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OPEN

Review

T-cell exhaustion in the tumor microenvironment

Y Jiang1, Y Li*,1,2 and B Zhu*,1

T-cell exhaustion was originally identified during chronic infection in mice, and was subsequently observed in humans with cancer.
The exhausted T cells in the tumor microenvironment show overexpressed inhibitory receptors, decreased effector cytokine
production and cytolytic activity, leading to the failure of cancer elimination. Restoring exhausted T cells represents an inspiring
strategy for cancer treatment, which has yielded promising results and become a significant breakthrough in the cancer
immunotherapy. In this review, we overview the updated understanding on the exhausted T cells in cancer and their potential
regulatory mechanisms and discuss current therapeutic interventions targeting exhausted T cells in clinical trials.
Cell Death and Disease (2015) 6, e1792; doi:10.1038/cddis.2015.162; published online 18 June 2015

Facts

• T-cell exhaustion is a hyporesponsive state of T cells in
chronic environment, with increased inhibitory receptors,
decreased effector cytokines and impaired cytotoxicity.

• Most T cells in tumor microenvironment are exhausted,
leading to cancer immune evasion.

• PD-1 is the major inhibitory receptor regulating T-cell
exhaustion, T cells with high PD-1 expression lose the
ability to eliminate cancer.

• Reversing T-cell exhaustion represents an inspiring strategy
to treat cancer.

Open Questions

• What is the definition of ‘exhausted T cell’?
• What is the differentiation process of T cells in tumor

microenvironment?
• Howdoes tumor microenvironment regulate T-cell exhaustion?
• Reversing T-cell exhaustion represents promising cancer

therapy, what are the limitations and adverse reactions?
How to improve treatment efficiency?

• What should be further studied about T-cell exhaustion?
• What are the similarities and differences between T-cell

exhaustion in chronic infection and T-cell exhaustion in
cancer?

T cells are the major force of adaptive immunity. Following
exposure to foreign antigens, naive T cells (CD44lowCD62Lhi)

activate and expand greatly during the first 1–2 weeks.
Subsequently, T cells acquire effector functions, including
the production of effector cytokines and granzyme/perforin-
mediated cytotoxicity. After the peak of T-cell proliferation, 90–
95% of effector T cells (CD44hiCD62low) die via apoptosis. The
surviving T cells differentiate into memory T cells and are
maintained in the resting state.1 The memory T-cell differ-
entiation is observed in most cases of acute inflammation.2

Upon re-exposure to the same or similar antigens, memory
T cells expandmore quickly and regain higher effector function
than naive T cells.3,4 These capacities allowmemory T cells to
persist and to confer protective immunity for a long time, even
after the antigen withdraws.
In contrast, tumor antigens are weakly immunogenic self-

molecules, and most tumor-specific T cells are of low
precursor frequencies and low T-cell receptor (TCR) affinity
because tumor-specific T cells with high avidity are deleted
during the thymic selection process.2 In addition, the process
of antigen presentation is impaired in tumor microenvironment
(TME), leading to insufficient priming and boosting of T cells.5

Although effector T cells enter TME, they are regulated by a
complex immunosuppressive network that consists of cancer
cells, inflammatory cells, stromal cells and cytokines. Among
these TME components, cancer cells, inflammatory cells and
suppressive cytokines have crucial roles in regulating T-cell
phenotype and function. These components drive T cells
terminally to differentiate into ‘exhausted’ T cells.5

