
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Cornelis Joseph Melief,
Leiden University, Netherlands

REVIEWED BY

Ana Paula Duarte De Souza,
Pontifical Catholic University
of Rio Grande do Sul, Brazil
Sara Mangsbo,
Uppsala University, Sweden

*CORRESPONDENCE

Alexandre E. Nowill

aen@nowill.com.br

Pedro O. de Campos-Lima

pdclima@gmail.com

†Retired

‡These authors have contributed equally to
this work

RECEIVED 28 December 2022

ACCEPTED 11 May 2023

PUBLISHED 14 June 2023

CITATION

Nowill AE, Caruso M and
de Campos-Lima PO (2023) T-cell
immunity to SARS-CoV-2: what if the
known best is not the optimal course for
the long run? Adapting to evolving targets.
Front. Immunol. 14:1133225.
doi: 10.3389/fimmu.2023.1133225

COPYRIGHT

© 2023 Nowill, Caruso and
de Campos-Lima. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 14 June 2023

DOI 10.3389/fimmu.2023.1133225
T-cell immunity to SARS-CoV-2:
what if the known best is not the
optimal course for the long run?
Adapting to evolving targets
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Humanity did surprisingly well so far, considering how unprepared it was to

respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and

ingenious new technology in the context of the accumulated knowledge on

other human coronaviruses, several vaccine candidates were produced and

tested in clinical trials in record time. Today, five vaccines account for the bulk

of the more than 13 billion doses administered worldwide. The ability to elicit

biding and neutralizing antibodies most often against the spike protein is a major

component of the protection conferred by immunization but alone it is not

enough to limit virus transmission. Thus, the surge in numbers of infected

individuals by newer variants of concern (VOCs) was not accompanied by a

proportional increase in severe disease and death rate. This is likely due to

antiviral T-cell responses, whose evasion is more difficult to achieve. The present

review helps navigating the very large literature on T cell immunity induced by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and

vaccination. We examine the successes and shortcomings of the vaccinal

protection in the light of the emergence of VOCs with breakthrough potential.

SARS-CoV-2 and human beings will likely coexist for a long while: it will be

necessary to update existing vaccines to improve T-cell responses and attain

better protection against COVID-19.
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1 Introduction

When the first cases of pneumonia were identified in China at the end of 2019, little was

known about the new illness, which was later named coronavirus disease 2019 (COVID-

19) (1). It was soon found that COVID-19 was caused by an enveloped positive-sense,

single-stranded RNA virus that belongs to the Betacoronavirus genus – the severe acute
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respiratory syndrome coronavirus 2 (SARS-CoV-2) (2). An

unprecedented scientific effort led to the development and testing

of several vaccine candidates, which culminated with their

regulatory approval and the administration of billions of doses

worldwide (Table 1).

From the population standpoint, the immune status changed

considerably in a short time, evolving from a situation in which

most human beings were immunologically naïve to SARS-CoV-2 to

another in which some remained naïve and some were primed by

infection. A third group soon emerged who had post-vaccinal

immunity. Other layers of complexity were then added by

transitional cases who had priming by infection followed by

“boosting” by vaccination – known as hybrid immunity (15). The

latter comes in several flavors that reflect: (i) the viral strain variant

that caused the primary infection (16); (ii) the type of vaccine (there

are 5 major platforms that will be described later); and (iii) the

individual immunization history (complete or incomplete

vaccination cycle with or without booster shots). Other relevant

scenarios were created by reinfections or breakthrough infections in

vaccinated individuals by immune evasive variants, such as omicron

(16, 17). Finally, cross-reactivity to other coronaviruses may also

impact on the SARS-CoV-2-specific immune response (18).

There is strong rationale for the adoption of COVID-19

immunization strategies that aim primarily at developing robust

antibody responses with an effective neutralizing component in

order to limit viral spread in the community. Much attention has

justifiably been given to this topic in the literature (19–21).

However, mounting evidence points to a major role of T cells in

the protection conferred by infection and vaccination. Hence,

SARS-CoV-2-infected mice expressing human angiotensin-
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converting enzyme 2 (ACE2) induced strong polyfunctional

CD4+ and CD8+ T cell responses that could dump viral titers in

the lungs (22). Indeed, vaccination in this model could protect the

animals from infection in the absence of neutralizing antibodies.

Experiments conducted with convalescent rhesus macaques

revealed that depletion of T cells with anti-CD8 antibodies led to

breakthrough infection upon SARS-CoV-2 rechallenge (23). As

regards clinical data, earlier studies reported a broader and

stronger T cell response in COVID-19 patients with severe

disease (24, 25). It remains unknown if this possibly

uncoordinated and dysfunctional reaction just reflects higher viral

loads in the advanced stages of the disease and/or is part of its

pathogenesis (sepsis). Moreover, one of these initial reports

identified a protective role of the CD8+ subset alongside a lower

total T cell response in mild disease (24). Nevertheless, it is worth

noting that the results of many other studies are in line with the

inferred protection indicated by the mentioned pre-clinical

findings. Thus, it was shown that early virus-specific T-cell

induction improves viral clearance and COVID-19 prognosis

(26). A recent report assigned this protective effect to CD4+ T

cells which was mostly evident in the first 2 weeks of infection (27).

Another study described the participation of both T cell subsets in

limiting disease severity but found that IFN-g-producing CD8+ T

lymphocytes exhibit the strongest association with milder acute

COVID-19 (28). In agreement with these findings, CD8+ T cells

limit viral load, disease severity, and mortality in COVID-19

patients with hematologic malignancies undergoing B cell

depletion by anti-CD20 therapy (29). Also, clonally expanded

CD8+ T lymphocytes were described in the bronchoalveolar

lavage fluid in COVID-19 moderate cases (30).
TABLE 1 Protection from symptomatic disease by vaccines with the largest population coverage at the time of first authorized use.

Vaccine Manufacturer Dosing
First emergency
use authorization/

listing

Clinical trial
considered for

first use
authorization

Participants
included in
the first
efficacy
analysis a

Efficacy at the
time of first
authorized

use

Deployment
(Doses in
billions)

BNT162b2 Pfizer-BioNTech 2 doses
MHRA, UK
Dec 02, 2020

NCT04368728 36,523 95.0% > 2.5

mRNA-1273 Moderna 2 doses
FDA, USA
Dec 18, 2020

NCT04470427 28,207 94.1% > 0.5

AZD1222
Oxford/Astra-

Zeneca b 2 doses
MHRA, UK
Dec 30, 2020

ISRCTN89951424,
NCT04324606,
NCT04400838,
NCT04444674

11,636 70.4% c > 3.0

CoronaVac Sinovac 2 doses
SAGE-WHO
Jun 01, 2021

NCT04456595,
NCT04582344,
NCT04508075

9,823
10,029
1,620

50.6-83.5% d > 2.9

BBIBP-CorV Sinopharm 2 doses
SAGE-WHO
May 07, 2021

NCT04510207 27,530 78.1% > 2.5
a: Per Protocol Population.
b: The same formulation is also produced by the Serum Institute of India as Covishield and was approved by a separate regulatory path.
c:Median value used by the Agency from ISRCTN89951424 and NCT04400838 clinical trials (3, 4). Later, it was reported that two doses spaced by a 3-month-long dosing interval had an efficacy
of 81.3% (5).
d: CoronaVac efficacies were: 50.6% for NCT04456595 (6), 65.3% for NCT04508075 (7) and 83.5% for NCT04582344 (8). The table was compiled from references (9) (NCT04368728) (10),
(NCT04470427) (3), (ISRCTN89951424, NCT04400838) (6), (NCT04456595) (7), (NCT04508075) (8), (NCT04582344), and (11) (NCT04510207), as well as (4, 12–14). MHRA: Medicines &
Healthcare products Regulatory Agency; FDA: Food & Drug Administration; SAGE-WHO: Strategic Advisory Group of Experts, World Health Organization.
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Altogether, the emerging picture reveals the importance of

cellular immunity in COVID-19 – notably in those circumstances

in which variants of concern (VOCs) may breach the barrier created

by antiviral neutralizing antibodies. This article intends to revisit

the infection- and vaccine-induced SARS-CoV-2-specific adaptive

cellular immunity with a focus on T lymphocytes. For in-depth

analysis of antiviral cellular or humoral immunity including

prophylactic and therapeutic implications, the reader is directed

to several excellent reviews published elsewhere (19–21, 31–37).
2 Preparing the ground for the
adaptive immune response to
SARS-CoV-2 primary infection

Pattern recognition receptors (PRRs) sense pathogen-associated

molecular patterns (PAMPs) thereby activating the first line of

defense against viral infection in naïve individuals (38, 39). Thus,

the toll-like receptors (TLRs) 7 and 8 are capable of identifying

uridine-rich, single-stranded RNA within the endosomal

compartment, thereby triggering through the myeloid

differentiation primary response 88 (MyD88) adaptor the

transcription of genes encoding type-I interferons (IFNs) as well

as major proinflammatory cytokines, such as IL-1b and IL-18 (38,

40). The latter cytokines are produced as larger nonfunctional

precursor molecules that are recognized and activated by the NLR

family pyrin domain containing 3 (NLRP3) inflammasome (41).

Similarly, the cytosolic sensors retinoic acid-inducible gene I (RIG-

I), melanoma differentiation-associated protein 5 (MDA5),

laboratory of genetics and physiology 2 (LGP2), and the

nucleotide-binding oligomerization domain-containing protein 1

(NOD1) were all shown to engage SARS-CoV-2 RNA resulting in

the production of type-I IFNs (39). Most cells may be a source of

these cytokines, including those lining the respiratory tract, albeit

not to the level achieved by plasmacytoid dendritic cells (DCs) (42).

Regardless of their origin, type-I IFNs engage their ubiquitous

receptor (IFNAR) and initiate the signal transducer and activator of

transcription (STAT) 1/2-mediated transcription of a plethora of

interferon-stimulated genes (ISGs) – many of them encoding

products that act directly or indirectly to contain viral infections

(42). There are multiple examples of ISG products that counteract

SARS-CoV-2 during distinct segments of the viral cycle: (i) in the

entry phase (e.g., E74 like ETS transcription factor 1); (ii) in the

translation/replication phase (e.g., Z-DNA-binding protein 1 and

IFN-induced protein with tetratricopeptide repeat 3), and (iii) in

the release phase (e.g., tetherin) (43).

In addition to their direct antiviral effect, type-I IFNs also

enhance the ability of individual cells to recognize and respond to

pathogens early on during infection. This is achieved by the

upregulation of a subset of ISG products that act operationally as

PRR receptors (42). Among those ISGs relevant to SARS-CoV-2, it

is possible to include the ones which encode RIG-I, MDA-5,

oligoadenylate synthetase-latent endoribonuclease L, and TLR-7

(42, 44). It is conceivable that higher expression of these PRRs

would sound faster the alarm against infection, perhaps requiring
Frontiers in Immunology 03
lower viral loads, and allowing the implementation of the IFN

effects with direct antiviral impact.

