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Abstract: The quantum Fourier transform (QFT) is a ubiquitous quantum operation that is used 

in numerous quantum computing applications. The major obstacle to constructing a QFT circuit 

is that numerous elementary gates are required. Among the elementary gates, T gates dominate 

the cost of fault-tolerant implementation. Currently, the smallest-known T-count required to 

construct an 𝑛-qubit QFT circuit approximated to error 𝑂(𝜀) is ~8𝑛𝑙𝑜𝑔+(𝑛/𝜀). Moreover, 

the depth of T gates (T-depth) in the approximate QFT circuit is ~2𝑛𝑙𝑜𝑔+(𝑛/𝜀) . This 

approximate QFT circuit was constructed using Toffoli gates and quantum adders. In this study, 

we present a new 𝑛-qubit QFT circuit approximated to error 𝑂(𝜀). Our approximate QFT 

circuit shows a T-count of ~4𝑛𝑙𝑜𝑔+(𝑛/𝜀) and a T-depth of ~𝑛𝑙𝑜𝑔+(𝑛/𝜀). Toffoli gates, 

which account for half of the T-count in the approximate QFT circuit reported in the previous 

study, are unnecessary in our construction. Quantum adders, which dominate the leading order 

term of T-depth in our approximate QFT circuit, are arranged in parallel to reduce T-depth.
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1. Introduction 

The quantum Fourier transform (QFT) is perhaps the most versatile component of 

quantum algorithms. It is a key component of many quantum algorithms, such as Shor’s 

factoring algorithm [1], quantum amplitude estimation algorithm [2], Harrow–Hassidim–Lloyd 

algorithm for linear systems of equations [3], and algorithms for security purposes [4–6]. 

Therefore, reducing the cost of implementing QFT would be crucial for the efficiency of many 

quantum algorithms. 

Most quantum algorithms are implemented using quantum circuits. To implement large-

scale quantum algorithms, it is necessary to construct quantum circuits using universal and 

fault-tolerant gates because quantum information is considerably fragile. Clifford + T gates are 

used such gates for various quantum error correction codes. Among these gates, Clifford gates 

can be constructed fault-tolerantly utilizing transversal operations. However, to implement the 

T gate fault-tolerantly, transversal construction cannot be used [7, 8], and relatively expensive 

methods, such as state distillation [9], are required. Therefore, when constructing quantum 

circuits, the number of T gates (T-count) should be optimized to execute quantum algorithms 

efficiently.  

Until now, the smallest-known value of the T-count in an 𝑛 -qubit QFT circuit 

approximated to error 𝑂(𝜀)  is ~8𝑛𝑙𝑜𝑔(𝑛/𝜀) , as reported in Ref. [10]. Among the 

~8𝑛𝑙𝑜𝑔(𝑛/𝜀) T gates, approximately half is used to construct relative phase Toffoli gates, and 

the other half is used to construct quantum adders. The approximate QFT circuit construction 

process in Ref. [10] can be briefly described as follows:  

(1) Remove all controlled–𝑅0 gates with angles smaller than a certain threshold value in 

the standard QFT circuit illustrated in Ref. [11] (see Figure 1), where 𝑘 ∈ {2,3,4, … , 𝑛}. 
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The threshold value is chosen to satisfy the error-bound constraint of QFT 

implementation. 

Controlled − 𝑅0	gate =

⎝

⎛

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 𝑒
JK
+LMN⎠

⎞ (1) 

(2) Construct 𝑅Q gate layers using relative phase Toffoli gates and measurements. Each 

𝑅Q gate layer forms a phase gradient transformation (PGT) circuit. A brief description 

of PGT can be found in Section 2B. 

𝑅Q(𝜃) = 𝑒SJT/+ U1 0
0 𝑒JTV

(2) 

(3) Replace 𝑅Q gate layers with quantum adders reported in Ref. [12]. 

