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SUMMARY 

 

Cancer control by adaptive immunity involves numerous death1-8 and 

clearance9-11 mechanisms. Yet, efficient inhibition of exponential cancer growth 

by T-cells and interferon-γ (IFN-γ) strictly requires additional, so far undefined 

mechanisms that arrest cancer cell proliferation1-5,12,13. Here we show that the 

combined action of the T-helper 1 (TH1)-cell cytokines IFN-γ and tumor-necrosis-

factor (TNF) directly induces permanent growth arrest in cancers. To safely 

separate senescence induced by tumor-immunity from oncogene-induced 

senescence9-11,14-17, we used RIP1-Tag2 mice, where large T-antigen (Tag) 

causes cancer by attenuating p53- and Rb-mediated cell cycle control18,19. When 

combined, IFN-γ and TNF drive Tag-expressing cancers into senescence, as 

they induce permanent growth arrest in G1/G0, activation of p16Ink4a, downstream 

Rb-hypophosphorylation at Ser795, and E2F2 suppression. This cytokine-

induced senescence strictly requires STAT1- and TNFR1-signaling. Also in vivo, 

Tag-specific TH1-cells permanently arrest Tag-expressing cancers by inducing 

IFN-γ- and TNFR1-dependent senescence. Therefore, TNFR1-/-xRIP1-Tag2 

cancers resist to cytokine-induced senescence and grow aggressively, even in 

TNFR1-expressing hosts. Moreover, IFN-γ and TNF induce senescence in 

murine breast cancers and human rhabdomyosarcoma, revealing IFN-γ/TNF -

induced senescence as a general mechanism arresting cancer progression. 
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Recent studies from targeted cancer immunotherapies show that adaptive immunity 

can efficiently control human cancer20-24. Surprisingly, many cancer immunotherapies 

do not cause cytotoxic cancer elimination but arrest cancer growth or induce slow 

cancer regression21,22, even though immunotherapies generally focus on CD8+ 

cytotoxic T lymphocytes (CTL) or natural killer cells1-8,23,24. Moreover, where studied, 

growth arrest and cancer regression correlate with tumor-specific, IFN-γ producing 

CD4+ (TH1) cells rather than CTL20-23. In addition, profiling of patients in clinical cancer 

trials shows a critical role for IFN-γ and TNF in cancer control25,26. 

Similarly, efficient immune control of murine cancers resulting from aberrant cell 

cycle control, oncogene expression, chemical or viral transformation strictly requires 

IFN-γ3-7,12,27. In consequence, IFN-γ- and TNF-producing TH1 cells specific for the 

tumor antigen Tag (Tag-TH1) restrain Tag-induced islet cancers in mice expressing 

Tag under the control of the rat insulin promotor1 (RIP1-Tag2) in all pancreatic islet 

cells12,18. TH1-immunity doubles life span of mice through strictly IFN-γ- and TNFR1-

dependent mechanisms12, without causing detectable signs of cytotoxicity, tumor cell 

necrosis, or apoptosis12. This is surprising, as Tag-expression causes invasive β-cell 

cancers (β-cancer) in 2% of the islets by incomplete retinoblastoma (Rb) suppression 

and p53 silencing18,19. 

Only CD4+ TH1 cells that produce IFN-γ and TNF and that are specific for Tag-

peptide (Tag-TH1 cells), induce IFN-γ- and TNFR1-dependent arrest of RIP1-Tag2 

cancers (Supplementary Fig. 1a-c)12. This arrest occurs in the absence of significant T 

cell infiltration (Supplementary Fig. 1c, 2)12 and is independent of either CTL12 or 

enhanced apoptosis, as determined by TUNEL12 or caspase-3 staining. Instead, Tag-

specific TH1 cells form follicle-like structures around the islets, where they interact with 

antigen-presenting cells12. Ki67 staining confirmed that Tag-TH1 cells arrested 
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proliferation of β-cancers in vivo (Supplementary Fig. 3a). Freshly isolated β-cancer 

cells from Tag-TH1 cell-treated RIP1-Tag2 mice failed to proliferate in vitro while β-

cancer cells from sham-treated mice strongly incorporated 3H-thymidine 

(Supplementary Fig. 3b). This suggests that TH1 cytokines induce senescence in vivo, 

despite normal Tag-expression (Supplementary Fig. 4). 

