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Abstract: T-duality acts on circle bundles by exchanging the first Chern class with the
fiberwise integral of the H -flux, as we motivate using E8 and also using S-duality. We
present known and new examples including NS5-branes, nilmanifolds, lens spaces, both
circle bundles over RPn, and theAdS5×S5 toAdS5×CP2×S1 with backgroundH -flux
of Duff, Lü and Pope. When T-duality leads to M-theory on a non-spin manifold the
gravitino partition function continues to exist due to the background flux, however the
known quantization condition forG4 receives a correction. In a more general context, we
use correspondence spaces to implement isomorphisms on the twisted K-theories and
twisted cohomology theories and to study the corresponding Grothendieck-Riemann-
Roch theorem. Interestingly, in the case of decomposable twists, both twisted theories
admit fusion products and so are naturally rings.

1. Introduction

T-duality is a generalization of the R → 1/R invariance of string theory compactified
on a circle of radius R. The local transformation rules of the low energy effective fields
under T-duality, known as the Buscher rules [1] (see also, e.g., [2–4]), have been known
for some time, but global issues, in particular in the presence of NS 3-form H -flux,
have remained obscure. It is known, however, through many examples in the literature
[5–8], that the general case involves a change in the topology of the manifold. However
no systematic method has been developed for determining the topology change. In this
paper we will propose a formula for the topology change under T-duality, and we will
show that it yields the desired isomorphism both in the context of twisted cohomology
as well as twisted K-theory. We conjecture that the duality holds, however, in the full
string theory as well.

To simplify the discussion we will restrict ourselves in this paper to T-duality in one
direction only, i.e. T-dualizing on a circle S1. A more general case with a d-dimensional
torus can be obtained by successive dualizations so long as the integral of H over each
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2-subtorus vanishes. If this integral does not vanish, then after T-dualizing about one
circle the other circle no longer exists. We will relate the obstruction to T-duality to a
particular type of failure of the 2-torus to lift to F-theory.1 In integral cohomology the
story is the same, as the integral of H inhabits H 1(M,Z) which cannot have a torsion
piece because of the Universal Coefficient Theorem.

First, consider the case where spacetimeE is a product manifoldM×S1 and the NS
3-form H is trivial in H 3(E,Z), i.e. we can write H = dB globally. Similarly, for the
T-dual we have Ĥ = dB̂. In this case, upon T-dualizing on S1, the Buscher rules on the
RR fields can be conveniently encoded in the formula [9]

Ĝ =
∫
S1
eF−B+B̂ G , (1.1)

whereG is the total (gauge invariant) RR fieldstrength,G=∑
p Gp+2 (p=0, 2, 4, . . . , 8

for type IIA and p = −1, 1, . . . , 7 for type IIB), and F = dθ ∧ dθ̂ is the curvature of
the Poincaré linebundle P on S1 × Ŝ1, so that eF = ch(P) is the Chern character of
P . The right-hand side of (1.1) is interpreted as a (closed) form on M × S1 × Ŝ1, and
integrated along S1 to yield a form on the T-dual space Ê = M × Ŝ1.2

The RR field G is dH -closed, where dH = d − H∧ is the H -twisted differential,
and it follows that its T-dual Ĝ is d

Ĥ
-closed. This is just the supergravity Bianchi iden-

tity. Gauge invariance is implemented through δC = eBdα, where the gauge potential
C is related to G by G = eBd(e−BC) = dHC. Thus, we can interpret (1.1) as an
isomorphism

T∗ : H •(M × S1, H)
∼=−−−−→ H •+1(M × Ŝ1, Ĥ ). (1.2)

Of course, since in this case H = dB globally, the twisted cohomology H •(E,H) is
canonically isomorphic to the usual cohomology H •(E), by noting that d(e−BG) =
e−BdHG.

The discussion above can be lifted to K-theory, [9] (see also [10–13]), and thus to
the classification of D-branes on M × S1 and M × Ŝ1, by using the correspondence

M × S1 × Ŝ1

p

��������������������

p̂

��������������������

M × S1 M × Ŝ1

(1.3)

This gives rise to an isomorphism of K-theories

T! : K•(M × S1)
∼=−−−−→ K•+1(M × Ŝ1) (1.4)

1 However there are torii that do not lift to F-theory on which we may T-dualize, for example, a 2-torus
that supportsG3 flux. S-dualizing, the obstruction to T-duality on a torus withH -flux is the controversial
obstruction to S-duality in the presence of G1 flux.

2 Strictly speaking, the various forms entering (1.1) are the pull-backs of forms to the correspondence
space M × S1 × Ŝ1.
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by

T! = p̂! (p
!( · ) ⊗ P) . (1.5)

It is well-known that the application of T-duality is not restricted to product manifolds
M × S1, but can also be applied locally in the case of S1-fibrations over M [14], and
moreover, can be generalized to situations with nontrivial NS 3-form flux H . While in
this more general case, strictly speaking, (1.1) does not make sense since neither the
Poincaré bundle, nor B, are defined globally, it does appear that in some sense the equa-
tion still makes sense locally as it does give rise to the correct Buscher rules even in this
more general setting.

In this paper we investigate the more general case where E is an oriented S1-bundle
over M

S1 −−−−→ E

π

�
M

(1.6)

characterized by its first Chern class c1(E) ∈ H 2(M,Z), in the presence of (possibly
nontrivial) H -flux H ∈ H 3(E,Z).3 We will argue that the T-dual of E is again an
oriented S1-bundle over M , denoted by Ê, 4

Ŝ1 −−−−→ Ê

π̂

�
M

(1.7)

supporting H -flux Ĥ ∈ H 3(Ê,Z), such that

c1(Ê) = π∗H , c1(E) = π̂∗Ĥ , (1.8)

whereπ∗ : Hk(E,Z) → Hk−1(M,Z), and similarly π̂∗, denote the pushforward maps.5

Mathematically, the reason for the duality (1.8) can be understood as follows: For an
oriented Sk-bundle E, we have a long exact sequence in cohomology called the Gysin
sequence (cf. [15, Prop. 14.33]). In particular, for an oriented S1 bundle with first Chern
class c1(E) = F ∈ H 2(M,Z), we have

. . . −−−−→ Hk(M,Z)
π∗

−−−−→ Hk(E,Z)
π∗−−−−→ Hk−1(M,Z)

F∪−−−−→ Hk+1(M,Z) −−−−→ . . . .

Consider the k = 3 segment of this sequence. It shows that to anyH -fluxH ∈ H 3(E,Z)

we have an associated element F̂ = π∗H ∈ H 2(M,Z), and that, moreover, F ∪ F̂ = 0

3 To simplify the notations we will use the same notation for a cohomology class [H ], or for a repre-
sentative H , throughout this paper. It should be clear which is meant from the context.

4 Throughout this paper the notation Ê will refer to the T-dual of the bundle E, and not to the dual
bundle in the usual sense.

5 At the level of de Rham cohomology, the pushforward maps π∗ and π̂∗ are simply the integrations
along the S1-fibers of E and Ê, respectively.
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in H 4(M,Z). Now, let Ê be the S1-bundle associated to F̂ . Reversing the roles of E
and Ê in the Gysin sequence, we see that since F ∪ F̂ = F̂ ∪ F = 0, there exists an
Ĥ ∈ H 3(Ê,Z) such that π̂∗Ĥ = F , where Ĥ is unique up to an element ofπ∗H 3(M,Z).
The transformation (E,H) → (Ê, Ĥ ), for a particular choice of Ĥ , is precisely what
can be identified with T-duality. The ambiguity in Ĥ , up to an element in π∗H 3(M,Z),
is fixed by requiring that T-duality should act trivially on π∗H 3(M,Z), i.e. T-duality
should not affect H -flux which is completely supported on M . Since H and Ĥ live
on different spaces, in order to compare them we have to pull them back to the corre-
spondence space. The correspondence space in this more general setting is the fibered
product E ×M Ê = {(x, x̂) ∈ E × Ê | π(x) = π̂(x̂)}, which is both an Ŝ1-bundle over
E, as well as an S1-bundle over Ê.

Before we continue, let us observe that in the case of a 2-dimensional base mani-
foldM , the Gysin sequence immediately gives an isomorphism betweenH 3(E,Z) and
H 2(M,Z), i.e. between Dixmier-Douady classes on E and line bundles on M . This
correspondence is used for example in [16, Sect. 4.3] to give an explicit construction of
a PU -bundle (with given decomposable DD class) overE from a linebundle overM . As
a particular concrete example, note that S3 can be considered as an S1-bundle over S2

by means of the Hopf fibration. By (1.8) its T-dual, in the absence ofH -flux, is S2 × S1

supported by 1 unit ofH -flux. This example was studied in [5], but the observation that
the H -flux on the S2 × S1 side is nontrivial was apparently missed.

In order to discuss the generalization of (1.1) we have to choose specific representa-
tives of the cohomology classes. In particular, upon choosing connections A and Â, on
the S1-bundles E and Ê, respectively, the isomorphism T∗ that generalizes (1.1) is now
given by

Ĝ =
∫
S1
eA∧Â G , (1.9)

where the right-hand side is a form onE×M Ê, and the integration is along the S1-fiber
of E.6 In terms of A, Â, and their curvatures F = dA, F̂ = dÂ, we can write (see
Sect. 3.1 for more details)

H = A ∧ F̂ −� , (1.10)

for some � ∈ �3(M), while the T-dual Ĥ is given by

Ĥ = F ∧ Â−� . (1.11)

Locally, we have A = dθ + π̂∗B̂, Â = dθ̂ + π∗B. Equations (1.8) are easily checked.
We note that

d(A ∧ Â) = −H + Ĥ , (1.12)

so that (1.9) indeed maps dH -closed forms to d
Ĥ

-closed forms.
We recall that the RR fields G are determined by the twisted K-theory classes Q via

the twisted Chern map [19–23]
G = chH (Q)

√
Â(T E) , (1.13)

where Â is the A-roof genus.
6 Strictly speaking, the various forms entering (1.9) and beyond are the pullbacks of forms on living

on E and Ê to E ×M Ê.
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The discussion above can be lifted to K-theory and, in this more general setting,
T-duality gives an isomorphism of the twisted K-theories of E and Ê, descending to
an isomorphism between the twisted cohomologies of E and Ê, as expressed in the
following commutative diagram (see Theorem 3.6)

K•(E,H) T!−−−−→ K•+1(Ê, Ĥ )

chH

�
�chĤ

H •(E,H) T∗−−−−→ H •+1(Ê, Ĥ )

(1.14)

Several of the constructions used in the definition of T-duality on twisted K-theory are
adapted from [17, 18].