Given the importance of type-I IFNs in shaping the early phase

of viral infection, it results unsurprising that more than a third of

the SARS-CoV-2 genome should be dedicated to encode over a

dozen products, including several nonstructural (NSPs) and

accessory (ORFs) proteins, which may directly or indirectly

disable IFN production or its receptor activity (39).

Overall, the activation of PRRs serve multiple purposes: (i) to

contain the virus in the infected cell; (ii) to inform other cells to do

the same; (iii) to promote the release of proinflammatory cues (e.g.,

IL-1b, IL-18, IL-6, IL-12, TNF-a, and IFN-g) notably by immune

cells which activate further the innate response locally and

systemically; and (iv) to prepare the ground for the generation of

a targeted, and often resolutive, adaptive response through the

activation of professional antigen presenting cells (APCs) (38, 39,

42, 45).

Depending on the viral load during the initial contact as well as

the pathogen genetics, the infection may be aborted early on by an

innate immune reaction or by a pre-existing cross-reactive adaptive

memory response (33, 46–48). Nevertheless, should the infection

surpass this stage and get established, T cells are required for viral

clearance (49). Conventional T cells derive from bone marrow

progenitors which migrate to the thymus where they undergo T cell

receptor (TCR) recombination, followed by positive and negative

selection (50). Once graduated from thymic maturation, MHC class

I-restricted CD8+ and MHC class II-restricted CD4+ cells exit from

the lymphoid organ into the circulation as quiescent

CD45RA+CCR7+ naïve T lymphocytes (50, 51). Their highly

diverse TCR repertoire comprises close to 108 specificities

warranting potential recognition of virtually all SARS-CoV-2-

encoded T-cell epitopes in the context of a given HLA haplotype

– provided that no relevant repertoire deletion had been imposed

on the epitope specificities in question (51). The fact that the

thymus operationally ends its function in the adult after the

fourth decade of life is compensated by the 5-10-year-long

lifespan of the naïve cells and by their renewability in the

periphery (52). Yet, there is evidence that the scarcity of naïve T

cells, particularly naïve CD8+ T lymphocytes, favors COVID-19

severity in the elderly (28). In any case, regardless of being

originated from the thymus or from peripheral turnover, naïve

cells undergo a three-phase differentiation process upon activation

that comprises: (i) clonal expansion, (ii) contraction, and (iii)

memory formation.

Clonal expansion is mediated by IL-2 that triggers an autocrine

cell cycle activation (52). It is complemented by further

differentiation that provides T cells with effector tools to control

viral infections. The prototypic immune response that is associated

with an eventual virus clearance is mediated by CD8+ cytotoxic T

lymphocytes (CTLs) (49). The latter recognize antigenic peptides

derived from intracellular pathogens presented by MHC molecules

on the surface of the infected cell, unleashing the release of lytic

granules and effector cytokines, such as IFN-g and TNF-a (53). The

CD4+ effector counterparts act in unison assuming several

polarization helper phenotypes associated with classical cytokine

secretion patterns: (i) IFN-g-producing Th1 cells are pleiotropic,
frontiersin.org
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and favor the antiviral action of CTLs (54); (ii) Th2 cells produce

IL-4, IL-5 and IL-13, acting on some granulocytes and B cells (50);

(iii) Th17 cells are proinflammatory and produce IL-17A/F and IL-

21 (55); (iv) Two minor subsets – Th9 (IL-9) and Th22 (IL-22) –

exhibit some overlap with Th2 and Th17 cells, respectively (50); (v)

T follicular helper (TFH) cells provide essential support to

coordinate B cell proliferation, survival, and differentiation into

antibody-producing plasma cells (56). Thus, co-signaling through

the axis inducible T-cell co-stimulator (ICOS) ligand-ICOS

enhances T-B cell entangled contacts in the germinal centers and

upregulate the CD40L in TFH cells, which together with the

production of IL-21, ultimately favor affinity maturation in

memory B cells (50, 56); and (vi) Regulatory T cells (TREGs) are

primarily thymus-derived but may differentiate from effector cells

in the periphery as CD4+ CD25+ Foxp3+ T lymphocytes (57). In the

blood and lymphoid tissues, they maintain a CD45RA+ CCR7+

naïve phenotype but acquire a CD45RA- CD45RO+ memory-like

expression profile in mucosal sites. They suppress immunity

through direct cell-cell contact and secretion of IL-10 and TGF-b
(52, 57). Two further points about the above-described phenotypes

are worth consideration. First, analogous CD8+ subsets to those

described for CD4+ T cells (Tc1, Tc2, Tc17, and TREG) do exist (58,

59). Second, in addition to the classic cytokine secretion profiling,

activation marker expression may be used to identify T cell subsets

by flow cytometry as it will be described later in the text for SARS-

CoV-2 epitope-specific T cells.

Once infection is resolved, effector T cells experience massive

contraction by apoptosis. A small fraction of them survives as

CD45RA+ CCR7- terminally differentiated effector memory cells re-

expressing CD45RA (TEMRA). These cells are most often CD8+,

secrete good amounts of IFN-g, have limited proliferative capacity,

and their relative frequency depends on viral load and pathogen

persistence (52). The remainder of the surviving cells acquire one of

three memory phenotypes: CD45RA- CCR7+ central memory

(TCM), CD45RA
- CCR7- effector memory (TEM), and CD45RA+

CCR7+ CD95+ CD122+ stem cell memory (TSCM) (60, 61). TCM cells

are more proliferative, respond to homing cues to lymph nodes,

have limited immediate effector function but differentiate into TEM

upon secondary stimulation. Conversely, TEM cells can migrate to

inflamed tissues and activated lymph nodes, and may exhibit

immediate effector function (61, 62). TSCM cells are much less

frequent. They do not have immediate effector function but display

high proliferative potential and are capable of self-renewal (60).

Attempts to characterize virus-reactive T cell memory subsets

have often had the bias of limiting the analysis to circulating cells in

the peripheral blood – including most studies on SARS-CoV-2.

Nevertheless, an important contingent of memory cells follow

chemokine gradients towards epithelial surfaces, lose their ability

to respond to tissue exit cues, and become tissue-resident memory

(TRM) lymphocytes. Most of them express CD69 that

downregulates sphingosine 1-phosphate (S1P) receptors, cutting

their ability to respond to egress factor cues (63). TRM cells exhibit a

dual regulatory and effector profile. On the one hand, TRM cells

express PD-1, LAG3, and CTLA-4, and secrete IL-10 which limits

overactivation – but on the other hand, they can secrete IFN-g,
Frontiers in Immunology 04
TNF-a, IL-17 and IL-2 unleashing a quick in situ response to

invading pathogens (52).

Many of the above-described T cell subsets will be revisited in

the next sections in a SARS-CoV-2 context.
3 T-cell immunity in SARS-CoV-2
primary infection

By using orthogonal approaches, including activation-induced

marker (AIM) analysis, intracellular cytokine staining, ELISPOT,

and tetramer staining, it is possible to detect CD8+ T lymphocytes in

the peripheral blood of about 70% of COVID-19 convalescent

patients one month after infection. However, this detection drops

to about 50% six months later (64). The kinetic profile shows

expansion in the first month and a gradual decrease thereafter with

an estimated half-life (t1/2) within the window of 125-196 days (64,

65). Although all viral proteins are potential targets in the right

MHC context, these CD8+ T lymphocytes recognize well in the AIM

assay at least eight viral antigens (NSP3, NSP4, NSP6, NSP12, S,

ORF3a, membrane glycoprotein, and nucleoprotein) and tend to

focus on four dominant targets – three of them highly expressed

(spike, membrane glycoprotein, and nucleoprotein) and one weakly

expressed (NSP3) (64, 66). The intracellular cytokine assay reveals

an even narrower targeting as close to 60% of SARS-CoV-2 CD8+

T-cell responders recognize the nucleoprotein, and 43% of the total

CD8+ T cell-response in each individual is dominated by this

specificity (65). On average, each donor reacts to at least 17 CTL

epitopes (66).

During acute infection, SARS-CoV-2-reactive CD8+ T cells

have a highly cytotoxic phenotype with perforin and granzyme B,

as well as show clear signs of activation and proliferation given by

the expression of CD38, CD69, HLA-DR and Ki-67 (31, 67, 68).

Furthermore, the immune checkpoint molecules PD-1, LAG3,

TIM-3, CTLA4 and CD39 are all upregulated early on; albeit the

expression levels of PD-1 and CD38 drop in late convalescence (67,

68). The latter molecules are usually associated to exhaustion.

However, by running intracellular cytokine staining in peptide-

stimulated, SARS-CoV-2-specific, MHC class I multimer+ CD8+ T

cells, Rha et al. have shown that the frequency of IFN-g-producing
cells is not different in early and late convalescent samples (68).

They also found that the cells retain proliferative capacity upon

antigen re-challenge. The findings led these authors to conclude

that the phenotype is not one of exhaustion but rather one of

activation with preserved effector function. Indeed, current

evidence seems to support this interpretation, including a single-

cell transcriptomic study that revealed the shrinkage of the

“exhaustion” cluster over time, which correlated with cell cycling

(69). In addition, SARS-CoV-2-reactive CD8+ T cells are often

capable of simultaneous production of IFN-g, TNF-a and granzyme

B not only during the early expansion phase but retain this

polyfunctionality throughout the following 6 months or more (65).

CD8+ T cells have CD45RA- CCR7- effector memory (TEM)

surface markers during the early phase of the response that are

progressively lost. Conversely, a CD45RA+ CCR7- CD8+ (TEMRA)
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population gradually ascends, while the CD45RA- CCR7+ CD8+

central memory (TCM) cells remain stably low until day 240 post-

infection (64, 65, 68). It is worth noting that the expansion of TCF1+

TEMRA occurs alongside a detectable CD95+ CD45RA+ CCR7+

CD8+ stem cell-like memory (TSCM) subset which gradually

expands until day 120 of convalescence and stabilizes thereafter

(65, 70, 71). Stem cell-like memory is associated with self-renewal

capacity and multipotency to repopulate the other memory and

effector T-cell subsets (72). Tissue-resident memory T cells (TRM)

are another often neglected memory subset which may play a major

role in local immune protection at mucosal, skin, and various organ

sites (52, 73). Poon et al. analyzed samples obtained from four organ

donors who died from noninfectious causes but had previously

recovered from COVID-19, one of them >6 months earlier (74).

These investigators used the CD69 and CD103 markers to identify

SARS-CoV-2-specific CD8+ TRM cells in the spleen, lung/gut lymph

nodes, and lungs, with the highest frequency found in the latter.

