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ABSTRACT
BackgroundUremic cardiomyopathy, characterized by left ventricular hypertrophy, diastolic dysfunction,

and impaired myocardial strain, contributes to increased cardiovascular mortality in patients with CKD.

Emerging evidence suggests a pathogenic role for T cells during chronic heart failure.

Methods To determine whether T cells contribute to uremic cardiomyopathy pathogenesis, we modeled

this condition by inducing CKD via 5/6th nephrectomy in mice. We used flow cytometry to assess expres-

sion of markers of T cell memory or activation by lymphocytes from CKD mice and controls, as well as

lymphocyte capacity for cytokine production. Flow cytometry was also used to quantify immune cells

isolated from heart tissue. To test effects of T cell depletion on cardiac function, we gave CKD mice

anti-CD3 antibody injections to deplete T cells and compared heart function (assessed by echocardiog-

raphy) with that of controls. Finally, we correlated T cell phenotypes with structural and functional mea-

sures on clinically acquired echocardiograms in children with CKD.

Results Mice with CKD accumulated T cells bearing markers of memory differentiation (CD44hi) and acti-

vation (PD-1, KLRG1, OX40), as reported previously in human CKD. In addition, mice with CKD showed T

cells infiltrating the heart. T cell depletion significantly improved both diastolic function and myocardial

strain in CKD mice without altering hypertension or degree of renal dysfunction. In children with CKD,

increasing frequency of T cells bearing activation markers PD-1 and/or CD57 was associated with wors-

ening diastolic function on echocardiogram.

Conclusions CKD results in an accumulation of proinflammatory T cells that appears to contribute to

myocardial dysfunction.

J Am Soc Nephrol 30: 407–420, 2019. doi: https://doi.org/10.1681/ASN.2017101138

Uremiccardiomyopathy,characterizedby leftventric-

ular hypertrophy (LVH), diastolic dysfunction, and

impaired ventricular strain, is a common finding in

children with CKD1–4 and predicts mortality among

adults with CKD.5–7 However, the underlying mech-

anisms contributing to the development of uremic

cardiomyopathy are complex and incompletely un-

derstood, limiting therapeutic approaches.

CKD represents a unique, nontraditional risk factor

forcardiovasculardisease.Biomarkersof inflammation,

including circulatingTNF,C-reactiveprotein, and IL-6,

correlate with the structural and functional changes of

uremic cardiomyopathy8–11 and mortality12–14 in the

CKD population. In addition, loss of naïve T cells and

accumulation of memory T cells15,16 with proinflam-

matory cytokine secretion capacity17–19 have been de-

scribed in the peripheral blood of patients with CKD,
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and correlate with cardiovascular events20,21 in this patient popu-

lation. We have recently reported that children with CKD,

despite their young age and limited antigen exposure, also accu-

mulate memory T cells with similarly altered phenotypes.22 Spe-

cifically, we found children have variably increased frequency of

central and effector memory T cells bearing programmed cell

death 1 (PD-1) or CD57, markers of sustained activation.

Emerging evidence now supports a pathogenic role for T

cells during hypertension23–25 and pressure overload–induced

heart failure.26–29 Here, we present several pieces of evidence

supporting a causal role for T cells in the pathogenesis of

uremic cardiomyopathy, potentially serving as a link between

inflammation and cardiac remodeling during CKD.

METHODS

Mouse CKD Model

CKD was induced in 5-week-old, male 12931/SvJ mice (JAX)

through 5/6th nephrectomy as previously described.30 Age-

matched mice undergoing bilateral sham surgeries served as

controls. All animal experiments were conducted in accor-

dance with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals, using protocols approved

by Emory University Institutional Animal Care and Use Com-

mittee (protocol 2003480). T cell depletion experiments used

100 mg anti-CD3e antibody (InVivoPlus, clone 145–2C11; Bi-

oXcell, West Lebanon, NH) or isotype antibody (polyclonal

Hamster IgG; BioXcell) administered via intraperitoneal in-

jection every 3–4 days. Plasma urea (catalog no. K024-1H;

Arbor Assays, Ann Arbor, MI) and cystatin C (R&D Systems,

Minneapolis, MN) concentrations were determined following

manufacturer protocols.

