
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Peng Li,
Southern Medical University, China

REVIEWED BY

Guo Huang,
University of South China, China
Zhiheng Lin,
Shandong University of Traditional Chinese
Medicine, China
Yingcheng Wu,
Fudan University, China

*CORRESPONDENCE

Shi Chen

Krystalchen1999@163.com

Jinqiu Zhao

jinqiuzhao@hospital.cqmu.edu.cn

Zhijia Xia

Zhijia.Xia@med.uni-muenchen.de

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 03 January 2023

ACCEPTED 22 February 2023
PUBLISHED 15 March 2023

CITATION

Chi H, Zhao S, Yang J, Gao X, Peng G,
Zhang J, Xie X, Song G, Xu K, Xia Z, Chen S
and Zhao J (2023) T-cell exhaustion
signatures characterize the immune
landscape and predict HCC prognosis
via integrating single-cell RNA-seq
and bulk RNA-sequencing.
Front. Immunol. 14:1137025.
doi: 10.3389/fimmu.2023.1137025

COPYRIGHT

© 2023 Chi, Zhao, Yang, Gao, Peng, Zhang,
Xie, Song, Xu, Xia, Chen and Zhao. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 15 March 2023

DOI 10.3389/fimmu.2023.1137025
T-cell exhaustion signatures
characterize the immune
landscape and predict HCC
prognosis via integrating
single-cell RNA-seq and
bulk RNA-sequencing
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Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China, 3School of Stomatology,
Southwest Medical University, Luzhou, China, 4Department of Oncology, Chongqing General Hospital,
Chongqing, China, 5Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-
University Munich, Munich, Germany, 6Clinical Molecular Medicine Testing Center, The First Affiliated
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Background: Hepatocellular carcinoma (HCC), the third most prevalent cause of

cancer-related death, is a frequent primary liver cancer with a high rate of

morbidity and mortality. T-cell depletion (TEX) is a progressive decline in T-cell

function due to continuous stimulation of the TCR in the presence of sustained

antigen exposure. Numerous studies have shown that TEX plays an essential role

in the antitumor immune process and is significantly associated with patient

prognosis. Hence, it is important to gain insight into the potential role of T cell

depletion in the tumor microenvironment. The purpose of this study was to

develop a trustworthy TEX-based signature using single-cell RNA-seq (scRNA-

seq) and high-throughput RNA sequencing, opening up new avenues for

evaluating the prognosis and immunotherapeutic response of HCC patients.

Methods: The International Cancer Genome Consortium (ICGC) and The Cancer

Genome Atlas (TCGA) databases were used to download RNA-seq information

for HCC patients. The 10x scRNA-seq. data of HCC were downloaded from

GSE166635, and UMAP was used for clustering descending, and subgroup

identification. TEX-related genes were identified by gene set variance analysis

(GSVA) and weighted gene correlation network analysis (WGCNA). Afterward, we

established a prognostic TEX signature using LASSO-Cox analysis. External

validation was performed in the ICGC cohort. Immunotherapy response was

assessed by the IMvigor210, GSE78220, GSE79671, and GSE91061cohorts. In

addition, differences in mutational landscape and chemotherapy sensitivity

between different risk groups were investigated. Finally, the differential

expression of TEX genes was verified by qRT-PCR.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1137025/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1137025/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1137025/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1137025/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1137025/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1137025/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1137025&domain=pdf&date_stamp=2023-03-15
mailto:Krystalchen1999@163.com
mailto:jinqiuzhao@hospital.cqmu.edu.cn
mailto:Zhijia.Xia@med.uni-muenchen.de
https://doi.org/10.3389/fimmu.2023.1137025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1137025
https://www.frontiersin.org/journals/immunology


Chi et al. 10.3389/fimmu.2023.1137025

Frontiers in Immunology
Result: 11 TEX genes were thought to be highly predictive of the prognosis of

HCC and substantially related to HCC prognosis. Patients in the low-risk group

had a greater overall survival rate than those in the high-risk group, according to

multivariate analysis, which also revealed that the model was an independent

predictor of HCC. The predictive efficacy of columnar maps created from clinical

features and risk scores was strong.

Conclusion: TEX signature and column line plots showed good predictive

performance, providing a new perspective for assessing pre-immune efficacy,

which will be useful for future precision immuno-oncology studies.
KEYWORDS

T-cell exhaustion, HCC, single-cell RNA-seq, machine learning, tumormicroenvironment,
immunotherapy, predictive signature
1 Introduction

The most prevalent kind of cancer globally and the main cause

of cancer mortality in China is primary liver cancer (1, 2).

Approximately 75% to 85% of patients with initial liver cancer

are hepatocellular carcinoma (LIHC) (3). Since the initial symptoms

of HCC patients are not obvious, most of them are clinically

detected at a late stage, however, cancer has already spread and

the cure rate is very low at this time (4). Despite important advances

in the treatment of LIHC, such as PD-1/PD-L1 inhibitors, the

prognosis for patients with advanced LIHC remains poor (5) due to

its metastatic and recurrent. The extreme heterogeneity exhibited

by different individuals and different sites of LIHC urgently requires

us to find new and reliable biomarkers.

Usually, after the body is infected by a pathogen, the initial T

cells are activated by antigen, co-stimulation, and inflammation and

proliferate exponentially towards effector T cells and memory T

cells (6). However, in patients with cancer, T cells are continuously

stimulated by prolonged exposure to persistent antigens and

inflammation, and the inactive T cells gradually lose their effector

functions and begin to lose their memory T cell characteristics, a

process known as T cell Exhaustion (6–8). T cell depletion is

considered to be one of the major factors of immune dysfunction

in cancer patients. Several recent studies have found that blocking

co-inhibitory receptors on the surface of depleted CD8+ T cells

(CD8+Tex), such as programmed death receptor 1 (PD-1),

reactivates the cytolytic effect of T cells (9, 10). The advent of ICB

has helped us to establish a new paradigm for cancer treatment that

has produced durable responses in a limited patient population.

