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The Tec family tyrosine kinases regulate lymphocyte development, activation, and differen-
tiation. In T cells, the predominant Tec kinase is Itk, which functions downstreamof the T-cell
receptor to regulate phospholipase C-g. This review highlights recent advances in our
understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein
domain interactions and mechanisms of substrate recognition. We also discuss the role of
Itk in the development of conventional versus innate T-cell lineages, including both ab

and gd T-cell subsets. Finally, we describe the complex role of Itk signaling in effector
T-cell differentiation and the regulation of cytokine gene expression. Together, these data
implicate Itk as an important modulator of T-cell signaling and function.

T
he Tec family nonreceptor tyrosine kinases,

Tec, Btk, Itk/Emt/Tsk, Rlk/Txk, and Bmx/
Etk, are expressed primarily in hematopoietic

cells and serve as important mediators of anti-

gen receptor signaling in lymphocytes (Berg
et al. 2005; Felices et al. 2007; Readinger et al.

2009). The demonstration that the human

B-cell immunodeficiency, X-linked agamma-
globulinemia (XLA), is caused by mutations

in Btk first underscored the importance of this

tyrosine kinase family in lymphocyte develop-
ment and antigen receptor signaling (Rawlings

et al. 1993; Thomas et al. 1993; Tsukada et al.

1993; Vetrie et al. 1993). T lymphocytes express
three Tec kinases: Itk, Rlk and Tec. To date, only

Itk has been found to have a clearly defined

function in T cells, leading to the conclusion

that Itk is the predominant Tec kinase in T cells.

In this review, we will cover recent findings that
highlight the critical role of Itk in T-cell signal-

ing and function.

STRUCTURE AND REGULATION OF
ITK ACTIVITY

Tec Kinase Domain Structure

Itk (inducible T-cell kinase; also known as Emt,

expressed in mast cells and T lymphocytes,

and Tsk, T-cell-specific kinase) was cloned in
the early 1990s (Siliciano et al. 1992; Gibson

et al. 1993; Heyeck and Berg 1993; Tanaka

et al. 1993; Yamada et al. 1993). The domain
organization of Itk and related Tec kinase family
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members shares similarities with other tyrosine

kinase families but also reveals unique features

(Fig. 1A). Shared features include the com-
mon SH3-SH2-kinase cassette also found in

the Src, Csk, and Abl kinases (Williams et al.

1998; Tsygankov 2003). Fourof the five Tec tyro-
sine kinases (Itk, Btk, Tec, and Bmx) contain an

amino-terminal region that includes a pleck-

strin homology (PH) domain, followed by a
Znþþ binding region termed the Btk homology

(BH) motif, and (except for Bmx) a proline

rich region (PRR) that conforms to the con-

sensus sequence of an SH3 ligand. Instead of

the PH-BH region, Txk (also known as Rlk)

contains a cysteine string motif at its amino
terminus.

Itk Activation Downstream of the TCR

The Tec family kinases are involved in multiple
receptor-mediated signaling pathways in many

cell types; several recent reviews have covered

these in depth (Berg et al. 2005; Felices et al.
2007; Gomez-Rodriguez et al. 2007; Mihara
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Figure 1. Itk domain organization and it’s role in T cell signaling. (A) The domain structure of Itk. (B) Schematic
of T-cell signaling emphasizing the proximal signaling complex downstream of the TCR as described in the
text. The trio of tyrosine kinases, Zap-70, Lck, and Itk that initiate signaling following TCR engagement are
shown as gray, green, and brown circles, respectively. Arrows indicate early phosphorylation events on TCR/
pMHC recognition. The amino-terminal region of Lck binds to the cytoplasmic tail of CD4 via coordination
of Znþþ (Huse et al. 1998). Active Lck phosphorylates the ITAMs, Zap-70, and Itk, which in turn
phosphorylate their targets Slp-76, LAT (by Zap-70) and PLCg1 (by Itk). Activated PLCg1 then hydrolyzes
PIP2 (dashed arrow) to produce DAG and IP3 leading to increased calcium flux. Multiple copies of these
signaling molecules likely cooperate in the phosphorylation cascade and so stoichiometry as shown is overly
simplified. Moreover, negative regulation of the signaling cascade in the form of phosphatases, kinases and
other types of molecules also plays a significant role in T-cell function but are not represented here.
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and Suzuki 2007; Gilfillan and Rivera 2009;

Koprulu and Ellmeier 2009; Prince et al. 2009;

Readinger et al. 2009). For Itk, significant atten-
tion has been given to activation via T-cell recep-

tor (TCR) stimulation (see Fig. 1B). Interaction

of the TCR with peptide-MHC complexes on
antigen presenting cells (APC) activates the Src

kinase Lck, leading to phosphorylation of the

CD3 immunoreceptor tyrosine-based activation
motifs (ITAMs). Zap-70 then binds to the phos-

phorylated ITAMs and is phosphorylated by

Lck, resulting in Zap-70 activation and subse-
quent phosphorylation of the adaptors LAT

and SLP-76 (Pitcher and van Oers 2003; Hout-

man et al. 2005; Au-Yeung et al. 2009; Smith-
Garvin et al. 2009). Following activation of

PI3K and accumulation of phosphatidylinositol

(3,4,5) trisphosphate (PIP3) in theplasmamem-
brane, Itk is recruited to themembranevia itsPH

domain (August et al. 1997; Ching et al. 1999;

Yang et al. 2001). There, Itk interacts with the
phosphorylated SLP-76/LAT adapter complex

via Itk’s Src homology (SH3 and SH2) domains

(Bubeck Wardenburg et al. 1996; Zhang et al.
1998; Shan and Wange 1999; Su et al. 1999;

Bunnell et al. 2000; Ching et al. 2000; Sommers

et al. 2004; Koretzky et al. 2006), permitting
phosphorylation of Itk on its activation loop

(Y511) by Lck (Heyeck et al. 1997).

Once activated, Itk undergoes cis autophos-
phorylation on Y180 in its SH3 domain (Wilcox

and Berg 2003; Joseph et al. 2007a). Itk also

interacts with and directly phosphorylates its
downstream target, PLCg1 (Perez-Villar and

Kanner 1999; Joseph et al. 2007c), resulting

in phospholipase activation (Liu et al. 1998;
Schaeffer et al. 1999; Wilcox and Berg 2003;

Bogin et al. 2007). The kinetics characterizing

many of these early phosphorylation events
have been delineated, providing an under-

standing of the sequential nature of signaling

following TCR engagement (Houtman et al.
2005). It is not known, however, whether Itk

autophosphorylation occurs prior to, or follow-

ing, phosphorylation of PLCg1. Because auto-
phosphorylation on Y180 does not affect Itk

catalytic activity but instead modulates binding

of the Itk SH3 domain to different targets
(Wilcox and Berg 2003; Joseph et al. 2007a),

Itk autophosphorylation may serve as a trigger

to alter protein interaction partners or locali-

zation either before or after PLCg1 activation.
PLCg1, once activated, hydrolyzes PIP2 to

produce the second messengers IP3 and DAG

(Rhee 2001). Downstream consequences in-
clude Ca2þ flux (Lewis and Cahalan 1995),

Erk activation (Schaeffer et al. 1999; Schaeffer

et al. 2000; Miller and Berg 2002), transcrip-
tion (Crabtree and Olson 2002), cytokine re-

lease (Liao and Littman 1995; Liu et al. 1998),

and actin reorganization (Labno et al. 2003),
all of which are impaired in the absence of Itk.