Small-Animal Cardiovascular Evaluation

Transthoracic echocardiography (Vevo2100; VisualSonics,

Toronto, Canada) was performed on mice under 1%–2% iso-

flurane anesthesia. Left ventricular diastolic function was

assessed by measuring the wave ratio of the left ventricular

transmitral early and late peak flow velocities (E/A ratio) of

four or five averaged cardiac cycles from at least two scans per

mouse. Ventricular strain analyses were conducted using

speckle-tracking software (Vevostrain Analysis) as previously

reported.30 BP were measured using noninvasive tail-cuff

measurements (BP-2000 BP Analysis System; Visitech Sys-

tems, Apex, NC) after a minimum of 5 days of behavioral

acclimation.

RNA Sequencing

Mice (n=5 CKD, n=5 sham) were euthanized at 8 weeks after

partial nephrectomy: hearts were flushed with PBS while still

beating, and then removed. The left ventricle was isolated and

preserved in RNA later overnight at 4°C, and stored at 280°C

until processing for RNA. Total RNA isolation and complemen-

tary DNA libraries from murine hearts were constructed using

standard methods on the basis of the Illumina TruSeq platform.

Libraries were validated by microelectrophoresis, quantified,

pooled and clustered on Illumina TruSeq v3 flowcells, and se-

quenced on an Illumina HiSeq 1000 in 100-base, single-read

reactions. mRNA sequencing reads were aligned to the mm10

(University of California, Santa Cruz)mouse reference assembly

and annotated using the STAR RNA-seq aligner (version

2.4.0f1).31Transcript assembly, abundance estimates, and differ-

ential expression analysis were performed using Cufflinks v2.1.1

and Cuffdiff.32 Significant differential expression was deter-

mined using a Benjamini–Hochberg corrected false discovery

rate of,0.05. Pathway analysis of differentially expressed genes

was performed was performed in Ingenuity Pathway Analysis

software (Qiagen) with platform-defined reference background.

The significance of the pathways was determined on the basis of

the ratio of differentially expressed genes within each pathway

and the Fisher exact test (P,0.05). Heatmaps were created for

data visualization (Partek Genomics Suite) for pathways of in-

terest. Gene expression was log-transformed (log2(x+0.001

offset) to normalize to baseline. Unsupervised hierarchical clus-

tering was performed using all differentially expressed genes in

the pathways of interest to sort the samples. As a control, path-

way and gene ontology analysis for differentially expressed genes

was performed using open-source software (DAVID) and Inge-

nuity Pathway Analysis against the user dataset as reference (see

Supplemental Appendices 1–7).

Isolation of Cardiac Immune Cells

Hearts were collected at 2 weeks after induction of CKD for

flow cytometry analysis. Hearts were flushed in situ with PBS

injected via the right ventricle. The left ventricle was then

dissected, weighed, cut into pieces, and digested in RPMI con-

taining 0.12 mg/dl of Liberase TM (Roche) for 10 minutes at

37°C with vigorous stirring (280 rpm). Supernatant was then

added to 10ml of ice-cold RPMI supplemented with 10% FBS.

Two milliliters of fresh digestion buffer were then added to

remaining tissue fragments and incubated for an additional

10 minutes. Cell suspensions were then pooled and washed in

fresh RPMI plus 10% FBS, then passed through a 40-mm cell

Significance Statement

Uremic cardiomyopathy, which features left ventricular hypertro-
phy, diastolic dysfunction, and impaired myocardial strain, predicts
mortality in patients with CKD. In this study, the authors present
findings supportingemergingevidence that T cells play a causal role
in diastolic dysfunction during CKD. In a mouse model of CKD, they
demonstrate that T cells infiltrate the heart and lead to diastolic
dysfunction and impaired ventricular strain, whereas depletion of T
cells improves diastolic function and myocardial strain. They also
show that in children with CKD, increasing frequency of T cells
bearing markers of sustained activation (PD-1 and CD57) is associ-
ated with echocardiographic indications of worsening diastolic
function. Future research may inform novel therapies that target T
cell function to mitigate early subclinical myocardial dysfunction
during CKD.
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strainer and stained for flow cytometry (see Table 1 in Sup-

plemental Appendix 8).

