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Abstract Emerging respiratory coronaviruses such as the severe acute respiratory syndrome coronavirus (SARS-CoV)

and Middle East respiratory syndrome coronavirus (MERS-CoV) pose potential biological threats to humans. SARS and

MERS are manifested as severe atypical pneumonia associated with high morbidity and mortality in humans. The majority

of studies carried out in SARS-CoV-infected humans and animals attribute a dysregulated/exuberant innate response as a

leading contributor to SARS-CoV-mediated pathology. A decade after the 2002–2003 SARS epidemic, we do not have any

approved preventive or therapeutic agents available in case of re-emergence of SARS-CoV or other related viruses. A

strong neutralizing antibody response generated against the spike (S) glycoprotein of SARS-CoV is completely protective

in the susceptible host. However, neutralizing antibody titers and the memory B cell response are short lived in SARS-

recovered patients and the antibody will target primary homologous strain. Interestingly, the acute phase of SARS in

humans is associated with a severe reduction in the number of T cells in the blood. Surprisingly, only a limited number of

studies have explored the role of the T cell-mediated adaptive immune response in respiratory coronavirus pathogenesis. In

this review, we discuss the role of anti-virus CD4 and CD8 T cells during respiratory coronavirus infections with a special

emphasis on emerging coronaviruses.
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Introduction

Coronaviruses belong to the family coronaviridae and are

enveloped, positive-sense, single-stranded RNA viruses.

The coronavirus genome is approximately 31 kb, making

these viruses the largest known RNA viruses yet identified

[1]. Coronaviruses infect a variety of hosts including humans

and several other vertebrates. Coronaviruses are associated

with several respiratory and intestinal tract infections.

Respiratory coronaviruses have long been recognized as

significant pathogens in domestic and companion animals

and as the cause of upper respiratory tract infections in

humans [2]. Thus, several human coronaviruses (HCoVs) are

the etiological agents for mild respiratory illness, including

the common cold and croup (e.g., HCoV-229E, HCoV-

OC43, HCoV-NL63 and HCoV-HKU) [3, 4]. Human coro-

naviruses such as SARS-CoV and MERS-CoV are also

associated with severe respiratory illness [5–9]. Coronavi-

ruses that induce respiratory tract disease in other vertebrate

animals include mouse hepatitis virus-1 (MHV-1) a natural

mouse pathogen, infectious bronchitis virus (IBV) in

chickens and other avian species, bovine coronavirus

(BCoV) in cows and other ruminants, porcine respiratory

syndrome virus (PRCV) in pigs and canine respiratory

coronavirus (CRCoV) in dogs to name a few [10, 11].

Coronaviruses that induce mild respiratory illness are

generally more prevalent in younger populations of humans

and domestic animals [10, 11], while those that are respon-

sible for severe disease, such as SARS-CoV and MERS-

CoV, cause lethal disease in aged or immunocompromised

individuals [8, 12]. Notable exceptions to this are IBV, a
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severe form of upper respiratory tract infection in young

chicks [13], and HCoV-NL63, responsible for croup in

children [14]. During the 2002–2003 epidemic, SARS-CoV

infection resulted in an overall 10 % mortality. While 100 %

survival was observed in young (\24 years old) SARS-CoV-

infected patients, the mortality rate was [50 % in elderly

individuals aged 65 and above [11]. To date, newly emerging

MERS-CoV has infected 495 people with 141 deaths [15].

Several reports from the 2002–2003 SARS outbreak indi-

cated that the acute respiratory distress syndrome (ARDS)

developed in the majority of patients with severe disease.

ARDS, a nonspecific end-stage process in patients with

pulmonary disease caused by a variety of etiological agents,

is most severe in elderly individuals and resulted in *52 %

mortality among elderly SARS patients [16]. Pathological

investigation of patients with lethal SARS revealed acute

pulmonary edema, extensive inflammatory cell infiltration,

multi-organ failure, thromboembolic complications and

septicemia [17]. Severe lung and systemic inflammation is

believed to result from cytokine dysregulation; in patients

with SARS, increased levels of cytokines such as TNF-a,

IP10, IL-6 and IL-8 likely contributed to the poor outcome

[17]. Such an exuberant innate cytokine response was

attributed to hyper-activation of macrophage/monocyte

lineage cells. Additionally, increased levels of type I inter-

feron (IFN) and a dysregulated interferon-stimulated gene

(ISG) response were observed in patients with severe SARS

[18, 19]. Overall, it is still not known whether SARS in

humans was the result primarily of type I IFN-independent

exaggerated pro-inflammatory reaction or whether both IFN-

dependent and IFN-independent aberrant cytokine produc-

tion contributed to severe pathology. Similar to SARS in

humans, MERS-CoV-infected patients exhibit symptoms of

a flu-like illness followed by an atypical pneumonia,

including fever, dry cough and severe shortness of breath [8].