Importantly, these downstream consequences

of TCR activation are not ablated by a deficiency
in Itk, but instead, are substantially reduced,

leading to altered development and differentia-

tion of distinct T-cell lineages, as discussed later.

The Itk Signaling Complex

The Itk/SLP-76 interaction likely involves the

SH3 and SH2 domains of Itk targeting a

proline-rich stretch within SLP-76 (residues
184-195) and an adjacent phosphorylated tyro-

sine (Y145) in SLP-76, respectively (Su et al.

1999; Bunnell et al. 2000). In an elegant knockin
mouse study, tyrosine 145 of SLP-76 was

replaced with the nonphosphorylatable phe-

nylalanine to probe the contribution of the
ItkSH2/pY145 interaction to signaling (Jordan

et al. 2008). Mutation of Y145 resulted in mark-

edly diminished PLCg1 phosphorylation, dec-
reased Ca2þ flux, lowered phospho-ERK levels

and gave rise to T cells that resembled those

lacking Itk, as discussed later. This observation
(Jordan et al. 2008) is consistent with findings

that the Itk/SLP-76 interaction is required to

activate Itk kinase activity in Jurkat cells (Bogin
et al. 2007). Intriguingly, themajority of the cat-

alytically active Itk in the cell consists of only the

small fraction of Itk that is bound to SLP-76
(Bogin et al. 2007). Surprisingly, the SLP-76

Y145F mutation did not lead to loss of the

Itk/SLP-76 association (Jordan et al. 2008)
despite altered signaling. This finding suggests

that cooperative multivalent interactions pre-

serve Itk localization in this signaling complex
even when a single contact site is disrupted.

Tec Kinase Itk in T-Cell Signaling
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The importance of the Itk PH domain/PIP3
interaction (Fukuda et al. 1996; August et al.

1997) was also recently probed by inhibition
of phosphatidylinositol-3 kinase (PI3K) activ-

ity in human peripheral blood T cells (Cruz-

Orcutt and Houtman 2009). In a manner
similar to SLP-76 Y145F, loss of the Itk PH

domain/PIP3 interaction resulted in impaired

downstream signaling but did not affect the
ability of Itk and other PH domain containing

signaling proteins to assemble into the signaling

complex (Cruz-Orcutt and Houtman 2009).
In a separate study, soluble IP4 was found to

promote binding of the Itk PH domain to

PIP3 (Huang et al. 2007). Reminiscent of the
Itk/SLP-76 interaction (Bogin et al. 2007), these
studies also showed that only a limited pool

of Itk in the cell is capable of binding PIP3
even in the presence of excess PIP3 (Huang

et al. 2007). These separate findings suggest

that multiple interaction sites exist to properly
localize Itk following TCR stimulation (Graef

et al. 1997; Garcon and Nunes 2006; Beach

et al. 2007). Furthermore, part of the function
of Itk and other proteins in the LAT/SLP-76
complex may be to function as adaptors and

stabilize proteins in the complex. Kinase-inde-
pendent functions for Itk have been observed

in the regulation of actin polymerization

(Dombroski et al. 2005) and activation of the
transcription factor, SRF (Hao et al. 2006); these

functions may be secondary to effects on re-

cruitment of the guanine-nucleotide exchange
factor Vav to this complex (Labno et al. 2003).

Regulation of Itk Activity

The regulatory mechanisms that control the

activity of Lck and Zap-70 during TCR signal-
ing have been the subject of intense investiga-

tion, leading to detailed insights into function

(Palacios and Weiss 2004; Au-Yeung et al.
2009). In contrast, a mechanistic understanding

of Itk regulation remains elusive, as Itk and

other Tec kinases have, to date, resisted crystal-
lization in their full-length form. Comparing

the Tec and Src kinase families, it is evident

that regulatory differences must exist. In spite
of the shared SH3-SH2-Kinase cassette, the

Tec kinases lack the carboxy-terminal regula-

tory tail that plays an important role in Src

regulation (Brown and Cooper 1996; Xu et al.
1997; Xu et al. 1999; Cowan-Jacob et al. 2005).

Moreover, removal of the noncatalytic domains

from the Src kinase domain yields an active
enzyme, whereas the isolated Itk and Btk kinase

domains show poor catalytic activity (Fig. 2A)

(LaFevre-Bernt et al. 1998; Hawkins and Marcy
2001; Guo et al. 2006; Joseph et al. 2007b).

Mutation of a well-conserved tryptophan resi-

due in the Itk and Btk SH2-kinase linkers
(W355 in Itk, W395 in Btk) results in a signifi-

cant decrease in kinase activity (Lin et al. 2005;

Guo et al. 2006; Joseph et al. 2007b) whereas
mutation of the corresponding tryptophan in

the Src kinase Hck leads to a dramatic increase

in the activity of that kinase (LaFevre-Bernt
et al. 1998). In this regard, Itk is similar to Csk

(carboxy-terminal Src kinase), another tyrosine

kinase comprised of the common SH3-SH2-
Kinase cassette and regulated in a manner

opposite that of Src (Huang et al. 2009). The

isolated Csk kinase domain shows negligible
catalytic activity (Fig. 2A) and mutation of the

conserved tryptophan (W188) decreases Csk

activity (Lin et al. 2005). Based on similar bio-
chemical profiles, a model for active Itk can

be developed using the available structure of

active Csk (Fig. 2B).
In agreement with the established interac-

tion between active Itk and SLP-76 (Jordan

et al. 2008; Bogin et al. 2007), the distance
between the SH3 and SH2 binding pockets

in the high-resolution structure of Csk closely

matches the distance between the phosphotyro-
sine motif and proline-rich region in SLP-76

(residues 143–195). Moreover, the Itk PRR

region adjacent to the Itk SH3 domain in the
model of active Itk (Fig. 2B) could be available

for binding to an SH3 domain from an exoge-

nous signaling partner. The precise binding
partner of the Itk PRR is not yet clear but can-

didates include the SH3 domains of Vav, Fyn,

Src, PLCg1 or Grb2 (Yang et al. 1995; Perez-
Villar and Kanner 1999; Bunnell et al. 2000;

Chamorro et al. 2001). Csk lacks the PH-BH

region of the Tec kinases and so comparative
model building for this region of Itk becomes

A.H. Andreotti et al.
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speculative. It is interesting to note however,
that the PH-BH domain of Itk extends from

the amino-terminus of the PRR region and,

within the context of the Csk-based model,
the PH-BH domain could pack between the

SH3 and SH2 domains making contact with

the small lobe of the kinase domain and/or the
SH3-SH2/SH2-kinase linker regionspotentially

affecting kinase activity (Joseph et al. 2007b)
(Fig. 2B).