To directly ask whether IFN-γ and TNF induce senescence in β-cancers, we 

cultured freshly isolated β-cancer cells from sham-treated mice with either medium or 

with IFN-γ and TNF. In cell cycle analysis, untreated β-cancer cells were ≥25% in S 

phase and 40% in G1/G0, explaining their rapid proliferation. When combined, IFN-γ 

and TNF arrested most β-cancer cells in G1/G0 within three days (Fig. 1a). They 

reduced S phase cells to 3% and increased the G1/S ratio 20-fold (Fig. 1b) without 

increasing the apoptotic sub-G1 fraction (Fig. 1a). As IFN-γ and TNF arrested the β-

cancer cells in G1/G0, a state characterizing cellular senescence, we asked whether 

IFN-γ and TNF caused senescence-defining permanent growth arrest.  

Freshly isolated β-cancer cells proliferated rapidly in medium. When cultured 

in the presence of IFN-γ and TNF, β-cancer cells were fully growth arrested (Fig. 1c). 

To determine whether the growth-arrested β-cancer cells were really senescent, we 

washed the cells on day five and cultured them for another two weeks with medium 

only. While untreated β-cancer cells continued to expand, β-cancer cells that had 

been exposed for five days to the combination of IFN-γ and TNF were truly senescent 

as they remained fully growth-arrested (Fig. 1c). Even two weeks after withdrawal of 

IFN-γ and TNF, the β-cancer cells failed to incorporate BrdU while untreated controls 

strongly incorporated BrdU (Fig. 1d, e, Supplementary Fig. 5a, b).  

IFN-γ and TNF also induced the characteristic senescence-associated 
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epigenetic and lysosomal changes, like nuclear recruitment of phosphorylated 

heterochromatin protein 1γ (pHP1γ) into senescence-associated heterochromatin foci 

(SAHF) or senescence-associated β-galactosidase (SA-β-gal) activity. Time course 

studies revealed that within three days, IFN-γ and TNF induced the early senescence 

marker pHP1γ in 75% (Supplementary Fig. 6a, b) and SA-β-gal in 50% of the β-

cancer cells (Fig. 2a, b). Yet, induction of stable growth arrest and the late 

senescence marker SA-β-gal in 80% of the cells (Fig. 2c) needed ≥4 days of 

incubation with both IFN-γ and TNF. Double-staining with synaptophysin, an islet cell 

marker, confirmed SA-β-gal-expression by β-cancer cells (Supplementary Fig. 7). 

Combined IFN-γ and TNF established the senescence-defining permanent growth 

arrest in β-cancers cells while neither IFN-γ nor TNF alone was sufficient to induce 

full growth arrest (Supplementary Fig. 5a, b), although inducing early signs of 

senescence such as pHP1γ recruitment to SAFH (Supplementary Figure 6a, b), and 

SA-β-gal in 20% of the cells (Fig. 2b). 

 As combined stimulation of islets or islet tumors with IFN-γ and TNF strongly 

induces JunB28, the combined IFN-γ/STAT1- and TNFR1-signaling may activate the 

JunB downstream target p16Ink4a and thus stabilize the p16Ink4a/Rb senescence 

pathway in Tag-expressing β-cancers. Indeed, IFN-γ and TNF strongly induced 

p16Ink4a in subconfluent cultures within 48 hours (Fig. 2d), while p16Ink4a remained 

weakly expressed in medium-treated, subconfluent β-cancer cells (Fig. 2d). As this 

induction of p16Ink4a also caused sustained and severe hypophosphorylation of Rb at 

Ser795 (Fig. 2e) and suppressed the Rb-regulated gene E2F215 down to 20%, IFN-γ 

and TNF conjointly stabilized the p16Ink4a/Rb senescence pathway in β-cancer cells. 