 

FIG. 1. Standard 5-qubit QFT circuit illustrated in Ref. [11]. 
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In this study, we present a new 𝑛-qubit QFT circuit approximated to error 𝑂(𝜀). Our 

approximate QFT circuit requires ~4𝑛𝑙𝑜𝑔(𝑛/𝜀) T gates. The brief process of constructing 

our approximate QFT circuit is as follows: 

(1) Construct the 𝑅Q gate layers. Each 𝑅Q gate layer forms an inverse PGT circuit. 

(2) Remove all 𝑅Q gates with angles smaller than a certain threshold value in the QFT 

circuit. The threshold value was chosen to satisfy the error-bound constraint of the QFT 

implementation. 

(3) Replace 𝑅Q gate layers with quantum adders reported in Ref. [12]. 

The approximate QFT circuit reported in Ref. [10] uses Toffoli gates (more precisely, relative 

phase Toffoli gates and measurements) to construct the 𝑅Q gate layers. However, the 𝑅Q gate 

layers in our approximate QFT circuit are constructed without Toffoli gates. This reduces the 

T-count in the approximate QFT circuit. Compared with the approximate QFT circuit in Ref. 

[10], our approximate QFT circuit also has the advantage of a lower depth of T gates (T-depth). 

The approximate QFT circuit reported in Ref. [10] shows a T-depth of ~2𝑛𝑙𝑜𝑔(𝑛/𝜀), whereas 

our approximate QFT circuit shows a T-depth of ~𝑛𝑙𝑜𝑔(𝑛/𝜀). This T-depth reduction is a 

consequence of parallelizations of 𝑅Q gate layers in our approximate QFT circuit construction. 

Our paper is organized as follows. Section 2 provides the study background, focusing on 

QFT and PGT using quantum addition [13]. In Section 3, we construct our approximate QFT 

circuit, thereby presenting the T-count and T-depth in our approximate QFT circuit and 

conducting an error analysis. In Section 4, we summarize our paper and discuss the 

implications of our results. 
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2. Background 

A. Quantum Fourier transform 

The 𝑛-qubit QFT is defined as Eq. (3), where |𝑗⟩ is a computational basis state. 

𝑄𝐹𝑇|𝑗⟩ = ]
√+_

∑ 𝑒
abcdL
a_+_S]

0ef |𝑘⟩ (3)

The standard 𝑛-qubit QFT circuit (Figure 1) comprises 𝑛 Hadamard (H) gates, 𝑛(𝑛 − 1)/2 

controlled–𝑅0 gates, and [𝑛/2] SWAP gates, where 𝑘 ∈ {2,3,4…𝑛} [11]. A SWAP gate is 

synthesized using three controlled–not (CNOT) gates. Therefore, all components of the 

standard QFT circuit except controlled–𝑅0 gates can be synthesized using Clifford gates. In 

previous studies, several methods have been proposed to synthesize controlled–𝑅0 gates [14–

16]. In all these methods, the complete synthesis of a controlled–𝑅0 gate requires 𝑅Q gates. 

In this study, we used the method proposed in Ref. [14] to synthesize controlled–𝑅0 gates 

(Figure 2). 

 

FIG. 2. Controlled–𝑅0 gate decomposition in Ref. [14]. 

 

B. Phase gradient transformation 

The PGT on a 𝑏-qubit system and its inverse are defined as Eq. (4) and (5), where |𝑘⟩ is 

a computational basis state. 
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𝑃𝐺𝑇l|𝑘⟩ = 𝑒+KJ0/+m|𝑘⟩ (4) 

𝑃𝐺𝑇lS]|𝑘⟩ = 𝑒S+KJ0/+m|𝑘⟩ (5)

In this study, we used inverse PGT. The remaining part of this section describes how to 

implement inverse PGT in a quantum circuit.  

Inverse PGT can be executed on a 𝑏-qubit system using two methods. The first method 

uses a 𝑅Q gate layer, where each 𝑅Q gate in the layer has an angle of −𝜋/20; here 𝑘 is an 

integer from 0 to 𝑏 − 1. The circuit of the 𝑅Q gate layer is shown in Figure 3. 

 

FIG. 3. Implementation of 𝑏-qubit inverse PGT using 𝑅Q gates. 

 

The second method to implement inverse PGT on a 𝑏 -qubit system involves using 

quantum addition modulo 2l [13]. For this method, a 𝑏-qubit state |𝜓l⟩ described by Eq. 