Mechanism of Itk Substrate Recognition

Once activated and assembled within the

SLP-76/LAT signaling complex, Itk meets its
downstream substrate, PLCg1 (Liu et al. 1998;
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Schaeffer et al. 1999; Wilcox and Berg 2003;

Houtman et al. 2005; Bogin et al. 2007). Itk

mediated phosphorylation of Y783 in PLCg1
requires a remote specificity-determining ele-

ment within the second SH2 domain of

PLCg1 (Joseph et al. 2007c). Mutation in the
PLCg1 SH2 domain that disrupts the Itk/
PLCg1 interaction results in decreased PLCg1

activation as measured by calcium flux in Jurkat
T cells (Braiman et al. 2006; Min et al. 2009).

Earlier work also identified a TCR-regulated

association between Itk and PLCg1 involving
the SH3 domain of PLCg1 (Perez-Villar and

Kanner 1999). Although PLCg1 is the most

well established substrate of Itk, additional
candidate substrates have been described and

include TFII-I (August 2009; Sacristan et al.

2009), Tim-3 (van de Weyer et al. 2006) and
T-bet (Hwang et al. 2005); the molecular details

of Itk recognition of these substrates has not

been elucidated.

Downregulation of Itk Kinase Activity

Inactivation of kinase activity is an important

regulatory feature that must appropriately bal-

ance activating signals. Although few negative
regulators of Itk have been described, expression

of PTEN, a lipid phosphatase, can decrease

Itk activity by reducing PIP3 levels (Shan et al.
2000). Negative regulation of Itk by the peptidyl

prolyl isomerase, cyclophilin A, has been de-

scribed (Brazin et al. 2002; Colgan et al. 2004).
Interestingly, another peptidyl prolyl isomerase,

Pin1 (protein interacting with NIMA1), regu-

lates phosphorylation and steady state levels of
Btk (Yu et al. 2006). However, the mechanism

of action remains poorly understood for both

Pin1 and CypA (Joseph and Andreotti 2009;
Mohamed et al. 2009).

As already described, the regulatory do-

mains of the Tec kinases exert a positive in-
fluence on the kinase domain in a manner

similar to Csk (Fig. 2B) and so conformational

rearrangements that uncouple the regulatory
domains (particularly the SH2-kinase linker

region) from the catalytic domain would down-

regulate Itk activity. In this context, the only
structural data available for any full length Tec

kinase comes from small-angle X-ray scattering

(SAXS) analysis of Btk (Marquez et al. 2003).

These data indicate that an inactive preparation
of Btk (Marquez et al. 2003; Lin et al. 2009)

adopts an extended conformation in solution

with negligible contacts between domains
(Fig. 2C). Whether the fully extended con-

figuration derived from SAXS data represent

a physiologically relevant state remains to be
determined but the available data suggest that

a conformational shift of the regulatory do-

mains away from the kinase domain could pro-
vide one layer of negative regulation.

In addition to negatively regulating the ca-

talytic domain, the configuration of the in-
active kinase might also serve to sequester its

ligand binding sites (Pawson and Kofler 2009).

The SH3/PXXP interaction, in particular, is
constitutive and not controlled by transient

phosphorylation/dephosphorylation events. In

down-regulated Itk, the SH3 domain-binding
site might be masked in an intramolecular fash-

ion by the adjacent PRR (Andreotti et al. 1997;

Laederach et al. 2003) (Fig. 2C). However, it is
experimentally difficult to probe the precise

role of the PRR in kinase regulation because it

is also likely involved in activating interactions
with SH3 domain-containing signaling part-

ners (Yang et al. 1995; Bunnell et al. 2000).

Efforts that use deletion of the PRR region to
probe its regulatory role (Hao and August

2002) are therefore complicated by the dual

nature of the PRR.

Regulation of Itk Activity by Multimerization

Structural studies using different Tec kinase

fragments indicate that the noncatalytic regula-

tory domains interact in an intermolecular
fashion driving multimerization in solution

(Andreotti et al. 1997; Brazin et al. 2000; Hans-

son et al. 2001; Laederach et al. 2002; Okoh and
Vihinen 2002; Pursglove et al. 2002; Laederach

et al. 2003; Severin et al. 2009). For Itk, multi-

merization is mediated by self-association of
the PH domain (Huang et al. 2007) and inter-

molecular interactions between the SH3 and

SH2 domains of different Itk molecules (Bra-
zin et al. 2000; Severin et al. 2009). Native gel

A.H. Andreotti et al.
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electrophoresis indicates that the full-length Itk

molecule, the SH3-SH2-kinase fragment, and

the Itk SH3-SH2 fragment all form multimers
(Severin et al. 2009) (Fig. 2D). The high resolu-

tion structure of the Itk SH3/SH2 complex

has been solved and provides insight into how
full length Itk might self-associate (Severin

et al. 2009) (Fig. 2E). Functionally, disruption

of the SH3/SH2 interface by mutation reduced
oligomerization and increased Itk kinase activ-

ity both in vitro and in T cells (Severin et al.

2009; Min et al. 2010). Moreover, both binding
experiments and structural data indicate that

intermolecular association of Itk is mutually

exclusive with binding of SLP-76 to the SH3
and SH2 domains (Brazin et al. 2000; Pletneva

et al. 2006; Severin et al. 2009). Thus, down-

regulation of Itk activitymight involve intermo-
lecular self-association whereas multimeriza-

tion is disfavored for active, SLP-76 bound

Itk. The interplay between specific clustering
of signaling molecules (Houtman et al. 2006),

the formation of TCR microclusters (Bunnell

et al. 2006; Seminario and Bunnell 2008) and
the specific role of Itk multimerization during

T-cell signaling certainly deserve continued

attention.
A split YFP/fluorescence complementation

approach has been used to probe the different

conformational and oligomeric states of Itk
in cells (Qi et al. 2006; Qi and August 2009).

Itk that is doubly tagged at the amino- and

carboxy-termini results in fluorescence comple-
mentation in the cytosol and at the membrane.

The authors suggest that the observed fluores-

cence complementationwithin a single Itkmol-
ecule is indicative of a folded compact structure.