About 89%-93% of the people who are clinically infected with

SARS-CoV-2 mount a CD4+ T-cell memory response against at

least one viral structural protein during the first month after disease

onset, which declines thereafter but remains detectable for 6-8

months in 92% of the convalescent patients (64, 65). The

preferential antigenic targets are: spike, membrane glycoprotein,

nucleoprotein, ORF3a, and NSP3 (64). On average, each donor

reacts to at least 19 T-cell epitopes (66). Although the number of

reactive cells reaches >1% in 42% of the patients at 1 month, the

median frequency of circulating virus-specific CD4+ T lymphocytes

is 0.51% and their estimated t1/2 ranges from 94-207 days (64, 65).

Nevertheless, the resilience of these memory cells may be even

longer. Indeed, Wragg et al. have used peptide-MHC tetramers to

track T lymphocytes that recognize the immunodominant SARS-

CoV-2 spike epitope (S751-767) presented by HLA-DRB1*15:01, and

determined their t1/2 to be approximately 377 days (75). By the end

of this period, the frequency of epitope-reactive cells drops to

0.0038%, which is 3.6 times lower than in the first weeks post-

infection but it remains higher as compared to uninfected

controls (75).

Upon recognition of SARS-CoV-2-derived cognate epitopes,

CD4+ T lymphocytes express activation markers (CD38, CD69, Ki-

67 and HLA-DR) and turn on a phenotypic program that includes

the simultaneous expression of two or more cytokines (often IFN-g,
IL-2 or TNF-a) (65, 67). The memory response was evaluated with

the AIM assay which identified among the CD69+ CD137+ activated

subset a clear polarization skewing towards Th1 (CCR4- CCR6-

CXCR3+ CXCR5-) in membrane glycoprotein- and nucleoprotein-

specific, as well as to cTFH (CXCR5+) in spike-specific CD4+ T cells

(67). The cTFH phenotype is critical for the generation of binding

and neutralizing antibodies. The CXCR5 chemokine receptor allows

cTFH cells to migrate to lymph nodes where they contribute to the

generation and maintenance of germinal centers through the

concerted release of IL-21 and the expression of the CD40L (76).

During COVID-19 early convalescence about 10% of the virus-

reactive CD4+ T cells may also express CXCR5. In fact, HLA-

DRB1*15:01-restricted, S751-767-specific cTFH lymphocytes were still

detectable in 13 out of 17 convalescent patients 365-450 days after
Frontiers in Immunology 05
symptoms onset (75). The predicted t1/2 for cTFH reactive to the

latter peptide was 227 days.

The most common SARS-CoV-2-reactive CD4+ memory

phenotypes are TCM and TEM, whose frequencies are relatively

stable throughout 8 months of convalescence with negligible

presence of TEMRA (64, 65, 70). Similar to CD8+ T-cell memory,

the number of CD4+ T lymphocytes with a TSCM phenotype

progressively increases for 4 months to achieve a stable plateau

thereafter (70). Virus-specific CD4+ TRM can be identified in the

lungs (74).

SARS-CoV-2 induces reactive cytotoxic CD4+ T cells (CD4-

CTLs) in COVID-19 patients (77, 78). These cells lose their co-

stimulatory molecule CD28 and express perforin and granzyme B

(79). Indeed, virus-specific CD4-CTLs are present in the peripheral

blood, and their numbers increase in the lungs and draining lymph

nodes with disease progression (77).
4 Preformed cross-reactive antiviral
adaptive immunity

About 20-60% of COVID-19-naïve individuals have circulating

CD4+ T cells that can cross-recognize SARS-CoV-2 spike and

nonspike antigens, what brings important implications for SARS-

CoV-2 primary infection and vaccination (73, 80). Most human

beings have serological evidence of previous infection with endemic

cold coronaviruses (HCoVs: 229E, OC43, NL63, and HKU1) (81).

Moreover, a recent HCoV exposure is associated with a milder

COVID-19 outcome after SARS-CoV-2 infection (82). It is intuitive

to associate the phylogenetic vicinity between HCoVs and SARS-

CoV-2 to the observed immune cross-reactivity (83). In support of

this reasoning, a recent empirical estimate posits a 57% chance of

cross-reactivity targeting sequences that share >67% homology (18).

Nevertheless, what triggers this “promiscuous” immune activity is

not so easily identifiable. Indeed, Tan et al. showed that more than

half of the reported preexisting reactivities target epitopes in SARS-

CoV-2 that do not have sequence homology with the four endemic

HCoVs (84). Regardless of the existence of additional sources for

antigenic priming, cross-reactive memory T lymphocytes do exist in

healthy individuals and have been characterized at the epitope level.

Thus, preexisting CD4+ T lymphocytes specific to the

immunodominant S816-830 spike epitope are identifiable in 20% of

the COVID-19-naïve subjects. Also, T cells with this specificity are

recruited – with secondary reaction kinetics – in the primary

immune response to SARS-CoV-2 infection in 50-60% of the

cases, as well as in the reaction to the first dose of a COVID-19

vaccine in almost all recipients (85). Similarly, dominant preexisting

T-cell cross-reactivities against SARS-CoV-2 targeting the

nucleoprotein as well as discrete NSP7 and NSP13 epitopes have

been described in half of healthy subjects (86). Other non-structural

SARS-COV-2 antigen that was shown to be frequently recognized

by preexisting memory CD4+ T cells is the highly conserved NSP12

which provides essential RNA polymerase activity to coronaviruses

(47). Once initiated, T-cell expansion occurs largely transiently

against the above antigen examples, to be quicky taken over in the
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course of COVID-19 immune response by other anti-SARS-CoV-2

specificities – perhaps in just enough time to pave the way to

asymptomatic or mild outcomes (85).

Reports that describe preexisting memory CD8+ T lymphocytes

that are cross-reactive to SARS-CoV-2 antigens are not as common

as for CD4+ cells, and usually identify low frequency populations

(47, 73, 86). One of the reasons for the failure in identifying memory

CD8+ T cells so far may be the focus on the peripheral blood. Niessl

et al. overcame this bias and used intracellular staining of 4-1BB and

IFN-g to identify tissue-resident CD69+ CD103+ CD8+ T

lymphocytes in oropharyngeal samples collected before the onset

of the current pandemic (73). They found multiple CD8+ SARS-

CoV-2 reactivities (spike, nucleoprotein, membrane/envelope

glycoproteins, ORF1a, ORF1b and ORF3-10) with lower

frequencies as compared to EBV-specific T cells but still readily

detectable in 32% of the individuals. Interestingly, the frequencies of

tonsillar and peripheral blood CD4+ T cells were similar, in contrast

to CD8+ cells which were virtually absent from the blood (73). Thus,

it is conceivable that cross-reactive TRM lymphocytes act as a first

line of defense in the upper airway track against primary SARS-

CoV-2 infection. In fact, TRM was shown to confer near sterilizing

immunity in murine mucosae, which is mediated by INF-g and

TNF-a, leading to major microenvironmental changes, including

NK cell activation, B-cel l recruitment, and local DC

maturation (87).

All mentions of T-cell recognition found throughout this text

refer to antigenic targets encoded by the ancestral Wuhan Hu-1

virus sequence by default unless otherwise specified.
5 Vaccine platforms

The immunogenic cargo of a vaccine may be carried in multiple

ways. Such a diversity accounts for the 242 vaccine candidates

against COVID-19 that have been tested, from which 92 completed

or are undergoing phase III clinical trials (88). Five major platforms

have been used for the production of the 50 COVID-19 vaccines

already approved in 201 countries (Figure 1 and Table 2): (i)Whole
virus vaccines have reduced virulence but preserved viability and

immunogenicity in the live-attenuated format. Instead, if

inactivated, the pathogens are treated by chemical or physical

means that disable their infectiousness and replicative potential

(89, 94); (ii) Nucleic acid-based vaccines encode the immunogen of

interest in a plasmid DNA or mRNA format. (iii) Viral vector-
based vaccines carry a transgene encoding the immunogenic

protein. Replicative vectors amplify their genomic copies and

produce secondary viral particles upon infection (122). Non-

replicative vectors retain their infectiousness but do not have the

genomic information needed to produce new viral particles (157).

Adenoviral vectors are by far the most archetypal members of the

latter class. Pre-existing immunity generated against common

human adenovirus serotypes (e.g., Ad5) and/or produced in the

context of homologous vaccine re-dosing represents an important

concern (3, 158); (iv) Protein-based vaccines do not have the

potential biohazard associated to the genome of the original

pathogen nor of a viral vector. They may be produced in large
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scale as protein subunits by standard recombinant technologies

(123, 133); (v) Virus-like particles (VLPs) are self-assembling

nanostructures formed by the symmetrical arrangement of

natural or recombinant viral structural proteins, or even synthetic

molecules, which lack a genome and cannot replicate (147). There is

one approved COVID-19 vaccine and 8 other candidates in 15

clinical trials, as well as many more in the preclinical phase (88,

149). Among those, we have recently reported the development of

Moloney murine leukemia virus (MLV)-like particles pseudotyped

with a codon-optimized version of the spike protein (159).

Protection from symptomatic disease by vaccines with the largest

population coverage at the time of first authorized use is presented

in Table 1.
5.1 Post-vaccinal immunity

Two major strategies used to enhance vaccine immunogenicity

are modulation of antigen pharmacokinetics and PRR stimulation.

The former is commonly achieved by the use of aluminium salts to

create an “antigen depot effect” that implements the slow release

and long-term immune stimulation (91). The inactivated whole-

virion SARS-CoV-2 vaccine CoronaVac uses alum in its

formulation (94). In addition, other COVID-19 vaccines in

current use or in pre-clinical testing boost their immunogenicity

by their own intrinsic properties and/or by adjuvants that mimic

PRR ligands in natural infection. Thus, the inactivated whole SARS-

CoV-2 vaccine Covaxin uses alum gel and the TLR 7/8 agonist

imidazoquinoline in its formulation (94, 160). mRNA vaccines

display an intrinsic adjuvant activity because they trigger TLR-7,

TLR-8 and MyD88 in a single-stranded format, as well as RIG-I and

MDA5 as a double-stranded molecule, generating a robust

inflammatory response (161). The COVID-19 mRNA vaccines

BNT162b2 and mRNA-1273 have been modified to dampen this

self-adjuvant effect in order to increase their stability and

translation efficiency (162). Nevertheless, they remain a clear

target for recognition by MDA5, thereby inducing the production

of IFN-a and the subsequent auto/paracrine activation of IFNAR

signaling, as it has been demonstrated for BNT162b2 (163).

Similarly, the adenovirus vector-based vaccines ChAdOx1 and

Ad26.COV2.S have an intrinsic adjuvant effect upon uptake by

DCs in injection sites and lymph nodes as their double-stranded

DNA triggers TLR-9 and the type-I IFN response (164). Moreover,

a number of experimental vaccine candidates exhibit the dual

potential of delivering the specific immunogen and being their

own adjuvant (e.g., the NDV-HXP-S and GRAd-COV2) (131, 132).

In addition, when administered in the proper adjuvant setting,

VLPs may be strong PRR activators in DCs (165).