Flow Cytometry and viSNE Analysis

Single-cell suspensions fromperipheralbloodor spleenofmice

were stained with fluorophore-conjugated monoclonal

antibodies (see Table 1 in Supplemental Appendix 8), inter-

rogated using an LSRII flow cytometer (BD Biosciences) and

analyzed using FlowJo software (Treestar). T cell memory sub-

sets were defined by expression of CD44 and CD62L as de-

scribed in Figure 1. Frequency of PD1hi, KLRG1hi, and OX40hi

were determined for CD4+ and CD8+ populations using neg-

ative gates defined by “fluorescent minus one” stained sam-

ples. CountBright beads (Life Technologies) were used to

quantify volume analyzed for blood, lymph node, and heart

samples. Flow cytometry standard files generated from pregat-

ing on total T cells (CD3+CD192) were imported into the

Cytobank online platform (www.cytobank.org) for viSNE33

analyses of high-dimensional flow cytometry data. The viSNE

algorithm generates two additional variables for each cell, the

tSNE components, after nonlinear dimensionality reduction

of multicolor flow data using t-stochastic neighbor
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Figure 1. Mice with CKD accumulate memory T cells. (A) Gating strategy for T cell memory subsets. TEM (effector memory cells) are
CD44+CD62L2, TCM (central memory cells) are CD44+CD62L+, and naïve cells are CD442CD62L2. (B) Comparison of relative fre-
quencies of memory subsets for CD4 and CD8 T cells between sham-operated and CKD mice. (C) Frequency of memory subsets for
CD4+ and CD8+ T cells from spleen are compared between sham-operated and CKD mice. Data are representative of three in-
dependent experiments. *P,0.05; ***P,0.001.
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embedding (t-SNE). The t-SNE components are then visual-

ized on a two-dimensional dot plot (t-SNE map) to enable

pattern recognition of the unsupervised clustering of cells.

Ex Vivo Stimulation and Intracellular Cytokine Staining

Isolated splenocytes were plated at 13106 cells per well in

RPMI 1640 media supplemented with 10% heat-inactivated

FBS, 1% L-glutamine, 1% penicillin/streptomycin, 1%

2-mercaptoethanol, and 1 mg/ml of Brefeldin A, and then in-

cubated at 37°C for 4 hours in the presence or absence of PMA

(Sigma, St. Louis, MO) and ionomycin (Sigma) at a concen-

tration of 1 mg/ml each. Intracellular cytokine staining was

performed after fixation and permeabilization (BioLegend,

San Diego, CA) using fluorescence-labeled antibodies

against IFNg, TNF, and IL-2 (see Table 1 in Supplemental

Appendix 8).
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Figure 2. Hearts of mice with CKD have genetic signature of adaptive immune response and infiltration of T cells. Mice underwent
cardiovascular phenotyping at 8 weeks after 5/6th nephrectomy (CKD, n=5) or sham surgery (n=5), followed by heart isolation for gene
expression. (A) Echocardiography demonstrates LVH (increased LVAW;d), diastolic dysfunction (decreased E/A ratio and increased
MPI), and impaired myocardial deformation (longitudinal strain), but normal systolic function (EF and FS). Heart tissue from mice in (A)
were processed for RNA isolation and sequenced and subsequently analyzed for changes differential expression on the basis of (D)
biofunction group and (B) canonical pathways using the Ingenuity analysis platform. (C) Heatmap shows relative expression of indi-
vidual within pathways of the adaptive immune response between hearts from sham-operated and CKD mice: (1) antigen presentation,
(2) dendritic cell maturation, (3) leukocyte extravasation, (4) T cell costimulatory signaling, and (5) helper T cell differentiation. (E) Flow
cytometry analysis of hearts from mice demonstrate increased leukocytes, including CD4+ T cells in the hearts of mice with CKD.
*P,0.05; **P,0.01; ***P,0.001. Dev/Fxn, development and function; EF, ejection fraction; FS, fractional shortening; LV, left ventricle;
LVAW;d, diastolic left ventricle anterior wall thickness; MPI, myocardial performance index; WBC, white blood cells.
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Pediatric CKD T Cell Phenotype and Echo Correlation

T cell memory phenotypes and expression of CD57 and PD-1

were previously reported in a cross-sectional observational

study of children with CKD (ClinicalTrials.gov identifier:

NCT01283295).22 Memory cell subsets were defined by

expression of CCR7 and CD45RA (naïve CD45RA+CCR7+,

central memory CD45RA2CCR7+ , effector memory

CD45RA2CCR72, and effector memory RA CD45RA+CCR72)

as previously described.34 Charts were reviewed and partici-

pants with clinically acquired echocardiograms during the

study period identified. Echocardiographic reports and images

were reviewed for completeness. Echocardiogram studies with

complete assessment of diastolic function (e.g., Doppler

images) were included for further analysis (see Figure 3 in

Supplemental Appendix 8). Spearman correlation analyses

were performed using SAS Version 9.4 for Windows (SAS In-

stitute Inc., Cary, NC) to assess for associations between flow

cytometry phenotypes (frequencies of T cell memory subsets,

CD57 expression, and/or PD-1 expression) and continuous

variables for cardiac structure or function. Diastolic function

was assessed by the ratio of early diastolic transmitral flow (E)

to early diastolicmitral annular tissue (e’) velocities onDoppler

(E/e’ ratio).35 For cardiac structure, we used the SD score

(z score) for sex and age of the height-indexed left ventricular

mass (measured as grams per meter2.7).36 The limited sample

size precluded multivariable correlations and assessment of

confounding variables.