However, we still do not know much about the innate or the

adaptive immune response in MERS-CoV-infected indi-

viduals, mainly because only a small number of sporadic

MERS cases reported to date, and there is a paucity of clin-

ical data absence of any autopsy information.

To investigate SARS-CoV pathogenesis, several animal

models have been developed [20, 21]. Soon after the

2002–2003 SARS epidemic, mice, cats and ferrets were

used as animal models to study SARS pathogenesis.

Human isolates of SARS-CoV could replicate in these

hosts following intranasal infection, but in contrast to

SARS in humans, no overt clinical signs were observed in

cats while 50 % of ferrets showed evidence of mild disease

[22]. Similarly, mice infected with the human Urbani strain

of SARS-CoV developed only mild disease, although dis-

ease severity was greater in aged mice [23]. Several non-

human primates were also experimentally infected with

SARS-CoV with variable disease severity dependent upon

the primate model used [7, 21, 24]. Despite this variation,

aged non-human primates were associated with exacer-

bated innate immune response and acute lung injury,

similar to that in humans although without associated

lethality [7, 21]. Because of this lack of useful animal

models that mimicked human disease, several laboratories

developed mouse- or rat-adapted strains of SARS-CoV that

caused extensive and lethal pulmonary disease. One

mouse-adapted strain of SARS-CoV, MA15, has been

extensively used in pathogenesis studies. SARS-CoV-

MA15 induces severe disease in young BALB/C and in

aged mice ([20 weeks) of all strains [25]. Infection of aged

mice with SARS-CoV-MA15 induced a robust up-regula-

tion of pro-inflammatory cytokines (TNF-a, IL-6, IL-8, IP-

10, MCP-1) and chemokines (CXCL-1, CXCL-2, CCL-3

and CCL-5) [21, 26]. Furthermore, in comparison with

SARS-CoV-MA15-infected young C57BL/6 mice, infec-

tion of aged mice ([12 months) is associated with severe

reduction in the number of virus-specific CD8 T cells in the

lungs [27]. Since T cells are required for controlling exu-

berant innate immune responses, the absence of a potent

anti-virus T cell response in aged hosts could lead to

exacerbated/dysregulated innate responses and pathology

[28, 29]. Additionally, virus-specific CD4 and CD8 T cells

play a critical role in clearing virus by eliminating virus-

infected cells. Several studies in both humans and animals

have identified and discussed the host innate response to

SARS-CoV and other respiratory coronaviruses. Despite

these extensive efforts, there is limited information avail-

able on the role of the antigen-specific T cell-mediated

immune response to respiratory coronaviruses. In this

review, we will focus on the T cell-mediated immune

response to SARS-CoV.

Primary T-cell response to respiratory virus infections

The majority of studies addressing T cell responses to

respiratory virus infections come from mice infected with a

variety of natural and mouse-adapted pathogens. A few

studies use natural mouse pathogens such as Sendai virus, a

mouse para-influenza type I pathogen and mouse hepatitis

virus-1 (MHV-1). More commonly, mouse-adapted stains

of human pathogens such as the A/Puerto Rico/8/1934

H1N1 (PR8) or A/WSN/33 H1N1 (WSN) strains of influ-

enza and SARS-CoV-MA15 have been used to study innate

and adaptive immune responses [25, 30]. Initiation of the

immune response against invading pathogens begins with

direct infection of airway epithelium. Following initial

infection, lung-resident respiratory dendritic cells (rDCs)

acquire the invading pathogen or antigens from infected

epithelial cells, become activated, process antigen and

migrate to the draining (mediastinal and cervical) lymph
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nodes (DLN). Once in the DLNs, rDCs present the pro-

cessed antigen in the form of MHC/peptide complex to

naı̈ve circulating T cells. Following engagement of the T

cell receptor (TCR) with peptide–MHC complex and

additional co-stimulatory signals, T cells become activated,

proliferate vigorously and migrate to the site of infection

[31–33] (Fig. 1). Once at the site of infection, activated

virus-specific effector T cells produce antiviral cytokines

(IFN-c, TNF-a, IL-2), chemokines (CXCL-9, 10 and 11)

and cytotoxic molecules (perforin and granzyme B) [34].