The rationale for the normalization in (1.13) by
√
Â(T E) is fairly standard. A special

case of the cup product pairing (3.19) followed by the standard index pairing of elements
of K-theory with the Dirac operator, explains the upper horizontal arrows in the diagram,

K•(E,H)×K•(E,−H) −−−−→ K0(E)
index−−−−→ Z

chH×ch−H
�

�ch
�||

H •(E,H)×H •(E,−H) −−−−→ Heven(E)

∫
E Â(T E)∧−−−−−−→ Z

(1.15)

The bottom horizontal arrows are cup product in twisted cohomology (3.7) followed
by cup product by Â(T E) and by integration. By the Atiyah-Singer index theorem, the
diagram (1.15) commutes. Therefore the normalization in (1.13) makes the pairings in
twisted K-theory and twisted cohomology isometric.

The twisted K-theory isomorphism is the geometric analogue of results of Raeburn
and Rosenberg [24] who studied spaces with an R-action in terms of crossed products
of C∗-algebras of the type A ×α R, such that the spectrum of A ×α R is precisely the
circle bundle E in the discussion above. The isomorphism in the upper horizontal arrow
in (1.14) is then a direct consequence of the Connes-Thom isomorphism [25] of the
K-theory of these crossed C∗-algebras.

The paper is organized as follows. In Sect. 2 we provide some physical intuition and
motivation for our conjectured description of T-duality although we restrict attention to
the special case in which H is only nontrivial on one side of the duality. In Sect. 2.1 we
see how T-duality and Eq. (1.8) arise in theE8 gauge bundle formalism of M-theory, and
in Sect. 2.2 we provide a physical derivation from S-duality for the case in which H is
proportional toG3. Both approaches illustrate the connection between the fibered prod-
uctE×M Ê and F-theory. The full derivation of the isomorphism and the corresponding
maps appears in the more mathematical Sect. 3.

In Sect. 4 we will provide a number of examples of this correspondence, including
T-duality transverse to an NS5-brane and T-duality of circle bundles over Riemann sur-
faces which include the nilmanifolds, lens spaces and also AdS3 × S3 × T 4 with its
Zn quotients. An example with torsion H -flux, the circle bundles over RP2, will also
be treated. In Sect. 5 we consider circle bundles over RPn. As these examples may be
4-dimensional or higher, we will not be able to compute K-groups simply by using the
Atiyah-Hirzebruch spectral sequence as in the previous section, but also we need to solve
an extension problem. However T-duality will relate these bundles to bundles in which
the extension problem is trivial, and so T-duality may be used to solve the extension
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problem in our original bundles and thus to calculate the twisted K-groups of circle
bundles over RPn.

In Sect. 6 we will consider the T-duality between AdS5 × S5 and AdS5 × CP2 × S1

with H -flux, and its Zn quotients [4]. These are interesting because the right-hand side
is not spin, and so one might expect a gravitino anomaly. However there is no gravitino
anomaly before the T-duality. We show that in this case and in general, as a result of the
ψHψ coupling in the type-II supergravity action, the nontrivialH -flux precisely forces
the gravitino anomalies to match before and after the T-duality.7 We will see that the
global anomalies before and after the T-duality agree because they are determined by
the topology of the fibered product. In the example, this leads to an anomaly on both
sides precisely when n is even. On the other hand both sides are consistent when n is
odd, the IIB side because spacetime is spin and the IIA side because a 9-dimensional
analog of the quantum Hall effect in the dimensionally reduced theory means that the
low energy modes of the gravitinos behave like bosons. As the M-theory lift is not spin,
the usual formula forG4 flux quantization [27] does not make sense, however the global
gravitino anomaly allows a new condition to be found in the torus-bundle case. Finally,
in Sect. 7, we present some of the many remaining open problems.

2. Physical Motivation

2.1. T-Duality fromE8. The T-duality discussed in the introduction is a consequence of
a conjecture [28] made in the context of the E8 gauge bundle formalism [27, 29–32]. In
this formalism, M-theory’s 4-form fieldstrength G4 is interpreted as the characteristic
class of an E8 bundle P over the 11d bulk Y 11. Consider the case in which Y 11 is a
T 2 = S1

M × S1
IIA torus bundle over the 9-manifold M9. Dimensionally reducing out the

M-theory circle S1
M we obtain [33] an LE8 bundle P ′ over the 10-dimensional circle

bundle E, whose based part is characterized by a 3-form H = ∫
S1
M
G4. LE8 is the

loopgroup of E8. Reducing on the other circle yields an LLE8 bundle Ê whose based
part is characterized by a two-form

F =
∫
S1

IIA

H. (2.1)

In fact the based part ofLLE8 is homotopic to the circleS1
IIB, and soF is just the curvature

of a circle bundle. The above discussion is summarized by the following equation:




E8 → P

↓
S1
M → Y 11

↓
S1

IIA → E

↓
M9




−→




LE8 → P ′
↓

S1
IIA → E

↓
M9




−→


LLE8 ∼ S1

IIB → Ê

↓
M9




(2.2)

7 The global gravitino anomaly in question is the ill-definedness of the partition function that appears
when an uncharged fermion is placed on a non-spin manifold, not the (4d + 2)-dimensional chiral
anomaly discussed in, for example. Ref. [26].
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The conjecture in Ref. [28] is that the fiber of this circle bundle S1
IIB is the T-dual circle

which appears in IIB. As desired, the first Chern class of this bundle is precisely the
H -flux in IIA integrated over the fiber S1

IIA as seen in Eq. (2.1). In this note we further
claim that the first Chern class of the S1

IIA bundle, the spacetime on the type IIA side, is
the integral over S1

IIB of the H -flux on the type IIB side (1.8).

2.2. T-duality from S-duality. An alternate approach to the T-duality relation (1.8), is via
the F-theory [34] lift of this story, where T-duality will simply be a choice of projection
map. This approach is similar to that of Ref. [5] where it was shown that the sigma mod-
els onE and Ê may both be obtained from a sigma model onE×M Ê by integrating out
different variables. Their argument, like the one in this section, only applies to the case
in whichH is nonvanishing on one side of the duality, and the normalization is unclear.
However it may be possible to generalize their argument to the case in which H and Ĥ
are both nontrivial (or even to higher-dimensional torii).

Recall from Eq. (2.2) that the bosonic data of M-theory is encoded in anLLE8 bundle
overM9. To arrive at type IIB string theory we considered only the based part of this loop
group which is homotopy equivalent to the circle S1

IIB, but in fact [35] the loop groups
are free and trivially centrally extended. Thus we find that

π1(LLE8) = Z
3, (2.3)

where the three circles are S1
M , S1

IIA and S1
IIB. These circles are all fibered over M9,

with Chern classes that in type IIA we name G2, c1(E) and c1(Ê) = ∫
S1

IIA
H respec-

tively. The total space of the fibered product of these three circle bundles over M9 is
twelve-dimensional, and this 12d perspective is called F-theory.

The total space of F-theory is an S1
M bundle over the fibered productE×M Ê and also

a torus bundle over Ê, the spacetime of type IIB. This torus is generated by the circles
S1
M and S1

IIA. Interchanging these two circles (with a minus sign) is called S-duality in
type IIB and is called a 9-11 flip in type IIA. Therefore we have the commuting diagram:

IIA IIB

c1(E) = a �� T-Duality �� H = a ∪ b

G2 = a
��

9-11 Flip

��

�� T-Duality �� G3 = a ∪ b
��

S-Duality

��

relating the two IIA and two IIB configurations described above.
This diagram will allow us to perform T-duality from IIB to IIA in two ways, by

proceeding left directly, or by performing an S-duality followed by a T-duality followed
by a 9-11 flip. We will start in type IIB on M9 × S1

IIB with

H = a ∪ b ∈ H 2(M9)⊗H 1(S1
IIB) (2.4)
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and no G3 flux. Performing an S-duality leaves G3 = a ∪ b and H now vanishes.8

Now that there is no H flux, we may perform a T-duality along S1
IIB without changing

the 10-dimensional topology. After T-duality we find type IIA string theory onM9 × S1

with G2 = ∫
S1

IIB
G3 = a. The M-theory circle S1

M is nontrivially fibered over M9 with

Chern class equal to G2 = a. The 9-11 flip interchanges the M-theory circle S1
M with

the IIA circle S1
IIA and so leaves G2 = 0 and a 10-dimensional spacetime E which is a

S1
IIA circle bundle over M9 with first Chern class

c1(E) = a =
∫
S1

IIB

H (2.5)

as desired, where H is the original H -flux in type IIB.

3. T-duality Isomorphism in Twisted K-theory and Twisted Cohomology:
The Case of Circle Bundles

3.1. The setup. We elaborate here on the setup in the introduction. Suppose that M is
a compact connected manifold and E be a principal circle bundle over M with projec-
tion map π and H a closed, integral 3-form on E having the property that π∗(H) is
a closed integral 2-form on M . [For clarity of exposition we mostly use the language
of differential forms, but the discussion can easily be formulated in terms of integer
cohomology (i.e. Čech cohomology) classes, and the results hold in those cases as well.
In particular, the case where H is a torsion class is covered by our theorems (see Sect.
3.3)]. Then we know by the classification of circle bundles that there is a circle bundle
Ê over M with projection map π̂ and with first Chern class c1(Ê) = π∗(H). Ê will be
referred to as the T-dual ofE, which is not to be confused with the dual bundle toE. We
define the correspondence space of E and Ê to be the fibered product E×M Ê, since it
implements T-duality in generalized cohomology theories such as K-theory, cohomol-
ogy and their twisted analogues. Correspondence spaces also occur in other parts of
mathematical physics, such as twistor theory and noncommutative geometry. We have
the following commutative diagram:

E

π

���
��

��
��

��
��

��
��

��
��

��

E ×M Ê

p̂

���
��

��
��

��
��

��
��

��
��

�

p

����
��

��
��

��
��

��
��

��
��

M

Ê

π̂

����
��

��
��

��
��

��
��

��
��

�
(3.1)

8 Had we allowedG3 flux proportional toH we could still have arranged this by performing a different
SL(2,Z) transformation on S1

M and S1
IIA.
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Note that the correspondence spaceE×M Ê is a circle bundle overE with first Chern
class π∗(c1(Ê)), and it is also a circle bundle over Ê with first Chern class π̂∗(c1(E)),
by the commutativity of the diagram above, (3.1). If Ê = E or if Ê = M × S1, then the
correspondence space E ×M Ê is diffeomorphic to E × S1.