Exhausted T cells were primarily identified in a chronic
lymphocytic choriomeningitis virus (LCMV) infection model.
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The LCMV-specific CD8+T cells expressing activationmarkers
(CD69hiCD44hiCD62Llow) were unable to perform the anti-viral
functions.6 T-cell exhaustion is a state of T-cell dysfunction in
chronic environment, exhausted T cells express high levels of
inhibitory receptors, including programmed cell death protein
1 (PD-1), lymphocyte activation gene 3 protein (LAG-3), T-cell
immunoglobulin domain and mucin domain protein 3 (TIM-3),
cytotoxic T lymphocyte antigen-4 (CTLA-4), band T lympho-
cyte attenuator (BTLA) and T-cell immunoglobulin and
immunoreceptor tyrosine-based inhibitory motif domain
(TIGIT).7–12 The other principal characteristic of exhausted
T cells is the loss of function in a hierarchical manner. Such
functions as interleukin-2 (IL-2) production and ex vivo killing
capacity are lost at the early stage of exhaustion,13 whereas
tumor necrosis factor-α (TNF-α) production is lost at the
intermediate stage, interferon-γ (IFN-γ) and granzyme B
(GzmB) production are lost at the advanced stage of
exhaustion.14 The first evidence connecting exhausted
T cells with TME was that overexpressed programmed cell
death 1 ligand 1 (PD-L1, the ligand of PD-1) on mouse
mastocytoma P815 cells rendered them less susceptible to
the specific TCR-mediated lysis by cytotoxic T cells in vitro and
remarkably enhanced their tumorigenesis and invasiveness
in vivo, which indicates that the expression of PD-L1
contributes to immune evasion.15 Most T cells in TME
differentiate into exhausted T cells, express high levels of
inhibitory receptors and produce less effector cytokines, and
lose the ability to eliminate cancer. T-cell exhaustion may be
related with defective memory T cells formation, and the final
stage of T-cell exhaustion is the physical deletion, by which
severely exhausted T cells are cleared in TME (Figure 1).
In this review, we discuss the potential mechanisms

involved in T-cell exhaustion in TME. We also introduce the

therapeutic interventions that target exhausted T cells in
clinical trials.

Intrinsic Mechanisms Involving in T-Cell Exhaustion and
Differentiation in TME

Complete activation of T cells requires three signals, the first
signal is the interaction of antigenic peptide–MHC complex
with TCR, the second signal is costimulatory or co-inhibitory
signal provided by antigen-presenting cells, the third signal is
the stimulation by extracellular cytokines such as IL-2.16

Among these signals, the second signal determines the
promotion or inhibition of T-cell cytokine production and
effector function, appropriate co-inhibitory signals dampen
inflammation to avoid tissue damage from excessive immune
reaction, whereas durative and overmuch co-inhibitory signals
lead to T-cell hyporesponsiveness.17 Co-inhibitory signals are
primarily mediated by inhibitory receptors that are the major
phenotypes of exhausted T cells.18 Genomic studies on
exhausted T cells in chronic LCMV infection defined specific
molecular pathways distinct from effector T cells and memory
T cells, primarily including increased inhibitory receptors and
decreased cytokine signaling pathways, and so on.19 Con-
sistent with chronic infection, T cells in TME also exhibit
exhausted phenotype and function. Exhausted T cells in
cancer express high levels of inhibitory receptors, including
PD-1, CTLA-4, TIM-3, LAG-3, BTLA and TIGIT, as well as
show impaired effector cytokine production, such as IL-2,
TNF-α, IFN-γ and GzmB (Figure 1).
PD-1 expression was markedly upregulated on tumor-

infiltrating CD8+ T cells and correlated with reduced cytokines
in Hodgkin’s lymphoma, melanoma, hepatocellular carcinoma
and gastric cancer patients.20–24 PD-1 expression on Jurkat
cells increased after co-cultured with cancer cells, blockade of

Figure 1 T-cell exhaustion and differentiation in TME. Naive T cells (CD44lowCD62Lhi) activate and differentiate into effector T cells (CD44hiCD62Llow) in secondary lymphoid
organ. When effector T cells enter TME, they are polarized into exhausted T cells, with decrease in effector cytokines (IL-2/IFN-γ/TNF-α/GzmB) and increase in inhibitory
receptors (PD-1/CTLA-4/TIM-3/LAG-3//BTLA/TIGIT). Subsequently exhausted T cells may turn to be defective memory T cells or be deleted physically
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PD-1 pathway successfully restored T-cell function.25 CTLA-4
is an immune checkpoint receptor expressed only on T cells,
and it competes with the costimulatory molecule CD28 in
binding the ligands CD80/CD86 and initiating intracellular
inhibitory signals.26 The interaction of CTLA-4 with CD80/
CD86 generates inhibitory effects on T-cell activation and
IL-2 production.27 One-third to half of CD8+ tumor-infiltrating
lymphocytes (TILs) co-expressed PD-1 and CTLA-4,
PD-1+CTLA-4+CD8+TILs were more severely exhausted in
proliferation and cytokine production, whereas dual blockade
of PD-1 and CTLA-4 enhanced T-cell function in cancer.28