Despite the early success of ICB, the mechanism of action behind

ICB and TEX still requires further study.

In recent years, the important role of the tumor immune

microenvironment (TIME) in cancer progression and treatment

response has emphasized the importance of identifying tumor

immune profiles and immune characteristics of patients with
02
different tumors (11). Tumor-infiltrating T cells constitute an

important component of TIME and play a key role in recognizing

and killing tumor cells. However, due to the level and number of

expressed inhibitory receptors (IRS), most infiltrating T cells

become “depleted”, leading to cancer immune evasion (12).

Depleted T cells exhibit a distinct epigenetic profile, which may

lead to adverse responses to immunotherapy (13).

With the rapid development of high-throughput sequencing

and but single-cell sequencing, a large number of methods are being

used to define biomarkers of disease, and notable achievements

have been made in the prognosis prediction of cancer (14–23).

More evidence suggests that the onset of TEX is a gradual and

dynamic process (24). Hence, this study aimed to identify and

characterize patients with different TEX profiles. In order to identify

TEX-related genes with high prognostic value, we combined bulk

sequencing (bulk-seq) and single-cell RNA sequencing (scRNA-

seq) data from HCC samples. This study built prognostic features

based on multiple TEX-related genes using a variety of analytical

techniques in an effort to clarify the connection between TEX

process-related genes and the prognosis and progression of HCC.

The goal of this study was to investigate the effect of TEX-related

genes on the prognosis of HCC.
2 Materials and methods

2.1 Source of raw data

Two TIHC samples were downloaded from the GSE166635

series with 10× scRNA-seq data, the two samples included 15941

cells and 8696 cells, respectively. The transcriptome data, somatic

mutation, and clinical materials of the normal sample (n=50) and

HCC sample (n=374) were downloaded from TCGA (https://

portal.gdc.cancer.gov/). RNA-seq data and clinical information

for 231 tumor samples were obtained from the ICGC database
frontiersin.or
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(https://dcc.icgc.org/projects/LIRI-JP). IMvigor210 (http://

research-pub.gene.com/IMvigor210CoreBiologies/), GSE78220,

GSE79671, and GSE91061 (https://www.ncbi.nlm.nih.gov/geo/)

for the assessment and prediction of the extent of TEX signature

response to tumor immunotherapy.
2.2 Data processing of 10×scRNA-Seq

We processed single-cell sequencing data of HCC by the

following methods. First, we use the “Seurat” R package to

convert 10× scRNA-seq data into Seurat objects and exclude

substandard quality cells and perform quality control (QC) by

calculating the percentage of mitochondrial or ribosomal genes

(25). The top 2000 highly variable genes were identified using the

“FindVariableFeatures” program, and 2000 additional genes were

employed for descending and cell subpopulation identification

using principal component analysis (PCA) and uniform manifold

approximation and projection (UMAP). In order to find marker

genes in various clusters, the “Find All Markers” tool was used with

|Log2FC| and min. pct cutoff values set to 0.3 and 0.25, respectively.

The R package “SingleR” is used for the annotation of different cell

types (26). In addition, we used the “analyze_sc_clusters” function

of the R package “ReactomeGSA” (27) for enrichment analysis and

the “pathways” function to extract the results from different cells.

Finally, the R packages “CellChat” (28) and “patchwork” were used

for intercellular communication analysis and network visualization.
2.3 Recognition of important
co-expression modules

A systems biology method for identifying genetic relationship

patterns between samples is weighted correlation network analysis

(WGCNA), often referred to as WGCNA. WGCNA may be used to

find highly synergistic genomes and to find potential biomarker

genes or therapeutic targets based on the endogeneity of the genome

and the link between the genome and phenotype (18).
2.4 Scoring of TEX pathway
activity enrichment

We refer enced a study on TEX (29), the TEX signaling pathway

signaling and marker genome from the Molecular Signaling Database

(MSigDB, V7.2), to estimate the TEX pathway activity score in each

patient using the “GSVA” R package (16)(Supplementary Table 1).

ImmuCellAI (http://bioinfo.life.hust.edu.cn/) is an online site that

can be used for the assessment of immune cell infiltration during

immunotherapy (15). ImmuCellAI-based immune cell scores were

used for tumor immune checkpoint inhibitor treatment efficacy

prediction using support vector machine algorithms.
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2.5 Construction and verification of
TEX signature

The optimal results were obtained by LASSO regression analysis

of the training group data using the R package “glmnet”.

Multivariate regression Cox analysis was performed to obtain

Eleven TEXs and correlation coefficients. Then, we calculated

each patient’s risk score. The calculation formula is as follows:

Risk score = ExpressionmRNA1 × CoefmRNA1 + ExpressionmRNA2 ×

CoefmRNA2 +… ExpressionmRNAn × CoefmRNAn. Based on the

median value of the risk score, patients in the training group were

divided into high- and low-risk groups. Kaplan–Meier survival

analysis was performed, and a receiver operating characteristic

curve (ROC) was constructed. To verify the predictive ability of

the model, we evaluated its prognosis, sensitivity, and specificity in

the testing group. Then, we verified it in the ICGC cohort according

to the formula of risk score.
2.6 Independent prognostic analysis and
nomogram construction

To determine if the TEX signature may serve as a standalone

predictive factor in patients with HCC, we conducted univariate

and multivariate Cox regression analysis. A nomogram for

predicting OS at 1, 2, and 3 years in clinical patients was created

using the “rms” R package based on the patient’s age, grade, gender,

stage, T stage, and risk scores. The calibration study findings further

demonstrated the precision of the nomogram prediction outcomes.
2.7 Functional enrichment analysis

The GO and KEGG pathways were analyzed using the

“ClusterProfiler” R package. “circlize” R package visualizes the

GO and KEGG results. Analysis was performed by GSVA

algorithm using “c2.cp.kegg.v7.4.symbols.gmt” in MSigDB to get

the differences in enrichment pathways between different

risk groups.
2.8 Somatic mutation analysis

We utilized maftools to evaluate somatic variant data from

HCC samples that were saved in mutation annotation format

(MAF) (14). We calculated the tumor mutation burden (TMB)

score for each HCC patient and explored the relationship between

the risk score and TMB. The TMB score was calculated as follows:

