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S U P P L E M E N T A R T I C L E

T Cell Immunity in Acute HIV-1 Infection

Hendrik Streeck1 and Douglas F. Nixon2

1Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Boston; 2Division of Experimental

Medicine, University of San Francisco, San Francisco, California

Exceedingly high viral loads and rapid loss of CD4+ T cells in all tissue compartments are a hallmark of acute

human immunodeficiency virus type 1 (HIV-1) infection, which is often accompanied by clinical symptoms

such as fever, maculopapular rash, and/or lymphadenopathy. The resolution of the clinical symptoms and the

subsequent decrease in plasma viremia are associated with the emergence of HIV-1–specific CD4+ and CD8+

T cell responses. The remarkable early inhibition of viremia by CD8+ T cells appears to be precipitated by

only a limited number of specific CD8+ T cell responses, and the plasma viremia is reduced to a “set point”

level. Over time, the breadth and magnitude of CD8+ T cell responses increase, but without a change in the

control of viral replication or further reduction in the viral set point. Moreover, the early viral set point,

consequent on the first CD8+ T cell responses, is highly predictive of the later course of disease progression.

Thus, HIV-1–specific CD8+ T cell responses in acute HIV-1 infection appear uniquely able to efficiently suppress

viral replication, whereas CD8+ T cell responses generated in the chronic phase of infection appear often

impaired.

The temporal association between the emergence of

human immunodeficiency virus type 1 (HIV-1)–spe-

cific CD8+ T cell (cytotoxic T lymphocyte [CTL]) re-

sponses and the decrease in viral load in the acute phase

of HIV-1 infection has been the first and one of the

strongest arguments for CTLs as a major factor in the

initial control of viral replication [1–4]. Subsequent

studies were able to demonstrate that CD8+ T cells can

efficiently inhibit viral replication ex vivo [5], and es-

cape mutations in the CTL-targeted epitopes develop

early during infection [6]. In addition, there is a strong

association between the rate of disease progression and

the different human leukocyte antigen (HLA) class I

alleles, underpinning the hypothesis that the interaction

between the T cell receptor of the CD8+ T cells and the
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HLA of the antigen-presenting cell is a key element in

the overall control of HIV-1 replication. After the initial

peak in viremia, an early viral set point develops, which

has been repeatedly associated with later disease out-

come [7, 8]. However, the first CD8+ T cell responses

are narrowly directed against a limited number of epi-

topes, and, despite an increase in the breadth and mag-

nitude of the CTL response in the chronic stage of

infection, no increased control of viral replication can

be observed. This suggests that the first CD8+ T cell

responses are unique in their ability to efficiently sup-

press viral replication, whereas CD8+ T cell responses

generated later in infection are progressively impaired.

However, it is important to note that so far no study

has been able to demonstrate a clear functional correlate

of CD8+ T cell–mediated protection in either acute or

chronic HIV-1 infection. Thus, it is hypothetically pos-

sible that the prominent correlation of CD8+ T cell

responses and drop in viral load are driven by other

factors, such as loss in activated CD4+ T cell targets or

other immune-mediated mechanisms.

FIRST HIV-1–SPECIFIC CD8
+

T CELL

RESPONSES AND EARLY ESCAPE

During the first weeks of infection, adaptive immunity

develops, giving rise to initial HIV-1–specific CD8+
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Table 1. Relationships Between Human Leukocyte Antigen (HLA) Class I Alleles and First T Cell Responses to

Infection with Human Immunodeficiency Virus Type 1 (HIV-1).