Taking the linker lengths between Itk and each

of the split YFPs (two linkers each ≏40 Å)
and the diameter of YFP itself (≏30 Å) into

account, fluorescence complementation in this

system would occur for distances of approxi-
mately 110 Å between the Itk termini. It should

be noted that the distance between the amino-

and carboxy-termini of Btk in the fully extended
model derived from SAXS data is 125 Å and

given the flexibility inherent in the extended

model (Marquez et al. 2003), it seems likely
that fluorescence complementation would be

observed for almost any domain arrangement

of Itk; compact or extended. Thus, the fluores-

cence “ruler” used in these experiments is un-
likely to discriminate between different domain

arrangements.

Intermolecular fluorescence complementa-
tion between differentially tagged Itk molecules

is consistently observed only at the cell mem-

brane and not in the cytosol (Qi et al. 2006;
Qi and August 2009). Although this data alone

does not rule out multimerization in the cyto-

sol, the spatial segregation of the stronger fluo-
rescence signal to the membrane is certainly

interesting and suggests that Itk clusters are

at least stabilized upon or after membrane lo-
calization. Notably, Itk autophosphorylation

enhances the affinity between the SH3 and

SH2 domains (Joseph et al. 2007a), possibly
triggering sequestration of Itk into clusters

and down-regulation of kinase activity. Release

of Itk from the membrane, promoted by de-
phosphorylation of PIP3 and the SLP-76/LAT
complex (Shan et al. 2000; Baker et al. 2001;

Yang et al. 2001; Tomlinson et al. 2004), would
then result in decreased local Itk concentration,

which could cause Itk oligomers to disassociate

into inactive, monomeric species in the cytosol.
Regardless of aggregation state, the inactive spe-

cies would adopt a conformation that decouples

the regulatory region (in particular the SH2-
kinase linker) from the Itk kinase domain.

ITK REGULATION OF T-CELL FUNCTION

Naı̈ve T-Cell Activation is Impaired in the
Absence of Itk

The central role of Itk in the LAT-SLP-76 com-

plex suggests that Itk is an important com-
ponent of TCR signaling. Early studies using

primary murine Itk-/- T cells showed that Itk

is required for robust T-cell activation in re-
sponse to TCR plus costimulatory receptor sig-

naling. However, these studies also revealed that

Itk is not absolutely required for all responses
downstream of the TCR (Liao and Littman

1995; Liu et al. 1998; Schaeffer et al. 1999).

One aspect of this modulatory role for Itk
is the partial redundancy between Itk and a

Tec Kinase Itk in T-Cell Signaling
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second Tec kinase family member, Rlk. Thus, a

combined deficiency in both Itk and Rlk results

in TCR signaling defects that are significantly
more profound than is seen in T cells lacking

Itk alone (Schaeffer et al. 1999). Overall, the

message from these experiments was that Itk
functions to amplify TCR signaling, rather

than as an all-or-nothing component of the

TCR signaling pathway.

T-Cell Differentiation and Effector Functions
are Regulated by Itk

In spite of the relativelymodest impact of the Itk

deficiency on naı̈ve T-cell activation, numerous

studies have shown that Itk signaling plays a
critical role in regulating T-cell differentiation

and T-cell effector functions (Fig. 3). The first

of these studies showed that Itk-/- Balb/c mice
were unable to generate the TH2 response to

Leishmania major infection typically seen in

wild-type Balb/c mice and instead, mounted a

protective TH1 response that cleared the infec-
tion (Fowell et al. 1999). These results high-

lighted the importance of Itk signaling in the

generation of TH2 responses, a function of Itk
that has been studied in more detail both in

vitro and in vivo.

Itk Promotes TH2 Differentiation and
Cytokine Production

The initial findings that Itk-deficient mice were
unable to mount a protective TH2 response to

infection were verified in a number of distinct

infectious disease systems including Leishmania

major in Itk-/- Balb/c mice, as well as Nippo-

strongylus brasiliensis and Schistosoma mansoni,

two parasites that are eliminated by TH2-depen-
dent recruitment and activation of granulocytes

T helper cell development ITK-deficiency
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Figure 3. Itk function in T helper cell differentiation. At the left, the three major lineages of effector T cells are
shown, along with the cytokine signals and transcription factors that regulate their differentiation from naı̈ve
CD4þ T cells. Unlike TH1 cells, which coexpress Itk and Rlk, TH2 cells express only Itk. The status of Rlk
expression in TH17 cells is currently unknown. In the absence of Itk (right panel), NFATc1 activity is greatly
reduced, leading to impaired production of IL-4 by TH2 cells and IL-17A by TH17 cells. Itk-/- TH1 cells,
which continue to express Rlk, have a more modest defect in effector cytokine production.
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(Fowell et al. 1999; Schaeffer et al. 2001). Anal-

yses of cytokine responses of the parasite-spe-

cific T cells from these infected mice indicated
that Itk-/- T cells produced decreased IL-4,

IL-5, and IL-10 (Schaeffer et al. 2001). Similarly,

in vitro experiments showed that Itk-/- Balb/c
CD4þ T cells stimulated under TH2-polarizing

conditions produced much less IL-4 than their

wild-type counterparts (Fowell et al. 1999).
These cytokine responses correlated with de-

fective TCR-induced activation of the calcium-

dependent transcription factor, NFAT, by Itk-/-

T cells, providing a potential explanation for

the reduced Il4 transcription (Fig. 3).

However, it is difficult to infer from these
experiments the precise nature of the T-cell

defect resulting in impaired protection to para-

sitic infections. Reductions in T-cell activation,
T-cell differentiation, T-cell migration, or elici-

tation of recall responses at the site of infection

could each contribute to the poor protection
observed in Itk-/- mice. An additional compli-

cation is the presence of a large population of

previously activated/memory CD4þ T cells in
Itk-/- mice; global gene expression analysis has

confirmed that Itk-/- CD4þ T cells are not com-

parable to wild-type CD4þ T cells prior to their
activation (Blomberg et al. 2009), and thus,

might respond differently than naı̈ve T cells to

parasite infections.
Nonetheless, useful information has been

gleaned from direct infection of Itk-/- mice

with pathogenic microorganisms. One elegant
approach to evaluating T cell defects in the

absence of Itk was taken by Au-Yeung and colle-

agues, who crossed Balb/c Itk-/- mice to re-
porter mice that express GFP under the control

of the IL-4 promoter (Au-Yeung et al. 2006).