5.1.1 mRNA vaccines
Most studies show that mRNA-1273 and BNT162b2 mRNA

vaccines elicit a spike-specific CD8+ T-cell response in 70-90% of

the immunized individuals a few weeks after the second dose, and

memory cells are detectable in 41-65% of the cases seven months

after the first shot (34). Accordingly, detection of CD8+ T cells by

AIM or intracellular cytokine staining was reported in 88% of the
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FIGURE 1

Vaccine production platforms characteristics. This figure presents a general outline of the major COVID-19 vaccines. It is complemented by Table 2
that compiles additional information on the approved vaccines. Figure references: Live attenuated whole virus (89–93); Inactivated viral vaccines (11,
89, 94–103); DNA-based vaccines (88, 104–108); RNA-based vaccines (9, 10, 88, 109–121); Replicative viral vector-based vaccines (88, 122–125);
Non-replicative viral vector-based vaccines (3, 5, 88, 126–132); Protein-based vaccines (88, 123, 133–146); Virus-like particles (88, 147–151). P1, PII,
and PIII: phase I, II and III.
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TABLE 2 Approved COVID-19 vaccines.
a: The actual or estimated enrollment size is indicated in parenthesis. In the absence of phase III (PIII) clinical trials, phase I/II (PI/II) studies are indicated.
b: TAK-919 (Moderna formulation).
c: Covishield (Oxford/AstraZeneca formulation).
d: COVOVAX (Novavax formulation).
e: TAK-019 (Novavax formulation).
Alternative names for the vaccines listed above are: mRNA-1273 (Spikevax, Elasomeran); mRNA-1273.214 (Spikevax Bivalent Original/Omicron BA.1); mRNA-1273.222 (Spikevax Bivalent Original/
Omicron BA.4/BA.5); BNT162b2 (Comirnaty, Tozinameran); BNT162b2 (B.1.1.529)(Comirnaty Bivalent Original/Omicron BA.1); BNT162b2 Bivalent (WT/OMI BA.4/BA.5)(Comirnaty Bivalent
Original/Omicron BA.4/BA.5); AZD1222 (Vaxzevria, ChAdOx1 nCoV-19); Sputnik V (Gam-COVID-Vac); Ad26.COV2.S (Jcovden, Ad26COVS1, JNJ-78436735); Ad5-nCoV (Convidecia); BBV154
(iNCOVACC); BBV152 (Covaxin); BBIBP-CorV (VeroCells)(Covilo); KCONVAC (KconecaVac); FAKHRAVAC (MIVAC); Turkovac (ERUCOV-VAC); QazVac (QazCovid-in); ZF2001 (Zifivax, RBD-
Dimer); BECOV2A (Corbevax); CIGB-66 (Abdala); FINLAY-FR-2 (Soberana 02, Pastu Covac); FINLAY-FR-1A (Soberana Plus); NVX-CoV2373 (Nuvaxovid); GBP510 (SKYCovione); COVAX-19
(SpikoGen); EpiVacCorona-N (Aurora-CoV); CoVLP (MT-2766, Covifenz, Plant-based VLP); Gam-COVID-Vac (Sputnik, rAd5); and CoV2 preS dTM (VidPrevtyn Beta, SP/GSK subunit B.1.351).
NVSI: National Vaccine and Serum Institute; Razi VSRI: Razi Vaccine and Serum Research Institute; SII: Serum Institute of India; VSRCVB: Vector State Research Center of Virology and
Biotechnology; CIGB: Center for Genetic Engineering and Biotechnology; Finlay: Instituto Finlay de Vacunas Cuba; BMSU: Baqiyatallah University of Medical Sciences; RIBSP: Research
Institute for Biological Safety Problems; BioKangtai: Shenzhen Kangtai Biological Products; and ODIR: Organization of Defensive Innovation and Research.
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vaccinees during the peak of the response for mRNA-1273 (166).

Similar data was obtained for both BNT162b2 and mRNA-1273

(167). Moreover, by focusing on three spike-derived MHC class I-

restricted T-cell epitopes that are poorly shared with other

coronaviruses, Oberhardt et al. could show a response as early as

6-8 days post-prime (168). On the other side of the chronological

scale, Kuse et al. were able to follow two additional spike epitopes

for over 30 weeks after immunization with the BNT162b2 mRNA

vaccine, attesting to the stability of the long-term CD8+ T cell

memory to at least these immunodominant reactivities (169). The

virus-specific CD8+ T-cell decay kinetics for both vaccines is slow,

with an observed two-fold drop over the following six months

(170). In fact, Goel et al. reported a contraction t1/2 of 27 days from

peak to 3 months post-vaccination. Thereafter, they found that

CD8+ T lymphocytes continue to decline so that they are detected in

only 41% of the subjects at 6 months (167). The magnitude of the

response is illustrated by the findings reported by Liu et al. on

BNT162b2 vaccinees, which revealed that spike-specific

lymphocytes in the peripheral blood amount to 0.028% of the

total CD8+ T-cell response as measured by intracellular IFN-g
staining eight months after the second immunization (121).

Phenotypically, mRNA vaccination-induced CD8+ T cells are

polyfunctional and recognize a diverse set of epitopes in the spike

protein, including that from more immune evasive variants like

omicron (121, 166). After priming, these cells become highly

activated and proliferative as indicated by the presence of CD38

and Ki-67, and they acquire higher expression of PD-1, TOX, T-

BET and CD39 after boost (168). Most cells produce IFN-g and

granzyme B and have an effector memory phenotype (170).

Although the general functional profiles of the elicited CD8+

cellular responses to the mRNA-1273 and BNT162b2 mRNA

vaccines are rather similar, Zhang et al. have observed that the T-

cell frequency and polyfunctionality elicited by the mRNA-1273

vaccine tend to be higher, with more than 10% of the cells

expressing simultaneously IFN-g, granzyme B, TNF-a and IL-2 at

six months after the first immunization – a pattern that is nearly

absent for the BNT162b2 vaccine (170).

Virtually 100% of the individuals who receive mRNA-1273 or

BNT162b2 mRNA vaccines generate circulating anti-spike CD4+ T

cells that remain detectable at 6 months after the second dose (34).

Thus, Mateus et al. showed that mRNA-1273 immunization

produces spike-reactive OX40+ CD137+ CD4+ T cells in 97% of

the individuals already after the first dose – a finding that is

extended to all vaccinees after the second dose (166). It is worth

pointing out that these investigators also found preexisting

circulating spike-cross-reactive CD4+ T lymphocytes in 49% of

the cases. Although the CD4+ T-cell response induced by

BNT162b2 exhibits the same profile, its peak frequency and its

magnitude at 6 months were shown, respectively, to be 1.5 and 1.8

times lower as compared to mRNA-1273 by using the AIM assay
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(170). When analyzed by the ICS assay, these values were 2.5- and

2.6-fold lower, respectively (170). The reported t1/2 of induced

spike-specific CD4+ T cells was shown to be 47 days from peak to

3 months post-vaccination (167). Then, the decay kinetics stabilize

achieving a t1/2 of 187 days within the 3-6-month window after

immunization (167). Spike-specific lymphocytes in the peripheral

blood amount to 0.033% of the total CD4+ T-cell response as

measured by intracellular IFN-g staining eight months after the

second immunization (121).

The patterns of polyfunctionality of the CD4+ T-cell response

induced by mRNA-1273 or BNT162b2 are rather similar with about

40% of the spike-specific lymphocytes being capable of producing

simultaneously 2-4 effector molecules (IFN-g, IL-2, TNF-a, and
granzyme B) six months after the immunization as reported by

Zhang et al. (170). Nevertheless, these investigators found that

mRNA-1273 produced higher frequencies of cells that stained

positive: (i) for either TNF-a or IL-2 early on and at 6 months

after the first dose and (ii) for IFN-g at 6 months after the first

immunization (170). Moreover, besides the cytokine secretion

profile commonly associated with Th1 polarization, spike-specific

CD4+ T lymphocytes with the cTFH phenotype were detected in

75% of the vaccinees after the second dose of mRNA-1273 and

remained detectable in 63% of the cases over 6 months thereafter

(166). Similar data also appeared in a vaccine head-to-head

comparison which did not show much difference, with spike-

specific cTFH cells found in 97% and 81% of the mRNA-1273 and

BNT162b2 vaccinees after the second dose, respectively, remaining

detectable in >80% of these subjects 6 months post-vaccination

(170). The predominant mRNA vaccine-induced spike-specific

memory phenotypes were shown to be TCM and TEM at peak.

TCM frequency largely declines during the post-peak contraction

but TEM stabilizes during the 3-6-month post-vaccination window

(167). In addition, the two mRNA COVID-19 vaccines also induce

cytotoxic CD4+ T cells (CD4-CTL). These are terminally

differentiated lymphocytes that may be found as oligoclonal

populations in the response to other types of chronic antigenic

stimulation (79). Indeed, the circulating granzyme B+ CD4+ T-cell

number increases after the first and second vaccine doses, reaching

a plateau at 3.5 months after the first dose which remains stable for

the following 2.5 months (170).

5.1.2 Adenoviral vector-based vaccines
Two doses of 5 x 1010 viral particles (vp) of the AZD1222

vaccine were shown to trigger a spike-specific CD8+ T-cell response

with a frequency of 0.03% at day 56 (4 weeks after the second

immunization), which was mostly composed of IFN-g-producing
lymphocytes (171). In addition, most of these cells were

polyfunctional, with 23-32% of them simultaneously producing

TNF-a, IL-2 and IFN-g. The spike-specific T-cell receptor (TCR)

repertoire of the CD8+ subset was also studied in AZD1222
The table was compiled from data available at https://covid19.trackvaccines.org (88). Published references to the cited clinical trials are: Inactivated whole virus vaccines (11, 97–103); ZyCoV-D
(105, 106); mRNA-1273 (10, 114); TAK-919 (118); mRNA-1273.214 (120); mRNA-1273.222 (119); BNT162b2 (9, 115); BNT162b2 Bivalent (119); AWcorna (152); AZD1222 (3, 5); Ad5-nCoV
(127); Ad26.COV2.S (129); Sputnik Light (128); Sputnik V (130); Spike RBD-based protein subunit vaccines (ZF2001, Corbevax, FINLAY-FR-1A, IndoVac, and Noora) (153–156); Spike
presented in lipid nanoparticles (NVX-CoV2373, COVOVAX, and TAK-019) (136, 137); In silico designed self-assembling spike RBD nanoparticles (GBP510) (138); Spike RBD conjugated to
tetanus toxoid (FINLAY-FR-2) (139); dimerized IFN-a-RDB fusion protein (V-01) (140); Monomeric spike RBD vaccines (CIGB-66) (141); Recombinant spike vaccines (MVC-COV1901,
COVAX-19/SpikoGen and CoV2 preS dTM) (142–144); Purified CHO-produced recombinant spike RBD trimers (NVSI-06-08) (145) and CoVLP/Covifenz (151).
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vaccinees revealing diversity of unique sequences (breadth) as well

as increased frequency (depth) on day 28 after the second dose,

albeit at lower levels than those observed in Th1 CD4+ T

lymphocytes (171). Although half of the TCRs of CD8+ T cells

recognized the region corresponding to amino acids 265-277, the

remainder recognized epitopes were distributed throughout the

entire spike protein (171).