In line with this, STAT1- or TNFR1-deficient β-cancer cells fully resisted senescence 
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induction by IFN-γ and TNF, underlining that hypophosphorylation of Rb strictly 

required the combined action of the STAT1- and TNFR1-signaling pathways (Fig. 2b, 

f). As IFN-γ and TNF also induced senescence in unrelated breast cancers from 

polyoma virus middle T antigen (PyVmT)-transgenic mice (Supplementary Fig. 8) or 

human A204 rhabdomyosarcoma cells (Supplementary Fig. 9), cytokine-induced 

senescence was not restricted to Tag-expressing cancers. 

 Combined IFN-γ- and TNFR1-signaling is also necessary to arrest β-cancers in 

vivo12 (Supplementary Fig. 1). Together the in vitro and in vivo data thus suggest that 

TH1-immunity arrested cancer progression through IFN-γ- and TNF-induced 

senescence in vivo. To test this hypothesis, we first quantified senescence-

associated chromatin changes by counting cancer cells positive for pHP1γ, 

trimethylated lysine-9 of histone 3 (H3K9me3), or apoptosis-associated active 

caspase-3 by immunohistology in either sham-treated mice or mice treated with Tag-

TH1 cells. TH1-immunity significantly increased pHP1γ− and H3K9me3-positive nuclei 

in β-cancers, but not caspase-3-positive cells (Fig. 3a, b).  

To address whether TH1-immunity activated the p16Ink4a/Rb pathway also in 

vivo, we double-stained sections for p16Ink4a and the proliferation marker Ki67. In 

sham-treated mice, the β-cancer cells were ≥30% Ki67-positive and only 5% p16Ink4a-

positive. TH1-immunity diminished Ki67+ cells to 3%, and increased the fraction of 

p16Ink4a-positive cells (nuclear and cytoplasmic) to ≥20% (Figure 3c, d, 

Supplementary Fig. 10).  

Senescence-induction by TH1-immunity strictly required TNFR1-signaling also 

in vivo. TNFR1-/- β-cancers failed to increase either pHP1γ, H3K9me3, or active 

caspase-3 when treated with Tag-TH1 cells (Supplementary Fig. 11a, b). In addition, 

whether isolated from sham- or Tag-TH1 cell-treated mice, TNFR1-deficient β-cancer 
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cells expressed Ki67 but not p16Ink4a (Fig. 3c, d), even though Tag-TH1 cells migrate 

into pancreata of TNFR1-/-xRIP1-Tag2 mice12. As TH1-immunity severely impaired  β-

cancer growth in vivo12, these data strongly suggest that the combined IFN-γ- and 

TNFR1-signaling drove cancers into senescence also in vivo. Yet, the most stringent 

criterion defining senescence is stable and permanent growth arrest in the absence 

of TH1-immunity9,15-17.  

We therefore cultured freshly isolated β-cancer cells from 12-week-old mice 

with medium only. Cells from sham-treated RIP1-Tag2 mice first suffered a critical 

loss and then re-initiated proliferation, yielding 10-20x105 β-cancer cells/pancreas 

after three passages (Fig. 4a). In contrast, β-cancer cells from RIP1-Tag2 mice 

treated with Tag-TH1 cells were truly senescent, as they failed to proliferate over 

three passages and stably yielded only 0.5-2.0x105 cells/pancreas (Fig. 4a). β-cancer 

cells from TNFR1-/-xRIP1-Tag2 mice grew exponentially also in vitro, yielding 

100x105 cells within three passages, even when derived from Tag-TH1 cell-treated 

mice (Fig. 4a).   