Both PD-1 and CTLA-4 inhibited the activity of Akt, a crucial
molecular in regulating glucose metabolism of T cells by
elevating glucose transporter 1 expression and glycolysis,
suggesting that glucose metabolism may contribute to T-cell
exhaustion.29 In addition, TIM-3, LAG-3, BTLA and TIGITalso
regulate T-cell exhaustion in cancer, which has been demon-
strated in both animal experiments and cancer patients below.
In tumor-bearing animal models, co-expression of PD-1/

TIM-3 was generally observed on TILs, among these cells,
TIM-3+PD-1+CD8+TILs represented the predominant subset
and exhibited greater exhausted phenotypes than
TIM-3-PD-1- and TIM-3+PD-1-CD8+TILs, as defined by failure
to proliferate and produce IL-2, TNF-α and IFN-γ, dual
blockade of PD-1 and TIM-3 restored the anti-tumor function
of exhausted CD8+T cells.30 In melanoma patients,
TIM-3+PD-1+tumor-specific CD8+T cells were more dysfunc-
tional than TIM-3-PD-1+ and TIM-3-PD-1-T cells, producing
less IFN-γ, TNF-α and IL-2.31 Co-expression of PD-1/LAG-3
was also observed on CD8+TILs in tumor-bearing animal
models, PD-1+LAG-3+TILs exhibited more exhausted pheno-
type and function than single positive or negative TILs, dual
blockade of PD-1 and LAG-3 resulted in tumor regression.32

Similarly, LAG-3+PD-1+CD8+T cells were more dysfunctional
in IFN-γ and TNF-α production compared with LAG-3+PD-1- or
LAG-3-PD-1-CD8+subsets in human ovarian cancer.33 BTLA
mediated the functional inhibition of CD8+T cells by its ligand
herpes virus entry mediator,34 BTLA+PD-1+TIM-3+CD8+T
cells were most dysfunctional among NY-ESO-1-specific
CD8+T cells in melanoma patients. Combined blockade of
BTLA, PD-1 and TIM-3 enhanced the proliferation and
function of tumor-specific CD8+T cells, suggesting a role
for BTLA in regulating T-cell exhaustion in advanced
melanoma.11 Recently, another co-inhibitory receptor TIGIT
was demonstrated in T-cell exhaustion. Similar with CTLA-4/
CD28 and CD80/CD86, TIGIT competes with CD226 in
binding the same set of ligands CD115/CD112, CD226 is a
costimulatory signal for T-cell response, whereas TIGIT is a
negative regulator.12,35 Tumor antigen-specific CD8+T cells
and CD8+TILs from melanoma patients expressed high levels
of TIGIT, and TIGIT+CD8+T cells also co-expressed PD-1,
combined blockade TIGIT with PD-1 promoted CD8+T cell
proliferation and cytokine production.36 In tumor-bearing
mouse, TIGIT was also highly expressed on TILs, antibody
co-blockade of TIGIT and PD-L1 synergistically and specifi-
cally boosted CD8+T cell effector function, resulting remark-
able tumor clearance.37 Above results suggest that PD-1 is the
major regulator of T-cell exhaustion, in addition, the pattern of
inhibitory receptor co-expression on the same CD8+T cell
probably determines the severity of T-cell exhaustion,

combined blockade inhibitory receptors represents inspiring
strategies for cancer therapy.
The transcription factors Blimp-1, T-bet, NFATc1 and BATF

are critical for T-cell exhaustion in chronic infection,38–41 but
the intracellular signal pathway involved in regulation of
exhausted T cells in cancer remains poorly understood.
PD-1 was elevated markedly in tumor-infiltrating T cells of
Hodgkin’s lymphoma. Blockade of the PD-1 signaling pathway
inhibited the phosphorylation of SHP-2, a SH2-containing
tyrosine-specific protein phosphatase, and restored the IFN-γ-
producing function, indicating that SHP-2 phosphorylation is
involved in the PD-1 downstream intracellular signal transduc-
tion (Figure 2).20