Effector cytokines such as IFN-c directly inhibit viral

replication and enhance antigen presentation [35]. The

chemokines produced by activated T cells recruit more

innate and adaptive cells to control pathogen burden.

Cytotoxic molecules such as granzyme B directly kill

infected epithelial cells and help eliminate the pathogen

[36–39]. Despite a wealth of information on the T cell

response to many respiratory pathogens, less is known

about the respiratory coronavirus infections.

Virus-specific T cells and the primary immune response

to SARS-CoV in humans

The acute phase of SARS in human patients was associated

with marked leukopenia with severe lymphopenia (*80 %

of patients), involving a dramatic loss of CD4 T cells

(*90–100 % of patients) and CD8 T cells (*80–90 %

patients) in comparison with healthy control individuals

[40–42]. Subsequent studies showed impaired CD4 and

CD8 T cell activation in SARS-CoV-infected patients as

determined by CD25, CD28 and CD69 expression on CD4

and CD8 T cell subsets [43, 44]. Severe SARS-CoV

infection in humans was characterized by the delayed

development of the adaptive immune response and pro-

longed virus clearance [45]. In addition, leukopenia and

associated lymphopenia are also observed in MERS

patients, albeit to a lesser degree than that observed in

SARS patients. A detailed clinical study showed that 14 %

of MERS patients were leukopenic, while 34 % of the

patients had lymphopenia [46]. Decreased numbers of T

cells strongly correlated with the severity of acute phase of

SARS disease in humans [42, 47]. Although SARS-CoV is

not known to productively infect T cells, altered antigen

presenting cell (APC) function and impaired DC migration

resulting in reduced priming of T cells likely contribute to

fewer number of virus-specific T cells in the lungs [27, 48,

49]. Other possible explanations for T cell lymphopenia

include an exuberant type I IFN response and high levels of

glucocorticoids resulting from a normal stress response

both of which might induce T cell apoptosis [50]. Cur-

rently, much less is known about the fate of T cells in

MERS-CoV-infected patients.

Several HLA-A*02:01-restricted T cells recognizing

SARS-CoV epitopes have been identified in the PBMC of

SARS-recovered individuals. Most of these immunogenic

epitopes were localized to the spike (S) and nucleocapsid

Fig. 1 Induction of T cell response to respiratory virus infection
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(N) protein of SARS-CoV, using ELISPOT and intracel-

lular IFN-c expression assay following peptide stimulation

directly ex vivo [51, 52]. Additionally, several CD8 T cell

epitopes were also identified and characterized in the M

protein of SARS-CoV from PBMCs of the SARS survi-

vors; however, HLA restriction of these is not known [53].

Subsequently, Lv et al. [54] demonstrated that immuniza-

tion of HLA-A2.1/Kb transgenic mice with a recombinant

DNA (rDNA) vaccine encoding the S protein induced

peptide S958–966-specific IFN-c release and target cell

lysis by CD8 T cells. Several SARS-CoV specific T cell

epitopes were identified in infected/recovered human

PBMCs [55, 56]. To date, few studies have identified

antigen-specific CD4 T cells in SARS-CoV-infected/

recovered patients. In one of the studies, CD4 T cells

specific for epitopes in the nucleocapsid (N) protein were

identified in SARS survivors [57]. In the other study, Li-

braty et al. [58] detected HLA-DR restricted CD4 T cell

epitopes in the S protein (S729–745, S358–374 and

S427–444) in recovered patients. These results show that

both S and N proteins of SARS-CoV contain immunogenic

epitopes that can be recognized by CD4 and CD8 T cells.

Since the S protein of SARS-CoV is capable of inducing

neutralizing antibodies, CD4 and CD8 T responses and N

protein can elicit T cell response in humans, both of these

proteins are useful potential vaccine candidates able to

generate a strong humoral and cell-mediated immune

response against SARS-CoV. One caveat is that immuni-

zations with some vaccines encoding the N protein induce

an eosinophilic response [59], so these vaccines will need

to be monitored carefully. No information about epitopes

recognized in patients with MERS is currently available.

The T cell response in respiratory coronavirus infected

animals

Identification of virus-specific CD4 and CD8 T cell

epitopes in mice

In one of the first studies, Yang et al. [60] demonstrated the

existence of SARS-CoV-specific T cells in mice immu-

nized with recombinant DNA (rDNA) encoding the S

protein. After stimulation with pools of overlapping

S-peptides, antigen-specific CD4 and CD8 T cells were

detected by IFN-c expression. Subsequently, several stud-

ies have identified SARS-CoV-specific CD4 and CD8 T

cells in mice immunized with rDNA or recombinant virus

encoding S, N or M proteins. [61–64]. A detailed list of

SARS-CoV-specific immunodominant CD4 and CD8 T

cell epitopes identified in mice is provided in Table 1.

