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Abstract

Background: EMD 521873 (Selectikine or NHS-IL2LT) is a fusion protein consisting of modified human IL-2 which

binds specifically to the high-affinity IL-2 receptor, and an antibody specific for both single- and double-stranded

DNA, designed to facilitate the enrichment of IL-2 in tumor tissue.

Methods: An extensive analysis of pharmacodynamic (PD) markers associated with target modulation was assessed

during a first-in-human phase I dose-escalation trial of Selectikine.

Results: Thirty-nine patients with metastatic or locally advanced tumors refractory to standard treatments were

treated with increasing doses of Selectikine, and nine further patients received additional cyclophosphamide. PD

analysis, assessed during the first two treatment cycles, revealed strong activation of both CD4+ and CD8+ T-cells

and only weak NK cell activation. No dose response was observed. As expected, Treg cells responded actively to

Selectikine but remained at lower frequency than effector CD4+ T-cells. Interestingly, patient survival correlated

positively with both high lymphocyte counts and low levels of activated CD8+ T-cells at baseline, the latter of

which was associated with enhanced T-cell responses to the treatment.

Conclusions: The results confirm the selectivity of Selectikine with predominant T-cell and low NK cell activation,

supporting follow-up studies assessing the clinical efficacy of Selectikine for cancer patients.
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Background
T-lymphocytes have the potential to limit tumor progres-

sion but may be impaired in their function due to lack of

growth factors and/or the presence of immunosuppressive

mechanisms, particularly within metastatic lesions [1-3].

Immunotherapy with recombinant human interleukin-2

(IL-2) is an attractive treatment option for certain meta-

static cancers, as it exerts both stimulatory and regulatory

functions on the immune system and is, along with other

members of the common γ chain (γc) cytokine family,

central to immune homeostasis [4,5].

IL-2 acts via IL-2 receptors (IL-2R), consisting of

either the trimeric αβγ receptor, or the dimeric βγ re-

ceptor [6]. Both IL-2R variants transmit signaling upon

IL-2 binding. However, the trimeric αβγ receptor has

10–100 times higher affinity for IL-2 than the dimeric

form [7], because IL-2Rα (CD25) confers high-affinity

binding to IL-2. The trimeric IL-2R is mainly expressed

on activated T-cells and CD4+ Treg cells (forkhead box

P3 [Foxp3] positive T-cells) [7]. High-dose IL-2 is used

for the treatment of patients with metastatic melanoma

and metastatic renal cell carcinoma, and has a long-term

impact on overall survival [8,9]. However, high-dose IL-2

treatment is associated with considerable toxicity, in par-

ticular vascular leak syndrome (VLS) with accumulation

of extravascular fluid in organs such as the lung and

liver. [10-12]. There is no treatment for VLS other than
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withdrawal of IL-2. Low-dose IL-2 regimens have been

tested in patients to reduce side effects, at the price of

reduced therapeutic results [13,14]. Many mechanisms

have been proposed to explain VLS. Toxicity has been

attributed to direct binding of IL-2 to endothelial cells

via a motif resembling a component of bacterial toxins

[15] and centered around aspartic acid residue 20 (D20);

others reported a vasopermeability enhancing fragment of

IL-2 extending from residues 22 to 58 that increases vas-

cular permeability independent of IL-2 bioactivity [10], or

proposed that activation of cells bearing the intermediate-

affinity IL-2 receptor in the vascular compartment leads

to inflammatory cytokine release by natural killer (NK)

and other cells [16]. In order to target IL-2 to tumor in

a way of reducing its potential toxicity, Merck KGaA

(Darmstadt, Germany) developed a novel fully huma-

nized IL-2 fusion protein, EMD521873 or NHS-IL2LT

(Selectikine), for the treatment of solid tumors and B-cell

non-Hodgkin lymphoma [17]. Selectikine comprises the

monoclonal antibody (mAb) NHS76, which recognizes

single-or double-stranded DNA often released from dying

tumor cells either spontaneously or following treatment

with radiation or chemotherapy [18,19], and two gene-

tically modified IL-2 molecules, with a D20T mutation

aimed at eliminating the toxin motif responsible for endo-

thelial cell binding [15]. Pre-clinical data revealed that

Selectikine retained low toxicity and induced anti-tumor

responses. Multiple cycles of treatment can be adminis-

tered safely and with the potential for improved efficacy.

