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Few current vaccines can establish antigen (Ag)-specific immune responses in both 

mucosal and systemic compartments. Therefore, development of vaccines providing 

defense against diverse infectious agents in both compartments is of high priority in 

global health. Intramuscular vaccination of an adenovirus vector (Adv) has been shown 

to induce Ag-specific cytotoxic T lymphocytes (CTLs) in both systemic and gut-muco-

sal compartments. We previously found that type I interferon (IFN) signaling is required 

for induction of gut-mucosal, but not systemic, CTLs following vaccination; however, 

the molecular mechanism involving type I IFN signaling remains unknown. Here, we 

found that T helper 17 (Th17)-polarizing cytokine expression was down-regulated in the 

inguinal lymph nodes (iLNs) of Ifnar2−/− mice, resulting in the reduction of Ag-specific 

Th17 cells in the iLNs and gut mucosa of the mice. We also found that prior transfer 

of Th17 cells reversed the decrease in the number of Ag-specific gut-mucosal CTLs 

in Ifnar2−/− mice following Adv vaccination. Additionally, prior transfer of Th17 cells into 

wild-type mice enhanced the induction of Ag-specific CTLs in the gut mucosa, but 

not in systemic compartments, suggesting a gut mucosa-specific mechanism where 

Th17 cells regulate the magnitude of vaccine-elicited Ag-specific CTL responses. These 

data suggest that Th17 cells translate systemic type I IFN signaling into a gut-mucosal 

CTL response following vaccination, which could promote the development of prom-

ising Adv vaccines capable of establishing both systemic and gut-mucosal protective 

immunity.
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INTRODUCTION

Most infectious agents enter the body via the extensive surface 
areas of mucosal membranes; therefore, development of vaccines 
capable of establishing protective immunity in both mucosal and 
systemic compartments is a high-priority global health issue (1, 
2). However, few vaccines in current use can establish antigen 
(Ag)-speci�c immune responses at both sites (3), and induction 
of mucosal immunity by systemic vaccination is challenging 
because of the distinct immunological characteristics of the 
mucosal immune system (3).

Replication-incompetent recombinant adenovirus vectors 
(Advs) have advantages as gene therapy vectors. �ey provide the 
highest gene transduction e�ciency among currently available 
vectors, exhibit low levels of genotoxicity because they are not 
integrated into chromosomal DNA, and can be easily prepared at 
high titers. �erefore, Adv is among the most promising vectors for 
gene therapy. Moreover, Adv can be used as a gene therapy-based 
vaccine and has been utilized in preclinical and clinical vaccine 
research (4–7). Previous reports showed that intramuscular (i.m.) 
immunization with Adv vaccines expressing simian immunode-
�ciency virus (SIV) proteins induced protective and durable SIV 
Ag-speci�c cytotoxic T lymphocytes (CTLs) in both gut-mucosal 
and systemic sites, in mice and rhesus macaques (8–10). Since Adv 
vaccination achieves high-viral clearance, mucosal CTL induction 
is considered important for e�ective vaccines (10). �erefore, Adv 
vaccines are expected to serve as next-generation mucosal vaccines 
capable of combating severe intracellular pathogens; however, the 
development of e�cacious Adv vaccines has yet to be achieved. To 
generate more protective Adv vaccines, it is necessary to identify 
the mechanisms involved in Adv-vaccine establishment of both 
systemic and gut-mucosal immunity.

Innate immune responses are indispensable for the optimum 
induction of adaptive immune responses (11–13). Moreover, accu-
mulating evidence shows that adjuvants that activate the innate 
immune response are important for inducing the e�ects of vac-
cines (14, 15). Several reports show that Adv-derived nucleic acids, 
such as adenoviral genomic DNA and non-coding RNA, activate 
the innate immune response, and induce the production of innate 
immune cytokines (16–20), indicating that the adenoviral compo-
nents of Adv vaccines serve as built-in adjuvants. �ese Adv-derived 
nucleic acids trigger innate immune responses through several 
pathways, resulting in robust production of type I interferons 
(IFNs) and pro-in�ammatory cytokines. Type I IFNs induced by 
Adv immunization play an important role in subsequent systemic 
adaptive immunity. Both dendritic cells (DCs) and other cell types, 
such as stromal cells, produce type I IFNs in vivo and are involved 
in the induction of adaptive immune response (20–22). Moreover, 
type I IFN signaling is required for e�cient humoral immunity 
a�er intravenous Adv immunization (23), suggesting that type 
I IFN signaling controls the e�cacy of Adv vaccines. �erefore, 
determining the role of type I IFN signaling in vivo is important 
for the development of e�cacious Adv vaccines. We previously 
reported that type I IFN signaling following i.m. Adv vaccination 
is required for induction of Ag-speci�c CTLs in the gut-mucosal 
site, but not in the systemic site (24). �is �nding indicates that 
type I IFN signaling plays important roles in positive regulation of 

Ag-speci�c gut-mucosal cellular immunity; however, it remains 
unclear how Adv-induced type I IFN signaling translates systemic 
innate immunity into gut-mucosal adaptive immunity.