Identification of relevant T cell epitope in MERS-CoV

has been hindered by the absence, until recently of a mouse

model for infection. Dipeptidyl-peptidase (hDPP4) is

identified as a functional MERS-CoV receptor in humans

[65], but mouse DPP4 (mDPP4) is not a functional receptor

[66]. As a result, mice are impervious to MERS-CoV

infection. Recently, Zhao et al. [67] showed that BALB/c

and C57BL/6 mice were sensitized for MERS-CoV infec-

tion by transduction with an adenovirus-5 (Ad5) expressing

hDPP4. Following MERS-CoV infection, several H2b-

restricted CD8 T cell epitopes were detected in the S

(S395, S434 and S1165) and M (M64 and M165) proteins

in C57BL/6 mice, and H2d-restricted CD8 T cell epitopes

were localized to the (S291, S319, S448 and S647), N

(N57, N101 and N214) and M (M110 and M159) proteins

in BALB/C mice.

Infection with the murine coronavirus, MHV-1, induces

a severe lung pathology in A/J and C3H/HeJ mice. [68, 69].

Following MHV-1 infection, virus-specific CD4 and CD8

T cells were identified both in susceptible (C3H/HeJ) and

in resistant (C56BL/6) strains of mice. Using direct ex vivo

Table 1 List of SARS-CoV-specific CD4 and CD8 T cell epitopes

found in C57BL/6 and BALB/C mice

Protein Peptide sequence MHC-restriction References

CD8 T cell epitopes

C57BL/6 mice

Spike S436–443 H2b [64]

S525–532 H2b [64]

S497–504 H2b [75]

S627–642 H2b [75]

S641–658 H2b [75]

Nucleocapsid NP219–228 H2b [75]

M protein M137–180 H2b [75]

BALB/C mice

Spike S366–374 H2d [64]

S521–529 H2d [75]

S1031–1047 H2d [110]

Nucleocapsid NP80–99 H2d [111]

NP84–101 H2d [111]

NP92–101 H2d [111]

CD4 T cell epitopes

C57BL/6 mice

Nucleocapsid NP11–25 H2b [75]

NP51–65 H2b [75]

NP61–75 H2b [75]

NP111–125 H2b [75]

BALB/C mice

Spike S365–374 H2d [110]

S435–443 H2d [110]

Nucleocapsid NP80–99 H2d [111]

NP353–370 H2d [111]

NP241–258 IAd [111]

University of Iowa Immunology 2014 (2014) 59:118–128 121

123



stimulation of splenocytes from infected mice with several

individual overlapping peptides, IFN-c production was

detected by flow cytometry. In C57BL/6 mice, the immu-

nodominant, IAb-restricted CD4 T cell epitopes were

localized to the S (S361-S375, S766–780) and M (M131-

M145) proteins, while H2b-restricted CD8 T cell epitopes

were found in the S (S324–317, S532–539 and S587–594)

and M (M184–191) proteins. Similarly, in C3H/HeJ mice,

CD4 T cell epitopes (I-Ek restricted) were found in the S

(S171-S185, S921-S935 and S881-S895), N (N376–390

and N346-N360) and M (M196-210) proteins, while the

only dominant CD8 T cell epitope was in the N (N421-

N428) protein [70].

Primary T cell response to respiratory coronaviruses

in mice

Virus clearance during a primary response to virus infec-

tions such as influenza and para-influenza clearly depends

on virus-specific CD4 and CD8 T cells and the rapidity of

virus clearance correlates with the magnitude of CD4 and

CD8 T cell response [71–74]. Although several SARS-

CoV-specific CD4 and CD8 T cells have been detected in

both infected/recovered patients and mice, very few studies

have addressed the role of virus-specific T cells in SARS-

CoV pathogenesis. In a study using BALB/C mice, Chen

et al. [26] showed that intranasal inoculation of

12–14 month-old BALB/C mice with SARS-CoV (Urbani

strain) induced interstitial pneumonitis and diffuse alveolar

damage. In this study, depletion of CD4 T cells (but not

CD8 T cells) delayed virus clearance and further enhanced

immune-mediated interstitial pneumonitis. Depletion of

CD4 T cell also resulted in reduced neutralizing antibody

titers in the lungs of SARS-CoV (Urbani)-infected mice.

Since the Urbani strain of SARS-CoV induces a nonlethal,

self-limiting disease, the protective role of virus-specific

CD4 and CD8 T cells could not be described in this study.