Furthermore, it has been shown that the D20T mutation,

in the context of a whole antibody immunocytokine, was

highly selective for the high-affinity IL-2R [17]. A caveat of

targeting the high-affinity receptor is the possibility of acti-

vating Treg cells. Selectikine was tested in a phase I dose-

escalation first-in-human study in patients with advanced

solid tumors, as a 1-h intravenous (iv) infusion on 3 con-

secutive days every 3 weeks (group 1). Low-dose adminis-

tration of cyclophosphamide at 300 mg/m2 one day

prior to the first Selectikine infusion in each cycle was

also assessed (group 2) as cyclophosphamide has been

reported to suppress Treg cells and to enhance the anti-

tumor activity of immunotherapy [20-23]. At all dose

levels tested, no severe cardiovascular side-effects in-

cluding severe hypotension or vascular leak syndrome,

usually associated with native IL-2, were observed. Also,

no objective tumor responses, but prolonged periods of

disease stabilization in some patients, were observed

[24]. We took the opportunity of this first-in-human

phase I clinical trial to investigate immune modulatory

effects induced by Selectikine. To this aim, an extensive

analysis of pharmacodynamic markers was conducted

during the first two treatment cycles. Here we report the

results of this immune-monitoring, mainly from patients

treated in group I.

Materials and methods
Study design, patient eligibility criteria and clinical data

are detailed in the Additional file 1 available online, and

in the recent paper by Gillessen et al. [24]. The study

was performed in accordance with the guidelines of the

declaration of Helsinki, the International Conference on

harmonization, and regulatory authorities and the

protocol was approved by local ethics committees.

Blood samples

For flow cytometry analysis, whole blood (10 mL) was

collected in EDTA tubes (VacutainerW Blood Collection

Tubes, Becton-Dickinson [BD], Basel, Switzerland) on day

1, before Selectikine infusion (group 1) or before cyclophos-

phamide administration (group 2) and on day 8 during the

first two cycles of treatment, and sent to a central labo-

ratory for direct analysis within 24 h. During the

second cycle, on days 1 and 8 for both patient groups, an

additional 50 mL of blood was collected in Lithium-

Heparin tubes (VacutainerW Blood Collection Tubes, BD)

and PBMC were isolated and frozen locally for further

functional analysis. Briefly, blood was diluted 50%

with PBS, overlayed onto Ficoll-Histopaque 1.077 (Sigma-

Aldrich Chemie Gmbh, Munich, Germany) and centri-

fuged for 30 min at 400 × g and 20°C. The PBMC fraction

was collected, washed in PBS, counted, aliquoted, and fro-

zen at −80°C in 90% FCS/10% DMSO. In addition, 6 mL

of whole blood was collected in Vacutainer SST tubes

(BD) on days 1 and 3 during the first two cycles. Sera were

prepared locally and frozen until analysis. Serum levels of

IL-10, sIL-2R (R&D systems, Minneapolis, USA) and

neopterin (IBL, Hamburg, Germany) were measured by

ELISA according to the manufacturer’s instructions.

Flow cytometry

Fluorescence-activated cell sorting (FACS) analysis

on fresh blood was performed on total leucocytes

after lysis of erythrocytes. Briefly, cells were stained

with the following mAbs: FITC-conjugated anti-Bcl2,

anti-Ki67, anti-perforin; and isotype control IgG1k

or IgG2b; PE-conjugated anti-CD45RA, anti-CD127;

PerCPconjugated anti-CD8, anti-CD3, anti-HLA-DR,

anti-CD56 and anti-CD16; PE-Cy7-conjugated anti-

CD25, anti-CCR7; APC-conjugated anti-CD38, anti-

HLA-DR, anti-granzyme B, and isotype control IgG1k;

APC-H7-conjugated anti-CD4 and anti-CD3. Anti-

bodies were purchased from BD Pharmingen, except

for FITC-conjugated anti-Foxp3 which was purchased

from eBiosciences, San Diego, USA. Data were

acquired using a FACS LSRII flow cytometry machine

(BD), and analyzed with FCSExpress version 3 software

(De Novo software, Ontario, Canada).
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Peptide stimulation assay

Antigen-specific CD8+ T-cell responses specific for

cancer-testis tumor antigens were assessed in vitro by

stimulating PBMCs collected on days 1 and 8 of the

second cycle of Selectikine treatment with five different

HLA-A2 restricted peptides (Melan-A/ELAGIGILTV;

MAGE-A3/KVAELVHFL; NY-ESO-1/SLLMWITQA; MAGE-

A10/GLYDGMEHL and SSX-2/KASEKIFYV). Briefly, CD8+

T-cells (1 × 105) enriched by magnetic beads (Miltenyi

Biotec, Bergisch Gladbach, Germany) were co-cultured

with irradiated CD8- cells (ratio of 1:1) in RPMI plus 8%

AB human serum (Sigma-Aldrich Chemie GmbH,

Buchs, Switzerland) in 96-well plates, and stimulated

with the peptides (20 μM). After 48 h, medium was sup-

plemented with IL-2 (150 U/mL) and IL-7 (20 ng/m).

On day 7, cells were collected, stained with multimers

and antibodies, and analyzed on an LSRII flow cytometer

(BD). Acquired data were analyzed using FCSExpress ver-

sion 3 software (De Novo software).