RESULTS

T Cells Infiltrate the Hearts of CKD Mice

We first set out to characterize transcriptional changes in

the left ventricles of mice with CKD to identify differentially

regulated inflammatory pathways. As we have previously

reported,30mice with CKDdisplay LVH and diastolic dysfunc-

tion with preserved systolic function (see Figure 2A). RNA

sequencing of hearts from mice with uremic cardiomyopathy

yielded over 1000 differentially expressed mRNA transcripts

compared with hearts from age-matched, sham-operated

mice (see Supplemental Appendices 1–7). Interestingly, Inge-

nuity biofunctions analysis identified significant enrichment

for genes involved in immune processes (Figure 2D), includ-

ing immune cell trafficking, humoral immune response, and

cell-mediated immune response. Furthermore, ten of the top

20 differentially expressed Ingenuity canonical pathways in-

volved inflammation and immune system function (Figure

2B), including pathways needed for a T cell–mediated re-

sponse: leukocyte extravasation, antigen presentation, den-

dritic cell maturation, T cell costimulatory signaling, and

helper T cell differentiation (Figure 2, C and D). Finally,

flow cytometry analysis of hearts from normal versus CKD

mice showed increased numbers of leukocytes (CD45+) per

left ventricular mass, which were predominated by CD4+ T

cells (Figure 2E). In summary, T cells infiltrate the hearts of

mice with CKD and heart transcripts from mice with CKD

show differential expression of pathways needed for a T cell

response, namely access to tissue, antigen presentation, and T

cell costimulation.

Mice with CKD Accumulate T Cells with Memory

Phenotype
We have previously reported that children with CKD have in-

creased frequency of memory T cells expected for their age.22

We next determined whether the CKD mouse model recapit-

ulates the T cell alterations seen in patients with CKD. Flow

cytometry analysis of spleen and peripheral blood lympho-

cytes revealed accumulation of CD4+ memory T cells (CD44hi)

with concomitant decrease in naïve CD4+ T cells (Figure 1,

B and C). CKD mice also displayed increased frequency and

absolute counts of both central memory (CD44hiCD62L+) and

effector memory (CD44hiCD62L2) CD4+ T cells. In contrast,

the frequency and absolute counts (data not shown) of naïve

versus memory CD8+ T cells remained similar between CKD

and sham-operated mice (Figure 1). However, CKD mice

displayed a shift within the CD8+ memory cell population to-

ward the effector memory phenotype with fewer central mem-

ory cells than sham controls (Figure 1, B and C).

T Cells from Mice with CKD Display Markers of

Sustained Activation and Increased Cytokine Secretion

Potential

Wenext performed exploratory analysis offlowcytometry data

using the viSNE computational program33 to identify high-

dimensional relationships of T cell phenotypic and activation

markers between mice with and without CKD. The viSNE

program allows visualization of high-dimensional flow

cytometry data while maintaining cell-level statistics. Multi-

parameter flow cytometry data undergoes nonlinear dimen-

sionality reduction via t-SNE to generate two additional

variables for each cell, the tSNE components, which are then

visualized on a two-dimensional dot plot (t-SNE map). The

proximity of cells in the t-SNE map reflects their distance in

high-dimensional space, thus cells with similar protein ex-

pression are clustered together, allowing identification of

high-dimensional associations of markers that may be missed

by conventional flow cytometry gating.37 Individual protein

markers detected by fluorescence-tagged antibodies are visu-

alized via color scale in the t-SNE maps (see Figure 3A).

The viSNEanalysis confirmed the redistributionofmemory

cell phenotypes between CKD and sham controls. Mice with

CKD also displayed increased frequency of effector memory

CD4+ T cells (CD44hiCD62Llo) bearing killer cell lectin-like

receptor subfamily G, member 1 (KLRG1), PD-1, and/or

OX-40, suggestive of sustained antigen stimulation. The t-SNE

maps also demonstrate that the expression of these three acti-

vationmarkers are notmutually exclusive nor completely over-

lapping and are mostly contained within the CD4+ T cell

effector and central memory populations. Using conventional

flow cytometry gating, we confirmed a statistically significant
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Figure 3. T cells from mice with CKD bear markers of activation and produce more cytokine in vitro after stimulation. (A) Represen-
tative t-SNE maps of flow cytometry data from T cells isolated from sham-operated versus CKD mice. The proximity of cells in the t-SNE
map reflects their distance in high-dimensional space, thus cells with similar protein expression are clustered together. The color scale

412 Journal of the American Society of Nephrology J Am Soc Nephrol 30: 407–420, 2019

BASIC RESEARCH www.jasn.org



increase in frequency of total CD4+ T cells expressing KLRG,

PD-1, or OX-40 (Figure 3B) in mice with CKD.