On the other hand, infection of young BALB/c mice with

the mouse-adapted strain of SARS-CoV (SARS-CoV-

MA15) induces a severe disease, but generates a poor

virus-specific CD4 and CD8 T cell response. Such a poor

virus-specific CD4 and CD8 T cell response is attributed to

an inefficient immune activation by SARS-CoV-MA15,

particularly of respiratory DC (rDCs), as shown by reduced

expression of MHC-II, CD86 and CD40 on cells harvested

from the lungs. Activation of rDCs by the reversal of

inhibitory mechanisms (such as depleting inhibitory alve-

olar macrophages or treating mice with poly I:C) resulted

in greater numbers of anti-virus CD4 and CD8 T cells in

the lungs, which ultimately correlated with better protec-

tion [49]. Subsequently, the direct evidence for the role of

virus-specific CD4 and CD8 T cells in SARS-CoV clear-

ance and host protection came from adoptive transfer

studies. In one study, Zhao et al. adoptively transferred

SARS-CoV-specific effector CD4 and CD8 T cells (sepa-

rately) into immunodeficient SCID and RAG-/- mice or

susceptible young BALB/C mice. Transfer of SARS-CoV-

specific CD4 and CD8 T cells into these mice resulted in

rapid virus clearance and amelioration of the clinical dis-

ease. Increasing the number of virus-specific CD8 T cells

in vivo by immunization with S366-peptide-pulsed DCs

also resulted in a robust T cell response, accelerated virus

clearance and increased survival in SARS-CoV-MA-15

challenged BALB/C mice [75]. Although the adoptive

transfer of SARS-CoV-specific effector CD4 and CD8 T

cells controlled SARS-CoV in the lungs, it is still not

known whether natural, in vivo generated virus-specific

CD4 and CD8 T cells would be equally protective.

With advancing age, both humans and animals become

highly susceptible to SARS-CoV and other respiratory

virus infections. Such an age-dependent increase in the

susceptibility is associated with a significant reduction in

the magnitude of virus-specific T cell response [12, 27, 76,

77]. Young (6 wk) C57BL/6 mice generate a SARS-CoV-

specific CD8 T cell response that is approximately eight-

fold greater than that observed in 12-month-old mice [25].

The reduction in the numbers of SARS-CoV-specific CD8

T cells in the lungs of aged mice is attributed in part to the

impaired ability of rDCs to migrate to DLN and to prime

sufficient numbers of antigen-specific CD8 T cells. Even

though impaired migration of rDCs to DLN is an age-

dependent phenomenon, it is much pronounced in aged

mice infected with SARS-CoV as compared to those

infected with other respiratory viruses such as influenza A

virus or respiratory syncytial virus (RSV) [27]. Migration

of rDCs to DLN requires CCR7 expression [78] and CCR7

expression on rDCs is inhibited by the prostaglandin,

PGD2 [79], which in turn increases in the lungs as mice age

and is even further increased, however, after SARS-CoV

infection [27]. Local pharmacologic inhibition of the PGD2

receptor, DP-1, with a specific antagonist (BW A868C)

resulted in enhanced migration of rDCs to DLN and a

subsequent augmented SARS-CoV-specific CD8 T cell

response in the lungs, associated with enhanced survival of

aged mice [27]. It is important to note, however, that only a

partial protection (as demonstrated by *65 % survival)

was observed in the DP-1 antagonist (BW A868C)-treated

SARS-CoV-infected aged mice. These results suggest that

other age-associated factors that impair one or more com-

ponents of innate or adaptive arm of the immune system

also likely contribute to the deficit observed.

Similar to SARS-CoV-specific T cells, MERS-CoV-

specific CD8 T cells also play an important role in clearing

MERS-CoV in both BALB/c and C57BL/6 mice. In a

recent study, infection of Ad5-hDPP4-transduced, T cell

(TCRa-/-)-deficient mice with MERS-CoV resulted in the
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persistence of MERS-CoV in the lungs, while virus was

cleared in control mice. Following MERS-CoV infection,

the numbers of virus-specific CD8 T cells peaked on day 7

post-infection in the lungs of Ad5-hDPP4-transduced

MERS-CoV-infected WT C57BL/6 and BALB/C mice.

Additionally, effector CD8 T cells specific for immune-

dominant epitopes (S1165 in C57BL/6 mice and S291 in

BALB/C mice) efficiently killed peptide-pulsed target cells

in vivo [67]. Although Ad5-hDPP4 transduction and sub-

sequent MERS-CoV sensitization has its limitations, this

study clearly demonstrates the importance of virus-specific

CD8 T cells in clearing MERS-CoV.