(total mutations/total covered bases) × 106 (24). The prognostic

value of TMB in HCC was investigated using Kaplan-Meier analysis

in the R package.
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2.9 Correlation analysis of TEX signature
and immune microenvironment

Correlations between risk scores and tumor-infiltrating

immune cells were assessed using seven algorithms, including

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,

CIBERSORT-ABS, and CIBERSORT. Using 20 molecules of

suppressive immune checkpoints from Auslander’s study, we

evaluated the expression levels of immune checkpoints between

the high- and low-risk groups. In addition, TME scores, including

stromal score, immune score, and estimated score, were calculated

for both groups using the R package “ESTIMATE”.
2.10 Immunotherapy prediction and
chemotherapy sensitivity analysis

We collected three GEO immunotherapy cohorts and the

IMvigor210 cohort to investigate the correlation between the TEX

signature and immunotherapy. We processed the data using the

“IMvigor210CoreBiologies” R package in the IMvigor210 cohort.

Based on the public pharmacological Web portal, Genomics of

Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/

), we estimated the half-maximal inhibitory concentration (IC50) of

common chemotherapeutic drugs for HCC by “pRRophetic”

R package.
2.11 Cell lines

All cells were cultured in a 37°C incubator in an atmosphere of

5% CO2. The normal human hepatocyte cell line HL-7702, human

live cancer cell line Huh7 and human liver cancer cell line Hep3B

were from the Chinese Academy of Sciences (Shanghai, China). Cell

culture medium, plates, and dishes were from Thermo Fisher

Scientific (Invitrogen, USA) and Corning Inc. (NY, USA). HL-

7702, Huh7, and Hep3B cultured in Dulbecco’s modified Eagle

medium supplemented with 10% fetal bovine serum and 10,000 U/

mL of penicillin-streptomycin.
2.12 RNA extraction and qRT-PCR

HL-7702 cells, Huh7 cells, and Hep3B cells were detached and

seeded into 60 mm dishes at the initial density of 1×106 cells/well

overnight. Subsequently, total RNA was extracted using RNA Eazy

Fast Tissue/Cell Kit (TIANGEN Biotech. Co., Bejing). The quality

of RNA was measured using a NanoDrop 2000 Spectrophotometer

(Thermo Fisher Scientific Inc., USA). Total RNA (2 mg)) was

reverse transcribed into cDNA with the FastKing RT Kit

(TIANGEN Biotech. Co., Bejing). We performed real-time PCR

using the SuperReal PreMix Plus (TIANGEN Biotech. Co., Bejing)

and a steponeplus real-time PCR system (Applied Biosystems)

according to the manufacturer’s instructions. The relative

expression levels in terms of fold changes of target genes were
Frontiers in Immunology 04
calculated by the 2-△△CT method. The sequences of the primers are

shown in Supplementary Table 2.
2.13 Statistical analysis

R software version 4.1.3 was used to conduct the statistical

analysis, and p-values and FDR (false discovery rate) q-values below

0.05 were regarded as statistically significant.
3 Results

3.1 ScRNA-Seq analysis of HCC samples

The primary design of this study can be known from the

graphical flow chart (Supplementary Figure 1). We downloaded

10x scRNA-seq data from the GSE166635 dataset for two LIHC

samples. The first two samples of QC contained 15941 and 8696

cells, respectively, and the second two samples of QC identified

13064 and 5922 cells (Supplementary Figure 2A). We showed the

first 2000 highly variable genes in (Supplementary Figure 2B). A

total of 13 distinct cell subgroups were identified after descending

clustering using UMAP analysis (Figure 1A). The SingleR package

was then used to annotate and visualize the clustering of the

downscaled cell types. Overall, we identified nine major cell types

in this step, including monocytes, macrophages, myeloid progenitor

cells, hepatocytes, endothelial cells, smooth muscle cells, epithelial

cells, B cells, and T cells (Figure 1B). Figure 1C illustrates marker

gene expression in these cell subpopulations. ReactomeGSA

functional enrichment analysis showed that T cells are mainly

involved in the Synthesis of CL and FGFR1c and Klotho ligand

binding and activation-related pathways (Figure 1D). We

investigated the cell-cell communication network by calculating

communication probability (Figure 1E, Supplementary Figure 3A).

In addition, we inferred cell-cell communication networks based on

specific pathways and ligand receptors. We found that the MHC-II

signaling pathway plays a crucial role in the communication

network concerning T cells (Figure 1F, Supplementary Figure 3B).

The immune system recognizes tumor cell complexity to a large

extent through major histocompatibility complexes (MHCs). High

expression of MHC-II in tumors is essential for antigen

presentation by T lymphocytes, and the role of CD4+ T

lymphocytes in ant i tumor immunity i s increas ing ly

appreciated (25).
3.2 Identification of candidate
TEX-related genes

We first performed differential expression analysis of the

TCGA-LIHC cohort using the limma package and found a total

of 14,106 DEGs. In liver cancer tissues, the vast majority of genes

were upregulated in expression (Figure 2B). The 50 up-regulated

genes and 50 down-regulated genes with the largest differential
frontiersin.org
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changes were shown on the heat map (Figure 2A). Next, using

GSVA, we obtained enrichment scores for the four pathways

associated with TEX for each sample, and through the

ImmuCellAI online website, we obtained enrichment scores for

depleted T cells directly. Using these DEGs, we identified the key

modules in the TCGA cohort most associated with the progression

of T cell depletion. During the construction of the co-expression

network, we observed a soft threshold power b of 13 when the scale-
Frontiers in Immunology 05
free topology fit index reached 0.9 (Figure 2C). We then used the

“merged dynamics” algorithm to obtain seven modules (Figure 2D).