Individuals immunized with AZD1222 already exhibit a clear

CD4+ Th1 bias after a single dose (172). Understandably, a robust

anti-spike CD4+ Th1 response appears after 2 administrations of

this vaccine as measured by intracellular cytokine staining of

PBMCs stimulated with spike peptides in vitro (171). Thus, the

median frequency of CD4+ T lymphocytes reaches 0.062% at day 56

but remains lower than the corresponding frequency found in

convalescent COVID-19 patients (0.13% in this study). Differently

from the CD8+ response, most spike-specific CD4+ T cells produce

TNF-a (0.06%), as well as IL-2 (0.04%) and IFN-g (0.03%) (171).
Two doses of the vaccine produced a TCR repertoire in the CD4+

subset capable of recognizing epitopes throughout the spike protein

with comparable depth and breadth found in convalescent COVID-

19 patients (171).

A single dose of 5 × 1010 Ad26.COV2.S vp was shown to elicit a

spike-specific CD8+ T-cell response in 51% and 36% of immunized

individuals aged 18-55 and 65 or older, respectively (173). This

CD8+ T-cell response is durable for at least eight months as

demonstrated by two studies: one that reported frequency

magnitudes of 0.036% and 0.061% at four weeks and at eight

months after the immunization, respectively (121), as well as

another that registered the same frequency magnitude of 0.12% at

both time points (174). Similar results were reported later with 67%

of the individuals showing a detectable CD8+ T-cell response at 15

days and 64% at 185 days post-vaccination (170). The same study

also revealed that IFN-g is the predominantly produced cytokine by

CD8+ T lymphocytes upon restimulation with a spike peptide

megapool, and more than 70% of these cel ls remain

polyfunctional, often coexpressing IFN-g and granzyme B and,

less frequently, TNF-a. As for the breadth and depth of the

Ad26.COV2.S-induced spike-specific TCR repertoire of the CD8+

subset, there is substantial induction of moieties capable of

recognizing epitopes throughout the spike protein (175).

Most individuals (71%-100%) mount a spike-specific CD4+ T-

cell response to Ad26.COV2.S, which remains detectable by the

AIM assay over 6 months post-vaccination (170). However, the

peak magnitude is about 2- and 3-fold lower than that elicited by

BNT162b2 and mRNA-1273, respectively (170). The Ad26.COV2.S

vaccine generates a Th1-skewed response detectable in 60%-76% of

the recipient subjects by the ICS assay, with people 65 years of age

or older being the least responsive (173). The reactive lymphocytes

reach a median frequency of 0.043% at peak but descend to 0.018%

at 8 months post-vaccination (174). Zhang et al. reported a more

stable long-term kinetics for the spike-specific CD4+ T-cell response

to Ad26.COV2.S, with a peak achieved at 2 weeks followed by the

establishment of a plateau during the 6 months after the

immunization (170). Sequencing of the TCR b chain of spike-

specific CD4+ T cells revealed a considerable number of unique

rearrangements (175). About one third of these lymphocytes are
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polyfunctional being capable of producing 2 or 3 effector molecules

(170, 175). The most frequent secretory pattern was TNF-a only,

trailed by the following combinations: (i) TNF-a + IL-2, (ii) TNF-a
+ IFN-g + IL-2, and (iii) TNF-a + IFN-g (175). Ad26.COV2.S was

also shown to generate spike-specific CD4+ cTFH in 71%-79% of the

vaccinees. These cells reach a circulating frequency peak at 2 weeks

post-vaccination and remain at this level for 6 months (170).

5.1.3 Inactivated whole-virion vaccines
The stimulation of SARS-CoV-2-specific cytotoxic T

lymphocytes by whole-virion vaccines is the subject of some

debate (176). Yet, a recent report showed that CoronaVac induces

a CD8+ T-cell response to either spike, nucleoprotein or membrane

glycoprotein in 58-65% of vaccinees 4 weeks after the second dose

as measured by intracellular cytokine staining (177). The IFN-g+

CD8+ T lymphocyte frequencies in PBMCs were 0.015% and

0.041% for spike and combined reactivities (spike, nucleoprotein

and membrane glycoprotein), respectively. IL-2-producing cells

were also detected but at lower frequencies. A separate study

followed-up the kinetics of the CD8+ T-cell memory immune

response to CoronaVac vaccination over one year: the relative

percentage of virus-reactive CD8+ TEM cells were 9.48%, 12.14%,

5.73% and 0.89% at 1, 3, 6 and 12 months, respectively (178).

Conversely, the TEMRA subset increased from almost undetectable

early-on to 8.74% at 12 months. These memory cells exhibit

different cytokine production kinetics: IFN-g, granzyme B and IL-

2 peak at 3-6 months, 1 month and 6-12 months, respectively. It is

noteworthy that the CD8+ memory T cells are still reactive upon

restimulation being capable of producing the three cytokines one

year after immunization (178).

Duque et al. reported that CoronaVac triggers a robust spike- and

SARS-CoV-2-specific CD4+ T-cell response in about 77-83% of the

vaccinees during the 4 weeks that follow the second dose (177). The

IFN-g+ T lymphocyte frequency reached 0.068% after 2 doses as

measured by the combined reactivities to spike, nucleoprotein and

membrane glycoprotein (177). Also, Zhao et al. analyzed the anti-

viral CD4+ T-cell response in CoronaVac vaccinees for a longer

period and found that TEM cells start from negligible frequencies at 1

month to become readily detectable at 12 months post-vaccination

(178). Conversely, these authors showed that anti-viral TCM accounts

for about 11%-15% of CD4+ T cells during the first 3 months post-

vaccination, dwindling thereafter to reach close to 1% at 12 months

(178). Importantly, by the end of this analysis (one-year post-

vaccination), both TEM and TCM retained their reactivity upon in

vitro stimulation, with higher frequency of antiviral lymphocytes

capable of producing IL-2, as well as lower but detectable numbers of

cells that produce IFN-g and granzyme B as compared to the first 3

months post-vaccination (178). Data from the PROFISCOV clinical

trial indicate that CoronaVac produces a CD4+ T cell response in the

vaccinees that is primarily directed at spike and that is sustained for at

least 6 months. The reactivities to other viral products are better

identified only later in the post-vaccinal course (3-6 months).

Importantly, the investigators failed to identify any CD8+ T cell

reactivity in the vaccinees by using an AIM assay (179).

Two doses of the BBV152/Covaxin induced a CD8+ T-cell

response that could be detected in peptide megapool-stimulated
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PBMCs by the AIM assay in 15/30 vaccinees as spike-specific and in

10/24 vaccinees as nucleoprotein-specific (160). A separate study

found that TEMRA was the major memory CD8+ subset (13.7%)

identified in 8 vaccinated individuals at six months after the second

dose (180). In addition, BBV152/Covaxin generated a robust CD4+

T-cell response in most individuals (85%), which was stable for 6

months and included cells capable of recognizing spike and

nucleoprotein with a frequency comparable to infection (160).

These lymphocytes were Th1-skewed with production of TNF-a,
IL-2 and IFN-g. The two largest CD4+ memory subsets were: TEM

that contracted and TCM that expanded over 200 days post-

vaccination. From the total CD4+ T lymphocytes, 0.11%

corresponded to spike-specific and 0.07% to nucleoprotein-

specific cTFH (160).

It should be pointed out that another discordant voice came from

Lim et al. who described the virtual absence of a CD8+ T-cell response

to inactivated vaccines (176). Instead, they show in their study arm

that received 2 doses of BBIBP-CorV that this vaccine produces a

robust CD4+ T-cell response, comparable in magnitude to that

induced by mRNA immunization but with higher breadth as it also

encompasses antigenic targets other than spike (nucleoprotein and

membrane glycoprotein). Importantly, there was no major waning of

the CD4+ T-cell response over 6 months post-vaccination (176).

Those authors attribute their finding of exclusive stimulation of CD4+

T lymphocytes by inactivated vaccines to differences in analytical

methods. In their rigorous experiments, they have depleted CD4+ T

cells before examining the CD8+ T-cell reactivity to virus peptide

pools and vice versa, thereby eliminating any potential antigen-

independent bystander activation.

5.1.4 Recombinant protein vaccines
NVX-CoV2373 is a nanoparticle vaccine built with

recombinant SARS-CoV-2 full-length spike (181). Although

purified or recombinant proteins may have limited intrinsic

immunogenicity for T cells, particularly for the CD8+ subset,

Moderbacher et al. managed to identify a modest spike-specific

CD8+ reactivity in 20%-26% of NVX-CoV2373 vaccinees one week

after the second dose by ICS/AIM assays (182). Most of these

lymphocytes produced IFN-g and some of them produced a

combination of the following cytokine/effector molecules: IFN-g,
granzyme B, IL-2 and TNF-a. This finding might be a consequence

of the vaccine saponin-containing adjuvant that facilitates cross-

presentation (183). In other study with a longer follow-up, the anti-

spike CD8+ T-cell response rate as measured by the AIM assay

(CD69+ CD137+) achieved 70% and 80% of the vaccinees at 3.5 and

6 months, respectively (170). This response was also detectable by a

modified ICS assay (as defined as cytokine+ CD69+ CD8+ peripheral

lymphocytes) in 10% of the subjects at 3.5 months after the first

immunization, which increased to 50% at 6 months. However, the

circulating CD8+ T lymphocytes elicited by NVX-CoV2373 were

less abundant as compared to other vaccine platforms and were

mostly capable of producing IFN-g upon in vitro stimulation with

spike peptide megapools at frequencies comparable to convalescent

patients at 6 months (170).

The majority of the NVX-CoV2373 vaccinated individuals

(81%) mounted a spike-specific Th1 CD4+ T-cell response one
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week after the second dose, with 35% of the lymphocytes being

capable of simultaneous production of 3-5 effector molecules (IFN-

g, IL-2, TNF-a, iCD40L and granzyme B) (182). A fraction of the

CD4+ cells also exhibited CXCR5 expression and were detectable as

cTFH in 44% of the vaccinees after the second dose (182). Similar

findings by other investigators indicate that virtually all NVX-

CoV2373 vaccinees had circulating CD4+ T cells with Th1 and

cTFH phenotypes by the AIM assay. Intracellular staining revealed

that close to 40% of the spike-reactive lymphocytes were

polyfunctional as well as that CD4-CTLs were present in 80% of

the cases at 6 months after the first immunization (170).

A direct comparison of the approved vaccines as regards the

elicited T cell response would be unfair because there are very few

studies that perform side-by-side comparisons and the

predominant focus on B cell responses as a correlate of efficacy.