To explore the effect of CKD on T cell functionality, we

assessed the capability of splenic T cells from mice with and

without CKD to express cytokines after brief ex vivo stimula-

tion. Stimulation resulted in increased frequency of both

CD4+ and CD8+ T cells expressing TNF or IFNg (Figure

3C) in mice with CKD compared with sham controls. There

was also an increased frequency of CD4+ T cells expressing

IL-2. Furthermore, we found increased frequency of CD4+ T

cells with the capacity to simultaneously produce IL-2, TNF,

and IFNg inmicewithCKD. Finally, the expression of TNFwas

higher in CD4+ T cells from CKD mice as determined by in-

creased median fluorescence intensity. Taken together, mice

with CKDhave profound systemic alterations in T cellmemory

and activation status with increased proinflammatory cytokine

secretion capacity, similar to that previously reported in

patients with CKD.

T Cell Depletion Ameliorates Diastolic Dysfunction in

Mice with CKD

We next determined if T cells are mechanistically involved in

the pathogenesis of uremic cardiomyopathy by testing the ef-

fect of T cell depletion on cardiac function in mice with CKD.

Micewith CKD received injections ofmAb directed against the

pan-T cell marker CD3 (Figure 4A), and were compared with

CKD and sham operated mice receiving injections of isotype-

identical antibody to third-party antigens (isotype control).

Anti-CD3 antibody treatment was successful in reducing the

absolute number of CD4+ and CD8+ T cells in thoracic lymph

nodes (Figure 4, C and E) by 4000- to 8000-fold, and in the

spleen (Figure 4, D and F) by approximately 500-fold. In ad-

dition, thoracic lymph nodes, which are enlarged in CKD

mice, were significantly reduced in mice receiving anti-CD3

antibody treatment (Figure 4B).

After 6 weeks of treatment, mice receiving anti-CD3 anti-

body showed improved diastolic function on echocardiogra-

phy (Figure 4G), as indicated by increased E/A ratio, decreased

myocardial performance index, and normalization of longitu-

dinal strain, compared with CKD mice receiving isotype

antibody injections. Measures of LVH including increased an-

terior wall thickness (1.39260.014 versus 1.45260.1366 mm;

P=0.30) and increased left ventricular mass (117.2616.7 ver-

sus 113.8616.7 mg; P=0.61) were not improved in mice after

T cell depletion, compared with CKD mice treated with

isotype control. Furthermore, systolic BP, plasma urea

concentration, and plasma cystatin C concentration were un-

altered by T cell depletion (Figure 4H). We were unable to

detect circulating TNF in the plasma of CKD mice treated

with this antibody (see Figure 1 in Supplemental Appendix

8). Expression of type 1 collagen transcripts were not signifi-

cantly different between sham and CKD mice (see Figure 2

in Supplemental Appendix 8). Expression of atrial natriuretic

peptide and brain natriuretic peptide were not significantly dif-

ferent in CKD mice depleted of T cells (see Figure 2 in Supple-

mental Appendix 8). In summary, depletion of T cells in mice

with CKD resulted in improved cardiac diastolic function inde-

pendent of changes in LVH, BP, or renal function.

T Cell Subsets Correlate with Ventricular Function in

Children with CKD
We next determined whether T cell activation and memory

phenotypes are associated with cardiac function in patients

with CKD by utilizing existing data from our previous obser-

vational studyofTcell phenotypes in childrenwithCKD.22Out

of the 80 children for whichwe had T cell phenotyping, 51 had

clinically acquired echocardiogramswithin 2 years of the study

blood draw (see Figure 3 in Supplemental Appendix 8). Of these,

13 had echo studies with diastolic function assessment using the

E/e’ ratio. Demographic information of this subcohort can be

found in Table 3 in Supplemental Appendix 8. Although limited

in sample size, we found moderate-to-strong associations (Fig-

ure 5) between the accumulation of T cells bearing PD-1 and/or

CD57 with worsening diastolic function (increasing E/e’ ratio).