Following infection of thesemicewith Leishma-

nia major, equal numbers of CD4þGFPþ T cells

were found at the sites of infection in wild-type

versus Itk-/- mice, indicating that Itk was not
required for the initiation of the TH2 response

or for the migration of IL-4-competent T cells

to these sites. Instead, the effector T-cell recall
response at the sites of infection were impaired

in the absence of Itk, leading to reduced IL-4

production by Itk-/- T cells following restimula-
tion. However, these studies are not in complete

agreement with an independent set of exper-

iments examining T-cell-mediated airway hy-

perresponsiveness in Itk-/- mice (Mueller and
August 2003). In this system, in addition to

impaired TH2 cytokine production, T-cell

recruitment to the lungs was also impaired fol-
lowing inhaled antigen challenge in Itk-/- mice

compared to controls. Interestingly, a partial

inhibition of Itk kinase activity was able to block
T-cell migration to the lung in this model sys-

tem, but had no effect on the priming of TH2

effector responses in secondary lymphoid or-
gans (Sahu et al. 2008a). These findings indicate

roles for Itk in both T-cell priming and T-cell

migration,findings that are supportedbystudies
showing a role for Itk in signalingdownstreamof

chemokine receptors (Fischer et al. 2004; Take-

sono et al. 2004).
These in vivo experiments have been com-

plemented by a series of in vitro experiments

performed with naı̈ve Itk-/- CD4þ T cells. All
of these studies agreed that Itk-/- CD4þ T cells

produced substantially less IL-4, IL-5, and

IL-13 than wild-type T cells, even after differen-
tiation in a powerful TH2 polarizing environ-

ment (Fowell et al. 1999; Schaeffer et al. 2001;

Miller et al. 2004; Au-Yeung et al. 2006). In these
studies, the defects in effector cytokine produc-

tion were not because of impaired TH2 differen-

tiation, as molecular analyses indicated that
Itk-/- T cells polarized into the TH2 lineage

showed all of the hallmarks of bona fide TH2

effector cells (Schaeffer et al. 2001; Miller et al.
2004; Au-Yeung et al. 2006). Interestingly, the

requirement for Itk in effector cytokine produc-

tion is shared by abTCRþ NKT cells specific
for a-galactosyl ceramide bound to CD1d; in

the absence of Itk, NKT cells stimulated in

vivo or in vitro produce substantially less IL-4
or IFNg than wild-type NKT cells (Au-Yeung

and Fowell 2007; Felices and Berg 2008).

TH1 Differentiation and Effector
Functions are Modestly Impaired
in the Absence of Itk

Unlike the essential role for Itk in protective

immunity to helminthic parasites, Itk signaling
in T cells is largely dispensible for protective
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CD4þ TH1 responses to intracellular pathogens.

Thus, Itk-/- mice clear infections of Leishmania

major, and are only modestly more susceptible
to sublethal doses of Toxoplasma gondii than

wild-type mice (Fowell et al. 1999; Schaeffer

et al. 1999). These observations may reflect the
fact that IFNg production by Itk-/-CD4þT cells

is not reduced to the same extent as production

of TH2 cytokines (Fowell et al. 1999; Schaeffer
et al. 2001; Miller et al. 2004; Au-Yeung et al.

2006). Indeed, under certain conditions that

normally lead to TH2 cytokine production,
such as stimulationwith altered peptide ligands,

Itk-/- CD4þ T cells produce IFN-g (Miller et al.

2004). A second aspect of this differential re-
quirement for Itk in TH1 versus TH2 effector re-

sponses is the interesting expression pattern of

the two predominant Tec kinases in T cells, Itk
and Rlk (Fig. 3). Unlike naı̈ve T cells which ex-

press both Itk and Rlk, TH2 effector cells lose

Rlk and express only Itk; in fact, the levels of
Itk are several-fold increased in TH2 cells com-

pared to naı̈ve T cells (Miller et al. 2004). In con-

trast, TH1 effector cells continue to express both
of these Tec kinases. As a consequence, whereas

Itk-/- TH1 cells continue to express Rlk, Itk-/-

TH2 cells lack both Itk and Rlk, thus accounting
for the more severe functional defect observed

in Itk-/- TH2 responses. Corroborating this no-

tion, ectopic expression of Rlk in effector TH2
cells restores wild-type T cell responses in

Itk-/- mice injected with Schistosoma mansoni

eggs or immunized to induce allergic airway
hypersensitivity (Sahu et al. 2008b).

Itk Is Required for IL-17A Production in
TH17 Effector Cells

In addition to the global defects in effector
T-cell responses described above for TH2, and

to a lesser extent, TH1 responses, T cells lacking

Itk display more selective alterations in cytokine
production that highlight the complex nature

of the signaling pathways that regulate T-cell

effector responses. One recent example is the
role of Itk in the regulation of cytokine produc-

tion by TH17 cells, a recently recognized CD4

effector T-cell lineage that differentiates in
response to IL-6 and TGF-b and expresses the

pro-inflammatory cytokines IL-17A, IL-17F,

IL-21 and IL-22 (Korn et al. 2009). TH17 cells

are important for antimicrobial activity, partic-
ularly in the gastrointestinal system, but are also

hallmarks of inflammation involved in multiple

autoimmune disorders.
Although the requirements for cytokine

signals for TH17 differentiation have been

extensively examined, the contribution of TCR
signaling to the regulation of TH17 cytokine

production was unknown. To evaluate this

question, naı̈ve CD4þ T cells from Itk-/- and
Rlk-/-Itk-/- mice were differentiated under TH1

and TH17 polarizing conditions, and cytokine

production evaluated by intracellular stain-
ing (Gomez-Rodriguez et al. 2009). Although

both cell types could generate large percentages

of IFNg producing TH1 cells, Itk-/- and even
more dramatically Rlk-/-Itk-/- T cells showed

reduced IL-17A production. These defects did

not appear to be because of altered thymic
development, because they could be reversed

by re-introduction of Itk by retroviral transduc-

tion before TH17 differentiation. Further analy-
ses showed decreased Il17a message in Itk-/- T

cells (Fig. 3). However, surprisingly, expression

of other TH17 cytokines including the closely
linked Il17f gene, was relatively intact, as was

the expression of genes encoding themaster reg-

ulators RORgt and RORa. Although phosphor-
ylation of STAT3 in response to IL-6 was slightly

attenuated in Itk-deficient T cells, re-expression

of a constitutively activated STAT3 construct
did not restore normal IL-17A production.

The selective role for Itk in IL-17A produc-

tion resulted from a requirement for robust cal-
cium signaling, leading to NFAT activation, in

the transcription of the Il17a gene (Fig. 3).

Thus, differentiation of Itk-/- T cells in the pres-
ence of anti-CD3 plus ionomycin, which can

rescue Ca2þmobilization in Itk-deficient T cells

(Liu et al. 1998), did restore IL-17A production,
directly implicating defective TCR-driven

Ca2þ mobilization in this phenotype (Gomez-

Rodriguez et al. 2009). Supporting this idea,
stimulation of wild-type T cells with decreas-

ing amounts of anti-CD3 during differen-

tiation preferentially reduced expression of IL-
17A, whereas leaving IL-17F relatively spared.
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Similarly, differentiation of wild-type T cells

in the presence of low-dose CyclosporinA or

FK506, two inhibitors of Calcineurin that pre-
vent NFAT activation (Winslow et al. 2003),

also preferentially decreased IL-17A expression.