HLA class I

allele

HLA phenotype

frequency

in North American

white population, %

Optimal CD8+

T cell epitopes

most likely to be

first targeted

HIV-1

protein Sequence

Recognized in infection,

% of subjects

expressing the respective

HLA allele

Acute Chronic

A*02 50.7 A2-SL9 p17 SLYNTVATL 18 38

B*07 30.2 B7-IL9 gp41 IPRRIRQGL 43 47

A*01 28.7 A1-RY9 gp41 RRGWEVLKY 17 14

B*44 27.1 B44-AW11 p24 AEQASQDVKNW 32 77

B*08 22.5 B8-FL8 Nef FLKEKGGL 74 75

A*24 21.3 A24-RW8 Nef RYPLTFGW 50 36

B*35 20.9 B35-VY8 Nef VPLRPMTY 28 20

A*03 20.6 A3-RK9 p17 RLRPGGKKK 62 56

B*40 14.7 B40-KL9 Nef KEKGGLEGL 64 43

A*11 14 A11-AK11 p24 ACQGVGGPGHK 46 70

B*15 11.6 B15-GY9 p24 GLNKIVRMY 37 60

B*27 9.2 B27-KK10 p24 KRWIILGLNK 81 43

B*14 8.6 B14-EL9 gp41 ERYLKDQQL 57 50

A*26 8 A26-EL9 p24 EVIPMFSAL 36 83

A*29 7.4 A29-SY10 gp120 SFNCGGEFFY 42 50

A*30 7.4 A30-KYY9 Int KIQNFRVYY 25 80

B*57 7 B57-TW10 p24 TSTLQEQIGW 74 30

T cell responses. The early CD8+ T cell response is very narrowly

directed against a few epitopes and follows a clear hierarchical

immunodominance pattern [9]. In fact, with the knowledge of

the HLA class I allele, the early T cell responses can be–to some

degree–successfully predicted. This will have important impli-

cations for vaccine design (Table 1). Interestingly, individuals

able to mount one of the immunodominant responses in acute

HIV-1 infection have on average a lower viral set point than

those who do not target epitopes in acute HIV-1 infection

(Figure 1) [9]. In addition, the preservation of these early re-

sponses has been associated with slower disease progression

and a preserved CD4+ T cell count [9]. The correlation between

first CD8+ T cell responses and early viral set point is even

stronger when tested against the autologous virus [10]. In a

recent study using peptides based on autologous viral quasi-

species, the first CD8+ T cells, despite very rapid virus escape,

suppressed HIV-1 as viral load was declining from its peak [10]

(Figure 1). The influence of these T cell responses vanished

once the virus had escaped from the targeted epitopes. Com-

putational modeling further suggested that a single T cell re-

sponse was contributing as much as 15%–35% of viral decline

with multiple T cell responses [10]. Thus, the generation of

immunodominant CD8+ T cell epitope responses in the acute

phase of infection appears to have an important impact on the

level of the early viral set point and subsequent disease

progression.

Some subjects, however, do not develop strong CD8+ T cell

responses in acute HIV-1 infection and therefore most likely

experience a higher viral set point [9]. This can be partially

accounted for by transmitted escape mutations in the CTL-

targeted epitopes. Other studies have established that for “pro-

tective” CD8+ T cell responses ,such as HLA-B27KK10 or

HLAB57-TW10 in p24/Gag, the lack of early responses is due

to transmitted mutations within these epitopes. However, trans-

mitted escape mutations do not explain the differences in viral

set point for the majority of subjects lacking immunodominant

CTL responses in acute HIV-1 infection. Findings of a recent

study suggested that this might be due to a gradual adaptation

of HIV-1 to host immune pressures occurring at the population

level. In a comparison of 12900 viral sequences of different

HIV-1 clade B cohorts worldwide, it was noted that HLA allele

escape mutations in the HLA-restricted epitopes accumulate at

the population level, dependent on the frequency of the re-

spective HLA class I [11]. In line with this observation, it has

been suggested that individuals expressing one of the more rare

HLA supertypes have a more favorable course of disease [12].

This has now been linked to strong CTL selection pressure on

the virus, whereas subjects with a more common HLA allele

or HLA class I allele combination do not develop strong re-

sponses during primary HIV-1 infection. Thus, the epitopes

with the strongest selective pressure are already fixed in the

viral sequence at the population level for individuals who have

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jid
/a

rtic
le

/2
0
2
/S

u
p
p
le

m
e
n
t_

2
/S

3
0
2
/8

5
4
0
6
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



S304 • JID 2010:202 (Suppl 2) • Streeck and Nixon

Figure 1. Association between immunodominant CD8+ T cell responses in acute human immunodeficiency virus type 1 (HIV-1) infection and viral

set point. Subjects in whom a frequent and immunodominant recognized CD8+ T cell epitope is targeted in acute infection have, on average, a lower

early viral set point [7], and subjects in whom such epitopes are not targeted in acute infection have a higher viral set point. This early viral set

point is highly predictive of disease outcome.

common HLA alleles, and responses to these epitopes are there-

fore not observed.

The question remains why early CD8+ T cell responses are

so efficient in controlling viral replication, whereas CTL re-

sponses generated later in infection appear impaired. Here,

several explanations that might equally account for this phe-

nomenon are explored.

CTL RESPONSES AND VIRAL EVOLUTION:

A CHASING GAME

Because of ongoing recombination and mutations, HIV-1 per-

manently escapes recognition by CD8+ T cell responses in the

host. The continuous evolution of HIV-1 represents one of the

major obstacles for vaccine design and has not only contributed

to the already significant viral diversity in a single HIV-1–in-

fected individual but also accounts for the dramatic sequence

diversity among circulating viral strains at the population level.