Based on the correlation coefficient and P-value, we found that the

pink module had the best correlation with the score associated with

TEX progression (Figure 2E) (P<0.001), so the pink module was

selected as the key module. We selected the intersection of T-cell

marker genes and pink module genes and finally obtained 22

candidate TEX-associated genes (Figure 2F).
B

C

D

E F

A

FIGURE 1

Different cell clustering in 10x scRNA-seq data of hepatocellular carcinoma and further analysis. (A, B) Cluster annotation and cell type identification
by means of UMAP. (C) Heat map of marker genes for different cell types. (D) Functional enrichment analysis of all cell types using the
“ReactomeGSA” package. (E, F) Cellular communication networks were inferred by calculating the likelihood of communication. Intercellular
communication network studies show that HLA-DPA 1-CD 4 plays an important role in the intercellular communication network. scRNA-seq, single
cell RNA sequencing; UMAP, Unified Flowform Approximation and Projection.
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3.3 TEX signature establishment and
external validation

To exclude co-expressed TEX genes and avoid over-fitting, we

constructed a predictive prognostic model consisting of TEX genes

by lasso regression analysis. They were HLA-A, ITM2A, PTPN7,

IL2RG, LTB, TNFRSF4, TNFRSF18, TMSB10, TBC1D10C,

ARPC1B, and CTSC (Figures 3A, B). A linear prediction model

was developed based on the weighted regression coefficients of 11

prognosis-related TEXs, calculated as risk score = (-0.0712 x HLA-

A exp) + (-0.0878 x ITM2A exp) + (-0.1846 x PTPN7 exp) + (0.1181

x IL2RG exp) + (-0.1403 x LTB exp) + (0.2926 x TNFRSF4 exp) +

(-0.0811 x TNFRSF18 exp) + (0.0145 x TMSB10 exp) + (-0.1721 x

TBC1D10C exp) + (0.1368 x ARPC1B exp) + (0.2523 x CTSC exp).

Of these, CTSC, ARPC1B, TMSB10, TNFRSF18, TNFRSF4, and

IL2RG showed significant positive correlations with risk scores,
Frontiers in Immunology 06
with CTSC showing the strongest positive correlation. In addition,

TBC1D10C and ITM2A showed a significant negative correlation

with the risk coefficient (Figure 3C). To demonstrate the stability

and reliable generalization of our model, the TCGA-LIHC cohort

was used as the internal training set, and the ICGC-LIHC cohort as

the external validation cohort. Risk scores were calculated

separately for each sample in the TCGA training cohort and the

ICGC validation cohort based on the same risk formula, and we

could find that when the risk of LIHC patients was elevated in both

cohorts, patients exhibited a survival disadvantage of reduced OS

and increased mortality (Figures 3D, G). Based on the median risk

score, we could divide the patients into two subgroups of HR and

LR to explore the prognostic differences between the HR and LR

groups. The Kaplan-Meier curves showed a significant difference in

prognosis between the HR and LR patients in these two cohorts,

respectively, with a more significant survival advantage for patients
B

C D

E

F

A

FIGURE 2

Identification of candidate T cell exhaustion-related genes. (A, B) Heat map and volcano map of differentially expressed genes in the TCGA cohort.
(C) Scale independence and average connectivity. (D) Cluster dendrogram. (E) Heatmap of the correlation between TEX pathway and exhausted T
cell scores and modules. (F) Venn diagram of T-cell marker genes and pink modules.
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in the LR group (Figures 3E, H). The ROC curve was used as a tool

to predict the survival time of patients at 1-, 2-, and 3- years, with

AUCs of 0.757, 0.713, and 0.708 for the TCGA-LIHC cohort,

respectively. The AUCs for the ICGC-LIHC cohort was 0.763,

0.702, and 0.653, respectively (Figures 3F, I). This indicates that

the model has an excellent predictive effect.
3.4 Creation of nomograms based on
TEX signatures combined with
clinical characteristics

To validate the reliability and clinical value of the biological

signature constructed based on TEX as a predictor of prognosis, we

included a comparison of each HCC patient’s risk score with both

common clinical indicators and observed the correlation of each

factor with patient prognosis after successive univariate and

multivariate Cox analyses. Based on the analysis of the results, it

is clear that in the univariate cox analysis, Stage, T-stage, and

riskscore (P<0.001) were all prognostic factors significantly
Frontiers in Immunology 07
associated with patient prognosis (Figure 4A). However, after

multifactorial cox analysis, only the risk score (P<0.001) was

significant (Figure 4B). Based on the above analysis, in order to

be able to predict patients’ prognosis quantitatively and to inform

clinical decision-making. We integrated the risk scores and their

clinical indicators to construct Nomogram plots as a means of

predicting the probability of prognostic survival at 1, 2, and 3 years

(Figure 4C). Calibration analysis showed that the prediction curves

for OS for patients at 1, 2, and 3 years were highly similar to the

ideal 45-degree calibration line, indicating excellent stability of the

Nomogram plot (Figure 4D). We then compared the Nomogram,

risk, and common clinicopathological features, where in Figure 4E

risk (AUC=0.720) has a much greater AUC value than the rest of

the pathological features, and we then included the Nomogram in

the comparison. The results showed that both risk (AUC=0.705)

and Nomogram (AUC=0.758) had more accurate predictive

performance and discriminatory power than a single independent

clinical indicator (Figure 4F). Subsequently, DCA showed that

Nomogram and risk yielded greater net benefit and predictive

benefit, indicating that both the model’s risk score and
B C

D E F

G H
I

A

FIGURE 3

TEX signature establishment and external validation. (A) Lasso regression profiles of TEXs to avoid over-fitting. (B) 10-fold cross-validation of variable
selection with Lasso. (C) Correlation of risk scores and 11-TEX genes. (D, G) Distribution of risk scores and patient survival between low and high risk
groups in the TCGA cohort and the ICGC cohort. (E, H) KM curve compares the overall HCC patients between LR and HR groups in the TCGA
cohort and the IGCG cohort. (F, I) Time-dependent ROC curves analysis in the TCGA cohort and the ICGC cohort.
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Nomogram could be used as primary decision factors (Figure 4G).