In the present study, we used type I IFN-receptor-de�cient 
(Ifnar2−/−) mice to investigate the physiological role of type I 
IFN signaling. Our results showed that type I IFN signaling was 
indispensable for induction of Ag-speci�c T helper 17 (�17) 
cells in the gut mucosa following i.m. Adv vaccination, and that 
�17  cells promoted the induction of Ag-speci�c CTLs in the 
gut mucosa. �ese data suggest that �17 cells translate systemic 
type I IFN signaling into a gut-mucosal CTL response following 
Adv vaccination. Our �ndings promote the development of safer 
and more e�cient Adv vaccines capable of establishing protec-
tive and durable immunity in both systemic and gut-mucosal 
compartments.

MATERIALS AND METHODS

Ethics Statement
All animal-based experimental procedures used in this study 
were performed in accordance with the institutional guidelines 
for animal experiments at Osaka University (Douyaku 28-3-1) 
and the National Institutes of Biomedical Innovation, Health and 
Nutrition (DS19-106).

Mice
C57BL/6J wild-type (WT) (Japan SLC, Hamamatsu, Japan) 
and Ifnar2−/− mice (C57BL/6J background) were prepared as 
described previously (24, 25). All mice were bred in an animal 
facility under speci�c pathogen-free conditions, and female mice 
were used for experiments between 6 and 8 weeks of age.

Adv Production and Immunization
β-galactosidase, encoded by LacZ, was used as a model Ag. �e 
adenovirus type 5 vector expressing LacZ (Ad-LacZ) was con-
structed as described previously (26, 27). Brie�y, the expression 
cassette containing the chicken β-actin (Actb) promoter with the 
cytomegalovirus enhancer-driven (28) LacZ gene was inserted 
into the E1-deletion region of the E1/E3-deleted adenovirus type 
5 genome. �is virus was propagated in HEK293 cells and then 
puri�ed using standard techniques. Determination of the virus 
particle (vp) titers was accomplished spectrophotometrically 
according to the methods of Maizel et  al. (29). All mice were 
injected under anesthesia in the both quadriceps muscles with 
Ad-LacZ at 1010 vp/mouse (5 × 109 vp/50 μL PBS/muscle).

Isolation of Mononuclear Cells
�e spleen and lymph nodes were dissected and pressed through 
a 70-µm cell strainer (Corning, Corning, NY, USA), and cells 
were washed with 2% FCS/PBS. Splenocyte isolation was followed 
by the lysis of red blood cells. Small intestinal lamina propria 
(LP) cells were isolated using a standard enzymatic dissociation 
procedure as described previously (30). Brie�y, small intestines 
were removed from Peyer’s patches and cut open longitudinally. 
A�er washing with PBS, the tissues were cut into small pieces and 
stirred in RPMI 1640 supplemented with 2% FCS and 0.5 mM 
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EDTA at 37°C for 20 min. �e specimens were washed again with 
RPMI 1640 supplemented 2% FCS and then minced and digested 
twice in RPMI 1640 supplemented with 10% FCS and 0.5 mg/
mL collagenase (Wako Pure Chemical Industries, Osaka, Japan) 
at 37°C for 30  min with stirring. Mononuclear cells were then 
isolated by a discontinuous density gradient procedure (40 and 
75%) with Percoll PLUS (GE Healthcare, Little Chalfont, UK). 
�e cells that were layered between the 40 and 75% interfaces were 
collected as small intestinal LP lymphocytes. Muscle cells were 
minced and then digested in RPMI 1640 supplemented with 10% 
FCS and 1.0 mg/mL collagenase D (Roche, Basel, Switzerland) at 
37°C for 30 min with stirring. �e supernatant was used as the 
source of mononuclear cells.