Intracellular cytokine staining

Intracellular cytokine staining for IFNγ and TNFα was

performed together with labeling with tetramers and

CD8-specific antibodies. 1 × 106 CD8+ enriched T-cells

(Miltenyi Biotec) were incubated for 5 hours at 37°C

with 1 × 106 T2 cells pulsed with 10 μg/mL irrelevant

HIV-1 Pol476–484 (ILKEPVHGV) peptide, or 10 μg/mL

tumor antigenic peptides, or 1 μg/mL PMA/0.25 μg/mL

ionomycin. After 1 h, 10 μg/mL brefeldin A (Sigma-

Aldrich Chemie GmbH, Buchs, Switzerland) was added.

4 h later cells were stained with multimers and anti-

bodies, fixed, permeabilized, and incubated with anti-

IFNγ-FITC and anti-TNFα-APC mAbs in PBS/0.1%

saponin for 30 min at 4°C. Cells were analyzed on a

LSRII flow cytometer (BD). Acquired data were ana-

lyzed using FCSExpress version 3 software (De Novo

software).

Treg cell inhibition test

To test the suppressive activity of Treg cells, their abil-

ity to inhibit the proliferation of autologous CD4+ T-

cells we measured in CFSE assays. Briefly, CD4+ T-cells

were negatively selected using magnetic beads from

PBMC collected on days 1 and 8 of the second cycle of

treatment. The CD25-expressing CD4+ fraction was

then positively selected using the CD4+CD25+ regula-

tory T-cell isolation kit (Miltenyi Biotec) according to

the manufacturer’s instructions. CD4+CD25- T-effector

cells (6 × 105) were labeled with CFSE (final concentra-

tion 2 μM) and cultured in 96 well-plates, stimulated

with anti-CD3 and anti-CD28 beads (DynabeadsW

Human T-Activator CD3/CD28, LuBioScience GmbH,

Lucerne, Switzerland). CD4+CD25+ non-labeled Treg

cells (3 × 105) were added to the cultures (ratio of 1:2).

After 4 days, cells were collected, and stained with the

apoptotic marker VIVID, and anti-CD4 and anti-CD3

mAbs. CFSE intensity was measured on a FACS LSRII

(BD).

Immunohistochemistry

Tumor tissues from archival material (pretreatment) and a

biopsy collected after two treatment cycles were analyzed

by immunohistochemistry. Four-micrometer thick serial

sections of formalin-fixed, paraffin-embedded tissue sam-

ples were prepared. Antigen retrieval carried out using

microwave treatment in 0.1 M sodium citrate, pH 6.0.

Staining was performed with anti-CD8, anti-CD4, anti-

Foxp3 and anti-Ki67 mAbs. Detection was with the

DAKO EnVisionTM + system using diaminobenzidine
(DAB) as the chromogen (DAKO, Trappes, France). Non-
immune mouse IgG was used as a negative control. In
parallel, tissue samples were stained with hematoxylin/
eosin.

Statistical analyses

Values are expressed as mean ± 95% confidence inter-

vals. Statistical analysis was aimed at discovering differ-

ences due to the treatment, both in time and by dose

level. Leukocyte subsets were compared between day 1

and 8 of the first two cycles using repeated measure-

ments mixed model analysis of variance (ANOVA). The

F-test, α = 0.05, in the ANOVA was used to test the

fixed effects, and a post-hoc test (Tukey HSD) was ap-

plied for the pairwise comparisons. Differences were

considered statistically significant at *P < 0.05 (**P ≤ 0.01,

***P ≤ 0.005). All analyses were performed using JMP

v.8.0.2. software (SAS Institute Inc., Cary, US).

Kaplan Meier survival analysis

Survival analyses were performed from the first day of

study treatment to the date of progression, or date of

death, or censored at the date of last observation. Kaplan

Meier (KM) analyses were performed to estimate the

relationships between survival time and biomarker base-

line levels. For each biomarker individually, the baseline

value for every patient was categorized into LOW or

HIGH categories according to levels that were less or

equal to the 33th percentile, or greater than the 66th

percentile. The analysis was performed by the Unit for

Bioinformatics (Merck Serono, Geneva), using the stan-

dard model: Overall Survival Time * Censoring. A log-

rank test was performed to compare the two groups

(LOW, HIGH). Kaplan Meier survival analysis was per-

formed using JMP v.8.0.2. software (SAS Institute Inc.,

Cary, US).
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Results
Clinical background

A total of 48 patients were enrolled, 39 were treated

with Selectikine alone (group 1) in a 3 + 3 dose-

escalation design starting from 0.075 mg/kg through

0.15, 0.225, 0.3, 0.45, 0.6 and finally 0.9 mg/kg; and nine

patients with Selectikine plus cyclophosphamide (group

2, dose levels 0.45 mg/kg and 0.6 mg/kg). Skin rash at a

dose of 0.9 mg/kg was the dose limiting toxicity, and the

maximum tolerated dose was therefore determined as

0.6 mg/kg in group 1. The Selectikine treatment was

associated with typical IL-2-like biological effects includ-

ing lymphopenia followed by lymphocytosis and eosino-

philia at all dose levels, while IL-2 related clinical AEs

were mainly mild to moderate. The skin rash responded

well to topical corticosteroids. Compared to previous

studies, with intermediate to high IL-2 doses, Selectikine

induced only mild hypotension and no vascular leak syn-

drome suggesting improved tolerability of this modified

and more selective IL-2 moiety. Detailed clinical results

have been reported in a recent publication [24].