In addition, to further validate that the nomogram is a reliable tool

for predicting patient prognosis, we supplemented this with

univariate and multifactor cox analyses of Nomogram versus

clinical indicators, which showed that the p-value for Nomogram

was less than 0.001 in both univariate and multifactor cox analyses

(Figures 4H, I). Combined with these results, this suggests that our

TEX signature is more practical and influential for clinical decision-

making and is more suitable as a clinical decision tool for predicting

the prognosis of patients with HCC in the clinical setting.
Frontiers in Immunology 08
3.5 Clinical correlation and survival analysis
of TEX in patients with HCC

Given the significant differences in OS between HR groups and

LR groups in individual clinical characteristics, in order to more

specifically explore and compare such differences, we divided LIHC

patients into five different subgroups based on clinical

characteristics. These were age (≤65 and >65 years), pathological

stage (I-II and III-IV), gender (female and male), pathological grade

(G1-2 and G3-4), and T stage (T1-2 and T3-4). Notably, in all
B

C

D E F G

H I

A

FIGURE 4

Creation of nomograms based on TEX signature combined with clinical characteristics. (A) Univariate and (B) multivariate COX regression analysis of
the signature and different clinical features. (C) A Nomogram combining the age, grade, gender, stage, T stage, and risk score. (D) The calibration
curve of the constructed Nomogram of 1-year, 2-year, and 3-year survival. (E) Time-dependent ROC curves analysis. (F) The Nomogram’s time-
dependent ROC curves. (G) Decision curve analysis. (H) Univariate and (I) multivariate COX regression analysis of the Nomogram and different
clinical features.
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subgroups, LR patients had a significant survival advantage in terms

of longer survival time compared to HR patients (Figures 5A-J).

Based on the analysis of the results, we are even more convinced

that the TEX signature was a reliable clinical prediction tool.
3.6 Distribution of patients in the HR group
and LR group in different clinical subtypes

We analyzed the expression of 11 TEX genes in the HR and LR

groups and the distribution of different clinical subtypes

(Figure 6A). Then we counted the proportion of patients with

different clinical subtypes in the HR group and LR group and

expressed it by the bar chart (Figures 6B-F). Among them, patients

in the ≥ 65 years old, grade 3, stage II, and T2 accounted for a

greater proportion of patients in the HR group. Risk score analysis

was also performed on HCC patients by age, gender, grade, stage,

and T stage to reveal the relationship between risk scores and

prognosis in clinicopathological variables (Figures 6G-K). The

results showed that there were significant differences in risk

scores among patients with different grades, stages, and T stage,

and patients with higher stage had higher risk scores. Therefore, we

concluded that there was a significant positive correlation between

risk scores and clinicopathological variables.
3.7 Function enrichment analysis

The results of GO analysis can be divided into three categories:

biological process, cellular component, and molecular function.

Where in biological processes, such as cell adhesion mediated by
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integrin, external encapsulating structure organization, multi-

organism reproductive process; Cellular components, such as

serine-type peptidase complex and protein complex involved in

cell adhesion; And molecular functions, Such as calcium-dependent

protein binding, endopeptidase activity, monosaccharide binding

and serine-type peptidase Pathways such as activity were

significantly enriched (Figure 7A). KEGG pathways were enriched

in ECM-receptor interaction, IL-17 signaling pathway, HIF-1

signaling pathway, and Leukocyte transendothelial Pathways such

as migration, Phagosome, Cell adhesion molecules, and metabolism

of Rheumatoid arthritis and cancer substances (Figure 7B). For the

HR group and LR group, the differentially enriched KEGG

pathways between the two groups were analyzed by GSVA

(Figure 7C). Mature-onset diabetes of the young, peroxisome,

peroxisome proliferators-activated receptors signaling pathway

and drug metabolism cytochrome p450 were the pathways that

were substantially enriched in 11 TEXRGs in the low-risk group.

RNA polymerase, ubiquitin-mediated proteolysis in the high-risk

group, ganglio series, vibrio cholerae infection, lysosome, and cell

growth and division were enriched.
3.8 TMB analysis and survival analysis
of TMB

It is well known that genetic mutations are a condition for

tumorigenesis. In the TCGA database, we visualized and correlated

somatic mutation data based on the TEX signature in combination

with HR and LR groups. The three genes with the highest mutation

frequencies in the HR group were TP53 (36%), CTNNB1 (28%),

and TTN (26%), while the three genes with the highest mutation
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FIGURE 5

Clinical correlation and survival analysis of TEX genes in patients with HCC. (A, B) age, (C, D) pathological grade, (E, F) gender, (G, H) pathological
stage, (I, J), and T stage.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1137025
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chi et al. 10.3389/fimmu.2023.1137025
frequencies in the LR group were CTNNB1 (23%), TTN (21%), and

MUC16 (18%) (Figures 8A, B). Different mutation statuses and

expression patterns in the wild type have been demonstrated to

produce various clinical consequences in the immune response (26,

30). TMB analysis of the HR group and LR group showed a

significant difference between the two (P=0.033), with higher

TMB in the HR group (Figure 8C). KM analysis was performed

based on the median of the obtained TMB values divided into high-
Frontiers in Immunology 10
and low-TMB groups and further revealed that the low-TMB group

had a better prognosis (P=0.031), suggesting that TMB may be an

indicator of poor prognosis in patients with HCC (Figure 8D). The

joint application of the risk scores and TMB was used to classify

patients into four subgroups for survival assessment, and the low-

TMB and low-risk group had the best prognosis (P<0.001),

demonstrating the validity of the model and screening for the

best prognostic subgroups for clinical use (Figure 8E).
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FIGURE 6

Distribution of risk scores in different clinical subtypes. (A) Heatmap of clinicopathological variables in HR group and LR group. (B-F) The proportion
of patients with different clinical subtypes (Age, Gender, Grade, Stage, T stage) in the HR group and LR group. (G-K) Risk score distribution of
different clinical subtypes.
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3.9 TEX risk score predicts tumor
microenvironment and immune
cell infiltration

It has been established that interaction between cancer cells and

the TME is crucial for the development and spread of tumors (27).