Moreover, such studies are relatively small and, most importantly,

do not exhibit methodological analytical uniformity. With

this caveat in mind, Table 3 presents some of the characteristics

of the vaccine-induced anti-viral T cell response stratified by

production platform.
6 Multivalent vaccines

The emergence of SARS-CoV-2 VOCs with immune evasive

capacity has prompted the World Health Organization (WHO) to

create the Technical Advisory Group on COVID-19 Vaccine

Composition (TAG-CO-VAC), which advocates global access to

current vaccines and envisage the antigenic updating of newer

versions (184). Several multivalent vaccines are being tested,

including those that are produced as recombinant proteins with:

alfa and beta (185); beta and delta (186); and beta, kappa, and the

prototypical (145) spike amino acid sequences. As for the bivalent

mRNA formulations, the ancestral Wuhan-Hu-1 spike coding

sequence is carried alongside: the beta (187); the BA.1 (120, 188);

or the BA.4/BA.5 (189–191) corresponding sequences. The latter

two formulations have been approved by regulatory agencies in

several countries (Table 2). There is not much information about

the impact of the multivalent format of the above vaccines on the

elicited antiviral T-cell response. Yet, data analysis covering over

360,000 nucleic acid amplification tests performed during a period

of omicron prevalence revealed that those individuals who got 2-4

doses of the monovalent mRNA vaccine followed by the BA.5-

encoding bivalent booster had higher protection from SARS-CoV-2

symptomatic infection as compared to unvaccinated people (189).

The same report found that bivalent vaccines conferred a modest

additional protection when the comparison was made with

individuals who only received 2-4 doses of the monovalent

mRNA preparation (189). These results were corroborated by

another study that has identified a lower risk of emergency care/

hospitalization among those who received the BA.5-containing

bivalent immunization (190). For emergency care encounters, the

bivalent absolute vaccine effectiveness was 56% against no

vaccination and the relative effectiveness was 32% for those who

had previously got 2-4 monovalent shots – the last of which being 2-

4 months earlier. Interestingly, the relative effectiveness of the
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bivalent shot increased to 50% if the interval since the last

monovalent dose was ≥ 11 months. The waning of the

monovalent immunization makes the relative effectiveness of the

bivalent shot to be higher with longer intervals (190). Similar

protection levels were achieved for hospitalization.

Viral evolution follows a fast pace, so that by the time the first

bivalent vaccines gained regulatory approval and were deployed, the

subvariant landscape had already changed. Thus, their true

protective efficacy relies, at least partially, on their breadth and

immune cross-reactivity against more evasive VOCs. Indeed, an

early estimate made by the Centers for Disease Control and

Prevention (CDC) of the vaccine efficiency of the BA.5-encoding

mRNA preparation used as a booster dose indicates that it provides

additional protection against symptomatic infection by omicron

BA.5 itself and by the XBB/XBB.1.5 sublineages (191).

Antibody neutralization titers have been considered to be a major

correlate of protection for COVID-19 vaccines (192). Indeed, when

used as a booster fourth dose, the BA.5-encoding bivalent vaccine is

generallymore efficient in elicitingneutralizing antibodies againstBA.2

and BA.5 derivatives than the original monovalent version as

illustrated by Zou et al. (193). However, the absolute titers tend to be

rather low against the most evasive variants: The bivalent booster-

induced anti-XBB.1 neutralizing activity in the previous example was

close to 40 times lower than that against the ancestral virus (193). In

line with this view, sera from fully immunized individuals with 3 doses

of the original monovalentmRNA product who subsequently received

the BA.5-encoding bivalent vaccine as a booster fourth shot virtually

did not neutralize the omicron BQ.1, BQ.1.1, XBB, and XBB.1

subvariants (194). Using a similar booster protocol, other

investigators also observed low neutralization activity against the

BA.2.75.2, BQ.1.1 or XBB.1 sublineages (195, 196). The Coronavirus

Variant Immunologic Landscape Trial (COVAIL) is the first

randomized clinical trial to compare head-to-head the two approved
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bivalent vaccines used as a booster. Its preliminary findings revealed

poor induction of antibody neutralization of the BQ.1.1 and XBB.1

subvariants with titers 13-35 times lower (for the BA.1-containing

bivalent vaccine) and 8-22 times lower (for the BA.4/BA.5-containing

bivalent vaccine) as compared to those generated against theWuhan-1

variant carrying only the D614G spike mutation (197). Another recent

report indicates that sera from BA.4/BA.5-encoding bivalent vaccinees

do show some rescued ability to recognize omicron most evasive

subvariants (e.g., XBB.1 and XBB.1.5) as compared to sera from those

who received 3-dose monovalentmRNA shots. Nevertheless, the titers

achieved were fairly low or at the detection limit (or even under this

threshold) as in the case of BQ.1.1, CH.1.1, and CA.3.1 subvariants

(198). Additionally, two recent well-designed, albeit small, studies

reported that a booster shot with the latter bivalent vaccine did

augment the anti-SARS-CoV-2 serum neutralizing activity in

previously immunized individuals but was not overtly superior to a

monovalent mRNA booster in doing so (199, 200). One of these

reports also provided a rare picture of the antiviral T cell response

elicited by the BA.5-encoding bivalent mRNA vaccine (200). Thus, the

bivalent booster was shown to increase the anti-BA.5 CD8+ T-cell

frequency to 0.046% from a baseline of 0.024% achieved by previous

triple monovalent vaccination. The corresponding frequencies for

CD4+ T lymphocytes were 0.072% post-bivalent boosting and

0.051% at baseline. It is worth mentioning that both monovalent

and bivalent boosters had comparable effect on CD8+ andCD4+ T-cell

frequency (200).

The above-mentioned studies support four premisses: (i)

Bivalent vaccines used as a booster dose are associated with

increased crossprotection from symptomatic SARS-CoV-2

infection; (ii) The subvariants with elevated antigenic drift that

currently prevail in many regions of the world (e.g., BA.5-derived

BQ.1 and BQ.1.1 or the BA-2 recombination derivatives XBB and

XBB.1.5) may evade neutralization by sera from vaccinees who
TABLE 3 T cell response to COVID-19 vaccines stratified by production platform.

Vaccine Platform CD4/
CD8

Responders
(%)

Memory
persistence
(months)

Magnitude a

(% of total
subset)

Targeted
Viral

antigen b

Polyfunction CD4
helper
subsets

mRNA (BNT162b2,
mRNA-1273)

CD8 70-90 7-8 0.012-0.028 S +

CD4 ~100 6-8 0.054-0.14 S + TH1, cTFH

Adenoviral (AZD1222,
Ad26.COV2.S)

CD8 36-67 8 0.031-0.12 S +

CD4 71-100 8 0.017-0.026 c S + TH1, cTFH

Inactivated
whole-virus

(CoronaVac, BBV152,
BBIBP-CorV)

CD8 0-65 d 6-12 0.041 e S, N, M +

CD4 77-85 6-12 0.068 e S, N, M + Th1, cTFH

Recombinant (NVX-CoV2373) CD8 20-80 6 0.018 S -/+ f

CD4 81-100 6 0.097 S + Th1, cTFH
a: Fraction of the CD4+ or CD8+ T cell compartments that recognizes spike or the combined spike, nucleoprotein and membrane glycoprotein antigens by intracellular cytokine staining (IFN-g
for CD8+ T cells and IFN-g, TNF-a, IL-2 or granzyme B for CD4+ T lymphocytes). The measurements were made at 6-8 months post-vaccination or as otherwise indicated. Please consider these
numbers as an illustration only because real-world values may vary wildly.
b: S (spike), N (nucleoprotein) and M (membrane glycoprotein).
c: The value 0.026% refers to IFN-g+ CD4+ T cells alone.
d: Although a CD8+ T-cell response to inactivated whole-virus vaccines have been identified by the AIM assay, other investigators failed to do so as discussed in section 5.1.3.
e: Measurement made 4 weeks after the second dose; and.
f: Although Moderbacher et al. had identified anti-spike CD8+ T cell polyfunctionality 1 week after dose 2, Zhang et al. identified mostly IFN-g-producing T lymphocytes at 6 months post-
vaccination (170, 182). The table was based on this article and on references 34, 121, 166, 170–174, 176, 177, and 182.
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received the bivalent booster; (iii) The failure to control the spread

of the latter subvariants may allow the emergence of more

dangerous derivatives; and (iv) The additional protection

provided by the bivalent booster is likely to have an important T

cell component.
7 Hybrid immunity

A relativelymodest modulatory impact of previous SARS-CoV-2

infection on the magnitude of the CD8+ T-cell response elicited by

mRNA vaccination against the ancestral virus strain has been

reported (167). Indeed, the number of naïve and convalescent

individuals with detectable post-immunization reaction is

comparable and the magnitude of the peak of circulating spike-

specific CD8+ T cells remain unaltered after 2 doses of either

BNT162b2 or mRNA-1273 (167). Importantly, the rapid post-peak

kinetics contraction observed in SARS-CoV-2 naïve mRNA

vaccinees also occur with immunized COVID-19 recovered

patients (167). However, as expected, the proportion of spike-

specific CD8+ T lymphocytes versus those capable of recognizing

other viral antigens increase substantially after spike-based vaccines,

such as BNT162b2, are administered to COVID-19 recovered

individuals (69). This finding may be interpreted as a recall

expansion of infection-induced memory cells, which were shown

to be biased to TEMRA and to display a diverse TCR repertoire (69). In

contrast, Gao et al. reported discordant results obtained with the

highly sensitive spheromer technology, claiming a 3.6-54-fold size

reduction alongside loss of effector function in the spike-specific

CD8+ T-cell compartment in post-infection BNT162b2

vaccinees (201).

SARS-CoV-2 infection affects the CD4+ T-cell response elicited

by mRNA vaccination modestly as regards detectability, memory

phenotype composition, Th1 bias, generation of cTFH, and the

magnitude at 6-8 months post-vaccination (167, 201). This pattern

is also maintained even when the analysis goes to the single epitope

level. Thus, single-dose immunized convalescent patients and two-

dose infection-naïve vaccinees generate comparable frequencies of

CD4+ T lymphocytes specific to the spike epitope S751-767, and a

third booster vaccine dose did not further this frequency beyond the

peak already achieved (75). Nevertheless, despite the described

overlap in induced response patterns, Rodda et al. found an

important qualitative difference in the CD4+ T-cell response to

SAR-CoV-2 in hybrid immunity which is not fully captured by the

antigenic exposure provided by immunization alone – the

augmented frequency of IFN-g- and IL-10-producing spike-

specific cells (202). It should be added that vaccine platforms

other than mRNA, such as Ad26.COV2.S, have also been

evaluated and shown to impact modestly the T-cell response in

the context of hybrid immunity (203).