However, it has been suggested that the ability of HIV-1 to

escape virus-specific immunity is finite and comes at a fitness

cost to the virus [13]. This might play a unique role in the

acute phase of infection, when the virus has not diversified as

much as it has by the chronic phrase of infection. Therefore,

early CD8+ T cell responses might have an advantage in forming

the diversity of the virus to lower viral fitness [14]. This early

impairment of the virus has been suggested to be one of the

central mechanisms of effective neutralizing antibody re-

sponses, in which the “chase” between antibody response and

viral evolution has been successfully overcome. An early viral

fitness defect and therefore early suppression of HIV-1 viremia

might be critical for the consecutive generation of fully func-

tional CD8+ T cell responses, because important CD4+ T cell

helper signals might be preserved. Thus, immediate and early

immune selection pressure might be beneficial to arrest the

virus at less fit stages.

BENEFITS OF EARLY CD4
+

T CELL HELP

In recent years, limited attention has been paid to the impact

of HIV-1–specific CD4+ T cell responses to the control of viral

replication. This is surprising, because both the clearance of

viruses in other viral infections, such as hepatitis C [15–17],

Epstein-Barr virus [18, 19], and cytomegalovirus [20–22] in-

fection, and the prognosis in various cancers [23–26] seem to

be highly dependent on antigen-specific CD4+ T helper cell

responses. Moreover, in HIV-1 infection strong HIV-1–specific

CD4+ T cell responses have been associated with better control

of viral replication. For example the presence of robust poly-

funtional CD4+ T cell responses is an important hallmark that

distinguishes nonpathogenic HIV-2 infection from pathogenic

HIV-1 infection [27]. Moreover, a vigorous CD4+ T cell re-

sponse in acute HIV-1 infection has been associated with sub-

sequent control of viral replication [28], and viral escape from

CD4+ T cell–targeted epitopes has been observed [29]. How-

ever, whether the presence of HIV-1–specific CD4+ T cells is

the consequence of low viremia or effectively contributes to

viral suppression remains unclear. Interestingly, the immuno-

genicity data from the Thai RV144 trial suggest that the vaccine
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Figure 2. Schematic model for progressive CD8+ T cell exhaustion and memory development. CCR7, chemokine (C-C motif) receptor 7; CTL, cytotoxic

T lymphocyte; IFN, interferon; IL, interleukin; PD, programmed death; TNF, tumor necrosis factor.

induced both antibody responses and robust CD4+ T cell re-

sponses [30]. The rationale underlying the general exclusion of

CD4+ T cells from vaccine design strategies originated from

other studies showing that HIV-1 preferentially infects HIV-1–

specific CD4+ T cells. A vaccine candidate boosting these re-

sponses could in theory enhance viral replication. However,

although HIV-1 preferentially infects activated HIV-1–specific

CD4+ cells, the great majority of HIV-1–specific CD4+ T cells

remain virus free even in the presence of high-level viremia

[31].

During primary HIV-1 infection, a massive infection of both

resting and activated CD4+ T cells in gut-associated lymphoid

tissue occurs, destroying up to 60% of these cells in the early

days after infection [32]. HIV-1–specific CD4+ T cell responses

emerge simultaneously or even earlier than CD8+ T cell re-

sponses during primary HIV-1 infection but decrease after the

first months of infection. This contraction of the CD4+ T cell

response pool has been suggested to be due to preferential

infection, but studies of other chronic viral infections suggest

that CD4+ T cell responses often naturally contract after the

initial burst of viremia. Moreover, as for CTL epitopes, escape

mutations in CD4+ T cell targeted epitopes develop, showing

that CD4+ T cells can exert selection pressure on the virus,

especially during the early phase of infection [29, 33]. Although

studies showed convincingly that HIV-1 replication can be pre-

dominantly controlled by CD8+ T cells [1–5, 34, 35], the ef-

fectiveness of these CD8+ T cell responses appears to be fun-

damentally affected by the presence or absence of CD4+ T helper

cells [36–42]. Interestingly, antigen-specific CD8+ T cells can

be generated in the absence of CD4+ T cell help, but the sec-

ondary expansion on antigen reencounter is inefficient [36, 42–

44]. A robust and effective CD8+ T cell response in elite con-

trollers has been associated with the presence and preservation

of HIV-1–specific CD4+ T helper cell responses [28, 45]. These

cells might be also preserved through the initiation of highly

active antiretroviral therapy during primary HIV-1 infection

[28], thereby maximizing HIV-1–specific CD8+ T cell responses.

However, so far very little is known about to what extent CD4+

T cell help is critical for CD8+ T cell–mediated control and

which mechanisms are required. Whereas some findings have

suggested that interleukin (IL) 2 signals are important for CD8+

T cell proliferation [46], recent studies in the lymphochoriom-

eningitis virus model suggest that IL-21–secreting CD4+ T cell

responses are also critical to prevent CD8+ T cells from be-

coming rapidly exhausted [47–49], a factor that certainly plays

a role in HIV-1 infection. However, whether IL-21+ CD4+ T
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cells are also involved in antiviral immunity in humans has not

been determined thus far.