Conversely, expression of a constitutively active
mutant of NFATc1 (Neal and Clipstone 2003)

restored IL-17A production by Itk-/- TH17 cells,

suggesting that Itk-mediated activation of
NFAT contributes to the regulation of IL-17A.

Sequence analyses showed a conserved NFAT

binding site located 3.5 kb upstream of the start
site of the Il17a gene and ChIP analyses showed

that this site was occupied in wild-type but not

Itk-deficient cells differentiated under TH17
conditions. Although potential NFAT binding

sites were found upstream of the Il17f gene,

none were conserved cross-species. Nonethe-
less, conserved noncoding sequences in the re-

gion around both the linked Il17a and Il17f

genes showed epigenetic modifications sugges-
tive of open chromatin conformations (Wilson

et al. 2009).

These results suggest that a TCR-driven
pathway involving Itk-mediated regulation of

Ca2þ and NFAT is required for full expression

of IL-17A and that this pathway distinguishes
expression of different TH17 cytokines. These

data support the growing view that there are dis-

tinct subclasses of TH17 cells that produce over-
lapping sets of cytokines based upon distinct

inputs. Thus, TCR signalingmay be particularly

important for expression of IL-17A, which is
more strongly proinflammatory than IL-17F

(Yang et al. 2008; Ishigame et al. 2009). This

regulation operates during the differentiation
of TH17 cells, because the defect in IL-17A pro-

duction is seen even upon restimulation of cells

with PMA and ionomycin (Gomez-Rodriguez
et al. 2009). NFATc1 autoregulates its own ex-

pression and previous data showed defective

NFATc1 induction in Itk-deficient cells (Nurieva
et al. 2007), perhaps accounting for the require-

ment for Itk during TH17 differentiation. Alter-

natively, other chromatin remodeling factors
that are recruited by transcription factors,

including the BRG proteins, may not assemble

properly on the IL-17A locus in the absence of
efficient NFATactivation (Berg 2009). Although

the exact mechanism of this defect awaits fur-

ther study, these detailed investigations of Itk-

deficient T lymphocytes have revealed another
feature of how TCR signaling can affect the dif-

ferentiation of distinct cytokine producing cells.

TCR Signaling in CD8þ T Cells Requires Itk

Although fewer studies have addressed the role

of Itk in CD8þ T-cell responses, the conclusions
thus far indicate that primary responses to viral

infection are largely intact in the absence of

Itk, or Itk and Rlk (Bachmann et al. 1997;
Atherly et al. 2006). Biochemical studies show

that Itk-/- and Rlk-/-Itk-/- CD8þ T cells share a
similar deficiency in TCR-induced PLC-g1 acti-

vation, calcium mobilization, ERK activa-

tion, and cytokine production as CD4þ T cells
lacking the Tec kinases (Atherly et al. 2006).

Nonetheless, Itk-/- mice do mount protective

immune responses to LCMV, vaccinia virus,
and VSV, and Rlk-/-Itk-/- mice to LCMV,

although kinetics of viral clearance were often

slightly delayed. Tracking of virus-specific
CD8þ T cells indicated that Itk-/- and

Rlk-/-Itk-/- T cells were unable to expand to

the extent seen with wild-type T cells, resulting
in an overall deficit in the magnitude of the

CD8þ T-cell response. This reduction in T-cell

expansion could not be accounted for by
impaired CD4þ T cell help in Itk-/- mice, as

adoptive transfer of wild-type LCMV-immune

T cells (CD4þ and CD8þ) into Itk-/-mice prior
to LCMV challenge was unable to rescue the

CD8þ T-cell defects. In addition, the impaired

response of Itk-/- CD8þ T-cells was not because
of the predominant population of “innate-like”

CD8þ T-cells present in these mice (see the fol-

lowing), as OT-1 TCR transgenic Itk-/- CD8þ

T-cells, which develop as conventional naı̈ve

T-cells, also shared the defect seen with polyclo-

nal Itk-/- CD8þ T-cells in non-TCR transgenic
mice. It still remains to be determined whether

Itk-/- CD8þ T-cells can generate functional

memory cells. Although virus-specific T-cells
persist in Itk-/- mice well after virus has been

cleared from the animals, the ability of these

cells to provide protection, and to mount an
effective recall response, has not yet been tested.
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This issue is complex, as defects in Itk-/- CD4þ

T-cells could impact the generation of robust

memory CD8þ T-cells; thus, appropriate stud-
ies will be required to distinguish CD4þ T-

cell-intrinsic from CD8þ T-cell-intrinsic con-

tributions to antiviral memory responses.

TEC KINASES IN T-CELL DEVELOPMENT

Role of Itk and Rlk in Conventional T-cell
Development

TCR signaling plays a critical role in the devel-
opment of T cells within the thymus, where

the strength or duration of TCR signaling helps
determine the survival, maturation, and dif-

ferentiation of thymocytes into mature T cells.

Double negative CD42CD82 (DN) cells that
have rearranged their TCRb chains must receive

competent signals through the pre-TCR to

progress through the DN3 stage and expand
in the DN4 to double positive (DP) transition

(Ciofani and Zuniga-Pflucker 2006). At the

double positive stage, TCR signaling regulates
cell survival and differentiation of conventional

T cells (Jameson et al. 1995). Thymocytes that

receive very poor or no TCR signals undergo
“death by neglect.” Thymocytes that receive

strong TCR signals, as from agonist peptides,

particularly in the context of costimulation,
undergo negative selection and also die within

the thymus. Only thymocytes that receive

weak but adequate signals will progress onto
CD4/CD8 selection, where the duration of

TCR signaling, in large part dictated by the

expression patterns of the co-receptors CD4
and CD8 upon TCR engagement, will deter-

mine their ultimate lineage as CD4 or CD8

single positive (SP) cells (Bosselut 2004).
It is therefore not surprising that Itk-/- and

Rlk-/-Itk-/- T cells show altered thymocyte de-

velopment (Fig. 4). Itk-/- mice have smaller
thymi and show phenotypes consistent with

impaired pre-TCR signaling. Although these

defects are relatively subtle, competitive bone
marrow transfers using mixtures of WT and

Itk-/- bone marrow indicated that both Itk-/-

and Rlk-/-Itk-/- cells had a selective disadvan-
tage at the DN-DP transition (Lucas et al.