In the following sections, we focus on the analysis of

pharmacodynamic markers, mainly assessed during the

first two treatment cycles; on day 1 before Selectikine in-

fusion (day −1 for group 2), and on day 8.

Leukocytes

Absolute counts of leukocyte populations in peripheral

blood (clinical laboratory data), including lymphocytes,

monocytes and neutrophils were measured for each

cycle of treatment at the following time points: before

the start of Selectikine infusion (day 1), on day 3 and

day 8. Leukocytes were analyzed for the dose groups

from 0.075 to 0.9 mg/kg Selectikine until treatment dis-

continuation. The data revealed lymphopenia at day 3 at

all doses tested, followed by lymphocytosis (absolute leu-

kocytes count) 8 days after Selectikine administration,

with return to basal levels after each cycle (Figure 1,

upper graph). Lymphocytes were most sensitive to Selec-

tikine, with a systematic and steady increase between

each cycle; whereas the responses of monocytes and

neutrophils were less strong (Figure 1, lower graphs).

Notably, no significant dose effects were observed be-

tween patients subgroups, therefore the data from the

subgroups were pooled for the remaining analyses.

CD4+ and CD8+ T-cells

As lymphocytes responded strongly to treatment, CD8+

and CD4+ T-cells were next analyzed during the first

two treatment cycles. As expected, a statistically signifi-

cant and transitory increase in absolute counts as well as

in the frequency of both CD8+ and CD4+ T-cells was

observed on day 8 after Selectikine infusion (Figure 2A).

Notably, there was a greater increase in CD4+ T-cells on

day 8 of both cycles (2.3-fold increase) compared with

CD8+ T-cells (1.5-fold increase for cycles 1 and 2), lea-

ding to a relatively small but statistically significant

increase of the CD4+/CD8+ ratio after both cycles of

treatment (Figure 2B). As expected, serum concentra-

tions of soluble IL-2R (sIL-2R) were also strongly

increased shortly after Selectikine infusion (Figure 2C).

The analysis of NK cells based on CD56 and CD16 sur-

face markers showed no significant changes for both

Figure 1 Kinetics of subpopulations of leukocytes in patients

treated with Selectikine. Absolute counts (109 cells/L) of total

leukocytes, lymphocytes, monocytes and neutrophils from patients

treated at increasing doses of Selectikine (0.075, 0.15, 0.225, 0.3, 0.45,

0.6 and 0.9 mg/kg). Geometric mean values of absolute counts are

shown for each dose-group, until discontinuation. Blood was drawn

during each treatment cycle at the following time points: day 1

before start of Selectikine infusion and on day 3 and day 8 after start

of Selectikine infusion. Black boxes on the x-axis represent the

treatment, i.e. the 1-h iv infusions of Selectikine during three

consecutive days per cycle.
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cycles monitored in terms of frequency or cytotoxicity

(Additional file 1: Figure S1A and S1B), only a slight in-

crease in absolute numbers was noted during the first

cycle (Additional file 1: Figure S1A). No dose effects

were observed in the analysis of NK cells.

T-cell activation and proliferation

As CD8+ and CD4+ T-cells were both sensitive to Selec-

tikine, the lymphocyte functions were next investigated.

Combinations of Ki67- and HLA-DR-specific antibodies

were used to analyze proliferation, and CD38- and Bcl2-

specific antibodies for activation [25-27]. Strong prolif-

eration was induced in both CD4+ and CD8+ T-cells

after each treatment cycle, reaching a mean of approxi-

mately 20% of proliferative CD4+ T-cells in cycle 1

(23.1% ± 11.4) and 2 (19.0% ± 9.2). The proliferation of

CD8+ T-cells was similar (22.2% ± 15.8) in the first cycle,

but less in the second cycle (10.7% ± 12.4) (Figure 3A).