The most remarkable consequence of hybrid immunity is the

observed synergy between natural infection and vaccination in

boosting binding and neutralizing antibody titers against SARS-

CoV-2, which may exhibit considerable cross-reactivity against

variants of concern (VOC) (15, 204, 205). Indeed, Walls et al.

reported that spike-specific IgG-binding titers were about 7.5-12
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times higher in hybrid immunity as compared to 2 doses of mRNA

vaccines in infection-naïve individuals at peak time points (206). In

addition, hybrid immunity was 10-fold more efficient when these

two groups were compared for neutralization activity against a

vesicular stomatitis virus (VSV) that was pseudotyped with a SARS-

CoV-2 spike carrying the G614 mutation (206). These investigators

have also shown that a third vaccine dose rescues the antibody titer

and the in vitro neutralization activity to the level of hybrid

immunity. In fact, triple-vaccinated individuals had retained

serum neutralizing activity in vitro against beta, delta, and

omicron variants. For omicron, the neutralization level achieved

by the third dose was 11-fold lower than that observed with the

G614 spike-decorated VSV, although remaining comparable to that

conferred by hybrid immunity (206).

The emergence of the omicron VOC has created more

convolution to an already complex field. Its major subvariant

lineages (BA.1, BA.2, XE, BA.2.12, BA.2.75, XBB, BA.3, BA.4,

BA.5, BQ.1 and BQ.1.1) carry up to 36 substitutions in the spike

sequence and 59 mutations distributed throughout the genome,

which make them highly infectious (17, 207). Breakthrough

infections that were relatively rare events in the early stages of the

pandemic are no longer uncommon. Although available vaccines

were capable of preventing infection and reinfection by the

ancestral SARS-CoV-2 strain and its first variants with great

efficiency, omicron immune evasiveness proved to be a

formidable challenge. Thus, two doses of the BNT162b2 mRNA

vaccine that were > 90% efficient in protecting against symptomatic

infection by earlier variants provide only negligible protection

against omicron BA.2 at eight months or more after the second

dose (208). A third dose is necessary to regain close to 50%

protection (208). Also, previous SARS-CoV-2 infection alone

gives only limited protection against symptomatic BA.2

reinfection (46%). Nevertheless, hybrid immunity provided by

infection followed by 3 doses of BNT162b2 raises resistance to

symptomatic BA.2 infection to close to 80% (208). Thus, prior

infection plus vaccination (either Ad26.COV2.S or BNT162b2 or

mRNA-1273) are associated with a robust spike-specific T-cell

response that recognizes the original virus strain and delta in

most individuals. Although the cross-reactive capacity of CD4+ T

lymphocytes for the omicron spike is generally preserved in these

subjects, about 40% of them had the omicron spike-specific

recognition by the CD8+ T cell subset compromised, with > 50%

drop in reactive proliferation (17). It should be added that the T-cell

recognition of other omicron antigens (nucleocapsid/membrane/

envelope/ORF3A) is preserved in hybrid immunity (17).

Of note, Lim et al. detected CD69+ CD103+ tissue resident

CD4+ and CD8+ T lymphocytes in the nasal mucosa of virtually all

tested breakthrough infection patients but failed to find these cells

in vaccinated-only individuals (209). Interestingly, they also

observed that this mucosal response was durable (remaining for

at least 140 days post-infection), and exhibited a clear bias in favor

of CD8+ T cells capable of recognizing not only spike but also

nucleoprotein and NSP12 antigens (209).

Altogether, it is reasonable to attribute the better immune

shielding associated to hybrid immunity to the possible

combination of several factors: (i) the enhanced titers of virus-
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binding and virus-neutralizing antibodies (15); (ii) the breadth of

the immune response that goes beyond the spike antigen commonly

used in the major vaccine platforms (64, 66); and (iii) the

generation of tissue resident T-cell populations, notably CD8+ T

lymphocytes, that could have a central role as one of the first

effective defense lines against SARS-CoV-2 reinfection in the upper

respiratory tract (209).

However, one might wonder whether all hybrid immunity

formats might boost the T-cell immune response in the same

fashion. To address this issue, it is required to consider the

immune modulatory impact of the primary infectious antigenic

encounter prior to vaccination as well as the VOC genetics in case of

a breakthrough infection. Thus, the hybrid immunity generated by

previous Wuhan Hu-1 SARS-CoV-2 infection plus triple

BNT162b2 vaccination boosts vaccine-induced T-cell reactivity

against the ancestral strain and former common VOCs (e.g.,

delta), yet it damps omicron recognition. Also, omicron

breakthrough infection in SARS-CoV-2-naïve individuals

generates T cells that recognize Wuhan-Hu-1 and delta but fail in

recognition of omicron itself (16). Finally, the composite scenario

represented by those individuals who had five previous antigenic

exposures – the first being Wuhan-Hu-1 infection, followed by

three BNT162b2 vaccine doses, and a fifth being omicron

breakthrough infection – abrogates subsequent omicron T-cell

recognition but boosts T-cell reactivity against other VOCs (16).

This paradoxical reactivity was defined as “hybrid immune

damping” and, based on immunization experiments conducted

with HLA transgenic mice, it was hinted that a switch to a

regulatory T cell program might be at play (16).
8 Discussion

8.1 Vaccines

The first administration of a COVID-19 vaccine in humans

after safety and efficacy results of a phase III clinical trial happened

in December 2020 (116). The development of the mRNA

technology behind BNT162b2 and mRNA-1273 was remarkable

given that issues regarding stability, translation efficiency, and

inflammatory overreaction had to be solved over the preceding

years (109–111). The resulting prototypical vaccines have evolved

from first-in-human to the deployment of hundreds of millions of

doses in record time (110) (Table 1). In parallel, the adenoviral

vector-based AZD1222 vaccine followed expeditiously a somewhat

beaten path, and turn out to be successfully deployed worldwide (3,

88) (Table 1). Finally, the inactivated whole-virion CoronaVac and

BBIBP-CorV vaccines played a major role in the control of the

pandemic as they were cheaper to produce and their deployment

logistics was easier to implement (94). Altogether, the above 5

vaccines account now for the bulk of the COVID-19 immunization

of the world population (Table 1).

Does the described status quo warrants safe navigation for the

remainder of the pandemic? Conventional wisdom seam to point

otherwise. We are certainly safer – but not safe enough. In fact, the

shortcomings of the vaccinal protection soon appeared with the
Frontiers in Immunology 14
observed fast decay of neutralizing antibodies and the emergence of

VOCs with breakthrough potential. There was a sharp drop in

protection efficacy against infection observed from the time when

the above pioneering vaccines were granted their first emergency

use authorizations to the pandemic phase in which delta – and more

recently omicron – took over. This might be a direct result of the

first-generation COVID-19 vaccine designs that were focused on

limiting virus transmission primarily through neutralizing

antibodies. Such strategy was intuitive considering that it has

worked before for other viruses (89). It is worth noting that it has

also failed as it did blatantly for HIV (210). Nevertheless, SARS-

CoV-2 is not as genomically unstable as HIV because of the

proofreading activity provided by the NSP14-10 complex (211).

Yet, the VOC list keeps growing (212).

We owe to the first-generation COVID-19 vaccines the partial

control of the pandemic – saving countless lives and providing some

normalcy. Having acknowledged that, we may still need to adjust

course to get through the end of the pandemic successfully. Indeed,

unintended consequences of our previous actions may come into

play. Thus, the most popularly deployed vaccines used classical and

ingenious new technology to elicit biding and neutralizing

antibodies against the spike protein ignoring other antigenic

targets. Alternatively, the pathogen entire antigenic cargo was

used in the inactivated whole-virus vaccines but in a format that

is heavily biased to MHC class II presentation (95, 96). The bet was

– and somehow still is – largely on eliciting anti-viral humoral

responses. We believe that this bet is no longer good.

Highly infectious VOCs like omicron have produced COVID-

19 surges affecting both infection-naïve and recovered individuals

(208). The once-recommended standard 2-dose schedule adopted

for most vaccines no longer adequately protects against omicron

and its subvariants. Thus, an expert panel from the UK Health

Security Agency estimates that 3 major vaccines used in that nation

so far (AZD1222, mRNA-1273 and BNT162b2) only retain 20-30%

efficacy against symptomatic infection by BA.1 or BA.2 omicron 4-6

months after full immunization (213). It also concludes that an

mRNA booster shot is required to bring vaccine efficacy to 40-45%

at 4-6 months thereafter, with complete disappearance of protection

by 9 months. The rescued protection appears to depend on the

booster shot choice. Indeed, Ranzani et al. reported that 2 doses of

CoronaVac provided some protection (37%) against symptomatic

delta infection at 6 months after the second dose but failed do so for

omicron, reaching only 3.9% efficacy (214). A booster shot

with BNT162b2 in these individuals raised anti-omicron

protection to 33.8% but a third CoronaVac dose had no effect

against symptomatic omicron infection at 2 months after its

administration. This adverse scenario compels us to explore new

directions. Unfortunately, the degree of long-term protection

against the most evasive VOCs conferred by one of them – the

bivalent booster – is yet to be tested in large-scale real-

world deployment.

SARS-CoV-2 gave the impression at first that only minor

adjustments in our response to the pandemic would suffice to

accommodate what appeared to be an inconsequential genetic

drift (215–219). Not anymore. Fortunately, though, despite the

sharp drop in anti-omicron protection from infection observed
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after the primary 2-dose schedule and the transient partial rescue

provided by booster shots, the surge in numbers of infected

individuals was not accompanied by a proportional increase in

severe disease and death rate (213, 214, 220–223). This is likely a

fortuitous unintended consequence of the adopted vaccine

strategies which also allowed the generation of T-cell responses,

whose evasion is more difficult to achieve, and that compensates for

the patchy humoral antiviral reaction.