In addition, IFN-α induces and maintains PD-1 expression
on the TCR-engaged primary mouse T cells through the
association between IFN-responsive factor 9 and the IFN
stimulation response element, suggesting the role of IFN-
responsive factor 9 on regulating T-cell exhaustion.42 The
tumor-infiltrating T cells exhibit upregulated expression of
activator protein 1 (AP-1) subunit c-Fos. The ectopic expres-
sion of c-Fos in T cells promote tumor progression by inducing
PD-1 expression via direct binding to the AP-1-binding site in
the Pdcd1 (gene encoding PD-1) promoter, indicating that
c-Fos directly regulates T-cell exhaustion in cancer
(Figure 2).43

Exhausted T cells express low levels of CD122 (the β-chain
of the IL-2 and IL-15 receptor) and CD127 (the IL-7 receptor
α-chain) in chronic infection so that they lose the ability to survive
long-term without antigens via IL-7- and IL-15-mediated
memory maintenance.13 Although T cells with exhausted
phenotype transferred into naive mice regained the ability to
proliferate and control viral infection,44 it was also demon-
strated that exhausted T cells hardly recovered normal
differentiation of memory T cells in antigen-free recipients in
infection models.45 These findings suggest that simply
removing the antigen cannot restart normal memory T-cell
differentiation. The effects of T-cell exhaustion on memory
T-cell formation have also been demonstrated in TME. In
tumor-bearing mouse models, TILs are divided into three
subsets, namely, PD-1+TIM-3+, PD-1-TIM-3+ and PD-1-TIM-3- T
cells. TIM-3+PD-1+T cells contain the largest population of
effector/memory T cells with a high expression of CD44
and low expression of CD62L, but consist of the lowest
population of central memory (CD44hiCD62Lhi) cells. The
majority of the three TIL subsets express low to intermediate
levels of CD44, whereas the CD44int cells are the lowest in
TIM-3+PD-1+T cells.30 Owing to these results, we speculate
that exhausted T cells in TME favor the differentiation of
effector/memory T cells instead of central memory T cells,
through which the long-term maintenance of anti-tumor
immunity is impaired (Figure 1).
T-cell exhaustion is related to physical T-cell deletion in

cancer. PD-L1 is highly expressed in various tumor tissues,
and the expression of PD-L1 inversely correlates with
prognosis and survival. PD-L1-associated T-cell apoptosis is
one of several potential mechanisms, which is supported by
the inverse correlation between PD-L1 expression in tumor
tissues and the number of TILs.46 In hepatocellular carcinoma
patients, immunohistochemical staining indicated that
PD-L1 expressed hepatoma cells and apoptotic infiltrating
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CD8+T cells were both enriched in tumor sections. IFN-γ
secreted by CD8+T cells induced PD-L1 expression on
hepatoma cells, which in turn promoted CD8+T cell apoptosis
in vitro.47 Hepatic stellate cells isolated from hematocellular
carcinoma expressed high levels of PD-L1, which was
associated with enhanced T-cell apoptosis.48 These findings
suggest that the advanced stage of T-cell exhaustion is the
physical deletion (Figure 1).
It is worth mentioning that PD-1/TIM-3 or PD-1/LAG-3

co-expression on CD4+ TILswere also observed in a recurrent
mouse melanoma model.30,32 These tumor-specific CD4+T
cells expressed inhibitory receptors, such as PD-1, TIM-3 and
LAG-3.49 However, whether the function of tumor-infiltrating
CD4+T cells is decreased or whether these cells are also
exhausted remains unknown.