To determine whether senescence was also maintained in vivo, we re-

implanted the four different β-cancer cell lines after the 3rd passage under the skin of 

NOD-SCIDxIL2Rcγ-/- mice, as growth at ectopic sites characterizes cancers2. Within 

seven weeks, as few as 1.2x105 β-cancer cells from sham-treated RIP1-Tag2 mice 

significantly decreased blood glucose (Fig. 4b) and increased the serum insulin levels 

(Fig. 4c), demonstrating the metastatic potential of β-cancer cells from sham-treated 

mice. Senescent β-cancers from RIP1-Tag2 mice treated with Tag-TH1 cells 

remained growth-arrested also in vivo, as blood glucose remained stable in all 

transplanted mice throughout the seven weeks (Fig. 4b). Minute adenomas in some 

NOD-SCIDxIL2Rcγ-/- mice and marginally increased serum insulin (Fig. 4c) showed 
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that the transplanted cells survived but remained growth-arrested for ≥10 weeks of in 

vitro and in vivo culture. Again, senescence-resistant TNFR1-/-xRIP1-Tag2 β-cancer 

cells grew rapidly after transplantation and as little as 1.2x105 TNFR1-/- xRIP1-Tag2 

cancer cells rapidly decreased blood glucose (Fig. 4b), irrespective of whether they 

were derived from sham-treated or Tag-TH1 cell-treated mice. Transplanting 60% of 

total β-cancer cells from sham-treated RIP1-Tag2 mice generated tumors within 

seven weeks, while β-cancer cells from Tag-TH1 cell-treated mice failed to grow (Fig. 

4d). Only 10% of β-cancer cells from sham- or Tag-TH1 cell-treated TNFR1-/-xRIP1-

Tag2 mice generated large tumors within the same time (Fig. 4d). 

Oncogenes, DNA-damage or chemotherapeutics induce senescence that, in 

human cells, is reinforced by the senescence-associated secretome14-17,29,30. 

Uncovering that adaptive TH1-immunity directly restrains cancer proliferation through 

IFN-γ/TNF-induced cancer cell senescence provides a long-searched direct 

mechanism explaining the anti-proliferative effects of TH1-immunity on cancers2,3. 

TH1-immunity has thus two majors effects on cancer, it can directly drive cancers into 

senescence and, subsequently, clear senescent cancer cells9-11. As these combined 

effects explain the therapeutic efficiency of tumor-specific TH1-immunity in early 

cervical cancer21 and disseminated melanoma20, TH1 cytokine-induced senescence 

may be of broad relevance for cancer control, also in humans under therapeutic 

conditions.  
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METHODS SUMMARY 

RIP1-Tag2 and TNFR1-/-xRIP1-Tag2 mice were either sham-treated or treated with 

Tag2-specific TH1 cells starting at week 6. Cancer cells were isolated by consecutive 

collagenase/trypsin digestion from tumor tissues of RIP1-Tag2, STAT1-/-xRIP1-Tag2, 

TNFR1-/-xRIP1-Tag2, or PyVmT-transgenic mice. Isolated β-cancer cells were 

identified by immunofluorescence using anti-synaptophysin (early β-cell marker) 

antibodies. Proliferation in vivo and in vitro of tumor cells was measured by BrdU 

incorporation, Ki67 staining, 3H-thymidine incorporation, or cell cycle analysis. 

Senescence was assessed by SA-β-gal staining, immunofluorescence, 

immunohistochemistry or Western blot using anti-pHP1-γ, anti−p16Ink4a, anti-Rb, anti-

phospho-Rb, or anti-H3K9me3 antibodies, or by in vitro and in vivo growth assays. 

Apoptosis was determined by cell cycle analysis, or immunohistochemistry with an 

anti-active caspase 3 antibody. For transfer experiments, β-cancer cells from sham- 

or TH1 cell-treated mice (either RIP1-Tag2 or TNFR1-/-x RIP1-Tag2) were injected 

subcutaneously into NOD-SCIDxIL2Rcγ-/- mice, and tumor growth was monitored with 

a caliper and by measuring blood glucose and insulin levels. 