Conversely, the accumulation of terminally differentiated effec-

tor memory CD4+ T cells (CCR72CD45RA+) showed a mod-

erate association with improving diastolic function. In addition,

we found moderate-to-strong associations between the loss of

naïve CD4+ or CD8+ T cells or the accumulation of CD4+ ef-

fector memory T cells with LVH. Finally, decreasing CD4:CD8

ratio, which is seen with continuous antigen stimulation or ad-

vanced aging, showed a moderate-to-strong association with

worsening diastolic function and a modest association with in-

creased left ventricular mass.

DISCUSSION

Cardiovascular disease remains amajor cause ofmorbidity and

mortality among children38,39 and adults40 with CKD, but the

underlying mechanisms are incompletely understood and we

remain without effective treatment41–46 to improve outcomes.

in eachmap row represents the fluorescence intensity from high (red) to low (blue) for each antibodymarker listed, except for the first row,
which represents event (or cell) density within the sample. The area of the map representing the CD4+ effector memory T cell population
(CD44+CD62L2) is outlined for reference. (B) Quantitative representation of activation marker expression frequency within total CD4+ or
CD8+ cell populations. (C) Cytokine expression as determined by intracellular staining and flow cytometry after in vitro stimulation. Data
are representative of three independent experiments. *P,0.05; **P,0.01; ***P,0.001. MFI, median fluorescence intensity; OX40 (also
known as CD134); PE, phycoerythrin.
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Uremic cardiomyopathy is a progressive cardiovascular compli-

cation in children2,47 and adults with CKD48–51 and is charac-

terized by LVH and diastolic dysfunction. More recently,

myocardial strain, which may signify subclinical cardiac dysfunc-

tion, has been shown to be impaired during early stages ofCKD4,52

and predicts risk for cardiovascular events52 and mortality.6,7,53

In this report,we found several lines of evidence to support a

role for T cells in the pathogenesis of diastolic dysfunction and

impaired myocardial strain during uremic cardiomyopathy.

First, T cells infiltrate uremic hearts early (2 weeks) in the

uremic cardiomyopathy mouse model. In addition, next-

generation RNA sequencing of uremic hearts identified en-

richment for genes in pathways required for T cells to affect

pathology, namely the recruitment, priming, and maturation

ofT cells. Furthermore,micewithCKDaccumulate circulating

memory T cell populations bearing costimulatory and coin-

hibitory receptors suggestive of repeated activation and dis-

played enhanced cytokine secretion capacity in vitro, similar to

that described in patients with CKD.15,16,22 Additionally, the

frequency of T cells bearing markers of sustained activation

(PD-1, CD57) correlated with diastolic function in children

with CKD. Finally, we established a mechanistic role of T cells

in uremic cardiomyopathy as diastolic function and myocar-

dial strain improved when T cells were depleted in mice with

CKD independent of any secondary effect of hypertension or

degree of renal dysfunction. Taken together, CKD results in

systemic accumulation of proinflammatory T cells that play a

causal role in myocardial pathology.

Both diastolic dysfunction54 andmyocardial strain7 predict

mortality in adults and should therefore be considered clini-

cally relevant outcomes in preclinical and translational studies

of uremic cardiomyopathy. In clinical studies, diastolic dys-

function is often associated with LVH, resulting in a presump-

tion that ventricular stiffness is secondary to thickening and/

or fibrosis of the myocardium.2,49 In our previous work,30 we

found that diastolic dysfunction and impaired myocardial

strain in mice with CKD were actually detectable before the

development of LVH on echocardiogram. Similarly, diastolic

dysfunction has been shown to precede the development of

both elevated BP and LVH during essential hypertension.55–57

T cell depletion in the mouse CKD model decoupled LVH

from diastolic dysfunction as we observed improved diastolic

indices (E/A ratio, isovolumic relaxation time, andmyocardial

performance index) and myocardial strain without changes in

LVH. These data suggest that the diastolic dysfunction occur-

ring in the mouse uremic cardiomyopathy model is indepen-

dent of LVH. Furthermore, the observed effects of T cell

depletion on myocardial performance in this model do not

appear to be due to improvements in hypertension nor renal

dysfunction.