Additionally, TIICs represent a significant part of the TME, and the

composition and location of these cells have a direct impact on the

formation and occurrence of tumors (31). Therefore, using the

algorithms of the XCELL, TIMER, QUANTISEQ, MCPCOUNTER,

CIBERSORT, CIBERSORT-ABS, and EPIC platforms, we looked at

the relationship between risk scores and tumor immune cells

(Figure 9A). We quantified the relative proportions of infiltrating

immune cells using the CIBERSORT script and then produced a

heat map of patients ranked from lowest to highest risk score

showing the degree of infiltration corresponding to each immune

cell (Figure 9B). Moreover, correlations were then analyzed

according to HR and LR groups, with a larger proportion of T

cells and Macrophages (Figure 9C). Due to the significant impact of

abnormal expression and function of immune checkpoint

molecules on tumor immunotherapy, we analyzed differences in
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immune checkpoints on the basis of risk scores. In particular, only

one immune gene checkpoint, CD40LG, showed upregulation in

the LR group, while the rest of the genes showed downregulation in

the LR group, including HHLA2, CD200, NRP1, CD86, HAVCR2,

CD276, TNFRSF9, LGALS9, TNFSF18, LAIR1 TNFRSF18, CD44,

TMIGD2, TNFSF9, CD244, CD80, TNFRSF4, VTCN1 (Figure 9D).

Thereafter, we used ESTIMATE to calculate the stromal and

immune cell proportions of HR and LR groups to estimate tumor

purity (Figure 9E).
3.10 Predicting and validating the efficacy
of immunotherapy

To test the potential of the risk score in predicting

immunotherapy from a real immunotherapy cohort, four cohorts

of patients receiving immunotherapy were selected. The results

showed that patients who responded to immunotherapy had a

lower risk score, and the LR group had a higher overall response

rate than the HR group (Figures 10C, F, I, L). Similarly, in the four

cohorts, patients with lower risk may have a better prognosis
B

C

A

FIGURE 7

Function enrichment analysis. (A) GO enrichment pathway. (B) KEGG enrichment pathways. (C) Heatmap of differentially enriched pathways between
the HR group and LR group.
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(Figures 10A, D, G, J). Meanwhile, the ROC curve land

demonstrated that the TEX signature had a better predictive

ability for patient prognosis (Figures 10B, E, H, K). ICB is the

most well-studied class of immunotherapeutic agents that block

inhibitory signals for T-cell activation, enabling tumor-reactive T

cells to mount an effective anti-tumor response (29). To further

explore the role of risk scores in immunotherapy, we explored the

correlation between risk scores and ICB-related positive signals.

The results showed that risk score was positively correlated with

some signals such as mismatch repair, cell cycle, DNA replication,

base excision repair, and viral oncogenic effects (Figure 10M). We

compared the differences in the activity of the tumor immune steps

between the high and LR groups, where a portion of the cycle steps

showed upregulated activity, including the release of cancer cell

antigens (step 1), NK cell recruitment (step 4), and immune cell

infiltration into the tumor. This allowed us to assess the biological

functions of the chemokine system and immunomodulators (step

5). Once more, we looked at a stronger negative link between each

of these tumor immune cycle phases and risk scores (Figure 10M).
3.11 Relationship between risk scores and
response to chemotherapy

We analyzed the relationship between risk scores and the IC50

values of nine FDA-approved chemotherapies, and immunological
Frontiers in Immunology 12
agents. As shown in Figure 11, Sorafenib, Cisplatin, Gemcitabine,

Mitoxantrone, Oxaliplatin, and Epirubicin were found to be more

sensitive in the HR group. While patients in the LR group were

more sensitive to 5-Fluorouracil, Afatinib, and Docetaxel.
3.12 Validation of expression of TEX genes
that comprised the risk model by RT-qPCR

To verify the expression patterns of TEX-related genes in HCC

patients, we performed qRT-PCR analysis. We found that ITM2A

(Figure 12A), LTB (Figure 12B), TNFRSF4 (Figure 12C), and

TNFRSF18 (Figure 12D) were significantly overexpressed in

hepatocellular carcinoma cell lines (Hep3B and Huh7) relative to

normal liver cell lines (HL-7702). Therefore, we hypothesized that

the aberrant expression of these genes likely promoted the

malignancy of HCC. However, ARPC1B, CTSC, TBC1D10C, and

TMSB10 were not detected to be differentially expressed

(Figures 12E-H).
4 Discussion

A multidimensional comprehensive HCC treatment strategy

based on resection, liver transplantation, radiotherapy,

chemotherapy, percutaneous ablation, and immunotherapy for
B

C D E

A

FIGURE 8

TMB analysis and survival analysis of TMB and risk scores. (A) Mutation analysis of HR group (B) Mutation analysis of LR group. (C) Violin plot
revealing the distinction between HR and LR groups in TMB. (D) Kaplan-Meier curves for the high- and low-TMB groups. (E) Kaplan-Meier curves for
the four groups divided by risk score and TMB.
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early-stage HCC can achieve promising outcomes (32–34).