Extrinsic Mechanisms Regulating T-Cell Exhaustion in
Cancer

TME consists of cancer cells, inflammatory cells, stromal
cells and cytokines, these components form a complicated
immunosuppressive network in cancer, which limits T-cell
activation and induces T-cell dysfunction. The potential
extrinsic factors involved in T-cell exhaustion in cancer include
tumor cells, inflammatory cells and immunosuppressive
cytokines (Figure 2).
TME is abundant with tumor antigens. Chronic tumor

antigens induce durative activation of T cells in TME, which
probably contribute to T-cell exhaustion. The expression of
PD-L1 and programmed cell death 1 ligand 2 (PD-L2) is
correlated with prognosis in some human malignancies50–62

(Table 1). The PD-L1/PD-1 signaling pathway is a crucial
regulatory pathway of T-cell exhaustion in cancer. PD-L1 is
abundantly expressed in cancer cells and stromal cells,
and blockade of PD-L1/PD-1 enhances T-cell anti-tumor
function.63 PD-L2 also binds to PD-1 and regulates T-cell
function. The constitutive basal expression of PD-L2 is low, but
PD-L2 expression can be induced on dendritic cells (DCs),
macrophages and mast cells in response to IL-4 and IFN.64

Regulatory T (Treg) cells are an inhibitory subset of
CD4+ T cells that maintain peripheral tolerance and prevent
autoimmune diseases. Tregs also accumulate in tumor tissues
and the peripheral blood of cancer patients and contribute to
immune evasion.65,66 The ectoenzymes CD39 and CD73 on
Treg cells have been demonstrated to mediate the generation
of pericellular adenosine, which suppressed the function of
effector T cells by activating the adenosine A2A receptor.67,68

High expression of CD25 on Tregs consumed excessive local
IL-2, thereby impaired T-cell function.69,70 In addition, inhibi-
tory cytokines derived from Tregs, such as IL-10 and
transforming growth factor β (TGF-β), also suppress the
function of effector T cells.71,72

DCs are a subset of professional antigen-presenting cells.
Plasmacytoid DCs generated during cancer development can
induce Treg differentiation via indoleamine 2,3-dioxygenase
(IDO). The increased Tregs secreted IL-10 and significantly
upregulated PD-L1 on conventional DCs.73 In the transgenic
adenocarcinoma of the mouse prostate model, a population of
DC with plasmacytoid phenotype was observed in TME.
These tumor-associated DCs expressed low levels of the
costimulatory ligands CD80, CD86 and CD40 but high
levels of genes associated with T-cell exhaustion, including

Figure 2 Potential regulatory mechanisms of T-cell exhaustion in TME. Cancer cells and stromal cells (tumor-associated DC, Treg, TAM and MDSC) are major extrinsic cells
that regulate T-cell exhaustion, and IL-10 and TGF-β are both important extrinsic cytokines involved in exhausted process of T cells. Inhibitory receptors PD-1, CTLA-4, Tim-3,
BTLA, LAG-3 and TIGIT on T cells are the major intrinsic regulatory factors of T-cell exhaustion. SHP-2 is the downstream of PD-1, IRF-9 and AP-1, which regulate PD-1
expression in transcriptional level
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PD-L1 and IDO.74 These data indicate that plasmacytoid DCs
also contribute to T-cell exhaustion.
Macrophages are critical cells in the innate immunity that