Emerging evidence supports a pathogenic role for T cells in

cardiac remodeling during pressureoverloadheart failure.26–29

Two independent groups have reported improved myocardial

structure and/or function after transaortic constriction (TAC)

in mice strains lacking T cells. Laroumanie et al.26 reported

improved systolic function (measured by fractional shorten-

ing) and myocardial fibrosis after TAC in RAG2 knockout

mice lacking both T cells and B cells, which were abrogated

with reconstitution of CD3+ T cells. Similarly, Nevers et al.29

found reduced LVH, decreased myocardial fibrosis, and im-

proved diastolic function after TAC in T cell a-receptor

knockout mice compared with wild-type controls. We have

not replicated the uremic cardiomyopathy model in mice

with genetic T cell deficiency because of a lack of readily avail-

able knockouts on the S129 background. C57BL/6 mice are

notoriously resistant to the development of hypertension,

proteinuria, and glomerulosclerosis in the partial nephrec-

tomy CKD model.58,59 We have also observed that C57BL/6

mice not develop LVH, diastolic dysfunction, or impaired ven-

tricular strain in the CKDmodel, and therefore did not pursue

experiments evaluating uremic cardiomyopathy in the T cell–

deficient strains reported by Laroumanie et al. andNevers et al.

Rather, we chose pharmacologic depletion in the S12931/SvJ

strain, which reliably reproduces the clinical features of ure-

mic cardiomyopathy.30,60 Interestingly, Nevers et al. reported

that T cell depletion using anti-CD3 antibody treatment after

TAC in wild-type C57BL/6 mice resulted in improved frac-

tional shortening and reduced fibrosis, but no difference

in LVH.

We have previously demonstrated that cardiac fibrosis is a

latefinding in themouseCKDmodel (12–16weeks of CKD).31

In line with these previous observations, at 6 weeks, we found

no difference in myocardial expression of natriuretic peptide

or type 1 collagen genes (see Figure 2 in Supplemental

Figure 4. T cell depletion improves cardiac function in mice with CKD. (A) Experimental design. Mice with CKD were intraperitoneally
injected (n=15) with depleting antibody against the pan-T cell marker, CD3, (anti-CD3) or isotype control (n=10) antibody every
3–4 days after 5/6th nephrectomy. Sham-operated mice received isotype control antibody (n=10). All mice underwent BP measure-
ments followed by echocardiogram in week 6 after final surgery, and were then euthanized for tissue harvest and flow cytometry of
blood and spleen cells. Marked reduction in T cell populations were noted in (B and C) thoracic lymph nodes and (D) spleen in mice
treated with anti-CD3 antibody. Images in (B) were taken using a gross dissecting scope; scale bar represents 2 mm. Flow cytometry
plots of (E) lymph node and (F) spleen are shown for representative samples from sham isotype, CKD isotype, and CKD anti-CD3 mice.
Echocardiogram results are presented in (G), whereas BP and renal function are presented in (H). *P,0.05; **P,0.01; ***P,0.001. b,
blood pressure; CysC, cystatin C; e, echocardiogram; FSC-A, forward scatter-area; iso, isotype control antibody; IVRT, isovolumic
relaxation time; LV, left ventricular; MPI, myocardial performance index; S1, surgery 1; S2, surgery 2; SBP, systolic BP; x, end point.
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Figure 5. T cell populations with cardiac structure and function in children with CKD. Linear regression analysis of T cell populations
reported in our previous study with diastolic function (E/e’) and LVH (as defined by LVMI z score) in children with CKD. Moderate-
strength associations (blue) were ascribed to those with Spearman correlation coefficient r.0.4, and strong associations (red) for r.0.8.
E/e’ ratio is a diastolic functional measure for which increasing ratio indicates worsening diastolic function. Memory cell subsets for this
study were defined by the relative expression of CCR7 and CD45RA on CD4+ and CD8+ T cells isolated form peripheral blood as
previously reported.22 LVMI, height-indexed left ventricular mass (g/m2.7); TCM, central memory T cells; TEM, effector memory T cells;
TEMRA, terminally differentiated effector memory CD4+ T cells.
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Appendix 8) between CKDmice receiving isotype control ver-

sus anti-CD3 antibody despite detectable differences in dia-

stolic function and myocardial strain on echo. Therefore,

fibrosis is unlikely the primary cause of early myocardial dys-

function in this model.

The mechanisms by which T cells affect myocardial dys-

function in thismodel remain to be determined. In addition to

effective depletion of T cells, the use anti-CD3 antibody clone

145–2C11 has been shown to stimulate T cells in vitro61 and

result in acute cytokine release upon initial dose in vivo.62 We

were unable to detect TNF in undiluted plasma at 6 weeks of

anti-CD3 treatment (see Figure 1 in Supplemental Appendix

8). The current data, in addition to the aforementioned studies

in knockout mice, support the conclusion that reduced T cell

number rather than sustained cytokine release mediated the

improvement in cardiac function. Additional studies investi-

gating the effect of modulating T cell activation and trafficking

in this model are ongoing.