(6) must be prepared. The state |𝜓l⟩ is prepared by applying 𝑏 H gates and the 𝑅Q gate 

layer (Figure 3) with inverse angles to the state |0⟩⊗l. 

|𝜓l⟩ =
1
√2l

r 𝑒
+KJs
+m

+mS]

sef

|𝑙⟩. (6) 

Next, we prove that the 𝑏-qubit inverse PGT can be implemented by adding the state |𝜓l⟩ to 
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the state to which we want to apply inverse PGT. This proof uses the cyclic property of modulo 

addition and exponential function and is as follows: 

𝐴𝐷𝐷|𝑘⟩|𝜓l⟩ =
1
√2l

r 𝑒
+KJs
+m

+mS]

sef

|𝑘⟩|(𝑘 + 𝑙)𝑚𝑜𝑑	2l⟩

=
1
√2l

r 𝑒S
+KJ0
+m 𝑒

+KJ(0{s)
+m

+mS]

sef

|𝑘⟩|(𝑘 + 𝑙)𝑚𝑜𝑑	2l⟩

= 𝑒S
+KJ0
+m |𝑘⟩

1
√2l

r 𝑒
+KJ(0{s)

+m
+mS]

sef

|(𝑘 + 𝑙)𝑚𝑜𝑑	2l⟩

= 𝑒S
+KJ0
+m |𝑘⟩

1
√2l

r 𝑒
+KJs|

+m
+mS]

s|ef

|𝑙}⟩

= 𝑒S
+KJ0
+m |𝑘⟩|𝜓l⟩ (7)

 

Note that there are two features of the method that use quantum addition to implement 

inverse PGT. The first feature is that the state |𝜓l⟩  is preserved after inverse PGT 

implementation, i.e., the state |𝜓l⟩ is reusable. The second is that if we have the state |𝜓l⟩ 

and want to implement the inverse PGT on a 𝑏′-qubit system via quantum addition, where 𝑏′ 

is smaller than 𝑏, the state |𝜓l|⟩ does not have to be prepared separately because the state of 

partial qubits in the state |𝜓l⟩  is |𝜓l|⟩ . This can be easily verified by considering the 

preparation of the states |𝜓l⟩ and |𝜓l|⟩ using H and 𝑅Q gates. 

 

3. Results 

A. Quantum Fourier transform circuit construction 

In this section, we construct an 𝑛-qubit QFT circuit approximated to error 𝑂(𝜀). The 

error analysis is presented in Section 3C. We use the circuit identities of Figures 2 and 4 in the 



8 

 

circuit construction process. The circuit identity of Figure 2 is from Ref. [14], and the circuit 

identities of Figures 4(a) and 4(b) are newly introduced in this study. The circuit identity of 

Figure 4(b) is a generalization of Theorem 4.1 reported in Ref. [17]. The circuit identities of 

Figure 4 can be proven easily by verifying how each computational basis state evolves through 

the circuits. 

 

FIG. 4. Circuit identities. (a) A circuit identity that is used to create the 𝑅Q gate layers in our QFT 

circuit without using Toffoli gates. In the figure, 𝐷  represents a circuit with a diagonal matrix 

representation. (b) A circuit identity that is used to parallelize 𝑅Q gate layers in our QFT circuit. In the 

figure, 𝐷] and 𝐷+ represent circuits with diagonal matrix representation. 

 

Our approximate QFT circuit construction process is as follows: 

(1) Move the even-numbered H gates to the left in the standard QFT circuit as far as 

possible. Next, divide the QFT circuit into subcircuits following the illustration in 

Figure 5. Subsequently, we show subcircuit decomposition by considering the circuit 

of Figure 6(a) as an example. 
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FIG. 5. A 5-qubit QFT circuit with moved H gates. Note that the even-numbered H gates of Figure 1 

are moved to the left of the circuit as far as possible. The QFT circuit is divided into subcircuits in each 

green box. Figure 6 shows the decomposition of the subcircuits in each green box. 