 

Full methods and any associated references are available in the online version of 

the paper at www.nature.com/nature.  
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Figure Legends 
 

Fig. 1 | Combined, the TH1 cytokines IFN-γ and TNF induce stable growth arrest 

of Tag-driven β-cancer cells in vitro.  
a, b, Cell cycle analysis (a) and mean G1/S ratio (b) of β-cancer cells cultured either 

in the absence or presence of IFN-γ and TNF. c-e, Cell numbers (c), BrdU 

incorporation (d) and mean numbers of BrdU-positive spots (e) of β-cancer cells 

treated for five days with medium only or with IFN-γ and TNF. Thereafter, cells were 
washed and then cultured with medium in the absence of cytokines for another two 
passages. After the second passage 3,000 viable cells were seeded in 96 well plates 
and cell proliferation was analyzed by BrdU staining.   
*P<0.05. n=3-6 (b, c, e). Control=Co. (a-e).  
 

Fig. 2 | STAT1- and TNFR1-dependent stabilization of the p16Ink4a/Rb 

senescence pathway in β-cancer cells by the combined action of IFN-γ and TNF 

in vitro. 

a, SA-β-gal activity of β-cancer cells after 72 h of treatment with medium, IFN-γ, TNF, 

or IFN-γ and TNF. Bar, 100 µm. b, Concentration-dependent induction of SA-β-gal+ 

cells by TNF either in the absence or presence of IFN-γ within 72 h in β-cancer cells 

from RIP1-Tag2 or TNFR1-/-xRIP1-Tag2 mice. c, Induction of SA-β-gal activity by 

IFN-γ and TNF within 96 h. d, Detection of p16Ink4a or β-actin by Western blot in β-

cancer cells treated with medium or with IFN-γ and TNF. e, Detection of 

phosphorylated Rb (p-Rb), total Rb (Rb), or β-actin by Western blot in β-cancer cells 

treated with medium or IFN-γ and TNF. f, SA-β-gal activity of β-cancer cells isolated 
from either RIP1-Tag2 or STAT1-/-xRIP1-Tag2 mice after 72 h of treatment with 

medium or with IFN-γ and TNF. 
*P<0.05. n=3-9 (b,c,f). Control=Co. (a, c-f).  
 
 

Fig. 3 | TNFR1-dependent induction of growth arrest and senescence in β-
cancer cells by TH1-immunity in vivo.  
a, b, Analysis of the senescence markers pHP1γ and tri-methylated H3K9 
(H3K9me3), or the apoptosis marker active caspase-3 by immunohistochemistry (a), 

and percentage (b) of pHP1γ-, H3K9me3- or active caspase-3-positive cells in β-
cancers from RIP1-Tag2 mice that were either sham- or Tag-TH1 cell-treated. Bar, 
100 µm. c, d, Double-staining (c) for the senescence marker p16Ink4a (red) and the 
proliferation marker Ki67 (blue), and percentage (d) of p16Ink4a- and Ki67-positive 
cells in cancers from RIP1-Tag2 or TNFR1-/-xRIP1-Tag2 mice that were sham- or 
Tag-TH1 cell-treated. Nuclei are green. Bar, 25 µm.  
*P<0.05 from sham-treated control. n=5-6 (b, d).  
 

Fig. 4 | TH1-immunity induces TNFR1-dependent, permanent growth arrest of β-
cancer cells which remains stable for ≥10 weeks, even after transfer into 

immune-deficient NOD-SCIDxIL2Rcγ-/- mice. 

a, Cell numbers of β-cancer cells isolated from RIP1-Tag2 or TNFR1-/-xRIP1-Tag2 
mice that were sham- or Tag-TH1 cell-treated. The number of cell passages (p) is 

indicated, and the data are presented as number of living β-cancer cells per mouse. 
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b, Blood glucose levels in NOD-SCIDxIL2Rcγ-/- mice after transfer of 1.2x105 β-
cancer cells isolated from sham- or Tag-TH1 cell-treated RIP1-Tag2 or TNFR1-/-

xRIP1-Tag2 mice. c, Insulin levels in NOD-SCIDxIL2Rcγ-/- mice after transfer of 

1.2x105 β-cancer cells isolated from sham- or Tag-TH1 cell-treated RIP1-Tag2 mice. 

d, Tumor volumes in NOD-SCIDxIL2Rcγ-/- mice after transfer of β-cancer cells 
isolated from sham- or Tag-TH1 cell-treated mice. The table indicates origin and 

percentage of total β-cancer cells/mouse injected.  

