2πǫabǫ

ij

∫ X

x
dx′jT

λa
i (x

′ + ε)∂xbΦλ(x) . (6.1)

Because of the derivative ∂xb acting on Φλ(x) the first term may be interpreted formally

as a change of coordinates

∂λxb = 2πǫabǫ
ij

∫ X

x
T λa

i (x
′ + ε)dx′j . (6.2)

Of course this is field-valued, and makes sense only inside correlation functions. Note

also that we are here treating Φλ(x) as a bare field, to be inserted into the path integral

with a UV cut-off, rather than as a renormalized field which would in general transform

non-trivially under a diffeomorphism. Note however that ∂a∂λxb = ∂b∂λxa, so there is no

local rotation, and therefore it is immaterial whether Φλ(x) is a scalar or has higher rank

under rotations.

(6.2) corresponds to a change in the (flat) metric

∂λgai = ∂xa(∂λxi) + ∂xi(∂λxa) = 4πǫabǫijT
λbj(x+ ε) , (6.3)

which is just the saddle-point equation derived in [5] when an infinitesimal det T deforma-

tion was decoupled by a gaussian random metric.
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However its is interesting to interpret (6.2) equivalently in hamiltonian quantization

as a state-dependent coordinate transformation. Labeling the coordinates now as (x0, x1),

quantizing along x0 = 0 and running the integration along x′0 = 0, x′1 ≥ x1 with X =

(0,+∞), (6.2) becomes

∂λx
1 = 2π

∫ ∞

x1+ε
T λ
00(0, x

′1)dx′1 , (6.4)

∂λx
0 = −2π

∫ ∞

x1+ε
T λ
10(0, x

′1)dx′1 , (6.5)

or, more symmetrically,

∂λx
1 = 2π

(∫ ∞

x1+ε
−
∫ x1−ε

−∞

)
T λ
00(0, x

′1)dx′1 = (E> − E<) , (6.6)

∂λx
0 = −2π

(∫ ∞

x1+ε
−
∫ x1−ε

−∞

)
T λ
10(0, x

′1)dx′1 = −(P> − P<) . (6.7)

Thus, in a given state, the space coordinate is shifted according to the imbalance of total

energy to its right and left, while the time coordinate is shifted according to the imbalance

of momentum. In an asymptotic scattering state with ordered energy-momenta {pia}, a
given particle will therefore suffer a time delay ∝

∑
b>a p

1
b −

∑
b<a p

1
b , leading to a total

phase shift ∝ λ
∑

a>b ǫijp
i
ap

j
b, as already discovered for the TT deformation in several works,

and equivalent to a gravitational dressing [2]. It is worth noting, however, that this applies

also to non-relativistic systems. An interesting feature of this result is that the phase shift

is exactly linear in the deformation parameter λ.

7 Conclusions and further problems

In this paper we have shown how the solvability of the TT deformation of a 2d quantum

field theory (and of similar deformations) extends to correlation functions of local fields.

Perhaps the most important conceptual result is that the deformation is a derivation on

the algebra of such fields. This implies that the fusion rules of the undeformed UV CFT

are preserved. More explicitly, we may consider a deformed correlation function to be

equivalent to a correlation function of products of deformed fields with respect to the

undeformed theory,

〈
∏

n

Φn(xn)〉λ = 〈
∏

n

Φλ
n(xn)〉λ=0 , (7.1)

where the deformation acts on the product according to the Leibniz rule

∂λ
(∏

n

Φλ
n

)
=
∑

m

(
(∂λΦ

λ
m)
∏

n 6=m

Φλ
n

)
. (7.2)

However the deformation of each field is non-local:

∂λΦ
λ(x) = Sb[x] · ∂bΦλ(x) , (7.3)

– 23 –



J
H
E
P
1
2
(
2
0
1
9
)
1
6
0

which attaches a ‘string’ Sb[x] to Φλ(x) which is a line integral of T λ. This effectively

inserts an infinitesimally thin uniform strip running from x+ ε to infinity (or equivalently

to another field insertion), across which the original coordinate system is discontinuous.

This induces conical singularities in the euclidean metric, indicating that the analysis of

Rényi entropies is likely to be subtle.

The stress tensor T λ itself obeys a similar evolution equation, with an extra term which

ensures that it continues to be conserved and to satisfy its Ward identities. One of the

outstanding problems is understanding, in a deformed CFT, the fate of the Virasoro algebra

and why the spectral degeneracies on the cylinder dictated by its representations persist.

However a problem which affects all these considerations is how properly to define the stress

tensor, beyond simply demanding that its OPE satisfy the translational and rotational

Ward identities. Conventionally this is done by defining T ij as the response of the action

to a general variation of the metric gij , but in this case this would require a generalization

of the detT deformation to curved space, in such a way that it remains solvable. This

appears difficult, since, for example, the covariant conservation law ∇jT
ij = 0 no longer

implies that T ij may be written as the curl of a potential as in flat space. Other approaches

also appear to fail, except at large c when factorization holds trivially.

Despite the semi-local nature of the deformed fields, the main result (3.14) allows an

analysis of the UV divergences in correlation functions as the T (x)T (x+ ε) point splitting

regulator ε → 0. There are universal logarithmic divergences ∝ log |ε|∇2Φλ which occur

for all fields Φλ (including conserved currents like T λ, although not in a way as to spoil

their Ward identities).

The simply nested nature of these divergences and their universality allow the deformed

theory, albeit non-local, to be renormalized to all orders. The renormalized correlation

functions obey a deformed OPE and also an RG equation. The solution (4.27) of this in

k-space is however unusual, and it leads to different short-distance behaviors in real space

for λ > 0 and λ < 0 (although in both cases the CFT short-distance power law behavior

is suppressed.)

Another interesting question is whether and, if so, how the deformed renormalized

correlation functions described here are related, on mass shell, to the deformed S-matrix

with CDD factors already discussed in the literature [7–9].

A possibly more profitable line of investigation follows on the interpretation of the

deformation as a field-, or state-dependent diffeomorphism of flat space, as originally stud-

ied in the classical case in [16]. Acting on asymptotic particle states, this gives a simple

derivation of the appearance of CDD factors. More interestingly, this approach applies to

other similar deformations and also to non-Lorentz invariant theories.

Finally, although in section 5 we introduced a different way of decoupling the TT term

in the action, the method using Airy potentials used in the main body of this work appears

to be more versatile and may be applied to give new results in open geometries and applied

to entanglement properties of the deformed vacuum. It is hoped to describe these in a

future paper.
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