RNA Isolation and Quantitative Reverse 

Transcription-Polymerase Chain Reaction
Total RNA isolation and cDNA synthesis from mononuclear 
cells or whole muscles were performed as described previously 
(27). �e mRNA level of each gene was normalized against that 
of Actb or glyceraldehyde 3-phosphate dehydrogenase (Gapdh). 
�e primer sequences used in this study were: Actb forward, 
5′-CCTATGTGTCATTTGGGTGGATG-3′; Actb reverse, 5′-GG 
TTGTCAGGGGAGTGTTGAT-3′; Gapdh forward, 5′-CCAGG 
TTGTCTCCTGCGACTT-3′; Gapdh reverse, 5′-CCTGTTGCTG 
TAGCCGTATTCA-3′; Il12b forward, 5′-CCGCAACAACGCC 
ATCTATG-3′; Il12b reverse, 5′-CCCGAATGTCTGACGTATT 
GAAG-3′; Il2 forward, 5′-TGAGCAGGATGGAGAATTACA 
GG-3′; Il2 reverse, 5′-GTCCAAGTTCATCTTCTAGGCAC-3′; 
Tg� forward, 5′-TCGTTTGACCACAGTCCCTAA-3′; Tg�  
reverse, 5′-GAAGTCGAAAGTACAGGCTGTTT-3′; Il1b for-
ward, 5′-CACACTGCTGGTCATCAAGAT-3′; Il1b reverse,  
5′-TCACTCCTGTAATACTGGAGGC-3′; Il6 forward, 5′-CCTC 
TACCAAAACCATTCGGAG-3′; Il6 reverse, 5′-CTGTCCACG 
TACAATTCGTTCA-3′; Il23a forward, 5′-AGTTGTGCTGAG 
CTGTATGGA-3′; Il23a reverse, 5′-CGGCTGCTTGAAGTAAA 
ACAGG-3′; Il17a forward, 5′-CTCCAGAAGGCCCTCAG 
ACTAC-3′; Il17a reverse, 5′-GGGTCTTCATTGCGGTGG-3′; 
Il17f forward, 5′-CCCATGGGATTACAACATCACTC-3′; Il17f  
reverse, 5′-CACTGGGCCTCAGCGATC-3′; Il22 forward, 5′-AT 
GAGTTTTTCCCTTATGGGGAC-3′; Il22 reverse, 5′-GCTGGA 
AGTTGGACACCTCAA-3′; Ccl2 forward, 5′-GTTGGCTCAGC 
CAGATGCA-3′; Ccl2 reverse, 5′-AGCCTACTCATTGGGATCA 
TCTTG-3′; Ccl7 forward, 5′-AGCTACAGAAGGATCACCAG-3′; 
Ccl7 reverse, 5′-CACATTCCTACAGACAGCTC-3′.

Flow Cytometry
�e anti-mouse antibodies (Abs) used in this study were 
purchased from eBioscience [APC-RORγt (B2D) and eFluor 
450-Foxp3 (FJK-16s); �ermo Fisher Scienti�c, Waltham, MA, 
USA], BioLegend [Puri�ed-CD16/32 (93), Brilliant Violet 
421-Streptavidin, APC-Cy7- and PE-Cy7-CD3ε (145-2C11), 
FITC-, PE-, and PerCP-Cy5.5-CD4 (RM4-5), APC-Cy7-CD8α 
(53-6.7), Biotin- and PE-Cy7-CD11b (M1/70), APC- and 
PE-CD11c (N418), APC-CD25 (PC61), FITC-CD45 (30F-11), 
Paci�c Blue-CD62L (MEL-14), PerCP-Cy5.5-Ly-6C (HK1.4), 
APC-Ly-6G (2A8), FITC-I-Ab (AF6-120.1), Paci�c Blue-CD80 

(16-10A1), APC-CD86 (GL-1), Alexa Fluor 647-CCR9 (CW-
1.2), Biotin-α4β7 integrin (DATK32), FITC-T-bet (4B10), 
Alexa Fluor 488-Foxp3 (FJK-16s), PE-Cy7-IFN-γ (XMG1.2), 
PE-IL-17A (TC11-18H10.1); San Diego, CA, USA], Bio-Rad 
[FITC- and Paci�c Blue-CD8α (KT15); Hercules, CA, USA], 
R&D Systems [PE-CCR2 (475301); Minneapolis, MN, USA], 
and BD Biosciences [Brilliant Violet 421-RORγt (Q31-378); 
San Jose, CA, USA]. β-gal-speci�c CTLs were stained with 
PE-H-2Kb/β-gal96-103 (DAPIYTNV) tetramer reagent (MBL, 
Nagoya, Japan) according to the manufacturer’s protocols. Cells 
were incubated with anti-CD16/32 Ab, followed by staining 
with �uorescence-conjugated Abs. Dead cells were excluded by 
staining with 7-amino-actinomycin D (eBioscience), SYTOX-
Blue (Invitrogen), or LIVE/DEAD Fixable Blue Dead Cell Stain 
kit (Invitrogen). Samples were acquired using a BD LSRFortessa 
�ow cytometer (BD Biosciences) or a MACSQuant �ow cytome-
ter (Miltenyi Biotec, Bergisch Gladbach, Germany), and samples 
were analyzed with BD FACSDiva so�ware (BD Biosciences) or 
FlowJo so�ware (TreeStar Inc., Ashland, OR, USA).