Let A ∈ �1(E) and Â ∈ �1(Ê) be connection one forms on E and Ê respectively,
and denote their curvatures in H 2(M) by F = dA and F̂ = dÂ = π∗H , respectively.
The connections A and Â are normalized such that π∗A = 1 = π̂∗Â. Let H ∈ �3(E)

be the given closed integral 3-form on E as above. We will now argue, as mentioned in
the introduction, that there exists a 3-form � ∈ �3(M) such that

H = A ∧ π∗F̂ − π∗� ∈ �3(E). (3.2)

Consider the Gysin sequence associated to the S1-bundle E (at the level of de Rham
cohomology)

. . . −−−−→ Hk(M)
π∗

−−−−→ Hk(E)
π∗−−−−→ Hk−1(M)

F∧−−−−→ Hk+1(M) −−−−→ . . . .

The k = 3 segment of the Gysin sequence shows that F ∧ F̂ = 0 in H 4(M). There-
fore F ∧ F̂ = dα with α ∈ �3(M). Thus, A ∧ π∗F̂ − π∗α is a closed 3-form in
�3(E), i.e. an element of H 3(E). Consider H − (A∧ π∗F̂ − π∗α) ∈ H 3(E). Clearly,
π∗(H − (A∧ π∗F̂ − π∗α)) = 0, since π∗ ◦ π∗ = 0 and π∗A = 1. Hence we conclude
that H − (A ∧ π∗F̂ − π∗α) = π∗(β + dγ ), for some β ∈ H 2(M) and γ ∈ �2(M).
Putting � = α − β − dγ proves (3.2). Now define Ĥ ∈ �3(Ê) by

Ĥ = π̂∗F ∧ Â− π̂∗� ∈ �3(Ê). (3.3)

It easily follows that Ĥ is closed, i.e. defines an element inH 3(Ê) and thatF = c1(E) =
π̂∗Ĥ in H 2(M). I.e., to summarize, we find the relations

π∗H = c1(Ê), π̂∗Ĥ = c1(E) ∈ H 2(M). (3.4)

Note that if we define

B = p∗A ∧ p̂∗Â ∈ �2(E ×M Ê) (3.5)

then it follows that

dB = d(p∗A ∧ p̂∗Â) = −p∗H + p̂∗Ĥ (3.6)

by virtue of the commutativity of the diagram (3.1), and so the pullbacks of the two
H -fluxes are cohomologous on the correspondence space E ×M Ê.



392 P. Bouwknegt, J. Evslin, V. Mathai

3.2. T-duality in twisted cohomology. Here we will prove T-duality in twisted cohomol-
ogy. Recall that twisted cohomology H •(M,H) is by definition the Z2-graded coho-
mology of the complex (�•(M), dH ), with differential dH = d − H∧ . Nilpotency
d2
H = 0 follows from the fact thatH is a closed 3-form onM . Twisted cohomology has

been studied in detail in the papers [22, 23].
The basic functorial properties of twisted cohomology are as follows:

1. (Normalization) If H = 0 then H •(M,H) = H •(M).
2. (Module property) H •(M,H) is a module over H even(M).
3. (Cup product) There is a cup product homomorphism

Hp(M,H)⊗Hq(M,H ′) → Hp+q(M,H +H ′) . (3.7)

4. (Naturality) If f : N → M is a continuous map, then there is a homomorphism

f ∗ : H •(M,H) → H •(N, f ∗H).

5. (Pushforward) If f : N → M is a smooth map which is oriented, that is TN⊕f ∗TM
is an oriented vector bundle, then there is a homomorphism

f∗ : H •(N, f ∗H) → H •+d(M,H),

where d = dimM − dimN .

Properties 1 to 4 were detailed in [22] and [23]. The pushforward Property 5 is estab-
lished in a manner formally similar to the analogous property for twisted K-theory that
will be discussed below and so its proof will be omitted for sake of brevity.

We have homomorphisms

p∗ : H •(E,H) → H •(E ×M Ê, p∗H), (3.8)

eB : H •(E ×M Ê, p∗H) → H •(E ×M Ê, p̂∗Ĥ ), (3.9)

and

p̂∗ : H •(E ×M Ê, p̂∗Ĥ ) → H •+1(Ê, Ĥ ). (3.10)

The composition of the maps

T∗ := p̂∗ ◦ eB ◦ p∗ : H •(E,H) → H •+1(Ê, Ĥ ) (3.11)

is called T-duality. The situation is completely symmetric and the inverse map is

T −1
∗ := p∗ ◦ e−B ◦ p̂∗ : H •(Ê, Ĥ ) → H •+1(E,H). (3.12)

To summarize, we have,

Theorem 3.1. In the situation described above, T-duality in twisted cohomology

T∗ : H •(E,H) → H •+1(Ê, Ĥ ) ,

is an isomorphism.
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On the correspondence space, we can express the isomorphism as

Ĝ = T∗(G) = p̂∗(eB ∧ p∗G) , (3.13)

where we notice that since dB = −p∗H+p̂∗Ĥ , we have d(eB) = (−p∗H+p̂∗Ĥ )∧eB.
So

d
Ĥ
Ĝ = p̂∗(eB ∧ p∗dHG). (3.14)

It follows that G is dH -closed if and only if Ĝ is d
Ĥ

-closed. Moreover the formula can
be inverted,

G = T −1
∗ (Ĝ) = p∗(e−B ∧ p̂∗Ĝ), (3.15)

proving the assertion.
We next describe special cases. The first case that we will consider is when E, Ê are

trivial bundles andH = 0. This case was discussed in [9] (see also [10–12]). Explicitly,
E = M×S1 and Ê = M× Ŝ1, and the connections on the respective trivial bundles are
A = dθ and Â = dθ̂ . B = dθ ∧ dθ̂ is the first Chern class of the Poincaré line bundle
P over S1 × Ŝ1, and 	B is given by the exterior product with eB, which is equal to the
Chern character of the Poincaré bundle ch(P). In this case, the T-duality reduces to an
isomorphism,

T∗ : H •(M × S1) → H •+1(M × Ŝ1). (3.16)

Now let E = M × S1 be the trivial circle bundle and let

H = F ∧ dθ ∈ H 2(M)⊗H 1(S1) ∼= H 3(M × S1,Z) (3.17)

be a decomposable class on M × S1 such that p∗H = dÂ ∧ dθ ∈ �3(Ê × S1). Then
by (3.3) and (3.4), we must have p̂∗Ĥ = 0 and B = Â ∧ dθ and the first Chern class
c1(Ê) = π∗H ∈ H 2(M,Z).

So T-duality in this case yields an isomorphism T∗ : H •(M × S1, H) → H •+1(Ê).
What is remarkable in this case is that twisted cohomology does not have a canonical
ring structure in general, but in this case, one can use the T-duality isomorphism to define
the fusion product on H •(M × S1, H). We will generalize this as follows.

Theorem 3.2. Let X be a compact connected manifold, and let H ∈ H 3(X,Z) be a
decomposable class. Then there is a fusion product on twisted cohomology H •(X,H),
making it into a ring.

To prove this, we notice that a decomposable class H yields a continuous map F =
(F1, F2) : X → BS1 × S1, where BS1 is the classifying space of S1. But we have
argued before that the T-dual ofBS1 ×S1 is the total space of the universal circle bundle
ES1 → BS1. So we can pullback the diagram (3.1) to see that in this case, T-duality
yields an isomorphism

T∗ : H •(X,H) → H •+1(Ê) , (3.18)

that determines the fusion product on twisted cohomology. Here c1(Ê) = kF ∗
1 c1(ES

1),
where [F2] is k times the generator.
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3.3. T-duality in twisted K-theory. The generalization of this duality to twisted K-theory
has been known for some time [24]. In this section we will give a geometric description
of the isomorphism along the lines of the description of the isomorphism of twisted
cohomology described above. We will then see that these two isomorphisms are related
by the Chern map.

We first recall the definition of twisted K-theory, cf. [36, 37]. It is a well known fact
that the unitary group U of an infinite dimensional Hilbert space is contractible in the
norm topology, therefore the projective unitary group PU = U/U(1) is an Eilenberg-
Maclane spaceK(Z, 2). This in turn implies that the classifying spaceBPU of principal
PU bundles isK(Z, 3). Thus we see thatH 3(X,Z) = [X,BPU ], where the right-hand
side denotes homotopy classes of maps between the two spaces. Another well known
fact is that PU is the automorphism group of the algebra of compact operators on the
Hilbert space. So given a closed 3-formH onX, it determines an algebra bundle EH up
to isomorphism: a particular choice will be assumed. This is equivalent to a particular
choice of the associated principal PU -bundle PH with Dixmier-Douady invariant [H ].
The twisted K-theory is by definition the K-theory of the noncommutative algebra of
continuous sections of the algebra bundle EH . A geometric description of objects in
twisted K-theory is given in [22].

The basic properties of twisted K-theory are as follows:

1. (Normalization) If H = 0 then K•(M,H) = K•(M).
2. (Module property) K•(M,H) is a module over K0(M).
3. (Cup product) There is a cup product homomorphism

Kp(M,H)⊗Kq(M,H ′) → Kp+q(M,H +H ′). (3.19)

4. (Naturality) If f : N → M is a continuous map, then there is a homomorphism

f ! : K•(M,H) → K•(N, f ∗H).

5. (Pushforward) Let f : N −→ M be a smooth map between compact manifolds
which is K-oriented, that is TN ⊕ f ∗TM is a spinC vector bundle over N . Then
there is a homomorphism

f! : K•(N, f ∗H) → K•+d(M,H) , (3.20)

where d = dimM − dimN .

Properties 1, 3 and 4 were detailed in [22], and Property 2 in [23]. The pushfor-
ward Property 5 will be discussed in Sect. 3.4, since it is central to our construction of
T-duality.

Using the naturality Property 4, we have the homomorphism,

p! : Kj(E,H) → Kj(E ×M Ê, p∗H) . (3.21)

Observe that the principal PU -bundles Pp∗H and P
p̂∗Ĥ are canonically isomorphic to

p∗PH and p̂∗P
Ĥ

, respectively. Since −p∗H + p̂∗Ĥ = dB, we conclude that Pp∗H and
P
p̂∗Ĥ are isomorphic.

We digress to discuss automorphisms of twisted K-theory. First recall that tensoring
by any line bundle on E is an automorphism of K-theory, K•(E) (for example, ten-
soring by the Poincaré line bundle on the torus). By the module Property 2 of twisted
K-theory, we see that tensoring by any line bundle on E is also an automorphism of
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twisted K-theory, K•(E,H). However, any line bundle on PH also gives rise to an
automorphism of twisted K-theory as explained next. The first fact that is needed is that
stably equivalent bundle gerbes (i.e. tensoring by a trivial gerbe) define the same twisted
K-theory, cf. [22]. The next fact is that any line bundle on PH determines a trivial bundle
gerbe, which when tensored with the lifting bundle gerbe of PH , defines a bundle gerbe
that is stably equivalent to the lifting bundle gerbe of PH .