 

(2)  Transform the subcircuit demonstrated in Figure 6(a) using the following process: 

Apply the circuit identity of Figure 2 to the circuit of Figure 6(a) and combine some 

𝑅Q gates. Note that circuits with diagonal matrix representation commute. Next, apply 

the circuit identity of Figure 4(a). Then, the circuit of Figure 6(a) transforms into the 

circuit of Figure 6(b). Note that 𝑅Q gate layers are constructed without Toffoli gates. 

Apply the circuit identity of Figure 4(b) to the circuit of Figure 6(b), which further 

transforms the circuit of Figure 6(b) into the circuit of Figure 6(c). Note that two 𝑅Q 

gate layers are set in parallel. 
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FIG. 6. Transformation of QFT subcircuits. (a) A subcircuit of the QFT circuit in Figure 5. (b) A circuit 

that performs the same operation as the circuit in Figure 6(a). Note that the 𝑅Q gate layers in the red 

box are constructed without Toffoli gates. (c) A circuit which performs the same operation as the circuit 

in Figure 6(a) and 6(b). Note that the two 𝑅Q gate layers in the red box in Figure 6(b) are combined to 

a single layer in the orange box in Figure 6(c) using ancilla qubits that are initially in the state |0⟩. 

 

(3) Combine the transformed subcircuits, such as the circuit of Figure 6(c), to construct a 

QFT circuit. Note that each 𝑅Q gate in the first and last 𝑅Q gate layers have an angle 

(20S] − 1)𝜋/20, where 𝑘 is a positive integer. 

(4) Divide each 𝑅Q  gate in the first and last 𝑅Q  gate layers into an S gate and an 
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𝑅Q(−𝜋/20) gate (see Figure 7). 

 

FIG. 7. Decomposition of the 5-qubit QFT circuit. Note that in each yellow box, we divided each 𝑅Q 

gate into an S gate and an 𝑅Q gate. 

 

Next, we proceed with approximation and replace the 𝑅Q gate layers with quantum adders. 

(5) Approximation: Remove all 𝑅Q  gates whose angles have absolute values that are 

smaller than 𝜋/2l. We choose 𝑏 as log+(𝑛/𝜀). Section 3C describes the reason we 

chose this value for 𝑏. For the convenience of description, we assume 𝑏 to be a 

positive integer in the remainder of this paper. 
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(6) Insert 𝑅Q(−𝜋), 𝑅Q(−𝜋/2), and 𝑅Q(−𝜋/4) gates into the approximate QFT circuit 

to transform each 𝑅Q gate layer into an inverse PGT circuit, and add 𝑅Q(𝜋), 𝑅Q(𝜋/2), 

and 𝑅Q(𝜋/4) gates to nullify the effect of this insertion. This process increases the T-

count by [𝑛/2]. After following the abovementioned process, the approximate QFT 

circuit has the circuit form shown in Figure 8. 

 

FIG. 8. Decomposition of the 5-qubit approximate QFT circuit. We removed all 𝑅Q gates whose angles 

have absolute values that are < 𝜋/8. The 𝑅Q gate layer in each blue box performs 4-qubit PGT and 

can be replaced with a quantum adder. The 𝑅Q gates in the gray boxes are added to nullify the effect 

of the 𝑅Q gates which were added in blue boxes to make the 𝑅Q gate layers perform inverse PGTs. 

The 𝑅Q(−𝜋/4) gates in the pink boxes are not related to PGTs. 

(7) Replace 𝑅Q gate layers in the approximate QFT circuit with the (𝑏 + 1) qubit adders 
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that are constructed using the method reported in Ref. [12]. Note that the two |𝜓l{]⟩s 

must be prepared to implement two quantum additions parallelly. Preparing two 

|𝜓l{]⟩s requires 2(𝑏 + 1) 𝑅Q  gates. We synthesize each 𝑅Q  gate approximately 

with an error of 𝜀/2𝑏 using the method reported in Ref. [18]. 

 

B. T-count and T-depth in the proposed quantum Fourier transform circuit 

This section presents the required T-count and T-depth in our approximate QFT circuit. 