T cells express a myriad of inducible costimulatory and

inhibitory signaling proteins during activation and differenti-

ation to fine-tune the magnitude and character of an immune

response.63–65 In the context of chronic antigen stimulation,

such as during persistent viral infections, sustained activation

of T cells leads to depletion of naïve T cells and accumulation

of terminally differentiated memory T cells that have proin-

flammatory characteristics.66,67 Similar loss of naïve T cells

and accumulation of memory T cells have been described in

the peripheral blood of patients with CKD.16,22 Here, we have

demonstrated that the 5/6th nephrectomy mouse model of

CKD recapitulates the T cell alterations described in patients

with CKD.68Using both traditional flow cytometry gating and

unsupervised clustering algorithms, we found loss of naïve

CD4+ T cells with accumulation of both central and effector

memory cells bearing the coinhibitory signaling proteins

PD-1 and KLRG1, and/or the costimulatory signaling protein

OX40 in mice with CKD.

PD-1 is an inhibitory signaling protein induced on activated

T cells that serves to control autoreactive immune responses

during inflammation.69,70 Genetic deficiencies or pharmaco-

logic blockade of the PD-1 pathway have been implicated in

several autoimmune diseases, including autoimmunemyocar-

ditis.71,72 KLRG1 is postulated to be an inhibitory signaling

receptor in antigen-experienced T cells and is dramatically

upregulated on T cells during persistent antigen stimulation,

such as during chronic viral infection.73,74

In the setting of chronic viral infection, expression of PD-1

and/orKLRG1onTcells is associatedwith immune senescence

characterized by impaired replicative and limited cytokine se-

cretion capacities.66,74However, these receptors are alsomark-

ers of T cell activation. Our data suggest this is the case in the

CKD mouse model because T cells overall retained cytokine

production capacity despite increased frequency of PD-1 and/

or KLRG1 expression. We also found that T cells from uremic

mice retain replicative capacity during ex vivo exposure to the

mitogen phytohemagglutinin (data not shown). These data

suggest that the T cell populations accumulating during

CKD, although bearing markers of phenotypic activation/

senescence, are capable of pathologic effects.

Similarly, expression of CD57 on human CD8+ T cells is

observed during persistent antigen stimulation as seen during

chronic viral infections75 and cancer.76 In these clinical settings,

CD57+ T cells are functionally characterized by IFNg secretion

and increased susceptibility to activation-induced apoptosis and

replicative senescence.75,77 However, Espinosa et al.78 recently

demonstrated that CD4+CD57+ T cells collected from renal fail-

ure patients retained the capacity to both replicate and produce

important cytokines for their function (IFNg, TNF, Granzyme

B) after ex vivo stimulation.We were unable to test the function-

ality of CD57+T cells in our historical pediatric cohort; however,

the data presented justify further functional assessment these

T cell populations and association with subclinical cardiovascu-

lar disease in patients with CKD.

In children with CKD, we found that diastolic function and

LVHcorrelatedwith different T cell populations. Expression of

the coinhibitory receptors PD-1 and CD57 were associated

with diastolic function (E/e’), whereas loss of naïve T cells

was associated with increasing left ventricular mass. Interest-

ingly, T cell depletion in the mouse model of CKD, which

improved diastolic function without improving LVH, also re-

sulted in decreased absolute counts of circulating T cells bear-

ing PD-1 or KLRG1 (data not shown). Conversely, in the

pediatric cohort, accumulation of terminally differentiated

CD4+memory T cells was associated with improving diastolic

function. One possible explanation for this observation,

which requires confirmation in future studies, is that the ter-

minally differentiated CD4+ memory T cell population repre-

sents functionally senescent cells that “lack the gas” to affect

cardiac function. Interestingly, this memory subset contains a

low frequency (approximately 1%) of cells expressing CD57.

We acknowledge that the associations between T cell pop-

ulations and features of cardiomyopathy in pediatric patients

with CKD presented here are limited because of the small

sample size. We were nevertheless surprised to find Spearman

correlation coefficients suggestive of moderate-to-strong

associations despite this limitation, and plan to confirm

these findings in a larger prospective cohort. Specific T cell

populations may serve as novel biomarkers predictive of

cardiovascular comorbidities. Furthermore, improved charac-

terization of the T cell populations affecting early, subclinical

myocardial dysfunctionduringCKDmay informdevelopment

of novel therapies to mitigate cardiovascular morbidity and

mortality in CKD.
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