Next we recall the homomorphism ψ : PU ×PU → PU that is not the group mul-
tiplication, but is defined as follows. Choose an isomorphism of the infinite dimensional
Hilbert spaces φ : H ⊗ H → H . This induces an isomorphism φ : B(H)× B(H) →
B(H) defined by φ(A,B)(v) = φA⊗B(φ−1(v)). This restricts to a homomorphism φ :
U×U → U , whereU denotes the unitary operators, such that φ(U(1)×U(1)) ⊂ U(1).
Therefore we get the induced homomorphism on the quotient ψ : PU × PU → PU .

Let λ : PH → E be the principal PU -bundle overE with curving f and 3-curvature
H . That is df = λ∗H . We also make similar choices λ̂ : P−Ĥ → Êwith curving −f̂ and

3-curvature −Ĥ satisfyingd(−f̂ ) = −λ̂∗Ĥ . Then on the correspondence spaceE×MÊ,
we can form the trivial bundle gerbe λ̃ : P = (p∗PH × p̂∗P−Ĥ )×ψ PU → E ×M Ê

which has curving f − f̂ and 3-curvature H − Ĥ (which is equal to −dB). We have
simplified the notation by omitting some of the pullback maps, since it is clear on which
space the differential forms live. Since by definition, π∗A = 1 and π̂∗Â = 1, we see
that B is an integral 2-form. Since H and Ĥ are integral 3-forms, we can choose f and
f̂ to be integral 2-forms. Observe that the following identity holds:

d(f − f̂ ) = λ̃∗(H − Ĥ ) = d(−λ̃∗B) . (3.22)

It follows that λ̃∗B + f − f̂ ∈ �2(P ) is a closed 2-form on the trivial gerbe P that has
integral periods, and therefore determines a line bundle L → P over the trivial bundle
gerbe P , with curvature B + f − f̂ and first Chern class c1(L) = [B + f − f̂ ]. By the
discussion above, tensoring by the trivial bundle gerbe determined by this line bundle L
induces the following isomorphism in twisted K-theory:

	B : Kj(E ×M Ê, p∗H) → Kj(E ×M Ê, p̂∗Ĥ ) . (3.23)

Using the pushforward Property 5, we have a homomorphism,

p̂! : Kj(E ×M Ê, p̂∗Ĥ ) → Kj+1(Ê, Ĥ ) . (3.24)

The composition of the maps

T! := p̂! ◦	B ◦ p! : Kj(E,H) → Kj+1(Ê, Ĥ ) (3.25)

is the T-duality in twisted K-theory. The situation is completely symmetric and the
inverse map is

T −1
! := p! ◦	−B ◦ p̂! : Kj(Ê, Ĥ ) −→ Kj+1(E,H) . (3.26)

To summarize, we have

Theorem 3.3. In the situation described above, T-duality in twisted K-theory,

T! : K•(E,H) −→ K•+1(Ê, Ĥ )

is an isomorphism.
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The special cases discussed above in the context of twisted cohomology are virtually
identical in the case of twisted K-theory. In particular, in the decomposable case we find
a ring structure (cf. [38]).

Theorem 3.4. Let X be a compact connected manifold, and let H ∈ H 3(X,Z) be a
decomposable class. Then there is a fusion product on twisted K-theory Kj(X,H),
making it into a ring.

3.4. The pushforward map. In this section we define the pushforward of a K-oriented
map in twisted K-theory, i.e.Property 5. We shall see in this section that this is essentially
the topological index in [17, 18], and we will follow the construction given there.

N(E × R
2N/Z) ∼= U� �

i1

		���������������������

Z
� �

j1!



��������������������

p

��

� � j �� E × R
2N

p1

��
E

= ��� �

i

�����������������������������������������������
E

(3.27)

For the discussion below, we will make use of the commutative diagram above,
which we now explain. Given a fiber bundle p : Z → E where the projection map
p is K-oriented, there is an embedding i : Z ↪→ E × R

2N that commutes with the
projection map p, cf. [39]. Let i : E ↪→ E × R

2N be the zero section embedding and
p1 : E×R

2N → E the projection map to the first factor. Now the total spaceZ embeds as
the zero section of the normal bundle to the embedding j , i.e.j1 : Z ↪→ N(E×R

2N/Z).
The normal bundle N(E × R

2N/Z) is diffeomorphic to a tubular neighborhood U of
the image of the correspondence space in E × R

2N . Finally, i1 : U ↪→ E × R
2N is the

inclusion map.

Lemma 3.5. There is a canonical isomorphism

i! : K•(E,H) ∼= K•
c (E × R

2N, p∗
1H)

that is determined by Bott periodicity.

Proof. Recall that K•
c (E × R

2N, p∗
1H) = K•(C0(E × R

2N, Ep∗
1H
)). Now there is a

canonical isomorphism Ep∗
1H

∼= p∗
1EH , which induces a canonical isomorphismC0(E×

R
2N, Ep∗

1H
) ∼= C(E, EH )⊗̂C0(R

2N). Thus, K•
c (E × R

2N, p∗
1H)

∼= K•(C(E, EH ) ⊗
C0(R

2N)). Bott periodicity asserts thatK•(C(E, EH )⊗C0(R
2N)) ∼= K•(E,H), prov-

ing the lemma.
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Our goal is to next define j! : K•(Z, p∗H) −→ K•
c (E× R

2N, p∗
1H). To do this, we

first consider

j1! : K•(Z, p∗H) −→ K•
c (N(E × R

2N/Z), π∗
1H),

ξ −→ π∗
1 ξ ⊗ (π∗

1 S
+, π∗

1 S
−, c(v)),

(3.28)

where π1 : N(E × R
2N/Z) → Z is the projection and (π∗S+, π∗S−, c(v)) is the usual

Thom class of the complex vector bundle N(E × R
2N/Z). On the right-hand side we

have used the module Property 2. The Thom isomorphism in this context, cf. [18], asserts
that j1! is an isomorphism. Now, N(E × R

2N/Z) is diffeomorphic to a tubular neigh-
borhood U of the image of Z in E × R

2N : let � : U −→ N(E × R
2N/Z) denote this

diffeomorphism. We have

�! ◦ j1! : K•
c (Z, p

∗H) −→ K•
c (U,�

∗π∗
1H) .

The inclusion of the open set U in E × R2N induces a map K•
c (U,�

∗π∗
1H) −→

K•
c (E × R2N, p∗

1H). The composition of these maps defines the Gysin map. In partic-
ular we get the Gysin map in twisted K-theory,

j! : K•(Z, p∗H) −→ K•
c (E × R

2N, p∗
1H) ,

where j! = i1 ◦�! ◦ j1!. Now define the pushforward

p! = i−1
! ◦ j! : K•

c (Z, p
∗H) −→ K•(E,H) ,

where we apply Lemma 3.5 to see that the inverse j−1
! exists.

This defines the pushforward for submersions and immersions. The general case can
be deduced in the standard manner. Let f : N → M be a smooth map that is K-oriented.
Thenf can be canonically factorized into an embedding followed by a submersion as fol-
lows. Consider the graph embedding if : N ↪→ N ×M defined by if (n) = (n, f (n)),
which is K-oriented since f is K-oriented, and the submersion p2 : N × M → M ,
which is also K-oriented for the same reasons. Then we already know how to define the
homomorphisms

if ! : K•(N, f ∗H) → K•(N ×M,p∗
1H) ,

and also

p2! : K•(N ×M,p∗
1H) → K•(M,H) .

Define the pushforward of a general K-oriented map as

f! = p2! ◦ if ! . (3.29)
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3.5. T-duality and twisted Grothendieck-Riemann-Roch formulae. We will first recall
the twisted Chern character chH : K•(E,H) → H •(E,H) and then compute the
twisted Chern character of the T-dual of an element in twisted K-theory. Since for
dimension reasons Todd(T vertE) = 1 = Todd(T vert Ê), this yields the following,

Theorem 3.6. In the notation of Sect. 3, there is a commutative diagram,

K•(E,H) T!−−−−→ K•+1(Ê, Ĥ )

chH

�
�chĤ

H •(E,H) T∗−−−−→ H •+1(Ê, Ĥ ).

(3.30)

The Grothendieck-Riemann-Roch formula in this context expresses this commutativity,

ch
Ĥ
(T!(Q)) = T∗(chH (Q)) (3.31)

for all Q ∈ K•(E,H).

Equation. (3.31) can be re-expressed as

ch
Ĥ
(T!(Q)) = p̂∗(eB ∧ chH (Q)). (3.32)

We begin by recalling that in [22] a homomorphism chH : K0(E,H) → Heven(E,H)

was constructed with the following properties:

1) chH is natural with respect to pullbacks,

2) chH respects the K0(E)-module structure of K0(E,H),

3) chH reduces to the ordinary Chern character in the untwisted case when H = 0.

It was proposed that chH was the Chern character for twisted K-theory. We give a
heuristic construction of chH here, referring to [22] and [23] for details.

Let λ : PH → E be a principal PU bundle with given gerbe connection, and curv-
ing to be explained below. Let Ei → P be Utr-modules for the lifting bundle gerbe
L → PH

[2], where Utr denotes the unitary operators of the form identity plus trace
class - then [E1] − [E0] ∈ K0(E,H). That is, there is an action of L on Ei via an iso-
morphism ψ : π∗

1 Ei ⊗ L → π∗
2 Ei . We suppose that L comes equipped with a bundle

gerbe connection ∇L and a choice of curving f such that the associated 3-curvature is
H , a closed, integral 3-form on E representing the image, in real cohomology, of the
Dixmier-Douady class of PH . Since the ordinary Chern character ch is multiplicative,
we have

π∗
1 (ch(E1)− ch(E0))ch(L) = π∗

2 (ch(E1)− ch(E0)). (3.33)

It turns out that this equation holds on the level of differential forms. Then ch(L) is
represented by the curvature 2-form FL of the bundle gerbe connection ∇L on L. A
choice of a curving for ∇L is a 2-form f on PH such that FL = δ(f ) = π∗

1 f −π∗
2 f and

f has the property that df = λ∗H . It follows that ch(L) is represented by exp(FL) =
exp(π∗

1 f − π∗
2 f ) = exp(−π∗

2 f ) exp(π∗
1 f ). Therefore we can rearrange Eq. (3.33)

above to get

π∗
1 exp(f )(ch(E1)− ch(E0)) = π∗

2 exp(f )(ch(E1)− ch(E0)). (3.34)
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Since we are assuming that Eq. (3.34) holds at the level of differential forms, this implies
that the differential form exp(f )(ch(E1) − ch(E0)) descends to a differential form on
E which is clearly closed with respect to the twisted differential d − H , and is the
Chern-Weil representative of the twisted Chern character. That is, λ∗chH (E1 − E0) =
exp(f )(ch(E1)− ch(E0)).We will use the simplified notation,

λ∗chH (Q) = ef ch(Q), Q ∈ K0(E,H). (3.35)

In Sect. 5, [23], a similar formula was obtained for the odd twisted Chern character,

λ∗chH (Q) = ef ch(Q), Q ∈ K1(E,H). (3.36)

We next study the Grothendieck-Riemann-Roch formula in twisted K-theory, fol-
lowing the computation of the Chern character of the topological index in [17, 18]. Let
τ : Q −→ E be a spinC vector bundle over E and i : E −→ Q the zero section
embedding. Let PH be the principal PU -bundle over E: then for ξ ∈ K•(E,H), we
compute,

chτ∗H (i!ξ) = chτ∗H (i!1 ⊗ τ ∗ξ)

= ch(i!1) ∪ chτ∗H (π∗ξ),

where we have used the fact that the Chern character respects theK0(E)-module struc-
ture. The standard Riemann-Roch formula asserts that

ch(i!1) = i∗Todd(Q)−1 = i∗1 ∪ τ ∗Todd(Q)−1 .