defend the host against foreign pathogens. They are generally
classified into two extreme phenotypes: M1 macrophages
produce considerable pro-inflammatory cytokines, whereas
M2 macrophages secrete several growth factors that activate
the process of tissue repair and suppress adaptive immune
responses.75Macrophages accumulated in cancer are termed
tumor-associated macrophages (TAMs).75 Tumor-derived
signals such as M-CSF, CCL2, VEGF and angiopoietin-2
recruit blood monocytes through the tumor vessels and
promote the polarization of macrophages in cancer
sites.76,77 TAMs exhibit an M2-like phenotype and possess
pro-tumor immunity. Therefore, the correlation between TAM
density and the patient’s prognosis is negative.78 The over-
expression of CCL2 by murine fibrosarcoma cells resulted in
an increase in TAMs numbers, which contributed to tumor
growth in vivo.79 TAMs suppressed T-cell activation and
proliferation by producing suppressive mediators, including
IL-10 and TGF-β. In addition, TAMswere unable to trigger Th1-
polarized immune responses rather than induce Treg
formation.80 The TAMs from renal cell carcinoma patients
induced the skewing of autologous blood-derived CD4+T cells
toward a more exhausted phenotype, with decreased produc-
tion of effector cytokines and enhanced expression of PD-1
and TIM-3.81

The accumulation of myeloid-derived suppressor cells
(MDSCs) has been recognized as a major mechanism to
promote carcinogenesis. These cells originate from myeloid
tissue and are comprised of myeloid cell progenitors,
precursors of DCs, monocytes, macrophages and
granulocytes.82 They are typically CD11b+CD33+CD34+

CD14-HLA-DR- cells in cancer patients, and are CD11b+

Gr-1+ cells in tumor-bearing mice. MDSCs are further divided
into ‘monocytic’ (CD11b+Ly6GlowLy6Chi) and ‘granulocytic/
neutrophil-like’ (CD11b+Ly6GhiLy6Clow) MDSCs.83 They are
considered to be a population of inhibitory cells because they
suppress T-cell activation and induce T-cell exhaustion by

multiple mechanisms. For example, in ovarian carcinoma
animal models, CD11b+Gr-1+cells with a high expression of
PD-L1 and CD80 markedly inhibited antigen-specific
immune responses, whereas blockade of PD-L1 and CD80
in Gr-1+CD11b+cells abrogated immune suppression.84,85

MDSCs derived from IL-10-stimulated DCs exhibited
enhanced PD-L1 expression, and these cells induced T-cell
dysfunction via the PD-L1/PD-1 signaling pathway.86 These
results uncover the role of MDSCs in regulating T-cell
exhaustion in cancer.
Immunosuppressive cytokines, such as TGF-β and IL-10,

are crucial factors during T-cell exhaustion. TGF-β in TME is
mainly secreted by cancer cells, immune cells and
fibroblasts.87 The role of the TGF-β signaling pathway in
cancer is complex and paradoxical, varying by cell type and
the stage of cancer. In general, TGF-β mediates tumor
suppression via the inhibition of cancer cell proliferation and
the induction of cancer cell apoptosis in early stages. It also
promotes tumor cell invasion and metastasis through the
modulation of immune response in later stages.88 Recent
research has shown that TGF-β directly suppresses the
cytotoxicity of CTLs by the transcriptional repression of genes
encoding key functional cytokines, such as perforin, gran-
zymes and cytotoxins.72,89 Tumor-derived TGF-β directly
suppressed CTL effector function by elevating miR-23a and
downregulating Blimp-1, a key transcription factor involved in
T-cell differentiation.90 In addition, the naive T cells treated with
TGF-β favor the differentiation into Treg cells, which are
involved in the T-cell exhaustion.91

Elevated IL-10 in TME is primarily secreted by TAMs, CD4+

regulatory T cells and cancer cells.80,92 IL-10 can exert anti-
tumor activity through NK-mediated tumor cell lysis induced by
downregulation of MHC-I. On the other hand, IL-10 also
dampened anti-tumor immunity via an immunosuppressive
role on DCs and macrophages.93 IL-10 induced PD-L1
expression on DCs, which in turn mediated the exhaustion
process of T cells.86 Moreover, IL-10 has a significant role in
the induction of Tregs.94 These findings demonstrate that
IL-10 contributes to T-cell exhaustion in TME.