However, due to the low sensitivity of traditional tumor

diagnostic methods and the lack of obvious symptoms of early-

stage HCC, most patients are in advanced stages of HCC at the time

of diagnosis (35, 36). And therapeutic measures to treat advanced

HCC are scarce and ineffective (37, 38). Therefore, early diagnosis

and treatment as well as the development of new therapeutic

measures are of great value to improve the long-term survival of

HCC patients. Notably, the treatment response and disease

progression of HCC patients vary greatly among individuals due

to their different epigenetic statuses, complex tumor

microenvironment, and high heterogeneity (39). Traditional

tumor staging focuses only on the tumor status at that point in

time, and cannot show the dynamically changing tumor

microenvironment and immune characteristics, thus failing to

accurately predict patient disease progression and treatment

response (40). Molecular markers have great potential in this

regard (41). T cell exhaustion is defined as a state of dysfunction

resulting from persistent exposure of T cells to antigenic and/or

inflammatory signals in chronic infections or cancers (6). In this

state, dysfunctional T cells, including effector T cells as well as

memory T cells, lose the ability to eliminate infection and cancer

(42). However, it has been shown that suppressive receptor

overexpression is based on T cell exhaustion. Blockades of these
Frontiers in Immunology 13
receptors such as PD-1 and CTLA-4 can reverse the state and

reactivate the immune response thereby stopping tumor

progression (6, 42–45), suggesting the great potential of immune

checkpoint blockade therapies in this regard. Unfortunately, despite

the important value of T cell exhaustion for the development of

multiple cancers, including HCC, there are still no systematic

studies on T cell exhaustion in HCC. Therefore, we developed a

multi-biomarker model based on TEX-related genes that can help

physicians assess the prognosis and tumor microenvironment of

HCC patients and provide a theoretical basis for individualized and

precise treatment.

We obtained T-cell maker genes by dimensionality reduction

and clustering based on scRNA-seq data from the GSE166635

dataset. The TCGA-LIHC data and GSVA algorithm were then

used to identify the key modules most associated with T cell

exhaustion progression. 22 candidate genes for T-cell fatigue were

ultimately found when we chose the intersection of T-cell marker

genes and module genes. After that, a new prognostic model was

created by screening 11 important genes using Lasso regression

analysis and multifactorial COX risk regression analysis. A

substantial prognostic difference was discovered between the two

groups, demonstrating the independent predictive value of the TEX

signature we created for HCC. The exceptional predictive efficacy of

the TEX signature on patient prognosis was proven by the ROC
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FIGURE 9

TEX risk score predicts TME and immune cell infiltration. (A) The relative proportion of infiltrating immune cells with risk scores. (B) The relative proportion
of infiltrating immune cells with risk scores. (C) Immune cell component between HR group and LR group. (D) Immune checkpoint differences between
HR and LR groups. (E) Estimate the score of the expression profile in the HR group and LR group. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 10

Prediction and validation of immunotherapy effects. (A) Survival curves for the HR group and LR group of the GSE78220 cohort. (B) Risk score
prognostic ROC curves for the GSE78220 cohort. (C) Comparison of overall response rates between the HR group and LR group of the GSE78220
cohort. (D) Survival curves for the HR group and LR group of the IMvigor cohort. (E) Risk score prognostic ROC curves for the IMvigor cohort. (F)
Comparison of overall response rates between the HR group and LR group of the IMvigor cohort. (G) Survival curves of HR group and LR group of
GSE79671 cohort. (H) Risk score prognostic ROC curves for the GSE79671 cohort. (I) Comparison of overall response rates between the HR group
and LR group of the GSE79671 cohort. (J) Survival curves of HR group and LR group of GSE91061cohort. (K) Risk score prognostic ROC curves for
the GSE91061 cohort. (L) Distribution of risk scores between responders and non-responders in the GSE91061 cohort. (M) Correlation of risk scores
with ICB response signature and each step of the tumor-immune cycle.
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curve and calibration curve analysis. Additionally, the nomogram

we created demonstrates the TEX signature’s superiority to the

other clinically used indications in a promising way. Previous

studies have shown that LTB, a member of the tumor necrosis

factor ligand superfamily, participates in immune cell interactions

and regulates cytokine secretion by binding to LT-b receptors and

forming heterodimeric complexes with LT-a (46, 47). In HNSCC,

LTB binds to EGFR and induces cetuximab resistance 33397394. In

addition, it has also been suggested that LTB may mediate NF-kB
signaling and thus influence the development of HCV-associated

HCC (48). TNFSF4 is overexpressed in HCC and contributes to

poor prognosis by activating multiple immunosuppressive

pathways (49). Meanwhile, another study found that ivolizumab

(TNFRSF4 agonist) is expected to be a new oncologic agent due to

its well-tolerated and effective anti-tumor capacity in locally

advanced or metastatic HCC (50). In addition, TMSB10 is closely

associated with various tumor phenotypes such as cell proliferation,

apoptosis, and angiogenesis (51), while overexpressed in HCC

tissues and can affect distant tumor metastasis (52). TBC1D10C

mediates Map3k3-NF-kB signaling axis activation to inhibit CD8 T

cell activation and anti-tumor function thus promoting tumor

progression (53). It is considered a tumor immunotherapy target

(53). In previous studies, CTSC was considered a key molecule in
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squamous cell carcinoma as well as breast cancer (54, 55). While

another experimental study demonstrated that CTSC promotes

HCC cell proliferation and metastasis through activation of the

TNF-a/p38 MAPK pathway. Based on the interaction between

CTSC and MAPK pathway, it may be useful to predict the

sensitivity of HCC patients to Ralimetinib (MAPK inhibitor) for

personalized and precise drug therapy.

Mutations in some key genes are critical for tumorigenesis (56,

57). Therefore, we analyzed the mutation probabilities of various

genes in HCC samples. The results showed that both TP53 and

CTNNB1 had a high mutation probability in the high- and low-risk

groups, which is consistent with previous studies (58). Some studies

have shown that HCC with CTNNB1 mutation is characterized by

high differentiation and better prognosis, but HCC with TP53

mutation and without CTNNB1 mutation is more aggressive and

strongly associated with poor prognosis (59). The use of AURKA

inhibitors (alisertib) and EZH2 inhibitors (gbogenic acid) in HCC

patients with TP53 mutations may result in good outcomes (60).

However, it is important to note that tumorigenesis and malignant

transformation are often the results of the accumulation of

mutations in multiple genes, and a single gene is not sufficient to

describe the overall mutational landscape of the tumor (61, 62).