Therefore we obtain the following Riemann-Roch formula for linear embeddings in
twisted K-theory,

chτ∗H (i!ξ) = i∗
{

Todd(Q)−1 ∪ chH (ξ)
}
. (3.37)

We will refer to the commutative diagram (3.27) in what follows. Now p! = i−1
! ◦ j!,

therefore for � ∈ K•(Z, p∗H),

chH (p!�) = chH (i
−1
! ◦ j!�) .

By the Riemann-Roch formula for linear embeddings in twisted K-theory, cf. (3.37),

chp∗
1H
(i!�) = i∗chH (�) ,

since p1 : E × R
2N −→ E is a trivial bundle. Since p1∗i∗1 = (−1)n, it follows that

for � ∈ K•
c (E × R

2N, p∗
1H), one has

chH (i
−1
! �) = (−1)np1∗chp∗

1H
(�) .

Therefore

chH (i
−1
! ◦ j!�) = (−1)np1∗chp∗

1H
(j!�) . (3.38)

By the Riemann-Roch formula for linear embeddings in twisted K-theory (3.37),

chp∗
1H
(j!�) = j∗

{
Todd(N)−1 ∪ chp∗H (�)

}
, (3.39)
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whereN = N(E× R
2N/Z) is the complex normal bundle to the embedding j : Z −→

E × R
2N . Therefore Todd(N)−1 = Todd(T (Z/E)) and (3.39) becomes

chp∗
1H
(j!�) = j∗

{
Todd(T (Z/E)) ∪ chp∗H (�)

}
.

Therefore (3.38) becomes

chH (i
−1
! ◦ j!�) = (−1)np1∗j∗

{
Todd(T (Z/E)) ∪ chp∗H (�)

}
= (−1)np∗

{
Todd(T (Z/E)) ∪ chp∗H (�)

} (3.40)

since p∗ = p1∗j∗. Therefore

chH (p!�) = (−1)np∗
{
Todd(T (Z/E)) ∪ chp∗H (�)

}
, (3.41)

proving the Grothendieck-Riemann-Roch for K-oriented submersions. For a general K-
oriented smooth map f : N → M , we have seen that it can be factorized as f = p2 ◦ if ,
where if : N → N ×M is the graph embedding, and p2 : N ×M → M is the sub-
mersion given by projection onto the second factor. Since f! = p2! ◦ if ! and using the
fact that we have obtained the Grothendieck-Riemann-Roch theorem for immersions
and submersions in twisted K-theory, we can deduce it in the general case to get,

chH (f!�) = (−1)nf∗
{
Todd(T N/f ∗TM) ∪ chf ∗H (�)

}
. (3.42)

The pullbacks and tensor products commute with the Chern map by the functoriality
of the characteristic class, and so we need only verify that the pushforward commutes.
In this caseN is the correspondence space andM is Ê and so TN/f ∗TM is one-dimen-
sional, too small to have a nontrivial Todd class. Equation (3.42) then reduces to (3.31)
up to a sign which may be absorbed into the definition of the K-theory pushforward map.
We can apply this now to the commutative diagram (3.1) to deduce the formula (3.31)
in Theorem 3.6.

Using (3.35), (3.36) and simplifying the notation, we compute,

ch
Ĥ
(T!(Q)) = ch

Ĥ
(p̂!(L ⊗Q))

= p̂∗(chĤ (L ⊗Q))

= p̂∗(ef̂ ch(L ⊗Q))

= p̂∗(ef̂ ec1(L)ch(Q))

= p̂∗(ef̂ eB+f−f̂ ch(Q))

= p̂∗(eBef ch(Q))

= p̂∗(eBchH (Q)) = T∗(chH (Q)), (3.43)

proving Theorem 3.6.
It is possible to refine Theorem 3.6 to an equality on the level of differential forms,

using the method in [40] - this will be done elsewhere.
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4. 3-Dimensional Examples

4.1. Circle bundles over the 2-torus. Our first example is a slight generalization of a
well-known example related to the Scherk-Schwarz compactification of string theory
on M7 × T 3 (see, e.g., [7, 8]). Consider the 3-dimensional manifold E, a so-called
nilmanifold, with metric

g = dx2 + dy2 + (dz+ jx dy)2 , (4.1)

and H -flux

H = k dx ∧ dy ∧ dz , (4.2)

where the coordinates (x, y, z) are subject to the identifications

(x, y, z) ∼ (x, y + 1, z) ∼ (x, y, z+ 1) ∼ (x + 1, y, z− jy) . (4.3)

We can think of E as an S1-bundle over T 2 = {(x, y)} by

(x, y, z) ∼ (x + 1, y, z− jy) . (4.4)

The S1-bundle has a connection A = dz+ jx dy, with first Chern class c1(E) = dA =
j dx ∧ dy, and

∫
E

H = k ,

∫
M

c1(E) = j . (4.5)

Let κ = ∂/∂z denote the Killing vector field associated with the circle action, i.e.
Lκg = 0 = LκH . Consider the coordinate patch x ∈ (0, 1). We choose a gauge in
which

B = kx dy ∧ dz , (4.6)

so that LκB = 0, and we can apply the Buscher rules [1] (see, e.g., App. A in [8] for a
concise summary of these rules). We find a T-dual metric and B-field given by

ĝ = dx2 + dy2 + (dẑ+ kx dy)2 ,

B̂ = jx dy ∧ dẑ . (4.7)

I.e., the T-dual corresponds again to an S1-bundle over T 2, this time withH -flux related
to the initial configuration by the interchange j ↔ k, in accordance with Eq. (1.8). Note,
moreover, that

A ∧ Â = dz ∧ dẑ− kx dy ∧ dz+ jx dy ∧ dẑ = dz ∧ dẑ− B + B̂ , (4.8)

so that locally Eq. (1.9) does indeed agree with Eq. (1.1). For a discussion of the isomor-
phism of K-theories we refer to the next section, where the more general case of circle
bundles over a Riemann surface is discussed.

Note that this particular example clearly illustrates the possible obstruction to T-dual-
izing over a two-torus (cf. the discussion in [8]). Upon starting with a three-torus (the
case j = 0 in the above), with k units of H -flux and three commuting circle actions,
T-dualizing over one circle leaves us with a circle bundle (the nilmanifold) with only
one (global) S1-action left, the circle action on the dual S1.



402 P. Bouwknegt, J. Evslin, V. Mathai

4.2. Circle bundles on a Riemann surface. In this section we will find the twisted
K-groups of circle bundles over 2-manifolds and their T-duals and show that K0 of
each space is related to K1 of its dual. This class of examples will be seen to include
the familiar examples of NS5-branes, 3-dimensional lens spaces and nilmanifolds. The
K-groups in the examples of this section (but not the next) will be uniquely determined
by the Atiyah-Hirzebruch spectral sequence [36, 41]. In fact it will suffice to consider
only the first differential

d3 = Sq3 +H (4.9)

of the sequence. Furthermore the Sq3 term will be trivial, although it would be inter-
esting to test this correspondence in an example in which the Sq3 term is nontrivial.
Thus the K-classes will consist of cohomology classes whose cup product with the NS
fieldstrength H vanishes quotiented by those classes that are themselves cup products
of classes byH . Explicitly, ifHeven(E,Z) andHodd(E,Z) are the even and odd coho-
mology classes of the manifold E with integer coefficients, then the twisted K-groups
are

K0(E,H) = ker(H∪ : Heven→Hodd)

H ∪Hodd(E,Z)
, K1(E,H)= ker(H∪ : Hodd → Heven)

H ∪Heven(E,Z)
.

(4.10)

More precisely, this procedure only yields the associated graded algebras of the twisted
K-theory, to find the actual K-groups from these one must in general solve an extension
problem. That is to say, torsion classes in Hp(E,H) may mix with classes in Hp+2,
yielding the wrong answer. However Hp only has torsion classes for p ≥ 2 and Hp+2

is only nontrivial for manifolds of dimension d ≥ p + 2. Thus the associated graded
algebras only differ from the K-groups for manifolds of dimension d ≥ p + 2 ≥ 4.
In this section we will consider only 3-dimensional examples and so will not need to
concern ourselves with the extension problem. In the next section we will.

Circle bundles E over a manifold M are entirely classified by their first Chern class

c1(E) = F ∈ H 2(M,Z) , (4.11)

where F is the curvature of the bundle and H 2(M,Z) is the manifold’s second
cohomology group with integer coefficients.9 In the case of an orientable 2-manifold,
like the 2-sphere or a more general genus g Riemann surface, H 2(M,Z) = Z and so
topologically circle bundles are classified by an integer j .

If the circle bundle is the trivial bundle j = 0, then the cohomology of the total space
E of the bundle is given by the Künneth formula

H 0(E,Z) = Z, H 1(E,Z) = Z
2g+1, H 2(E,Z) = Z

2g+1, H 3(E,Z) = Z .

(4.12)

A quick application of the Meyer-Vietoris sequence shows that if the Chern class is equal
to j �= 0 then the cohomology of E is

H 0(E,Z) = Z, H 1(E,Z) = Z
2g, H 2(E,Z) = Z

2g ⊕ Zj , H 3(E,Z) = Z .