Proliferating (HLA-DR+ Ki67+) cells were predominantly

effector memory (EM) cells, as identified by the absence

of CCR7 and CD45RA expression (Figure 3A dot plot,

Additional file 1: Figure S2A). Similar to the proliferation

state, activated cells (CD38+ Bcl-2-) were also increased

after both cycles for CD4+ and CD8+ T-cells, with a

decrease of the activation state of CD8+ T-cells during

the second treatment cycle (Figure 3B). As expected,

activated cells were primarily EM cells (Figure 3B dot

plot, Additional file 1: Figure S2B). In accordance

with these observations, the absolute count of EM

CD4+ T-cells was increased during both cycles (Additional

file 1: Figure S2C), whereas the absolute count of EM

CD8+ T-cells only increased during the first cycle

(Figure 3C). CD8+ effector cell properties were not found

to be altered by Selectikine treatment, as indicated by

ex vivo assessment of intracellular expression of granzyme

B and perforin (Figure 3D), and the production of IFNγ

and TNFα after a 4-h stimulation with PMA/ionomycin

(Figure 3E). Finally, neopterin levels were increased,

reflecting the overall activation of the cellular immune

system (Additional file 1: Figure S2D).

CD4+ Treg

CD4+ Treg cells are inhibitory immune cells, character-

ized by high expression of Foxp3 and CD25. Besides

CD25, Treg cells also express the remaining chains of

the high-affinity IL-2 receptor, and are thus sensitive to

IL-2 and Selectikine, similar to conventionally activated

T-cells. As expected, the frequency of Treg cells was

considerably increased after each treatment cycle, rea-

ching a mean of approximately 25% of CD4+ T-cells

(cycle 1, 24.5% ±11.3; cycle 2, 23.8% ±1.6) (Figure 4A).

These Treg cells were CD3+ CD4+ CD25+ Foxp3+ and

CD127- (Figure 4A, dot plot); CD127 expression being

mainly expressed on subpopulations of CD4+ non-Treg

cells and CD8+ T-cells (Additional file 1: Figure S3A). Of

note, a decrease in CD127 expression was observed on

CD4+ T-cells but not on CD8+ T-cells. The strong sensi-

tivity to Selectikine of Treg cells was confirmed by abso-

lute counts, with 20 ± 60 and 11 ± 7-fold increase in

cycles 1 and 2, respectively (day 8); while CD4+ non-

Treg cells increased by 1.6 ± 5 and 1.5 ± 0.5-fold, respect-

ively, similarly to CD8+ T-cells. This means that the

CD4+/CD8+ ratio remained unchanged when excluding

Treg cells (Figure 4B and Additional file 1: Figure S3B).

Of note, a single injection of low-dose cyclophospha-

mide (group 2) did not affect their frequency (Additional

file 1: Figure S3C). The inhibitory function of Treg cells

at baseline (day 1) and on day 8 of the second treatment

cycle was also measured in eight randomly selected

Figure 2 Effects of Selectikine treatment on peripheral CD4+

and CD8+ T-cells. (A) Absolute counts (cells/mm3) and frequencies

(%) of CD3+CD4+ and CD3+CD8+ T-cells (gated on lymphocytes

using FSC/SSC parameters) on days 1 and 8 during the first and

second treatment cycles. Graphs show the individual values of 39

patients treated with 0.075 to 0.9 mg/kg Selectikine alone. Bars

represent geometric mean values, with 95% CI. (B) CD4+/CD8+ ratios

on days 1 and 8 during the first and second treatment cycles.

Box-and-whiskers graphs show geometric mean with 95% CI.

(C) Serum concentrations (ng/mL) of soluble interleukin-2 receptor

on days 1 and 3 during the first and second treatment cycle. The

box and whisker graph shows geometric mean values per dose-

group. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.005.

Laurent et al. Journal of Translational Medicine 2013, 11:5 Page 5 of 12

http://www.translational-medicine.com/content/11/1/5



patients from group 1 (Additional file 1: Figure S3D). In

five of these patients, Treg cells inhibited CD4+ T-cell

proliferation between 60 and 100% (ratio 1:2) to a simi-

lar extent on days 1 and 8. In the three remaining

patients, Treg cells were not inhibitory on either day

(Table 1). The increase of Treg cell frequency without

changes of their inhibitory function may reflect early

production of IL-10, as detected in sera on day 3 after

the first dose of Selectikine (Figure 4C). Finally, analysis

of Ki67 expression revealed that a mean of approximately

50% of Treg cells were proliferating cells on day 8 (cycle 1,

51.6% ±11.6; cycle 2, 46.7% ±15.8) (Additional file 1:

Figure S3E).