TMB refers to the cumulative number of somatic missense
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FIGURE 11

TEX signature characteristics predicted the sensitivity of chemotherapy. (A) Sorafenib, (B) Cisplatin, (C) Gemcitabine, (D) Mitoxantrone, (E) Oxaliplatin,
(F) 5-Fluorouracil, (G) Afatinib, (H) Docetaxel, and (I) Epirubicin. Relationship between risk score and ICB response characteristics, and each stage of
the tumor immune cycle.
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mutations and represents the instability of the patient’s genome

(63). Generally, high TMB results in more antigenic sites exposed,

and the increased antigenic targets have more chances to be

recognized by T cells to initiate antitumor effects (64). However,

our results suggest that high TMB levels often correspond to a poor

prognosis in HCC patients. It has also been shown that HCC usually

has lower TMB levels compared to other common tumors (65) and

that high TMB is a predictor of poor prognosis in HCC patients

after radical hepatectomy (66). However, the exact mechanism of

effect remains unclear and more basic studies are needed to explore

and demonstrate it.

The important influence of tumor microenvironments in

various tumor phenotypes has become a consensus. Immune cell

infiltration, as one of the key immune features of the tumor

microenvironment, plays a key role in the immune escape of

tumor cells and the formation of an inflammatory environment

(67). Therefore, we analyzed the differences in the level of immune

cell infiltration between the HR and LR groups. It has been shown

that naive B cells, and memory B cells are significantly and

positively correlated with better survival in HCC patients (68),

which is consistent with our findings. Flecken, T. et al. proposed

that CD8 T cell recognition of tumor-associated antigens (TAA) to

kill tumor cells is a key aspect of the antitumor effect in HCC and

that these responses are more robust in early HCC (69). In addition,

they also found that CD8 T cells within the tumor failed to produce

IFN-g and exhibited a depleted state, but TAA-specific CD8 T cells

in peripheral blood were not affected (69). This may suggest that the

antitumor immune response in HCC is still subverted by a

suppressive immune microenvironment, further demonstrating
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the important value of T cell exhaustion for the progression and

treatment of HCC. Our results showed that the low-risk group was

characterized by high M1 macrophage infiltration while the high-

risk group was characterized by high M2 macrophage infiltration. It

has been shown that the HCC microenvironment has a greater

tendency to induce M2 polarization thereby promoting

immunosuppression, angiogenesis, metastasis, and invasion and

leading to poor prognosis (70, 71). This tendency may be due to the

crosstalk between myeloid-derived suppressor cells (MDSC) and

tumor-associated macrophages (TAM) promoting CD4 T cell

differentiation into T+H2 phenotype with IL-4 production, which

in turn induces the development of M2 macrophages (70). On the

one hand, it suggests a better prognosis in the low-risk group, and

on the other hand, it demonstrates to some extent the mechanism of

the formation of suppressive tumor microenvironment in the high-

risk group. The exploration of immune cell infiltration in different

risk groups of HCC patients can help clinicians to have a better

understanding of the overall immune landscape of patients and the

role of immune regulation in the development of tumors.

Immunotherapy based on immune checkpoint inhibitors (ICIs)

has become an integral part of various cancer treatment strategies

and is being promoted as the first-line treatment for advanced

unresectable HCC (72). By assessing immune checkpoint gene

expression in different patients, HCC patients who can benefit

more from immune checkpoint blockade therapy can be screened

for personalized and precise. Some studies show that HHLA2 binds

to T cells and inhibits the proliferation of CD4+ and CD8+ T cells

and enables immune escape (73). This may be one of the

mechanisms of T-cell exhaustion in HCC. In addition, high
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FIGURE 12

Validation of expression of TEX genes that comprised the risk model by RT-qPCR. QRT-PCR analysis of (A) ITM2A, (B) LTB, (C) TNFRSF4, (D)
TNFRSF18, (E) ARPC1B, (F) CTSC, (G) TBC1D10C, and (H) TMSB10. *P < 0.05, **P < 0.01, ****P < 0.0001.
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expression of HHLA2 is significantly positively correlated with high

CD8 T-cell infiltration and prognosis of HCC patients and is also

considered a potential biomarker for HCC 35084443. It has been

demonstrated that CD200 is highly expressed in tumors and

surrounding tissues of HCC and can regulate CD4 T-cell

expression as well as suppress immune function in HCC patients

leading to immune tolerance (74, 75). Mechanistic studies have also

shown that NRP1 increases the number of tumors stem cells and

mediates EMT-based HCC migration (76). In mouse models of

HCC, low expression of CD86 may inhibit the Ag-presenting

activity of Kupffer cells (77). In addition, CD276 can mediate the

PI3K/AKT/MMPs pathway thereby promoting angiogenic mimic

formation in HCC and facilitating HCC growth and metastasis (78).

It has been suggested that CD80 not only binds competitively to

PD-L1 thereby inhibiting antigen presentation but also binds to

CTLA-4 thereby inhibiting T cell responses, both of which together

promote immune escape (31, 79). Subsequently, we also validated

the accuracy and efficacy of the model in four cohorts of patients

receiving immunotherapy, and the results were highly satisfactory.

Based on the risk score, clinicians are able to assess the expression of

immune checkpoints in patients to develop precise immunotherapy

regimens and thus improve outcomes.

Although the TEX signature we constructed is outstanding in its

ability to identify the immune landscape of patients and to predict

their prognosis. Some limitations, however, still require us to

acknowledge and find appropriate ways to address them in

subsequent studies. First, the TCGA-LIHC dataset we included

was predominantly white and more data from other ethnicities need

to be collected for validation subsequently. Data analysis is based on

public database data, which may lead to deviations in prediction

results from the actual situation. Although we have taken several

approaches to try to avoid this situation, more data from HCC

patients need to be collected to validate the utility of the model and

the accuracy of the prediction of immunotherapy. In addition, more

prospective studies as well as mechanistic studies are needed to

refine the details related to this study.
5 Conclusion

TEX signature is a novel predictive biomarker and a possible

therapeutic target for patients with HCC, as we have shown for the

first time. Additionally, the TEX signature can characterize the

immunological milieu of HCC patients and appropriately estimate

the prognosis of HCC patients, which can assist doctors in

identifying certain patient subgroups that may benefit from

immunotherapy and chemotherapy for individualized treatment.
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