The updated versions of existing vaccines as well as new

candidate ones should be good elicitors of both humoral and

cellular immune responses (by design and not by chance)!. Thus,

we urgently need to incorporate additional antigenic targets other

than spike variants into the current vaccine platforms – particularly

the mRNA and adenoviral vector-based ones. In this regard, T-cell

epitope-rich moieties, such as the SARS-CoV-2 nucleoprotein for

which memory precursors are found after natural infection (65) or

nonstructural proteins that play a crucial role early in viral infection

as the viral RNA polymerase NSP12 (47), would be attractive

choices. Additionally, it would be worthwhile to pay more

attention to vaccine formulations. The antigen(s) choice and the

vector used to deliver the antigenic cargo or its encoding

information often deserve the bulk of attention. However, the

formulation itself and the adjuvant choice in particular may be

crucial to attain a balanced response that includes humoral and

cellular components. This is especially important to enhance the

immunogenicity of cheaper and logistically less-challenging

alternatives, such as protein-based, inactivated whole-virion,

VLPs, and DNA-based vaccines. There are innovative strategies

that facilitate cross-presentation, such as the one adopted for the

NVX-CoV2373 formulation, which uses amphiphilic saponins to

destabilize the endosomal compartment membrane, allowing access

of vaccine antigens to MHC class I presentation (182). Nevertheless,

many vaccine candidates in preclinical stages still resort to

centenarian alum-based recipes with little else in their

formulations to enhance the cellular immune response.
8.2 Immune dysregulation

Several SARS-CoV-2 facets have been extensively explored in the

literature, often in connection with respiratory epithelial damage and

immunothrombosis (224, 225). Moreover, it is generally accepted

that the virus needs to down-play the type-I IFN response to establish

its infection in the host (39). Yet, it is conceivable that the viral

modulatory capacity may go beyond the innate compartment. Thus,

increased C3a formation by the complement activation cascade in

severe COVID-19 promotes differentiation of highly activated CD16+

cytotoxic T cells, which may display TCR-independent, antibody-

dependent cellular cytotoxicity, and lead to vascular endothelial

damage (226). Similarly, the SARS-CoV-2 impact on plasmacytoid

DCs, perhaps through the engagement of CD304, may not only

reduce IFN secretion but have implications on the activation status,

phenotypic differentiation, and composition of T-cell subsets (227,

228). Let’s also remember that antiviral T cells tend to exhibit

activation markers with unusually long expression kinetics, what

was even confused with an exhaustion phenotype (67, 68). In support
Frontiers in Immunology 15
of a possible adaptive dysregulation scenario, there is recent evidence

reported by Meckiff et al. of immune phenotypic singularities in

COVID-19 patients, such as the lower representation of TREGs as well

as the increase of the CD4-CTL and cytotoxic TFH subsets – especially

in severe presentations of the disease (78). Additionally, these

investigators identified less abundant SARS-CoV-2-specific

polyfunctional Th1 cells as compared to the response to common

viruses such as influenza (78). Moreover, it should be remembered

that SARS-CoV-2 infection leaves an immune imprinting in the host

that may affect the susceptibility to breakthrough infection in a

variant-specific way (16). Thus, no one seriously know yet the full

extent of SARS-CoV-2-induced immune dysregulation. It would be

reasonable by analogy to have similar concerns about a putative

vaccine-induced immune dysregulation – encompassing

hyperactivated antiviral T cell responses – to drive post-vaccinal

immunopathology. In this scenario, a single viral protein would be

the likely culprit as most current vaccines are based on spike. Yet,

most studies do not point in this direction. Finally, spike is also

present in SARS-CoV-2 infection and nobody disputes neither the

potential seriousness of COVID-19 nor the life-saving impact

of vaccination.
8.3 Unconventional approaches

In natural infection, innate immunity can limit or abort the

disease by creating a localized hyperinflammatory reaction driven

by type-I IFNs which is followed by a resolutive T-cell response in

most individuals with asymptomatic or mild COVID-19

presentations (224). Humoral neutralizing activity also helps to

reduce viral spread but tends to be short-lived (229). The antibody

response may be dispensable as demonstrated in patients with

compromised humoral immunity who are capable of mounting

an efficient antiviral T-cell reaction (29). This interpretation is also

supported by finding antiviral T cell-mediated disease resolution

without serum conversion in asymptomatic or mild COVID-19

(67). Instead, in severe cases, antibody production assumes an

important fail-safe compensatory role that kicks in when

hyperactivated T cells do not manage to clear the infection

efficiently (26, 230, 231).

Vaccine-induced antibodies emulate the compensatory role of

reducing virus spread observed in severe disease decreasing

morbidity and lethality. However, viral clearance still relies on the

concerted action with T cells (26). Indeed, to improve T-cell

protection may be the way to go – considering that vaccines

intended to produce neutralizing antibodies could not block

infection by immune evasive VOCs like omicron but reduce

severe disease (214, 220). This goal can be achieved by

diversifying vaccine T-cell determinants as discussed previously

and/or, alternatively, by altering the immune system “perception”

of the pathogen’s identity with heterologous immunogens.

In the above context, one should consider harnessing the

immune regulatory effect of trained immunity (232) and immune

resetting (233) to compensate for pathogen immune evasion. Both

strategies may offer cross-reactive protection. Trained immunity

promotes the epigenetic and metabolic reprograming of innate
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immune cells and immune resetting relies on memory T-cell

reactivation to promote heterologous protection. We have shown

that the systemic and repeated recall of memory T-cell responses to

unrelated antigens could revert the disease course in a model of

polymicrobial high-grade sepsis (233). Microbial sepsis and

COVID-19 do share many pathophysiological traits as we have

discussed in detail elsewhere (234). It is worth noting that the

secondary T-cell response is dominant over concurrent innate and

primary adaptive heterologous immune reactions, thereby resetting

the outcome to be more efficient and less inflammatory (62,

235–241).

We believe that immune resetting (adaptive) and trained

immunity (innate) may lead to more effective anti-SARS-CoV-2

immune responses and may have a complementary role to

vaccination, notably in case of emergence of highly evasive new

variants by improving T-cell response. It is also relevant that

immune resetting can rescue mice from sepsis-induced

immunosuppression (233). This means that it has the potential to

correct the selective but deleterious immune imprinting that certain

SARS-CoV-2 variants may have on the response to subsequent

infection by other VOCs. Ultimately, one could envisage that

heterologous immune resetting would compensate for the

reported T-cell subset singularities and turn the overall anti-

SARS-CoV-2 response less hyperinflammatory and more

resolutive. This hypothesis could be tested in a clinical trial in

which a heterologous adaptive recall (and thereby an immune

resetting) would be induced by the administration of a currently

approved COVID-19 vaccine alongside a DTP booster for

diphtheria, tetanus, and pertussis in previously immunized adults.

The antigenic recall breadth could even be expanded (e.g., to cover

hepatitis B). The latter vaccines have been well tested over the years

and are associated to robust humoral responses but also induce a

recallable T-cell memory (242–246).

In sum, we may be better off now than in early 2020. Bivalent

mRNA vaccines, for instance, may curtail omicron subvariants

present expansion (189, 190). Nevertheless, there will be newer

challenges that require updating current vaccines to improve T-cell

responses and attain better protection against COVID-19.
9 Conclusion

Just a few years back we knew close to nothing about a new virus

that was bound to impose an enduring hit on humanity. The right

mix of ingenuity, a bit of luck, and a lot of experience with related

and unrelated pathogens, all converged into the development,

testing, regulatory approval, and successful deployment of

vaccines produced in multiple platforms. Two mRNA-, one

adenoviral vector-, and two inactivated whole-virion-based

vaccines were in the frontline to quench the infection waves

unleashed by the ancestral SARS-CoV-2 strain and its first

derivatives. And they did so brilliantly – with a success rate for

protection from symptomatic infection that ranged roughly

between 65-95%.
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The assumed best correlate of protection was antibody

neutralization. Indeed, there was evident neutralization activity

against the ancestral virus in the sera collected from vaccinees.

Nevertheless, it became apparent with the emergence of the first

major drift variants – initially delta, then, omicron and its

sublineages – that immune evasion was highly operative even in

the context of a supposedly stable virus. A large array of mutations

in the viral genome knocked one by one the neutralization epitopes,

mostly on spike, favoring virus spread. Ultimately, vaccinees were

no longer well-protected from infection but did not become

proportionally more susceptible to severe disease and

hospitalization. This observation led to the conclusion that a

cellular antiviral immune response must have been preserved in

the vaccinees who developed breakthrough infection, thereby

blocking disease progression and promoting its resolution. Pre-

clinical and clinical evidence indicated that T cells had a major role

in the reported remaining protection.

There is no data from any large controlled clinical trial that

compares prospectively the efficacy of the five most deployed

vaccines, taking into account factors such as vaccinees’ age,

dosing chronogram, and VOC subtyping. Thus, a head-to-head

comparison is unfair. They all have performed well under the global

health perspective so far. Moreover, these vaccines elicit a similarly

powerful anti-viral CD4+ T cell response with polarization skewing

towards the Th1 and cTFH phenotypes. With the arguable exception

of the inactivated whole-virion-based vaccines, the antiviral CD8+ T

cell response elicited by the other major vaccines is equally evident

with the generation of cells with cytotoxic potential and capable of

producing IFN-g as well as other effector cytokines. Moreover, in

contrast to antiviral humoral neutralizing responses that wane

quickly, T cell memory persists for 6-12 months post-vaccination

and can be effectively reactivated.

At this stage of the pandemic, however, the extraordinary

immune evasion capacity acquired by the latest omicron

sublineages virtually turned all original vaccine preparations

based on Wuhan-Hu-1 obsolete, and frankly unfit, to block virus

spread in the community. Albeit protection from severe forms of

the disease is retained in the general population, larger infection and

reinfection rates are bound to overexpose the elderly and people

with comorbidities to inauspicious outcomes. This grim picture

motivated the WHO TAG-CO-VAC to advocate updating current

vaccines to adjust them to the present viral sublineages. The

development of bivalent vaccines represents the first substantive

attempt to address this issue. Yet, despite the accelerated path for

vaccine testing and approval presently implemented, newer more

evasive viral sublineages appear constantly, and may take over the

swarm by the time the latest bivalent products are fully deployed.

Early CDC efficacy estimates for bivalent boosters offer some hope

but we need more effort to be truly safe.

We believe that antigenic targets other than spike variants

should be incorporated into the current vaccines and better

formulations that increase cross-presentation and promote a

designed T cell response should be considered. Moreover, the

immune regulatory effect of trained immunity and immune
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133225
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nowill et al. 10.3389/fimmu.2023.1133225
resetting should be evaluated as part of a complementary strategy to

vaccination to offer a new, cross-reactive, and improved T cell

protection against immune evasive variants.
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151. Hager KJ, Pérez Marc G, Gobeil P, Diaz RS, Heizer G, Llapur C, et al. Efficacy
and safety of a recombinant plant-based adjuvanted covid-19 vaccine. N Engl J Med
(2022) 386(22):2084–96. doi: 10.1056/NEJMoa2201300

152. Liu X, Li Y, Wang Z, Cao S, Huang W, Yuan L, et al. Safety and superior
immunogenicity of heterologous boostingwith anRBD-based SARS-CoV-2mRNAvaccine
in Chinese adults. Cell Res (2022) 32(8):777–80. doi: 10.1038/s41422-022-00681-3

153. Dai L, Gao L, Tao L, Hadinegoro SR, Erkin M, Ying Z, et al. Efficacy and safety
of the RBD-Dimer-Based covid-19 vaccine ZF2001 in adults. N Engl J Med (2022) 386
(22):2097–111. doi: 10.1056/NEJMoa2202261

154. Thuluva S, Paradkar V, Gunneri SR, Yerroju V, Mogulla R, Turaga K, et al.
Evaluation of safety and immunogenicity of receptor-binding domain-based COVID-
19 vaccine (Corbevax) to select the optimum formulation in open-label, multicentre,
and randomised phase-1/2 and phase-2 clinical trials. eBioMedicine (2022) 83:104217.
doi: 10.1016/j.ebiom.2022.104217

155. Ochoa-Azze R, Chang-Monteagudo A, Climent-Ruiz Y, Macıás-Abraham C,
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