In situ analysis

We further investigated whether lymphocytes accumulated

in situ, by studying a post-treatment biopsy collected after

the second cycle, from a patient with metastatic melanoma

treated with 0.225 mg/kg of Selectikine and matched arch-

ival material collected shortly prior to start of Selectikine

Figure 3 Functional analysis of CD4+ and CD8+ T-cells before and after treatment with Selectikine. (A) Frequencies (%) of proliferative

CD4+ and CD8+ T-cells (Ki67+ HLA-DR+) on days 1 and 8 during the first and second treatment cycles. Dot plots represent HLA-DR versus Ki67

staining of CD8+ gated T-cells on days 1 and 8 during the first treatment cycle. The right dot plot shows expression of CCR7 and CD45RA of cells

from gate (1), on day 8 of the first cycle. (B) Frequencies (%) of activated cells (CD38+ Bcl2-) within CD4+ and CD8+ T-cells on days 1 and 8 during

the first and second treatment cycle. Dot plots represent CD38 versus Bcl2 staining in CD8+ gated cells on days 1 and 8 during the first treatment

cycle. The right dot plot represents CCR7 versus CD45RA repartition of activated CD8+ T-cells (1) on day 8 of the first cycle. (C) Absolute counts

(cells/mm3) of effector memory (EM) CD8+ T-cells (CCR7- CD45RA-) on days 1 and 8 during the first and second treatment cycles. Graphs show

individual values of 39 treated patients. Bars represent geometric mean values with 95% CI. (D) Frequency of GrB+ perforin+ cells in CD8+ gated

cells on days 1 and 8 during the first and second treatment cycles. The box-and-whiskers graph shows geometric mean with 95% CI. (E)

Expression of IFNγ and TNFα (%) in CD8+ T-cells on days 1 and 8 of the second cycle, after a 4-hour in vitro stimulation with PMA/ionomycin. Dot

plot representation of IFNγ versus TNFα staining in CD8+ gated T-cells after in vitro stimulation. Box-and-whiskers graphs show geometric mean

with 95% CI from 9 randomized patients treated with 0.075 to 0.9 mg/kg Selectikine alone. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.005.
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treatment. Interestingly immunohistochemistry staining

revealed significantly increased expression of Ki67 by lym-

phocytes after Selectikine treatment compared with the

pretreatment sample. Furthermore, there was an increased

infiltration of CD8+ T-cells, while CD4+ and Foxp3+ Treg

cells were unchanged (Figure 4D). Notably, post-therapy

immune response in this patient was similar to other trea-

ted patients, with increased counts of CD8+, CD4+ and

Treg cells, and strong activation and proliferation of T-cells

(individual data not shown).

Tumor-antigen specific CD8+ T-cells

We investigated whether Selectikine treatment promoted

responses of tumor-antigen specific CD8+ T-cells. Of eight

randomly selected HLA-A2 positive patients, CD8+ T-

cells were isolated at baseline and on day 8 after

Figure 4 Effects of Selectikine on regulatory CD4+ T-cells. (A) Frequency (%) of CD4+ Treg cells based on Foxp3 and CD25 expression. Dot

plot representations of Foxp3 versus CD25 staining on days 1 and 8 during the first treatment cycle; and Foxp3 versus CD127 on day 8. Graphs

represent individual values of 39 treated patients. Bars represent the geometric mean with 95% CI. (B) Absolute counts (Cells/mm3) of Treg cells

(Foxp3+CD25+CD4+CD3+) and CD4+ non-Treg cells (Foxp3-CD25-CD4+CD3+) on days 1 and 8 during the first and second treatment cycles.

Box-and-whiskers graphs show geometric mean with 95% CI. (C) Serum concentrations (pg/mL) of IL-10 measured on days 1 and 3 after

Selectikine infusion in 39 treated patients in patient group 1. (D) Ki67, CD8+, CD4+ and Foxp3 immunoperoxydase staining in tumor tissue before

the study (PRE-treatment), and after the second treatment cycle (POST-treatment) from melanoma patient N° 101 1102 treated with 0.225 mg/kg

Selectikine. **P ≤ 0.01, ***P ≤ 0.005.
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Selectikine infusion during the second cycle, and stimu-

lated with a panel of peptides representing cancer-testis

antigenic epitopes from the tumor antigens Melan-A,

MAGE-A3, MAGE-A10, NY-ESO-1 and SSX-2. After one

week of peptide stimulation, cells were isolated and

stained with tetramers combined with intracellular stain-

ing for IFNγ and TNFα. Lymphocytes obtained from day

8 (second treatment cycle) did not show significant

enrichment of tumor-antigen specific T-cells compared

with those from day 1 (Additional file 1: Figure S4A). One

patient showed strong activation of Melan-A specific T-

cells at the baseline of the second cycle, but without a

further increase on day 8 (Additional file 1: Figure S4B).

Measurements of IFNγ and TNFα production within

tetramer positive CD8+ T-cells showed no functional en-

hancement after Selectikine treatment (Additional file 1:

Figure S4C), which was similar to our findings for whole

circulating CD8+ T-cells (Figure 3E).

Correlation with patient survival

Preliminary evidence of clinical efficacy was investigated.