The T gates in our approximate QFT circuit is divided into four parts: 

(1) T gates that are required to construct quantum adders 

(2) T gates that are required for 𝑅Q gate synthesis to prepare two |𝜓l{]⟩s 

(3) 𝑛/2 + 𝑂(1) T gates (See the gray boxes in Figure 8) that are used to nullify the effect 

of 𝑅Q(−𝜋/4) gates; here the 𝑅Q(−𝜋/4) gates are used to make the 𝑅Q gate layers 

perform inverse PGTs. 

(4) 𝑛/2 + 𝑂(1) T gates that are not related to PGTs (See the pink boxes in Figure 8) 

First, we present the T-count required for quantum adders. To build a 𝑏-qubit quantum 

adder as reported in Ref. [12], we require 4(𝑏 − 1) T gates. In our approximate QFT circuit 

construction, we need (𝑛 − 𝑏 + 3) (𝑏 + 1)-qubit adders and one each from 𝑏, 𝑏 − 1, 𝑏 −

2,… , 3-qubit adders. Therefore, the required T-count for quantum adders is 4𝑏(𝑛 − 𝑏 + 3) +

2(𝑏 + 1)(𝑏 − 2). 

Second, we present the T-count required to prepare two |𝜓l{]⟩s. To prepare a |𝜓l{]⟩, 

(𝑏 + 1)  𝑅Q  gates are required. Among these 𝑅Q  gates, 𝑅Q(𝜋) , 𝑅Q(𝜋/2) , and 𝑅Q(𝜋/4) 

gates correspond to Z, S, and T gates, respectively. Therefore, we need to synthesize the 
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remaining 2(𝑏 − 2) 𝑅Q gates using Clifford + T gates to prepare two |𝜓l{]⟩s. Here, we used 

the method reported in Ref. [18] to synthesize 𝑅Q gates. When applying the method reported 

in Ref. [18], the T-count required to synthesize an 𝑅Q  gate approximated to error 𝜀′  is 

1.15 log+(1/𝜀′) + 𝑂(1). Because we synthesized each 𝑅Q gate approximated to error 𝜀/2𝑏, 

the T-count value to prepare two |𝜓l{]⟩s is 2.3(𝑏 − 2) log+(2𝑏/𝜀) + 𝑂(𝑏). 

Overall, our 𝑛-qubit QFT circuit approximated to error 𝑂(𝜀) requires 4𝑏(𝑛 − 𝑏 + 3) +

2(𝑏 + 1)(𝑏 − 2) + 2.3(𝑏 − 2) log+(2𝑏/𝜀) + 𝑛 + 𝑂(𝑏)  T gates, where 𝑏  is log+(𝑛/𝜀) . 

Therefore, the leading-order term of the T-count value in our 𝑛-qubit approximate QFT circuit 

is 4𝑛 log+(𝑛/𝜀).  

Compared with the approximate QFT circuit in Ref. [10], our approximate QFT circuit 

also has advantages in terms of T-depth. The leading-order term of T-depth in the 𝑛-qubit QFT 

circuit approximated to error 𝑂(𝜀) in Ref. [10] is from the T gates in quantum adders. The 𝑏-

qubit quantum adder in Ref. [12] has a T-depth of 2(𝑏 − 1), and the approximate QFT circuit 

in Ref. [10] requires roughly 𝑛 𝑏-qubit quantum adders. Therefore, the T-depth of the 𝑛-qubit 

approximate QFT circuit in Ref. [10] is ~2𝑛𝑙𝑜𝑔+(𝑛/𝜀). Whereas the leading-order term of the 

T-depth of our 𝑛-qubit approximate QFT circuit is 𝑛𝑙𝑜𝑔+(𝑛/𝜀). This is because we pair the 

inverse PGTs (except the first and last ones; see Figure 8) and implement two quantum addition 

in parallel. The details of the T-depth of our approximate QFT circuit are as follows. 