As described earlier, MHV-1 infection of the respiratory

tract induces pulmonary pathology in susceptible A/J and

C3H/HeJ mice [70]. Unlike SARS-CoV-specific CD4 and

CD8 T cells, in vivo depletion of MHV-1-specific CD4 and

CD8 T cells in susceptible A/J and C3H/HeJ mice during

primary infection significantly ameliorated disease severity

and improved airway function, suggesting that MHV-1-

specific T cells induce overt lung pathology in A/J and

C3H/HeJ mice. Thus, unlike SARS-CoV-infected mice, the

T cell response is apparently excessive in MHV-1-infected

mice. In contrast, infection of C57BL/6 RAG1-/- mice with

MHV-1 leads to significant weight loss and persistence of

MHV-1 in the lungs, liver, spleen and brain during the later

stages of infection (day 10 post-infection). Intranasal

infection with MHV-1 in susceptible C3H/HeJ mice gen-

erated robust and broad virus-specific CD4 T cell response,

whereas in resistant C57BL/6 mice, antigen-specific CD8 T

cell response dominated. The resistance displayed by

C57BL/6 mice was probably not entirely due to greater

virus-specific CD8 T cells, as equally robust MHV-1-spe-

cific CD8 T cell responses in C3.SW-H2(b)/SnJ mice, was

associated with significant morbidity [68]. These results are

consistent with those obtained from infecting mice with the

neurotropic JHM strain of MHV. MHV-JHM infection

induces encephalomyelitis with both acute and chronic

demyelination in mice [80, 81]. Virus-specific CD8 T cells

play a critical role in viral clearance and CD4 T cells

provide necessary help for antiviral function of CD8 T cells

[82]. Interestingly, MHV-JHM-specific CD8 T cells

require distinct effector mechanisms to control virus rep-

lication in different cell types in the CNS. For instance,

perforin-mediated cytolysis is crucial to control virus rep-

lication in microglia/macrophages, while virus clearance

from oligodendrocytes requires IFN-c dependent effector

functions [83]. Adoptive transfer of antigen-specific CD4

and CD8 T cells into infected mice lacking T or B cells

(RAGI-/-) induces CNS demyelination, showing that the T

cell response is required for both virus clearance and

immunopathology. As in MHV-1-infected mice, T cells

thus contribute to morbidity [84]. Studies from another

coronavirus, MHV-3, which induces hepatic necrosis in

mice, showed that an effective T cell response ameliorates

disease and the Th1/Th2 balance determines resistance and

susceptibility in A/J and BALB/C mice, respectively [85].

These results suggest that the role of virus-specific pri-

mary CD4 and CD8 T cell responses to respiratory or other

coronavirus infections are both virus and mouse strain

dependent. Furthermore, it will be interesting to know

whether MHV-1-mediated lung pathology in A/J and C3H/

HeJ mice is due to an imbalance of Th1, Th2 and/or Th17

cell responses as shown in other respiratory virus infections

such as RSV [85–87].

In an unrelated coronavirus infection, IBV infection is

one of the leading causes of respiratory illness in young

chicks. Infection of young chicks with the Gray strain of

IBV induces S- and N protein-specific CD8 T cell

responses. Adoptive transfer of virus-specific effector CD8

T cells (isolated from the spleen at 10-days post-infection)

into a naı̈ve chicks greatly reduced clinical illness and

rapidly cleared virus from the lungs in comparison with

those receiving naı̈ve CD8 T cells [88]. These results show

that coronavirus-specific CD8 T cells are also protective in

this setting.

The memory T cell response to respiratory

coronaviruses

The effector phase of an immune response is followed by a

sharp contraction in the number of antigen-specific T cells,

with 90–95 % of virus-specific T cells undergoing apop-

tosis [89]. The contraction phase is followed by a memory

phase in which a stable pool of memory T cells is main-

tained for a prolonged period of time. Such memory T cells

are programmed to counter subsequent infection with the

same or related pathogen, mounting rapid responses on re-

exposure to the pathogen in question, with minimal

requirement for co-stimulatory signals [34]. It is well

established now that memory T cells are unique in their

anatomic distribution, function, maintenance and response

to recall [34, 90–92]. Recent advances highlight the key

role of virus-specific tissue-resident memory cells in

effectively countering a local pathogen challenge. These

tissue-resident memory T cells are well equipped to gen-

erate a rapid recall response as they are located at the site

of infection and possess potent lytic activity and granzyme

B expression [93]. The tissue-resident memory T cells

secrete cytokines (IFN-c) and chemokines (CXCL9-11)

that activate innate cells and attract more memory T cells

from the periphery [91, 92]. Following a respiratory tract

infection, memory T cells reside both in the lung airways

and in lung interstitial tissue. The lung airways contain a

high proportion of antigen-specific T cells in compari-

son with those in the lung interstitial tissue. Conversely,
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lung-airway-resident memory T cells lack constitutive

cytolytic activity and do not proliferate in situ [94].