No tumor responses were recorded, but prolonged disease

stabilization in some of these heavily pre-treated patients

observed. Median overall survival was 9.6 months [95% CI

5.6–16.4] in group 1, and 7.0 months [95% CI 4.3–23.2] in

group 2. Previously reported [28-30], associations between

patient survival and lymphocyte properties (as described

in Figures 1 and 2), were further examined. Interestingly,

high lymphocyte counts at baseline were significantly

associated with longer survival (Figure 5A). Furthermore

low levels of activated CD8+ T-cells (CD38+Bcl2-%) at

baseline were associated with longer patient survival

(Figure 5B), while the absolute count was not (Figure 5C).

Notably, the highest increase of CD8+ T-cell activation at

day 8 was observed in patients who presented low activa-

tion levels before the start of treatment (Additional file 1:

Figure S5A), and was thus independent of lymphocyte

counts (Additional file 1: Figure S5B). Therefore, treatment

induced T-cell activation appeared to occur preferentially

in patients with low-level activation at baseline and seemed

to be associated with improved clinical outcome in this

small number of patients. Of note, Treg cells did not impact

on overall survival (Additional file 1: Figure S5C).

Discussion
IL-2 therapy can be effective in the treatment of patients

with metastatic renal cell carcinoma and metastatic

melanoma [31]. Clinical responses to high-dose IL-2

therapy occur in 15% to 20% of patients. However, side-

effects are frequent and can be serious [32,33]. More

targeted IL-2 therapies are necessary to improve safety

and efficacy [34]. Several small phase II studies recorded

some clinical responses with the administration of lower

doses of IL-2 but no cases of long lasting responses were

reported [35]. A randomized study comparing high- and

low-dose IL-2 in 156 patients with metastatic renal

cancer by Yang et al. [14], supported the finding that

low-dose IL-2 regimens can cause the regression of

advanced renal cell cancer. However, the higher dose of

IL-2 appeared to produce greater biological activity, to-

gether with a higher clinical response rate.

The novel recombinant IL-2/anti-DNA fusion protein,

Selectikine, was developed with the aim of maximizing

immunomodulatory action and clinical efficacy at min-

imal vascular toxicity, despite treatment at optimal doses

[36]. Our analysis of peripheral leukocytes showed a

strong and transitory increase early after infusion of

Selectikine. As expected, lymphocytes responded readily

while the effects on monocytes were less pronounced,

and no significant changes were observed to neutrophils

(Figure 1). Strong increases in both percentages and ab-

solute counts were observed for both CD4+ and CD8+

T-cells (Figure 2), while only weak effects were found for

NK cells (Additional file 1: Figure S1), confirming the se-

lectivity of Selectikine for T-cells compared with native

IL-2 and an immunocytokine comprising wild-type IL-2

[37]. Furthermore, major biological effects included a

significant increase in the soluble factors sIL-2R, neop-

terin and IL-10 [38]. Recently, treatment with EMD

273063, a humanized anti-GD2 mAb fused to native IL-

2, showed no significant effects on peripheral CD4+ and

CD8+ T-cells 10 days after infusion of the molecule [38].

Nevertheless, EMD 273063 administration resulted in

increased levels of the soluble factors sIL-2R, neopterin

and IL10, as reported in the present study.

Strong activation and proliferation of lymphocytes was

observed, essentially of EM T-cells (Figure 3 and Additional

file 1: Figure S2), even at the lowest dose (0.075 mg/kg) of

Selectikine. In general, a dose effect on biological responses

was not found. This was remarkable, since strong immune

Table 1 Treg inhibition capacity

Inhibition of CD4+ proliferation by Tregs

Dose Patient Inhibition (%)

Day 1 Day 8

0.075 103 1301 99 88

0.075 103 1318 75 48

0.075 102 1213 68 49

0.3 103 1303 97 92

0.3 103 1309 0 0

0.6 103 1310 82 77

0.6 103 1314 0 2

0.6 101 1104 0 0

Capacity of inhibition (%) of CD4+ T-cell proliferation induced by CD3+/CD28+

stimulation by Treg cells, sorted on days 1 and 8 during the second treatment

cycle. Samples from 8 randomized patients treated at 0.075, 0.3 and 0.6 mg/kg

Selectikine alone were tested.
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stimulation even at low doses of Selectikine, without major

toxicity was demonstrated. In the field of IL-2 therapy,

these biologic effects are considered as potentially benefi-

cial. They are mostly observed at high doses with wild-type

IL-2 and are thus associated with toxicity [39]. The absence

of a dose effect in the present study should be interpreted

with caution due to the heterogeneity of the patient popula-

tion comprising different types of cancers with different

pretreatment regimens. To reliably investigate a dose effect,

a randomized study investigating different doses in a more

homogeneous population would be necessary.