2007). However, Rlk-/-Itk-/- T cells also showed

a competitive advantage compared to WT cells

at earlier stages (prior to DN3), perhaps reflect-
ing a negative signaling role for Rlk in cell

survival/cytokine signaling pathways.
Defects in positive selection of thymocytes

lacking Itk have been shown using a variety of

MHC Class I and Class II-restricted TCR trans-

genes (Liao and Littman 1995; Schaeffer et al.
2000; Lucas et al. 2002; Lucas et al. 2003). The

extent of these defects depended on the sel-

ecting TCR, with the weakest selecting TCRs
showing the largest effects (Lucas et al. 2002).

Defects in positive selection were exacerbated

in Rlk-/-Itk-/- mice, providing evidence that
these genes are partially redundant, and sup-

porting the idea that decreased TCR signaling

reduces positive selection of conventional T
cells (Schaeffer et al. 2000). Supporting partial

redundancy of these genes, overexpression of

Txk/Rlk partially rescued positive selection
defects in Itk-/- mice (Sommers et al. 1999).

Itk-deficient animals also show reduced

or delayed negative selection in multiple TCR
transgenic systems (Liao and Littman 1995;

Schaeffer et al. 2000; Lucas et al. 2002). In

Rlk-/-Itk-/- mice, negative selection is more
clearly impaired, leading to positive selection

of normally deleted HY TCR transgenic cells in

male Rlk-/-Itk-/- mice (Schaeffer et al. 2000).
These data support a model where negative sel-

ection is converted to positive selection in the

context of impaired TCR signaling and may
account for the increased SP cells in Rlk-/-Itk-/-

mice.

Development of Innate T-Lymphocyte
Populations

Recent data have revealed surprising new find-

ings on thymic selection in mice deficient in

Itk and Rlk (Atherly et al. 2006; Broussard
et al. 2006; Dubois et al. 2006; Berg 2007; Hu

et al. 2007). Although Itk-/- and Rlk-/-Itk-/-

mice show decreased positive selection of con-
ventional T cells using both MHC Class I and

Class II-restricted TCR transgenes, surprisingly,

Itk-/- and Rlk-/-Itk-/-mice have increased num-
bers of CD8 SP cells (Liao and Littman 1995;
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Schaeffer et al. 2000; Lucas et al. 2002). Further
examination of these CD8 SP populations sug-

gested that these cells do not resemble conven-

tional naive CD8 SP thymocytes. Instead,
virtually all of the CD8 SP thymocytes in these

mice showed markers seen on memory or acti-

vated T cells, including CD44 and CD122 (the
IL-2Rb chain), and rapidly expressed cytokines

upon activation (Atherly et al. 2006; Broussard
et al. 2006; Dubois et al. 2006; Hu et al. 2007).

These phenotypes are characteristic of memory

cells in the periphery—however, developmental
studies and fetal thymic organ cultures provided

evidence that Itk-deficient CD8 cells developed

these characteristics within the thymus (Atherly
et al. 2006; Broussard et al. 2006; Dubois et al.
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Figure 4.Regulation of T-cell lineages by Itk. In the thymus, progenitor T cells (CD42CD82CD32; DN) develop
into gd T cells and ab T cells. Cells developing in the ab T-cell lineage progress through an intermediate
CD4þCD8þ (DP) stage prior to their maturation into mature conventional ab T cells, CD1d-restricted ab

NKT cells and other subsets of innate-like ab T cells. Conventional ab T cells, which are selected on classical
MHC molecules expressed on thymic stromal cells, and ab NKT cells, which are selected on the MHC class
IB molecule, CD1d, expressed on hematopoietic cells (HC) and dependent on SLAM receptor signaling, are
greatly reduced in the absence of Itk. In contrast, innate-like ab T cells, which are also selected by
recognition of MHC molecules on HC and require SLAM receptor signaling, and “innate-like” gd T cells
(gd NKT) are substantially increased in number in Itk-/- mice. A third subset of cells, illustrated by
conventional gd T cells, appear unaffected by the presence versus the absence of Itk. Currently, the cell–cell
interactions required for gd T-cell development are unknown.
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2006). Although genetic crosses showed a re-

quirement for MHC Class I for their develop-

ment, transfers of bone marrow from Itk-/- or
Rlk-/-Itk-/- mice into irradiated b2m-deficient

mice, which lack MHC-Class I on their radio-

resistant thymic stroma, showed that Itk-/- and
Rlk-/-Itk-/- CD8þ thymocytes could be selected

on hematopoietically derived cells (Broussard

et al. 2006). Although these observations are
atypical for conventional thymocytes, these fea-

tures are all reminiscent of NKT cells and other

related innate T-cell lineages; thus, many innate
T-cell lineages have been shown to be selected

on double-positive thymocytes, to express acti-

vation or memory cell markers, and to rapidly
produce cytokines even in the thymus (Berg

2007). Like NKT cells, Itk-/- and Rlk-/-Itk-/-

CD8þ cells also expressed NK cell markers and
high levels of the transcription factor Eosmeso-

dermin, and were dependent on IL-15 (Atherly

et al. 2006; Dubois et al. 2006). Moreover, like
NKT cells, development of these CD8 cells was

dependent on SAP, a small adaptor molecule

that is required for signaling from the SLAM
family of receptors that are expressed on hema-

topoietic cells, but not on the thymic epithe-

lium (Horai et al. 2007). Together these
characteristics suggested that Itk-deficiency led

to the preferential selection of an innate CD8

cell population on hematopoietic cells within
the thymus (Fig. 4).

Although this phenotype is primarily seen

in CD8 cells, there is also a small population of
CD4 cells that show these properties in Itk-/-

mice. These CD44hiCD4þ cells are also depend-

ent on SAP and express PLZF, a transcription
factor responsible for the innate characteristics

of NKT cells (PLS and LJB, unpublished data

and Broussard et al. 2006; Hu and August
2008; Raberger et al. 2008). Although the select-

ing cell population for the innate type T cells in

Itk-/- mice is yet undetermined, the large num-
ber of CD8 cells with this characteristic (and

relatively low numbers of CD4 cells) suggests

that it is likely to be DP thymocytes, which
express MHC Class I but not Class II, and are

the selecting cells forNKT cells (Bendelac 1995).

Why loss of Itk leads to the preferential
development of CD8 cells with this phenotype

is not clear. Reciprocal transfers of Itk-/-b2m-/-

bone marrow provided evidence that the devel-

opment of these innate phenotypes required
selection on hematopoietic cells (Horai et al.

2007). One possibility is that poor selection of

conventional thymocytes could permit selec-
tion or expansion of cells selected on hema-

topoietic cells. However, transfer of WT bone

marrow into irradiated b2m-deficient hosts
prevents selection of conventional CD8þ T cells

and yet does not give rise to a large number of

innate CD8 cells, suggesting that development
of these cells is normally suppressed. Given

the rapid production of cytokines showed by

these cells, it is likely that the generation of these
cells may be under tight control.