The T-depth in our approximate QFT circuit is also divided into four parts. The T-depth 

required for quantum adders is 𝑏(𝑛 − 𝑏 + 1) + 2𝑏 + (𝑏 + 1)(𝑏 − 2)/2 + 𝑂(1) because we 

execute two quantum additions simultaneously. The T-depth required to prepare two |𝜓l{]⟩s 

is 1.15 log+(2𝑏/𝜀) + 𝑂(1) because each 𝑅Q gate synthesis can be implemented in parallel. 

The T-depth of the remainder parts is 𝑛 + 𝑂(1) . Therefore, our 𝑛 -qubit QFT circuit 
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approximated to error 𝑂(𝜀)  requires an overall T-depth of 𝑏(𝑛 − 𝑏 + 1) + 2𝑏 + (𝑏 +

1)(𝑏 − 2)/2 + 1.15	log+(2𝑏/𝜀) + 𝑛 + 𝑂(1), where 𝑏 is log+(𝑛/𝜀). 

 

C. Error analysis 

The error between quantum circuits 𝑈 and 𝑉 is defined as the spectral norm of (𝑈 −

𝑉) [8]. This section demonstrates that our approximate QFT circuit has an error of 𝑂(𝜀) 

compared to QFT circuit. The approximation error in our approximate QFT circuit construction 

is originated from two factors: 

(1) The error resulting from the removal of 𝑅Q gates whose angles have absolute values 

that are < 𝜋/2l. 

(2) The error of gate synthesis for preparing two |𝜓l{]⟩s. 

First, we present the error of removing 𝑅Q gates. If one 𝑅Q(−𝜋/2�) gate is removed 

from a circuit, the error is	�1 − 𝑒JK/+��, which is < π/2�. Here, ‖∙‖ denotes the 𝑙+ norm. 

In our approximate QFT circuit construction process, the maximum error caused by removing 

𝑅Q gates from an 𝑅Q gate layer that performs PGT is ∑ 𝜋/2��
�el{] , which is < 𝜋/2l. We 

removed 𝑅Q  gates from (𝑛 − 𝑏 + 3)  𝑅Q  gate layers. Therefore, the error caused by the 

removal of 𝑅Q gates from QFT circuit has an upper bound of 𝜋(𝑛 − 𝑏 + 3)/2l = 𝜋(𝑛 − 𝑏 +

3)/𝑛. If 𝑏 > 3, then the error is < 𝜋𝜀. 

Next, we present the error resulting from the synthesis of 𝑅Q  gates to prepare two 

|𝜓l{]⟩s. Since we synthesized 2(𝑏 − 2) 𝑅Q gates, each of which is approximated to error 

𝜀/2𝑏, the error caused by the synthesis of 𝑅Q gates has an upper bound of 𝜀(𝑏 − 2)/𝑏, which 

is < 𝜀. Therefore, the total error, which includes errors from removing 𝑅Q  gates and gate 
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synthesis to prepare two |𝜓l{]⟩s is < 𝜀(𝜋 + 1), i.e., 𝑂(𝜀). 

 

4. Discussion 

Overall, we present a new 𝑛-qubit QFT circuit approximated to error 𝑂(𝜀). The leading-

order term of the T-count in our approximate QFT circuit is 4𝑛𝑙𝑜𝑔+(𝑛/𝜀) , which is 

asymptotically half of the smallest-known T-count (~8𝑛𝑙𝑜𝑔+(𝑛/𝜀)) of the approximate QFT 

circuit in Ref. [10]. Moreover, in terms of T-depth, our approximate QFT circuit is superior to 

the approximate QFT circuit reported in Ref. [10]. The T-depth of the approximate QFT circuit 

in Ref. [10] is ~2𝑛𝑙𝑜𝑔+(𝑛/𝜀), whereas that of our approximate QFT circuit is ~𝑛𝑙𝑜𝑔+(𝑛/𝜀). 

QFT is a fundamental tool for many quantum algorithms, particularly quantum algorithms 

that are exponentially faster than classical algorithms. However, for practical uses, most of 

those algorithms are too large for implementation on noisy devices. Therefore, fault-tolerant 

implementation of QFT should eventually be realized to take complete advantage of quantum 

computing. By reducing the cost of the fault-tolerant implementation of QFT, our study may 

accelerate the realization of fault-tolerant quantum computing. 
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