Red lines: blood glucose of untreated NOD-SCIDxIL2Rcγ-/- mice (b). Dashed red 
lines: normal range of insulin in healthy mice (c).  
*P<0.05 from sham-treated control. n=3-6 (a-d). 
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METHODS 

Animals. C3H mice from Charles River (Sulzberg, Germany), transgenic RIP1-Tag2 

mice31, double transgenic TNFR1-/-xRIP1-Tag212, 32 and STAT1-/-xRIP1Tag2 mice 

(backcross of STAT-/- mice from Taconic (Hudson, NY, USA) over 12 generations to 

C3H), TCR2 mice33 all on a C3H background, and PyVmT-transgenic mice34 were 

bred under specific pathogen-free conditions. NOD-SCIDxIL2Rcγ-/- mice (NOD.Cg-

Prkdcscid IL2rcγtm1Wjl/SzJ)35 were from The Jackson Laboratory (Bar Harbor, ME, 

USA). Animal experiments were approved by the local authorities (HT 2/03, HT2/07 

and K1/07). 

Cell culture and single cell analysis. Tag-specific TH1 cells were isolated and 

generated from TCR2 mice, and characterized by flow cytometry12.  

Tumors were isolated from sham- and Tag-TH1-cell-treated RIP1-Tag2 mice, sham- 

and Tag-TH1-cell-treated TNFR1-/-xRIP1-Tag2 mice, STAT1-/-xRIP1-Tag2 mice, or 

mammary tumor-bearing PyVmT-transgenic mice by collagenase digestion (1 mg/ml, 

Serva, Heidelberg, Germany) for 10 min at 37°C, and then separated under a 

dissection microscope (Leica Microsystems, Wetzlar, Germany). Tumor cells were 

obtained by incubation in 0.05% trypsin/EDTA solution (Invitrogen, Darmstadt, 

Germany) at 37°C for 10 min, and seeded on tissue culture plates. Adherent cells 

were cultured for 2 to 5 weeks in RPMI 1640 supplemented with 10% fetal calf 

serum, nonessential amino acids, antibiotics, and 50 µM 2-mercaptoethanol at 37°C 

and 5% CO2. Human rhabdomyosarcoma cells (A204 cells) were grown in complete 

RPMI 1640 medium. If not otherwise stated, subconfluent cells were treated with 100 

ng/ml mouse or human IFN-γ (R&D Systems, Wiesbaden, Germany), or 10 ng/ml 

mouse or human TNF (R&D Systems), or with a combination of mouse or human 

IFN-γ (50-100 ng/ml) and mouse or human TNF (0.1-10 ng/ml) for 2-6 d. β-cancer 
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cells were identified by immunofluorescence using an anti-synaptophysin antibody 

(undiluted; Lifespan Biosciences, Seattle, WA, USA). 

In vitro proliferation assays. After treatment, cancer cell proliferation was 

measured either by the [3H]-thymidine incorporation assay36, or by the BrdU-based 

Cell Proliferation ELISA and XTT-based Cell Proliferation Kit II according to the 

manufacturer´s protocols (Roche Diagnostics, Mannheim, Germany). [3H]-thymidine 

incorporation was quantified using a MicroBeta TriLux counter (PerkinElmer, 

Rodgau, Germany), and colorimetric analyses were performed on a Multiskan EX 

microplate reader (Thermo Electron, Erlangen, Germany).       

In vitro growth arrest assays. The different cancer cells were seeded at a density 

of 1 x 104 cells/cm2. Then, the cells were treated with control medium or cytokines as 

described above for 4-5 d. After treatment, the cells were trypsinized and viable cells 

(trypan blue exclusion) were counted under a Zeiss Axiovert 25 microscope (Zeiss, 

Oberkochen, Germany)  using a Neubauer counting-chamber (Karl Hecht GmbH, 

Sondheim, Germany). The cells were seeded at 2 x 104 cells/cm2 and grown in 

complete RPMI 1640 medium until the control cultures reached confluence. Then, 

the cells were trypsinized, counted and seeded again. After passage 1-2 (p1-p2), 

1000-3000 viable cells were seeded on MultiscreenTM HTS 96 well Filtration Plates 