As expected, Treg cells responded actively, with increased

frequencies and absolute counts after infusion of Selectikine

(Figure 4A, B). However, their inhibitory capacities were

unchanged (Table 1), based on the same cell ratio. The in-

crease of Treg number is far more important than the

Figure 5 Pharmacodynamic markers correlative evaluation with patient survival. (A) Kaplan-Meier Survival Curve with 95% confidence

limits stratified by lymphocyte counts (cell/mm3) at baseline in patient groups 1 and 2. (B) Kaplan-Meier Survival Curve with 95% confidence

limits stratified by percent of activated CD8+ T-cells (CD38+bcl2-,%) at baseline in patient groups 1 and 2. (C) Kaplan-Meier Survival Curve with

95% confidence limits stratified by absolute count of activated CD8+ T-cells (CD38+bcl2-, Cell/mm3) at baseline in patient groups 1 and 2.
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increase of other T-cell populations, which could reflect a

change in effector/regulatory T-cell ratio in vivo. Similarly

to effector cells, Selectikine effects were transitory. Further-

more, increased Treg cell frequency appeared to be due

to the proliferation of pre-existing Treg cells, as they

expressed Ki67 (Additional file 1: Figure S3). The elevated

levels of IL-10 may be a direct consequence of Treg cell

sensitivity to the therapy (Figure 4C). Additional treatment

with low dose cyclophosphamide prior to Selectikine infu-

sion did not inhibit Treg cells (Additional file 1: Figure

S3C), which is compatible with the majority of other studies

[40]. The usefulness of cyclophosphamide for therapeutic

inhibition of Treg cells remains questionable [41,42]. Im-

portantly, in addition to Treg cells, the levels of CD4+

effector T-cells were also increased after the infusion of

Selectikine (Figure 4B). Furthermore, CD8+ effector T-cells

were also activated and increased in numbers and frequen-

cies. Thus, even if Treg cells were highly sensitive to Selec-

tikine, T-cell activation was broad, with increased activity of

both effector and regulatory T-cells, in contrast to recent

studies of low dose IL-2 treatment demonstrating preferen-

tial and sustained activation of Treg cells [43,44]. The fact

that Selectikine targets the tumor tissue through the bind-

ing of free DNA may result in a different T-cell activation

in the tissue compared to periphery, which could perhaps

also be the case for Treg cells as suggested by the analysis

of the single post-therapy biopsy (Figure 4D). For this pa-

tient, the in situ analysis revealed different effects in the

tumor compared to the periphery. This aspect should be

addressed in future clinical trials.

Recently, Levin et al. have published the first results

evaluating a new class of IL-2 named a superkine, which

has been engineered to eliminate the functional require-

ment of CD25 expression [45]. In vitro and in vivo expe-

riments revealed that the new IL-2 superkine induced

superior expansion of cytotoxic T-cells compared to Treg

cells, leading to improved antitumor responses and reduced

pulmonary edema. Compared with the observations made

with Selectikine, it will be interesting to evaluate both mole-

cules in terms of immunological responses, toxicity and

VLS when the IL-2 superkine reaches the clinic.

PBMC available from before and after the second treat-

ment cycle were studied to investigate whether Selectikine

treatment had detectable effects on tumor antigen-specific

CD8+ T-cells. Several patients presented detectable levels

of tumor-specific T-cells, and one patient developed a

strong response. However, in most patients there was no

increase in the frequency or the functionality of tumor-

specific T-cells (Additional file 1: Figure S4). Even though

many of these T-cells may have been induced by the

treatment, in the absence of the assessment of pretreat-

ment samples, this could not be formally addressed in

this study. Unfortunately, it was also not possible to deter-

mine patient tumor antigen expression, which made it

impossible to exclude those T-cells with specificities for

non-expressed antigens (i.e. the majority) from the ana-

lysis. As a first-in-human study of Selectikine, at the time

of the study design, these factors were not of high priority.

In cancer patients, tumor-infiltrating lymphocyte counts

and localization are often independent prognostic factors

for survival [46-50]. However, several studies including

our own (Figure 5A) showed also that the counts of circu-

lating lymphocytes correlated positively with survival

[28-30]. Notably, in our study enhanced pre-activation of

CD8+ T-cells at baseline correlated with short survival

(Figure 5B), while no correlation was observed when

considering Treg cells (Additional file 1: Figure S5C).

However, these are preliminary observations since the

phase I study design and the low patient number do not

allow for definitive conclusions on clinical outcome. Lar-

ger studies are required to address these questions, and to

test whether low-level T-cell activation at baseline, and

strong therapy induced T-cell activation are predictive for

favourable clinical outcome.

Conclusion
This first-in-human trial with Selectikine, a novel immu-

nocytokine IL-2/anti-DNA fusion protein, confirms its

selective biologic activity. Larger studies are now required

to confirm our findings, and to determine potential clin-

ical benefits. Finally, further analyses of post-treatment

biopsies will provide more detailed insights into the

biological effects of the dual targeting (IL-2R/DNA) by

Selectikine.

Additional file

Additional file 1: Materials and methods.
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