(4.13)

9 Factors of 2π will be systematically absorbed into curvatures to make all quantities integral.
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The Z
2g’s will not play any important role in what follows, and so the reader may choose

to ignore them and consider only the 2-sphere case, g = 0.
The H -flux inhabits H 3(E,Z) = Z and so the possible flux is classified by another

integer k. We will always choose a basis for H 2 and H 3 such that j and k are nonneg-
ative. The cup product with an element of H 3 increases the dimension of a cocycle by
3, so it is only nontrivial on 0-cocycles, which it maps to 3-cocycles: H 0 → kH 3. If
k = 0 then H = 0 and so everything is in the kernel of d3 = H∪. The image of H∪ in
this case is trivial, and so the untwisted K-theory is simply the cohomology

K0(E,H = 0) = H 0(E,Z)⊕H 2(E,Z) =
{

Z
2g+2 if j = 0 ,

Z
2g+1 ⊕ Zj if j �= 0 ,

K1(E,H = 0) = H 1(E,Z)⊕H 3(E,Z) =
{

Z
2g+2 if j = 0 ,

Z
2g+1 if j �= 0 .

(4.14)

If k �= 0 then the kernel of H∪ consists of all cocycles of dimension greater than
0. The image consists of all 3-cocycles that are multiples of k, that is, the image is
kH 3(E,Z) = kZ. The quotient of the kernel by the image yields the K-groups

K0(E,H = k) = H 2(E,Z) =
{

Z
2g+1 if j = 0 ,

Z
2g ⊕ Zj if j �= 0 ,

K1(E,H = k) = H 1(E,Z)⊕H 3(E,Z)/kH 3(E,Z)

=
{

Z
2g+1 ⊕ Zk if j = 0 ,

Z
2g ⊕ Zk if j �= 0 .

(4.15)

According to Eq. (1.8) T-duality is the interchange of j and k. In every case above this
results in the twisted K-groups K0(E,H) and K1(E,H) being interchanged, which
corresponds to the fact that RR fieldstrengths are classified by K0(E,H) in type IIA
string theory and by K1(E,H) in IIB. This means that one can find the new RR field-
strengths from the old ones by applying the isomorphism between the two K-groups.10

In this example it is quite straightforward, one simply interchanges the Z
2g betweenH 1

and H 2 and the rest of the cohomology groups are swapped H 0 ↔ H 1, H 2 ↔ H 3.

4.3. Comparison with the literature. Several subcases of this class of examples have
been studied in the literature. For example, consider type II string theory on R

9 ×S1 with
a stack of k NS5-branes at the same point in a transverse R

3 × S1. Consider a 2-sphere
S2 ⊂ R

3 such that S2 × S1 links the stack once. The generalization to an arbitrary
Riemann surface is straightforward. The integral ofH over S2 ×S1 follows from Gauss’
law ∫

S2×S1
H = k . (4.16)

The circle is trivially fibered over S2 and so, in the above notation, the first Chern class
j vanishes.

T-duality interchanges j and k, which means that the T-dual configuration has no
H -flux, so that the NS5-branes have disappeared. Instead the circle bundle is now non-
trivially fibered, with a first Chern class of k over each Riemann surface that links (once)

10 The general prescription for computing the dual fieldstrengths is given in Sect. 3.
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the place where the stack was. This configuration is a charge k Kaluza-Klein monopole
solution, which is known to be T-dual to k NS5-branes that do not wrap the dualized
circle (see, e.g., [42] and references therein).

If we restrict to a linking 2-sphere, we obtain an isomorphism of the twisted K-theories
of lens spaces L(1, p) = S3/Zp,

Ki(L(1, j),H = k) ∼= Ki+1(L(1, k),H = j) . (4.17)

We recall that L(1, p) = S3/Zp is the total space of the circle bundle over the 2-sphere
with Chern class equal to p times the generator ofH 2(S2,Z) ∼= Z. Note that L(1, 1) =
S3 and L(1, 0) = S2 × S1.

In the case of a single NS5-brane, j = 1, the total space of the circle bundle over
the linking 2-sphere is a 3-sphere, the group manifold of SU(2). Thus we obtain an
isomorphism

Ki(SU(2),H = k) ∼= Ki+1(L(1, k),H = 1) , (4.18)

between the K-theory of SU(2), twisted byH = k ∈ H 3(S3,Z) and the (parity shifted)
K-theory of the lens space L(1, k) twisted by only one unit.

The special case of string theory on a 7-manifold crossed with the 3-torus T 3 with
k units of H -flux on the T 3 was considered in Sect. 4.1. This is a trivial circle bundle
over T 2, and so g = 1 and j = 0. Using Eq. (1.8), T-duality along any circle yields a
circle bundle over T 2 with Chern class k and no H -flux. The total space of this bundle,
in agreement with the literature, is just the kth nilmanifold.

An example along the lines of that in Ref. [6] is IIB onAdS3 ×S3 ×T 4 withN units
ofG3-flux supported on the S3. The 3-sphere is a circle bundle over S2 with Chern class
j = 1 and one may T-dualize this fiber. The Chern class is converted into H -flux, and
because we began with no H -flux the resulting bundle is trivial. This leaves type IIA on
AdS3 × S2 × S1 × T 4. There is now one unit of H -flux supported on the S2 × S1, as a
result of the Chern class of the original bundle. The isomorphism of K-groups exchanged
H 2 and H 3 and so the G3-flux becomes G2-flux. Thus we find∫

S2×S1
H = 1 ,

∫
S2
G2 = N . (4.19)

The large N duality to a 2d conformal field theory is much more mysterious in this
framework, even the R-symmetry is nontrivially encoded in the geometry.

4.4. Bundles over RP2. In this section we will consider T-dualities of the two circle
bundles over RP2. To obtain the rest of the nonorientable 3-manifolds which are circle
bundles, one needs only connect sum the RP2 with a Riemann surface, which, as above
will add factors of Z

2g which will play no role. However the nonorientable cases are
more difficult to adapt to string theory because we cannot make a consistent background
for type II by simply (topologically) crossing them with a 7-manifold, as the total space
will continue to be nonorientable. To make a consistent string theory background from
this example one has several choices. For example, one may consider an orientifold pro-
jection, or one may consider a topology which is only locally this example crossed with
a 7-manifold. In the first case, complex twisted K-theory will no longer be the K-theory
which classifies fluxes and branes. In the second, the relevant complex K-theory will
not simply be the tensor of the K-theory that we find below with that of the 7-manifold.
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So in either case, adapting the results below to classify fluxes in a string background is
less trivial than for the other examples of this note. However this example does illustrate
that the twisted K-theory isomorphism appears to work when H is torsion and also for
nonorientable manifolds (although, strictly speaking, in the discussion up to now we
have assumed the S1-bundle to be orientable).

To classify bundles on RP2, we must first know its Z-valued cohomology:

H 0(RP2,Z) = Z , H 1(RP2,Z) = 0 , H 2(RP2,Z) = Z2 . (4.20)

T-duality interchanges the Chern class with the H -flux. If both of them are zero then it
takes the trivial bundle with no H -flux to itself. It interchanges K0 and K1, which is
consistent with the fact that they are isomorphic.

We next consider the trivial bundle with 1 unit of H -flux. The cup product of this
H -flux with k ∈ H 0(RP2 × S1) = Z is k ∈ H 3(RP2 × S1) = Z2 and so is zero if k is
even and one if k is odd. Thus the subset ofH 0 that is in the kernel ofH∪ consists of the
even integers 2Z ∼= Z which are isomorphic to the integers. The rest of the cohomology
is automatically in the kernel. The image consists ofH 3, and so the quotient of the kernel
by the image is

K0(RP2 × S1, H = 1) = 2H 0 ⊕H 2 = Z ⊕ Z2,

K1(RP2 × S1, H = 1) = H 1 ⊕H 3/H 3 = Z. (4.21)

The T-dual is obtained by interchanging the Chern class of the bundle, which is zero,
with H , which is one.

The result is the nontrivial bundle with no H -flux. A simple construction of this
nontrivial bundle is as follows. It is the nontrivial S2 bundle over S1. That is to say,
begin with the 3d cylinder S2 × I , where I is the interval. Glue the S2’s at the two
ends of the cylinder together by attaching each point on the S2 to its antipodal point
(x, 0) ∼ (−x, 1), as one would construct the Klein bottle in the case of a 2d cylinder.
To see that the resulting space is E, an S1 bundle over RP2, notice that there is an S1

action given by moving along the circle which we constructed by gluing together the
two ends of the interval. If one begins at (x, 0), one arrives later at (x, 1) ∼ (−x, 0)
and later at (−x, 1) ∼ (x, 0) once again. Thus the space of orbits of this circle action is
just the 2-sphere with x and −x identified. As desired, this is RP2. The projection map
E → RP2 identifies each orbit with the corresponding point in RP2.

We find the homology of E analogously to the case of the 2d Klein bottle. The circle
generates H1(E,Z) = Z. The two-sphere is the generator x ∈ H2, but it gets identified
with its mirror image, and so x ∼ −x because the antipodal map negates the orientation
of even dimensional spheres. This yields the relation 2x = 0 and so H2(E,Z) = Z2.
The space is not orientable and so the top homology class vanishes H3(E,Z) = 0. The
universal coefficient theorem allows us to find the cohomology of E,

H 0(E,Z) = Z, H 1(E,Z) = Z, H 2(E,Z) = 0, H 3(E,Z) = Z2 .

(4.22)

The T-dual of the trivial bundle withH -flux isE with no flux, and so the twisted K-theory
is the untwisted K-theory

K0(E) = H 0(E,Z)⊕H 2(E,Z)=Z , K1(E) = H 1(E,Z)⊕H 3(E,Z)=Z ⊕ Z2 .

(4.23)
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As desired, K0 and K1 are the same as the K-groups K1 and K0 of the T-dual in
Eq. (4.21).

There is one more case. The nontrivial bundle E may support one unit of H -flux.
Taking the cohomology with respect to the cup product byH proceeds identically to the
case of the trivial bundle discussed above, and we find

K0(E,H = 1) = 2H 0 ⊕H 2 = Z , K1(E,H = 1) = H 1 ⊕H 3/H 3 = Z . (4.24)

These are the same K-groups as those found in (4.21) except that H 2(E,Z) = 0 �=
H 2(RP2 × S1,Z) = Z2 and soK0 does not contain a Z2-factor here. This is crucial, as
it means that K0(E,H = 1) = K1(E,H = 1). This configuration is self-dual under
T-duality, interchanging K0 and K1.