(Millipore, Billerica, MA, USA), and proliferation was measured by the BrdU-based 

Cell Proliferation ELISA (Roche Diagnostics) in combination with the Vector®SG 

Substrate Kit for Peroxidase from Vector Laboratories (Burlingame, CA, USA) to 

visualize BrdU-incorporating cells. BrdU-positive spots were counted with an 

ELISPOT reader (Bioreader®-3000; BIO-SYS, Karben, Germany). In addition, some 

cultures were stained with DAPI (Invitrogen) to visualize the nuclei of adherent cells. 
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Treatment of mice with Tag-TH1 cells. Before the first Tag-TH1-cell-based therapy, 

all mice received 2 Gy total-body irradiation. Then, 1 x 107 Tag-TH1 cells in 0.9% 

NaCl solution (Tag-TH1) or NaCl solution alone (Sham) was injected intraperitoneally 

once per week starting at week 612. If not otherwise stated, mice were sacrificed at 

week 12.   

Transfer of β-cancer cells into immune-deficient mice. β-cancer cells isolated 

from the various groups of mice were cultured for 3 passages. Then, 10-60% of the 

β-cancer cells were injected subcutaneously (s.c.) into immune-deficient NOD-

SCIDxIL2Rcγ-/- mice. Tumor growth was monitored with a caliper, and blood glucose 

was measured using an Accu-Check sensor (Roche Diagnostics) for up to 7 weeks. 

Serum insulin levels were determined using the rat/mouse insulin ELISA kit from 

Millipore.    

Immunofluorescence and immunohistochemistry. The different cancer cells were 

grown on chamber slides (BD Biosciences, Heidelberg, Germany). After treatment, 

the cells were fixed with acetone/methanol 1:1. The slides were washed with 

PBS/0.05% Tween 20 at room temperature (RT), blocked with serum-free DAKO-

Block (DAKO, Hamburg, Germany), washed again, and then incubated with the 

following antibodies: anti-Ki67 (dilution 1:100; Abcam, Cambridge, UK), anti-PCNA 

(dilution 1:100; Cell Signaling Technology, Boston, MA, USA), anti-pHP1γ (dilution 

1:100; Abcam), anti-H3K9me3 (dilution 1:500; Millipore, Schwalbach, Germany), anti-

p16Ink4a (dilution 1:100; Santa Cruz Biotechnology, Heidelberg, Germany), anti-SV40 

Large T Antigen (dilution 1:100; BD Biosciences), or anti-synaptophysin (undiluted; 

Lifespan Biosciences). After washing, the slides were incubated with anti-rabbit 

Alexa488 (Invitrogen), anti-rabbit-Cy3 (Dianova, Hamburg, Germany), anti-mouse 

Alexa555, or anti-mouse Alexa488 (both from Cell Signaling Technology), washed 
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again and incubated with DAPI (Invitrogen). Finally, the slides were washed, 

mounted with fluorescence mounting medium (DAKO) and analyzed using a Zeiss 

Axiovert 200 microscope (Zeiss) with the Visiview software (Visitron Systems, 

Puchheim, Germany).  

Fresh frozen cryostat sections of whole pancreata were stained as described36. 

Briefly, the sections were fixed with periodate-lysine-paraformaldehyde, blocked with 

donkey serum (dilution 1:20), and then incubated with rabbit anti-pHP1γ (dilution 

1:80), mouse anti-PCNA (dilution 1:50), mouse anti-p16Ink4a (dilution 1:50), or rabbit 

anti-Ki67 antibodies (dilution 1:100). After washing, the sections were incubated with 

Cy3-conjugated donkey anti-rabbit, donkey anti-mouse, or Cy5-conjugated donkey-

anti-rabbit, donkey-anti-mouse IgG (all from Dianova). Before mounting the slides 

with Mowiol (Hoechst, Frankfurt, Germany), nuclei were stained with Yopro (1:2000; 

Invitrogen). The sections were analyzed using a Leica TCS-Sp/Leica DM RB 

confocal laser scanning microscope (Leica Microsystems). Images were processed 

with the Leica Confocal Software LCS (Version 2.61).  