Table 1 The prognostic significance of PD-L1 and PD-L2 in some malignancies

Cancer Prognostic significance Reference

Esophageal cancer PD-L1 and PD-L2 status may be predictor of prognosis for patients with esophageal cancer 16

Hepatocellular
carcinoma

Patients with higher expression of PD-L1 have a significantly poorer prognosis,patients with higher expression
of PD-L2 also have a poorer survival

17

Soft tissue sarcoma PD-L1 expression are significantly associated with advanced clinicopathological parameters, and PD-L1
positivity is independent prognostic indicator of overall survival and event-free survival

18

Adrenocortical
carcinoma

PD-L1 expression in adrenocortical carcinoma has no relationship to clinicopathologic parameters or survival 19

Non-small cell lung
cancer

PD-L1 or PD-L2 expression is associated with advanced clinicopathologic features and poor overall survival 20

Breast cancer PD-L1 expression is an independent negative prognostic factor for overall survival 21

Ovarian cancer PD-L1 expression is independent negative prognostic factors, so is PD-L2 expression 22,23

Melanoma There is a correlation between the degree of PD-L1 expression and the vertical growth of primary tumors in
melanoma

24

Pancreatic cancer Combined PD-1/PD-L1 expression can serve as an independent prognostic marker for pancreatic carcinoma,
PD-L2 shows no siginicant correlation with patient survival

25,26

Cervical cancer PD-L1 expression influences patient survival 27

Colon cancer PD-L1 expression is associated with TMN stage and prognosis 28

Abbreviations: PD-L1, programmed cell death 1 ligand 1; PD-L2, programmed cell death 1 ligand 2
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Therapeutic Interventions by Reversing Exhausted
T Cells in Cancer

Research from bench to bedside indicates that the blockade of
inhibitory receptors is a great breakthrough in cancer therapy.
The blocking antibodies in clinical development primarily
include CTLA-4 and PD-1/PD-L1 antibodies. Ipilimumab is
an anti-CTLA-4 monoclonal antibody (mAb) approved for
melanoma treatment by the US Food and Drug Administration
(FDA) in 2011, and it is the first agent to show survival benefits
for metastatic melanoma patients.95 Ipilimumab has also been
evaluated in clinical trials for metastatic prostate cancer and
advanced non-small cell lung cancer, ipilimumab alone or
combined with other anti-tumor therapies showed significant
clinical benefits for cancer patients.96 Tremelimumab is
another anti-CTLA-4 monoclonal antibody in clinical trials for
cancer therapy, and showed anti-tumor activity with a durable
response in phases I and II clinical studies97 (Table 2).
PD-L1/PD-1 blockade reverses exhausted T cells and

restores anti-tumor function. The PD-1 antibodies (pidilizu-
mab, pembrolizumab and nivolumab) and PD-L1 antibodies
(BMS-936559, MPDL3280A and MEDI4736) have been
subjected to clinical trials.98 Pidilizumab is the first PD-1
mAb for clinical trials, significant clinical benefit and durable
response was observed in patients with hematologic malig-
nancies who received pidilizumab treatment.99 Pembrolizu-
mab is a PD-1-blocking mAb with no cytotoxic activity against
T cells and has been used for advanced melanoma patients
in a phase I trial, the safety and tumor response were
satisfactory.100 Nivolumab is another mAb to PD-1, which was
first studied clinically in patients with advanced solid tumors,
the objective responses for melanoma, renal cell carcinoma
(RCC) and non-small cell lung cancer (NSCLC) patients were
durable and lasted over 1 year63,101 (Table 2).
A fully human monoclonal PD-L1 antibody BMS-936559

was studied in clinical trials. Durable tumor regression
was observed in advanced melanoma, NSCLC, RCC and
ovarian cancer patients with BMS-936559 treatment,
and the adverse events were tolerated.102 MPDL3280A, a
humanized PD-L1-blocking mAb, showed impressive anti-
tumor effects in metastatic urothelial bladder cancer, the
tolerability and efficacy in other advanced solid tumors

were also acceptable.103 MEDI4736 is a PD-L1 antibody
with modified Fc domain, which was studied in phase I or Ib
clinical trials for advanced solid tumors, the results are
encouraging104 (Table 2).
The combined therapies with immune checkpoint anti-