5. Application: Circle Bundles over RPn

In general calculating the twisted K-theory of high-dimensional manifolds is quite diffi-
cult as many of the differentials of the Atiyah-Hirzebruch spectral sequence for twisted
K-theory are not known. Except for the H -term in d3 used above, these differentials
d2k+1 take even or odd cohomology classes to the torsion part of odd or even cohomol-
ogies.As we will see, the odd cohomology classes of RPn do not contain any torsion, and
so no differentials have an image in odd cohomology. Furthermore the only odd coho-
mology class that is nonvanishing is the top-dimensional one, which is automatically
annihilated by all differentials, and so all odd dimensional cohomology is in the kernel
of the differentials. Thus, except for the H∪ term used above, all of the differentials act
trivially on the cohomology of RPn. No extra complication is introduced by crossing
with a circle, and the nontrivial circle bundle is in fact even simpler. The result is that
all K-groups in this subsection can be found by taking the elements of the cohomology
that are annihilated byH and quotienting by those that are cup products withH , just as
in the three-dimensional case.

As explained above, an additional complication arises in the case of manifolds of
dimension greater than 3. The spectral sequence does not necessarily yield the desired
twisted K-groups, but only an associated graded algebra. To find the K-groups, in gen-
eral one must then solve an extension problem. We will see that in this set of examples
T-duality maps bundles with a nontrivial extension problem to bundles with a trivial
extension problem, and so T-duality will provide the extension problem’s solution.

It will prove to be convenient to treat the case of odd and even n separately. For
example, the RP2m+1’s are orientable and the RP2m’s are not. It is therefore the odd n
cases that are directly applicable to consistent type II string theory compactifications.
The nontrivial integral cohomology groups are

H 0(RPn,Z) = Z, H 2p(RPn,Z) = Z2 , H 2m+1(RP2m+1,Z) = Z ,

p = 1, . . . ,
⌊n

2

⌋
. (5.1)

The cohomology of the trivial circle bundle is similarly

H 0(RPn × S1,Z) = H 1(RPn × S1,Z) = Z, Hq(RPn × S1,Z) = Z2,

q = 2, . . . , n− 1 , H 2m(RP2m × S1,Z) = H 2m+1(RP2m × S1,Z) = Z2 ,

H 2m+1(RP2m+1 × S1,Z) = Z ⊕ Z2, H 2m+2(RP2m+1 × S1,Z) = Z, (5.2)
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where we have assumed that n > 1, thus losing the case of RP1 in which no nontrivial
fibrations are possible.

Possible twists are elements of the third cohomology group

H 3(RPn × S1,Z) =
{

Z ⊕ Z2 if n = 3 ,
Z2 if n �= 3 .

The extra Z in the special case of RP3 consists of classes in H 3(RP3) = Z, and not in
H 2(RP3,Z)⊗H 1(S1,Z) = Z2. Therefore when integrated over the circle H -twists in
this Z are trivial, and do not change the topology of the T-dual manifold. Of course, it is
possible that H is the sum of such a class with the nontrivial element of the Z2, that is
H = (k, 1). In this case it will be a critical consistency check of our conjecture that the
T-dual manifold also have a subgroup Z ⊂ H 3(E,Z) so that there may be a T-dual flux
Ĥ = (k, 0). We will see that the cohomology of the T-dual does in fact have such a
subgroup.

We begin again with the case of vanishingH -flux. In this case the K-theory is simply
the cohomology

K0(RP2m × S1) =
⊕
p

H 2p = Z ⊕ Z
m
2 ,

K1(RP2m × S1) =
⊕
p

H 2p+1 = Z ⊕ Z
m
2 ,

K0(RP2m+1 × S1) =
⊕
p

H 2p = Z
2 ⊕ Z

m
2 ,

K1(RP2m+1 × S1) =
⊕
p

H 2p+1 = Z
2 ⊕ Z

m
2 . (5.3)

As the Thom isomorphism or equivalently here the Künneth theorem guarantees, in each
case K0 ∼= K1 and so T-duality on the circle simply acts by interchanging classes in
these two K-groups. As a check on these results, one may recall that RP2m+1 is a circle
bundle over CPm with two units of Chern class and one may T-dualize about that circle.
This yields CPm × S1 with H = 2. The twisted K-theory of RP2m+1 × S1 is then just
the cohomology of CPm×T 2, which consists of Z

2 for each group, quotiented byH . A
quick calculation shows that these twisted K-groups agree with their T-duals in Eq. (5.3).

If we turn on nontrivialH -flux in the Z2 ⊂ H 3 then the twisted K-theory will be the
kernel of H∪ quotiented by its image. This flux cups nontrivially on even cohomology
groups, taking each to theZ2 torsion part of the odd group three dimensions higher. In par-
ticular all torsion odd cohomology groups are in the image and so are quotiented out of the
K-theory. Only even elements of the even-dimensional cohomology groups are in the ker-
nel, which means only the zero elements of the torsion groups, and 2Z ∼= Z inH 0. All of
H 2m−1 andH 2m is in the kernel for dimensional reasons. In sum, the twisted K-theory is

K0(RP2m × S1, H = 1)
?= 2H 0 ⊕H 2m = Z ⊕ Z2 ,

K1(RP2m × S1, H = 1)
?= 2H 1 = Z ,

K0(RP2m+1 × S1, H = 1)
?= 2H 0 ⊕H 2m ⊕H 2m+2 = Z

2 ⊕ Z2 ,

K1(RP2m+1 × S1, H = 1)
?= 2H 1 ⊕H 2m+1 = Z

2 . (5.4)

The question marks indicate that there is a nontrivial extension problem to solve here,
which will be solved later by imposing our T-duality conjecture and also argued from
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the explicit construction of our isomorphism. As noted above, in the case of RP3 × S1,
one may also addm units of nontorsionH -flux. In this case the Z

2’s above are replaced
by Zm’s.

The T-dual is the nontrivial circle bundleEn over RPn, which as above is anSn-bundle
over the circle made from Sn × I via the gluing (x, 0) ∼ (−x, 1). Notice however that
in the case of odd n = 2m+ 1 the map x → −x is homotopic to the identity, and so for
odd n the T-dual space is S1 × S2m+1. The cohomology is found as in the RP2 case for
n even and by Künneth for n odd to be

H 0(En,Z) = H 1(En,Z) = Z , H 2m(E2m+1,Z) = Z ,

H 2m+1(E2m,Z) = Z2 , H 2m+1(E2m+1,Z) = Z. (5.5)

This allows forH -flux only in the cases of RP2, treated above, and also RP3.H 3(RP3,Z)

= Z and so the H -flux may assume any integer value, which is reassuring as the T-dual
also allowed for an extra integer in the definition of theH -flux. These two integers must
agree.

Thus we need consider only the case of vanishing H -flux, and so the K-groups are
just the cohomology groups

K0(E2m) = H 0 = Z , K1(E2m) = H 1 ⊕H 2m+1 = Z ⊕ Z2 ,

K0(E2m+1) = H 0 ⊕H 2m = Z
2 , K1(E2m+1) = H 1 ⊕H 2m+1 = Z

2 . (5.6)

These groups are all consistent with their T-duals as calculated in Eq. (5.4), except for

K1(E2m+1) = Z
2 �= Z

2 ⊕ Z2 = K0(RPn × S1, H = 1) . (5.7)

From this we infer that the associated graded algebra and the K-group are in fact different
in this case. The relevant extension problem is

0 −→ Z
2 −→ K1(E2m+1) −→ Z2 −→ 0, (5.8)

which admits Z
2 as a solution as well as Z

2 ⊕Z2, the solution which we assumed above.
Our T-duality conjecture appears to predict that the desired solution is Z

2.

This solution to the extension problem can be inferred topologically from our con-
struction of the isomorphism of twisted K-groups. The fibered product of our two circle
bundles is S2m+1 × S1 × Ŝ1 and it fits into the following commutative diagram:



T-Duality: Topology Change from H -Flux 409

RP2m+1 × S1

π

���
��

��
��

��
��

��
��

��
��

�

S2m+1 × S1 × Ŝ1

p̂

���
��

��
��

��
��

��
��

��
��

�

p

����
��

��
��

��
��

��
��

��
��

RP2m+1

S2m+1 × Ŝ1

π̂

����
��

��
��

��
��

��
��

��
��

(5.9)

Recall that the top cohomology group of our trivial RP2m+1 bundle isH 2m+2(RP2m+1 ×
S1,Z) = Z. This is the Poincaré dual of a point x. The key realization is that the preimage
of this point p−1(x) is a circle which wraps Ŝ1 twice. This is because the projection map
p projects to the orbits of a circle which simultaneously wraps Ŝ1 and acts on the S2m+1

via a nonvanishing vectorfield scaled such that after wrapping Ŝ1 once, one arrives at the
antipodal point in S2m+1. Thus the orbit only closes after wrapping Ŝ1 a second time.

Our isomorphism, acting now on integral homology, takes x to p̂p−1(x), which again
wraps Ŝ1 twice. The tensoring with the Poincaré bundle is trivial because p−1(x) does
not wrap S1. In sum, we have found that

T∗ : H0(RP2m+1 × S1,Z) = Z −→ H1(S
2m+1 × Ŝ1,Z) = Z : 1 → 2 . (5.10)

This means that the class 1 ∈ H0(RP2m+1 × S1,Z) actually corresponds to the class
2 in twisted K-theory, which is only consistent if the solution to the extension problem
(5.8) is given by

K1(E2m+1) = Z
2 . (5.11)

6. Anomalies

6.1. Quotients of AdS5 × S5. A more nontrivial check of our conjecture (1.8) comes
in its application to circle bundles on CP2. We have H 2(CP2) = Z, and so again circle
bundles are parametrized by a single integer j . The total space of such a bundle is the lens
spaceL(2, j), i.e. the nonsingular quotientE = S5/Zj , when j �= 0, andE = CP2 ×S1

when j = 0. The nonvanishing integral cohomology groups are (see, e.g., [15])

H 0≤p≤5(CP2 × S1) = Z , (6.1)

H 0(L(2, j),Z) = H 5(L(2, j),Z)=Z , H 2(L(2, j),Z) = H 4(L(2, j),Z)=Zj .