Formalin-fixed pancreata were embedded in paraffin. Sections (3-5 µm thick) were 

cut and stained with H&E. Immunohistochemistry was performed on an automated 

immunostainer (Ventana Medical System, Tucson, AZ, USA), according to the 

manufacturer’s protocol, with minor modifications37. The antibody panel used 

included activated caspase-3 (Cell Signaling Technology), Ki-67 (DCS Innovative 

Diagnostic Systeme, Hamburg, Germany), pHP1-γ (Abcam), and H3K9me3 (Cell 

Signaling Technology). 

SA-β-galactosidase activity assay. Cancer cells were fixed for 15 min at RT, and 

then stained for 16 h at 37°C using the β-Galactosidase Staining Kit (United States 

Biological; Swampscott, MA, USA). SA-β-gal-positive and -negative cells were then 
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counted using a Zeiss Axiovert 200 microscope (Zeiss). In some experiments, the 

cells were counterstained for synaptophysin by immunofluorescence, and 

synaptophysin/SA-β-gal double-positive cells were counted. 

Cell cycle analysis. After treatment of β-cancer cells, cell cycle analysis was 

performed using the BD PharmingenTM FITC-BrdU Flow Kit according to the 

manufacturer´s protocol (BD Biosciences). The samples were analyzed by flow 

cytometry on a LSR II from Becton Dickinson (Heidelberg, Germany), and the 

following cell cycle phases were determined in % of the total population:  subG1 

(apoptotic cells), G1/G0 (2n, BrdU-negative), S (2n-4n, BrdU-positive) and G2/M 

phase (4n, BrdU-negative). 

Western blot. After treatment, cancer cells were lysed in lysis buffer (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.5% SDS, 1mM NaF, 1mM Na3VO4, 

and 0.4% β-mercaptoethanol) containing a protease inhibitor cocktail and a 

phosphatase inhibitor cocktail (PhosSTOP from Roche Diagnostics). Alternatively, 

cytoplasmic protein extracts were obtained from the cell cultures using the NE-PER 

extraction kit (Thermo Fisher Scientific, Rockford, IL, USA) according to the 

manufacturer´s protocol. Before use, protease inhibitors and PhosSTOP were added 

to the lysis buffers CER I and NER. After determination of protein content by the 

bicinchoninic acid assay (BCA; Thermo Fisher Scientific), proteins were resolved by 

12% SDS-PAGE or by Mini Protean TGX Precast Gels (4-15%; from BioRad, 

München, Germany), transferred onto a PVDF membrane and blocked with 3% 

nonfat milk in TBS/0.1% Tween 20 (TBST) as described38. The membrane was 

incubated with anti-p16Ink4a (1:1000; Santa Cruz), anti-Rb (Ab-780) (1:1000), anti-

Rb(phospho-Ser-795) (1:1000; both from SAB Signalway Antibody, Pearland, TX, 

USA), or anti-β-actin antibody (1:1000; BioVision, Mountain View, CA, USA). After 
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washing with TBST and subsequent blocking, the blots were incubated with goat 

anti-mouse horseradish-peroxidase (HRP)-conjugated antibody or with goat anti-

rabbit horseradish-peroxidase (HRP)-conjugated antibody (1:3000; Cell Signaling 

Technology), washed again and antibody binding was detected with the ECL 

detection reagent (Amersham, Freiburg, Germany). Immunoreactive bands were 

quantified using the ImageJ software (National Institute of Health, Bethesda, MD, 

USA), and the phospho-Rb/Rb ratio of the samples was calculated.  

Statistics. Data are expressed as arithmetic means ± S.E.M. and statistical analyses 

were made by unpaired t-test, or ANOVA using Dunnett´s or Tukey´s test as post hoc 

test, where appropriate. P<0.05 was considered statistically different. 
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