Several theories could account for the devel-

opment of this population in Itk-/- mice. Itk
could play a negative role in signaling pathways

required for the development of these lineages,

such those downstream of SLAM family recep-
tors. Alternatively, these cells might normally

be deleted in wild-type animals—negative

selection can occur on hematopoietic cells,
which express costimulatory molecules, such

as CD28, thought to be important in this proc-

ess (Punt et al. 1994). Alternatively, defective
TCR signaling may make these cells more

susceptible to signals from costimulatory mole-

cules, such as SLAM family members, or cyto-
kines that may be required either for selection

or development of these phenotypes (Atherly

et al. 2006; Dubois et al. 2006; Horai et al.
2007). Further analyses will provide clues to

the regulation of these interesting lineages that

appear to be at the boundaryof innate and adap-
tive immune responses (Berg 2007).

Itk Signaling Regulates ab and gd NKT-Cell
Maturation

In addition to defects in the development
and selection of conventional naı̈ve CD4þ and

CD8þ T-cells, abTCRþ NKT-cell maturation

is also impaired in the absence of Itk and Rlk
(Gadue and Stein 2002; Au-Yeung and Fowell

2007; Felices and Berg 2008; and Fig. 5). In these

Tec kinase-deficient mice, ab NKT cell num-
bers are substantially reduced; furthermore, of
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the cells that remain, few represent the most

mature ab NKT subset characterized by high

expression of NK1.1 and CD122, and down-
regulation of CD4. Itk-/- and Itk-/-Rlk-/- NKT

cells also show poor responses to TCR stimula-

tion, producing little to no IL-4 and IFNg
following in vivo activation. Thus, similar to

conventional ab T cells, ab NKT cells require

Tec kinases for their development and function.
In stark contrast to the requirements for

abTCRþ T cells, the development of gd T cells

does not require Itk signaling (Fig. 4). The
major gd T-cell populations that arise in the

fetus and adult are largely unchanged in Itk-/-

mice (Felices et al. 2009; C. Yin and LJB, unpub.
observ.). Indeed, overall gḋT cell numbers in

Itk-/-mice are significantly increased compared

towild-typemice, because of dramatic increases
in one particular gd T-cell subset, the gd NKT

cells (Felices et al. 2009; Qi et al. 2009). This

subset expresses the Vg1.1/Vd6.3 TCR; how-
ever, in all other regards, these gd T cells share

characteristics of CD1d-specific ab NKT cells

rather than traits associated with most adult-
derived gd T cells (Vicari et al. 1996; Azuara

et al. 1997; Lees et al. 2001). For instance, the

majority of gd NKT cells express CD4, NK1.1,
and the signature NKT cell transcription factor,

PLZF (Felices et al. 2009; Kreslavsky et al. 2009).

As a result, gdNKT cells, like their abNKT cell
counterparts, produce both IFNg and TH2

cytokines. In addition, these cells preferentially

home to the liver, rather than to lymphoid
organs such as the spleen (Lees et al. 2001; Feli-

ces et al. 2009).

Surprisingly, this expanded population of
gd NKT cells is responsible for a spontaneous

hyper-IgE syndrome observed in Itk-/- mice

(Felices et al. 2009; Qi et al. 2009). When
Itk-/-mice are crossed tomice lacking gdT cells,

the elevated serum IgE and germinal center

hyperplasia seen in Itk-/- mice disappear. Itk-/-

splenic gd NKT cells constitutively express

ICOS, and readily upregulate CD40-ligand

and OX40 following gd TCR stimulation in
vitro (Felices et al. 2009). These findings suggest

that Itk-/- gd NKT cells are being activated

in vivo, allowing them to provide T cell help
to B cells and secrete cytokines that promote

switching to IgE. As with the majority of gd

T cells, the ligand recognized by the Vg1.1/
Vd6.3þ TCR is unknown, nor is it known
whether activation of these cells requires signal-

ing through the gd TCR.

These findings raise several interesting
issues regarding the development and signaling

properties of gdT cells. In contrast toabT cells,

gd T cells are not reduced in the absence of Itk;
further, the gd NKT cell population is, in fact,

greatly expanded. These data indicate that the

signals regulating gd T-cell development do
not require Itk, a situation comparable to that

seen for innate CD8þ ab T cells. The expansion

of both the gd NKTand the innate CD8þ pop-
ulation in Itk-/-micemay reflect the fact that the

majority of these cells normally undergo nega-

tive selection, but that their deletion is impaired
in the absence of Itk.

A second interesting issue is the apparently

robust TCR signaling in Itk-/- gd T cells. ab T
cells lacking Itk have substantially reduced

responses to TCR signaling, particularly in their

ability to synthesize effector cytokines. Itk-/- gd
T cells, however, produce copious amounts of

cytokines in response to gd TCR stimulation.

These data suggest that the biochemical path-
ways downstream of the gd TCR are likely

distinct from those in ab T cells. Consistent

with this idea, mice carrying a mutant version
of the adapter protein LAT also have few ab T

cells but greatly increased numbers of gd T cells

that overproduce TH2 cytokines; further, these
mice share the hyper-IgE syndrome seen in

Itk-/- mice (Nunez-Cruz et al. 2003). This LAT

mutant is lacking a critical tyrosine in the cyto-
plasmic tail that is essential for efficient TCR

signaling in ab T cells, reinforcing the notion

that aḃ and gd TCR signaling have distinct
biochemical requirements.

ITK AND HUMAN DISEASE

Although mutations affecting Btk were identi-

fied as the cause of X-linked Agammaglobuline-
mia 17 years ago (Rawlings et al. 1993; Thomas

et al. 1993; Tsukada et al. 1993; Vetrie et al.

1993), alterations in Itk have only recently
been associated with human disorders. These
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include Itk promoter polymorphisms associ-

ated with atopy (Graves et al. 2005) and the

expression of an Itk-Syk fusion protein gener-
ated by a chromosomal translocation in T-cell

lymphomas (Streubel et al. 2006); in this latter

case, the Itk PH domain becomes fused to the
kinase domain of Syk, leading to constitutive

activation of the kinase. Most recently, a muta-

tion affecting Itk was found in 2 siblings who
died from fatal Epstein-Barr Virus infection

(Huck et al. 2009). This mutation changes a sin-

gle amino acid in the Itk SH2 domain and desta-
bilizes the Itk protein. Although the basis for

this particular immunodeficiency is unknown,

it may be related to Itk function in cytotoxic
CD8þ T cells (Bachmann et al. 1997; Atherly

et al. 2006). Importantly, the implication of

Itk in a human primary immunodeficiency
has validated its role as a critical regulator of

T lymphocyte function. Given the depth of

information on lymphocyte biology provided
through the study of Tec kinases, it is clear

that their study will continue to provide im-

portant insights into the signaling pathways
involved in immune cell development, homeo-

stasis and function.
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