However, these cells are constantly replenished from the

circulation, and recruitment of these cells from circulation

depends on CXCR3 expression [95].

Virus-specific memory T cell responses in humans

Although difficult to address in humans, recent studies highlight

the importance of virus-specific T memory cells in patients with

respiratory disease. Thus, Sridhar et al. [96] showed that the

presence of memory T cells correlated with protection during

the recent epidemic caused by the H1N1 strain of influenza A

virus. However, most of our understanding of virus-specific

memory T cells in the lungs is derived from experimental

studies using either influenza or Sendai virus in mice. In terms

of patients with SARS, several studies have identified virus-

specific memory CD4 and CD8 T cells in patients who recov-

ered from the infection as long as four years after acute infec-

tion. In one such study, CD8 T cells specific for HLA-A*02:01-

restricted epitopes in the spike protein (SSp-1, S978 and S1202)

were identified in surviving patients over one year post-infec-

tion. These virus-specific CD8 T cells produced high levels of

effector cytokines (IFN-c and TNF-a) and cytotoxic molecules

(perforin and granzyme B) after peptide stimulation in vitro

[97]. Memory CD4 T cells specific for HLA-DR08- and HLA-

DR15-restricted epitopes within the S protein of SARS-CoV

were also identified in recovered individuals [58]. Using pools

of overlapping peptides, N, M and E protein-specific CD4 and

CD8 T cells were identified in PBMCs from SARS-recovered

individuals at 2-years post-infection. Virus-specific CD4

T cells mainly exhibited a central memory phenotype

(CD45RA-CCR7?CD62L-), whereas CD8 memory T cells

were effector memory cells (CD45RA?CCR7-CD62L-) [53,

55, 98, 99]. In a phase I clinical trial, vaccination of healthy

individuals with rDNA encoding spike (S) protein of SARS-

CoV elicited both neutralizing antibodies and the spike-protein-

specific T cell responses. The majority of SARS-CoV spike-

protein-specific T cells were CD4 T cells (10/10 subjects), and a

minority of subjects had detectable spike protein-specific

CD8? T cell responses (2/10 subjects) [100]. Collectively,

these studies suggest a potential role for virus-specific memory

T cells in broad and long-term protection against SARS-CoV

infection. This is important as neutralizing Abs and the memory

B cells response to SARS-CoV decline significantly after

1–2 years post-infection and are also strain specific.

Virus-specific memory T cell response in animals

Similar to the human studies, analysis of experimental

animals has demonstrated the presence of SARS-CoV-

specific CD4 and CD8 T cells following rDNA vaccination

or recombinant virus immunizations. Intramuscular

immunization of rhesus macaques with recombinant ade-

novirus (rAd5) encoding the SARS-CoV-N protein, fol-

lowed by a booster vaccination on day 28 induced

N-specific-T cell responses [101]. Immunization of mice

with rDNA vaccine encoding the S, N, M or E protein of

SARS-CoV induced virus-specific memory CD4 and CD8

T cells [63, 102, 103]. Virus-specific memory CD4 and

CD8 T cells were able to produce effector cytokines (e.g.,

IFN-c) and cytolytic molecules upon in vitro peptide

stimulation [102]. Although several groups demonstrated

the presence of SARS-CoV-specific memory CD4 and

CD8 T cells, very few studies have demonstrated their

in vivo potential to clear virus. In one study, depletion of

virus-specific memory CD4 and CD8 T cells in BALB/C

mice immunized with rDNA (encoding S protein) did not

have any effect on virus clearance on day 2 post-challenge

[60]. However, caveats of this study were that the Urbani

strain, which is largely non-pathogenic in mice, was used

and that the authors did not examine the effect of CD4 and

CD8 T cell depletion on virus clearance during later time

points, when virus-specific effector memory CD4 and CD8

T cells would be expected to exert their antiviral functions.