bodies are also in clinical trials. For example, pidilizumab
combined therapy with rituximab was used for follicular
lymphoma, pembrolizumab followed by ipilimumab or BRAF
inhibitor treatment was used for malignant melanoma
patients.64 Combined therapy with Nivolumab and ipilimumab
was recently applied in melanoma. The rate of objective
response rate in malanoma patients received combined
therapy was 61%, whereas that in melanoma patients
received ipilimumab monotherapy was only 11%, the com-
plete responses in combination group and ipilimumab mono-
therapy were 22 and 0% separately.105 These combination
immunotherapies exhibit promising effects in improving out-
comes for advanced cancer patients.

Conclusions and Perspectives

The presence of T cells in TME correlates with favorable
prognosis. However, T cells in TME are always in hypor-
esponsive state. There are several hurdles that limit T cells to
eliminate tumors. The major stumbling block for T-cell
hyporesponsiveness in cancer is T-cell exhaustion. Exhausted
T cells have a unique molecular signature that is markedly
distinct from naive, effector or memory T cells. They are
defined as T cells with decreased cytokine expression and
effector function. Reversing exhausted T cells and restoring
anti-tumor potential represents an inspiring strategy to treat
cancer. An attractive option of reversing exhausted T cells is to
block inhibitory receptors. In animal models, blockade of PD-1
partially reversed T-cell exhaustion, and multiple blockades of
inhibitory receptors enhanced T-cell function more efficiently.
For example, combined blockade of PD-1 and LAG-3, PD-1
and CTLA-4, and PD-1 and TIM-3 were more efficient.
Blockade with monoclonal antibodies targeting the inhibitory
receptors CTLA-4, PD-1 and PD-L1 emerged as a successful
therapy for patients with advanced melanoma. The durable
tumor responses were achieved with PD-1 and PD-L1
blockade in phase I trials in many cancers, and tumor

Table 2 Therapeutic interventions for blocking immune checkpoints

Antibody Target Company Status of clinical development Cancer type

Ipilimumab CTLA-4 Bristol-Meyers Squibb FDA approved for advanced melanoma, phase II
and III trial for other cancers

Melanoma, solid tumors

Tremelimumab CTLA-4 Pfizer Phase II Mesothelioma
Nivolumab PD-1 Bristol-Meyers Squibb Phases I and II Solid tumors, melanoma, NSCLC, RCC,

ovarian cancer
Pidilizumab PD-1 CureTech Phases I and II Hematologic malignancies
Pembrolizumab PD-1 Merck Phase I Melanoma, NSCLC, head and neck

cancer
BMS-936559 PD-L1 Bristol-Meyers Squibb Phase I Solid tumors
MPDL3280A PD-L1 Roche Phase I Solid tumors, melanoma, NSCLC,

bladder cancer
MEDI4736 PD-L1 MedImmune Phase I Solid tumors, melanoma, head and neck

cancer, gastric cancer

Abbreviations: CTLA-4, cytotoxic T lymphocyte antigen-4; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein 1; PD-L1, programmed cell death
1 ligand 1; RCC, renal cell carcinoma
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responses were observed in a higher proportion of patients
with melanoma than typically observed with ipilimumab,
indicating that the blockade of the PD-L1/PD-1 pathway is a
more promising strategy for cancer treatment. However, there
still exists some limitation in T-cell exhaustion research. Firstly,
the different regulation roles of inhibitory receptors remain to
be elucidated, for example, PD-1 and TIM-3 may regulate
different process of T-cell exhaustion. Secondly, reversing
exhausted T cells in cancer may induce excessive T-cell
activation and cytotoxicity, leading to adverse reaction, more
intervention should be applied to attenuate cytotoxicity-
induced injury. Thirdly, benefits from inhibitory receptors
blockade are limited, more combined therapies should be
applied to enhance response rate. These will advance our
fundamental understanding of TME and carcinogenesis.
Importantly, the approach of reversing T-cell exhaustion in
TME provides a promising avenue to treat cancer.
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