ThusH -flux is only possible for the trivial bundle j = 0, as the nontrivial bundles have
trivial third cohomology. In the case of the trivial bundle, the cup product with theH -flux
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mapsH 0 toH 3 andH 2 toH 4 whileH 1, H 3 andH 5 are all in ker(d3 = H∪). The next
differential in the spectral sequence, d5, may act nontrivially on the cohomology ring,11

but is trivial on the kernel of d3 and so does not affect the twisted K-theory of CP2 ×S1.
T-duality relates the trivial bundle with H = j to the bundle with first Chern class j

and no flux. The twisted K-theory of the former is

K0(CP2 × S1, H = j) = H 4(CP2 × S1,Z) = Z ,

K1(CP2 × S1, H = j) = H 1 ⊕H 3 ⊕H 5/(jH 3 ⊕ jH 5) = Z ⊕ Zj
2 . (6.2)

In the latter case H vanishes and so the K-groups are just the cohomology groups

K0(L(2, j)) = H 0 ⊕H 2 ⊕H 4 = Z ⊕ Z
2
j ,

K1(L(2, j)) = H 1 ⊕H 3 ⊕H 5 = Z . (6.3)

And so we see that cases (6.2) and (6.3) differ by the exchange ofK0 andK1 as desired.
Of course such T-dualities are interesting because IIB string theory on AdS5 × S5

is comparably well understood. This j = 1 example of the above T-duality was first
studied in Ref. [6] where it was observed that the spacetime on the IIA side is not spin,
making the duality quite nontrivial.

The resulting RR fluxes are easily computed. If we start with N units of G5-flux
supported on L(2, j) in IIB, then in IIA there will be N units of G4-flux supported on
CP2 and j units of H -flux supported on H 2(CP2,Z)⊗H 1(S1,Z).

6.2. Gravitino anomalies before and after. One might worry that type IIA string theory
(and also its M-theory lift) on a non-spin manifold is inconsistent, because the gravi-
tino requires a spin structure to exist. There is no such anomaly on the IIB side, whose
space-time is the spinmanifoldAdS5 ×S5, thus it is a critical check of this duality that
the anomaly be cancelled on the IIA side.

The authors of Ref. [6] have shown that the anomaly is in fact cancelled. This can-
cellation is a result of the 11d supergravity coupling

L11d ⊃ �G4� (6.4)

of the gravitino � to the 4-form fieldstrength G4. Dimensionally reducing away the
M-theory circle and S1

IIA one finds, among other terms, the 9-dimensional coupling

L9d ⊃ �F2� (6.5)

identifying the gravitino as a fermion charged under aU(1) gauge symmetry. The anom-
aly should be independent of the high energy physics such as the massive KK-modes
which are uncharged under this U(1).

Such a fermion may be consistent on a manifold M that is not spin, but is merely
spinC if the second Stiefel-Whitney class w2(M) is equal to twice the fermions charge
Q multiplied by the Chern class of the bundle

w2(TM) = 2Qc1(E) . (6.6)

11 Whether it does depends on an ill-defined division by 2 in Ref. [44].
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The right-hand side of this equation is naturally an element of H 2(M) with integral
coefficients. The left-hand side of course is an element of cohomology withU(1) coeffi-
cients, but due to the spinC condition it also lifts to integral cohomology. To find c1(E),
recall that, according to the E8 interpretation, the fibers of the U(1) bundle are just the
circle S1

IIB that appears in type IIB. Thus the Chern class is j = 1, more precisely, it is
the generator of H 2(CP2,Z). The second Stiefel-Whitney class of the IIA spacetime is
the same class, and so the anomaly cancellation condition (6.6) is only satisfied if Q is
half-integral.

In Ref. [6] it was concluded that Q is in fact half-integral and so the anomaly van-
ishes on the IIA side. To see this, perform a gauge transformation by an angle of 2π .
This contributes a phase to the gravitino’s wavefunction

� −→ e2πQ� . (6.7)

To calculate this phase, we look at the IIB side. This is a rotation of the IIB circle over
2π , and so corresponds to transporting the gravitino around the circle. If we chose the
supersymmetric spin structure on the circle then the gravitino’s phase acquires a −1,
and so Q is half-integral as required. It is interesting that the matching of anomalies
required us to choose the supersymmetric spin structure on the circle about which we
T-dualized; if we had not then the result may not have been IIA but possibly type-0 [43].

6.3. The gravitino anomaly in the general case. We have found that theH -field arising
from our T-duality cancels the gravitino anomaly on the IIA side, so that the IIA theory
is consistent. It is a critical test of our proposal (1.8) that the two sides of the duality
be consistent and inconsistent at the same time. That is, the gravitino anomalies must
match on the two sides in general. To see that they do, we extend the above argument
to the general case. We will begin with the case in which there is no H -flux on the IIB
side, and so a trivial bundle in IIA.

As there is no H -flux on the IIB side, the gravitino anomaly is entirely determined
by the second Stiefel-Whitney class of the S1

IIB bundle E,

AnomalyIIB = w2(T E) = w2(M
9)+ w2(E) = w2(M

9)+ c1(E) , mod 2, (6.8)

wherew2(T E) ⊂ H 2(E) is the Stiefel-Whitney class of the tangent space toE, whereas
w2(E) ⊂ H 2(M9) and c1(E) ⊂ H 2(M9) are characteristic classes of the S1 bundle
over the base M9. In the case of L(2, j) = S5/Zj this anomaly is 1 + j and so the IIB
side is anomalous when j is even.

To compute the anomaly on the IIA side we will first dimensionally reduce away the
trivially fibered circle S1

IIA. If our T-duality conjecture is correct this will be IIB reduced
to 9-dimensions and so the anomalies will match. To check that it does, notice that the
anomaly for a U(1) charged fermion in 9 dimensions is given by (6.6),

AnomalyIIA = w2(M
9)+ 2Qc1(E) mod 2, (6.9)

whereE is now interpreted as our gauge bundle, although theE8 description tells us that
it is the same E as we encountered on the IIB side. If we again take the supersymmetric
spin structure then by the same argument we conclude thatQ is half-integral and so the
anomalies (6.9) and (6.8) as computed in type IIA and IIB agree.

To extend this argument further, to the general case in which there is H -flux before
and the T-duality, one need only observe that the total anomaly in both cases is the second
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Stiefel-Whitney class of the sum of the two circle bundles. Thus they are both the sum
of w2(M

9) plus w2 of the two circle bundles, where the fact that Q is half-integral for
the chosen spin structure has been used to rewrite one Chern class as a Stiefel-Whitney
class. As both anomalies are given by the same formula, they agree. It is suggestive
(mysterious) to rewrite the anomaly as w2 of the fibered product. One may then include
the IIA coupling of the gravitino to G2 to conclude that the total anomaly is w2 of the
F-theory 12-manifold.

6.4. TheG4 quantization condition in M-theory. In Ref. [27] Witten showed that when
the spacetime Y 11 is spin the M-theory four-form obeys the twisted flux quantization
condition which we heuristically write as

G4 = 1
4p1(T Y

11) mod 2. (6.10)

For an interpretation of these divisions, we refer the reader to the original paper. While
the first Pontrjagin class p1 of the tangent space may always be canonically divided by
two, the division by 4 in (6.10) is canonical because Y 11 is spin.

As explained in [6], G2 vanishes in the above example of IIA on AdS5 × CP2 × S1

and so the M-theory topology is AdS5 × CP2 × T 2, which is not spin. Therefore the
above divison by two may not exist. In fact, theG4 flux in this example is a cup product
of the generator of H 2(T 2,Z) = Z and so does not satisfy the twisted quantization
condition (6.10).

Instead we see that when M-theory is compactified on a 2-torus T 2 the shifted quan-
tization condition is ∫

T 2
G4 = w2(TM

9) mod 2 . (6.11)

This equation may well generalize to 2-torus bundles, and possibly the 2-torus may be
replaced by any 2-manifold. When the spacetime is not of such a form, perhaps the
anomaly-cancellation used above cannot work and so the 11-dimensional spacetime
must be spin, and thus Eq. (6.10) is applicable. Nonetheless, it may be interesting to
find a single formula that works in all of the cases.

7. Concluding Remarks

We have conjectured that any orientable circle bundle is T-dual to another circle bundle,
where the Chern class of each bundle is the integral of the T-dual H -flux over the dual
circle. As evidence, we have provided physical motivation in a number of special cases
and have seen that this definition of T-duality always leads to the desired isomorphism
of the twisted K-theories with a shift in dimension by one.

However to be certain that this isomorphism of twisted K-theory is a duality of the full
string theory in the most general cases one requires more powerful methods. The most
obvious choice is the σ -model on E ×M Ê program of [2] and later [5]. This approach
has been used to find that nontrivial bundles are dual to a singular B-flux. Thus it may
be possible to compute the correspondingH -flux and verify that it obeys our conjecture.
This calculation would then need to be extended to the case in which H is nontrivial
both before and after the T-duality.

This approach may allow a number of other open problems to be tackled directly.
An obvious one is the generalization of the results of this paper to higher-dimensional
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torii. The obstruction that we conjecture exists when the integral of H over a subtorus
is nontrivial may be visible directly in such an approach. In the present approach, the
obstruction is mysterious because the S-dual to an obstructed T-duality is the T-duality
of a 2-torus supporting G3-flux. Such a T-duality is perfectly legitimate, and leads to
G1-flux. Thus one may suspect that the forbidden T-duality of a 2-torus with H -flux
yields the S-dual of a configuration with G1-flux. The S-duals of such configurations
have been described extensively in the literature, but unfortunately the descriptions tend
not to agree. One common feature among papers that claim that such a duality makes
sense is that the dilaton ceases to be globally defined, which may explain why we have
difficulty understanding such a theory.

Another obvious generalization is that we may allow our circle fibers to degenerate.
This would then include examples such as mirror symmetry.While theσ -model approach
may be promising here, the traditional approach to this subject [45, 46] suggests that a
linear sigma model which flows in the IR to the conformal theory may provide a much
more practical tool for this and the previous generalizations.

The generalization to the equivariant case appears to be straightforward, and we hope
to come back to this in future work. More intriguing is the extension fromU(1)-bundles
to non-abelian bundles yielding nonabelian dualities. Such bundles are also treated in
[24] although the results are much more limited.

There are a number of more tangentially related applications and open problems.
As mentioned above, the shifted quantization condition of G4 in the non-spin case is
still unknown in general, although in the Riemann surface bundle case the contribution
above may be the entire condition. The T-duality above between RP3 × S1 with H -flux
and S3 × S1 may be dimensionally reduced to a 7-dimensional duality of gauged super-
gravities. This may relate an SU(2) symmetry to an SO(3) symmetry with a Z2 Wilson
line activated.

Perhaps the most mysterious aspect of this realization of T-duality is the connection
to F-theory. Consistency seemed to require that the 12-manifold be spin, as if it were
inhabited by fermions despite the lack of a single-time 12d SUSY algebra. More signifi-
cantly, the σ -model approach introduces an auxilliary dimension as an intermediate step,
and that step seems to be a kind of σ -model on the fibered product, which is F-theory
compactified on the M-theory circle. Could this mean that F-theory is a theory after all?
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