In another study, Ohno et al. [104] identified HLA-

A*0201-restricted SARS-CoV-N-specific CTLs in infected

HLA-A*0201 transgenic mice, using surface-linked lipo-

somal peptides a CTL-based vaccine against SARS-CoV

infection. These surface-linked liposomal peptides (derived

from the N protein) effectively induced CTL responses,

and upon challenge, these immunized mice rapidly cleared

vaccinia virus (VV) expressing the SARS-CoV-N. In an

unpublished study, we demonstrated the protective role for

SARS-CoV-S-specific memory CD8 T cells following

lethal SARS-CoV infection in 9- to 11-month-old C57BL/6

mice. In this study, intravenous DC-peptide (DC-S436/

S525) immunization followed by intranasal boosting with

recombinant vaccinia virus encoding S436/S525 generated

large pool of S436/S525-specific memory CD8 T cells in

the lungs of 9- to 11-month-old C57Bl/6 mice. The virus-

specific memory CD8 T cells in the lungs provided partial

but significant protection against lethal SARS-CoV chal-

lenge. These data suggest that virus-specific memory CD8

T cells enhance the kinetics of virus clearance and protect

the susceptible host from lethal SARS-CoV infection.

However, the protection was not as effective as observed

after the natural infection, suggesting a role for anti-virus

CD4 T cells or anti-virus antibodies in providing optimal

protection.

In contrast, adoptive transfer of MHV-1-specific mem-

ory CD4 and CD8 T cells (bulk memory splenocytes or

purified memory CD4 and CD8 T cells isolated from

spleen) enhanced morbidity and mortality in MHV-1-

challenged C3H/HeJ mice [68]. The lung pathology in

these mice was possibly not due to robust IFN-c and other
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pro-inflammatory cytokines production as even a sub-lethal

dose of MHV-1 infection generates greater magnitude of

virus-specific CD4 and CD8 T cell response. Another

possibility is that in the absence of immune serum or a B

cell response, virus-specific memory T cells cannot provide

complete protection [105]. In mice infected with neuro-

tropic MHV-JHM strain, antigen-specific memory CD8 T

cells were generated after immunization with rVV

expressing the immunodominant CD8 T cell epitope (pN9).

Following CNS MHV-JHM challenge, pN9-specific CD8 T

cells exhibited rapid recall in the lymphoid organs were

rapidly recruited to the CNS in increased numbers and

facilitated efficient MHV-JHM clearance from the CNS

[106]. Memory virus-specific CD4 T cells are also pro-

tective in these infections [107].

In IBV infected chicks, adoptive transfer of memory

CD8 T cells (isolated from the spleen at 3–6 weeks post

IBV infection) but not CD4 protected young chicks from

lethal IBV infection. In these studies, memory CD8 T cells

showed cytolytic activity in in vitro assays and completely

cleared the IBV from lungs and kidneys [108, 109].

Although there is a limited amount of data available on

virus-specific memory T cell responses to emerging coro-

naviruses, the existing studies indicate that lung resident

virus-specific memory CD8 T cells provide substantial

protection following SARS-CoV challenge.

Summary and conclusion

In this review, we discussed our current understanding of

the virus-specific T cell-mediated immune response to

respiratory coronaviruses. Several lines of evidence from

other respiratory virus infections such as influenza A and

para-influenza have established that virus-specific CD4 and

CD8 T cells generated during primary and memory

response are able clear virus and protect the host from

lethal infections. On the contrary, virus-specific T cell

response to respiratory coronaviruses and their ability to

clear virus depends on the type of pathogen in question and

the host used in the study. In case of mice infected with

SARS-CoV, virus-specific CD8 T cells in the absence of

antibody or CD4 T cells responding to virus provide a

partial but significant level of protection and effect virus

clearance. On the other hand, MHV-1-specific T cells are

detrimental and induce lung pathology in susceptible A/J

and C3H/HeJ mice.

Follow-up studies from patients who recovered from

SARS suggest that the SARS-CoV-specific antibody

response is short lived. In these patients, SARS-CoV-spe-

cific IgM and IgA response lasted less than 6 months,

while virus-specific IgG titer peaked four-month post-

infection and markedly declined after 1 year. Despite the

lack of virus-specific memory B cell response, SARS-CoV-

specific memory T cells persist in SARS-recovered patients

for up to 6 years post-infection. Consistent with these

human studies, results from animal studies also suggest that

strong virus-specific T cell response are required to protect

mice from lethal SARS-CoV-MA15 infection. The future

vaccine interventions should also consider strategies to

enhance T cell response to provide robust long-term

memory. Since, tissue-resident memory T cells provide

better protection, boosting a local and systemic memory T

cell response would be a useful strategy than either of these

interventions alone.
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