The role of other CD4+ T cell subsets and their contribution

to the control of viral replication are also controversial. T helper

17 (Th17) cells have been implicated as being proinflammatory,

causing immune activation, which might not be beneficial in

the case of HIV-1. Conflicting results exist concerning the pres-

ence of HIV-1–specific Th17 cells, and their contribution to

immunpathogenesis remains to be determined. Similarly, only

a little is known about the role, presence, and specificity of

HIV-1–specific Th2 or T follicular helper cell responses, which

provide important helper signals for the maturation and an-

tibody generation of B and plasma cells. The importance of

this understudied area of HIV-1 research is stressed by the

recent results of the immunogenicity data of the RV144 Thai

trial, suggesting a potential critical interplay of induced Env-

specific CD4+ T cell responses and HIV-1–specific antibody

responses.

PROGRESSIVE EXHAUSTION PREVENTS

BETTER CONTROL

CD8+ T cell responses primed in acute HIV-1 infection have a

better metabolic starting position than CD8+ T cells generated

under persistent viral infection with abundance of antigen.

When naive CD8+ T cells recognize their antigen, they mature

to effector cells, recognizing and killing the respective target

cells. After clearance of an acute viral infection, this population

contracts, and only a minor fraction of the effector cells develop

into a long-lived memory pool. However, in chronic persistent

infections and under persistent levels of antigenemia, CD8+ T

cells become progressively exhausted. This exhaustion follows

a clear hierarchical pattern face (Figure 2) [50]: the cells first

lose the ability to proliferate, to secrete different cytokines and

chemokines, and their cytolytic activity, and finally they enter

a stage of full exhaustion. This metabolic loss of functional

abilities is followed by physical deletion. The different stages

of exhaustion are reflected by the up-regulation of different

inhibitory molecules on the cell surface, such as programmed

death 1, CTLA-4, KLRG1, TIM-3, or CD160. Although these

receptors are generally up-regulated under repetitive antigenic

stimulation, they appear to be differently regulated, suggesting

a distinct modulation of these inhibitory pathways [51]. It is

also important to note that although there is a general up-

regulation of inhibitory receptors, this might be distinctly dif-

ferent at the epitope level. Studies in humans and mice dem-

onstrated that once a CTL escape mutation in the targeted

epitope develops, these receptors down-regulate from the cell

surface at different rates [52, 53]. Similarly, the functionality

of the CD8+ T cells appears to improve upon escape mutations

in the targeted epitope (Figure 2). However, it is not known

whether the inhibitory receptors indeed decrease and the func-

tionality of the cells generally increases or whether the pool of

the different clonal CD8+ T cell population appears less ex-

hausted because the more exhausted T cells have already entered

apoptosis. Thus, to analyze the functionality and phenotype of

the antigen-specific CD8+ T cells, it is important to simulta-

neously analyze the corresponding viral sequences.

One hallmark of HIV-1 infection is a chronic activation of

the immune system that not only increases the number of

activated CCR5+CD4+ target cells but also directly impairs the

immune system through activation-induced cell death. Al-

though the immune system has developed several strategies to

counteract this abundant activation, it has been shown to be

one of the strongest contributors to CD4+ T cell loss in the

case of HIV-1 infection. One specific mechanism of evasion

from hyperactivation is a specific expansion of inducible

FoxP3+CD25+ regulatory T cells after acute HIV-1 infection.

Interestingly, subjects with chronic progressive infection

showed significantly higher levels of these cells than subjects

able to control viral replication [54]. These cells have been

shown to have the ability to effectively inhibit several arms of

the immune system, but the mechanism by which they act is

currently unknown. Both contact-mediated activity and activity

through soluble factors, such as transforming growth factor b

or IL-10, have been suggested. Indeed, increased IL-10 plasma

levels in chronic HIV-1 infection have been demonstrated and

suggested to contribute to the general dysfunction of CD8+ T

cell responses [55]. Overall, HIV-1–specific CD8+ T cells gen-

erated in the chronic phase of infection face an immune system

that is prone to reduce rather than foster immune responses.

Thus, the ability of these cells to decrease the level of viral

replication more efficiently might be impaired owing to an

inhibitory cellular and cytokine milieu.

CONCLUSIONS

Emerging studies suggest that immune responses induced dur-

ing the early stages of HIV-1 infections substantially influence

disease outcome. Differences in functionality and cosignals

through CD4+ T helper cells appear to be critical for the ef-

fectiveness of CD8+ T cell responses generated in acute HIV-1

infection, compared with “impaired” responses in the chronic

phase of infection. In particular, the role of CD4+ T cells in

the control of viral replication has not been sufficiently assessed

and might be fundamentally important for a broader under-

standing of the immunpathogenesis of this disease.
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