Detection of β-Gal-Specific Th17 Cells
A�er isolation of mononuclear cells, CD4+ T cells were puri�ed 
using PE anti-CD4, followed by anti-PE ultrapure microbeads 
(Miltenyi Biotec), and sorted using the AutoMACS Pro sorter 
(Miltenyi Biotec). Splenic DCs were puri�ed by using PE anti-
CD11c, followed by anti-PE ultrapure microbeads, and sorted as 
described above. CD4+ T cells were co-cultured with splenic DCs 
(CD4+ T cells:splenic DCs = 4:1) in the presence of 100 µg/mL 
β-galactosidase (Sigma-Aldrich, St. Louis, MO, USA) for 4 days. 
IL-17A and IL-22 in the supernatant were detected by enzyme-
linked immunosorbent assay kits (R&D systems) according to the 
manufacturer’s instructions.

In Vitro Adv Infection of Bone-Marrow-

Derived DCs (BMDCs)
Murine BMDCs were prepared as described previously (31) and 
infected with 104 vp/cell Ad-LacZ for 24 h.

Co-culture of CD4+ T Cells with Adv-

Infected BMDCs
Adenovirus vector-infected BMDCs were prepared as described, 
and CD4+ T cells enriched by negative selection from spleens and 
lymph nodes were co-cultured with Adv-infected BMDCs (CD4+ 
T  cells:BMDCs  =  4:1) for 8  days. A�er co-culture, cells were 
stained to detect intracellular cytokines or transcription factors.

Intracellular Staining
For intracellular cytokine staining, a BD Cyto�x/Cytoperm 
kit (BD Biosciences) was used according to the manufacturer’s 
instructions. Brie�y, cells were stimulated with 20 ng/mL PMA 
and 500 ng/mL ionomycin in the presence of BD GolgiStop (BD 
Biosciences) for 6 h. A�er stimulation, the cells were collected and 
subjected to dead cell and surface staining, �xed, and permeabilized 
with BD Cyto�x/Cytoperm solution, and stained for intracellular 
IL-17A and IFN-γ. For intracellular transcription factor staining, 
the Foxp3/transcription factor staining bu�er set (eBioscience) 
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FIGURE 1 | Priming of CD8+ T cells and imprinting of gut-homing capacity on these cells is equally induced in the inguinal lymph nodes (iLNs) of wild-type and 

Ifnar2−/− mice following intramuscular (i.m.) adenovirus vector vaccination. At 7 days after i.m. Ad-LacZ vaccination, the frequencies of (A) β-gal-specific CD8+ T cells 

in the CD8+ T cell population and (B) gut-homing-molecule-expressing cells in β-gal-specific CD8+ T cells in iLNs were measured by flow cytometry. Data are the 

pools of two independent experiments and are shown as the mean ± SEM (n = 6). N.S., not significant (according to Student’s t-test).
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was used according to the manufacturer’s instructions. Brie�y, 
cells were stained for dead cells and surface molecules, �xed, and 
permeabilized with Foxp3 �xation/permeabilization solution, 
and stained for intracellular T-bet, Foxp3, and RORγt.

In Vitro Th17 Differentiation and Cell 

Transfer
Naïve CD4+CD25-CD62L+ cells were sorted from spleens and 
lymph nodes using an SH800 cell sorter (Sony Biotechnology, 
Tokyo, Japan). Naïve CD4+ T cells were cultured for 4 days with 
Iscove’s modi�ed Dulbecco’s medium (Sigma-Aldrich) supple-
mented with 10% FCS, 2 mM GlutaMAX (Gibco; �ermo Fisher 
Scienti�c), 100  U/mL penicillin, 100  µg/mL streptomycin, and 
50 µM 2-mercaptoethanol in the presence of 2 µg/mL plate-bound 
anti-CD3ε, 2  µg/mL soluble anti-CD28, 10  µg/mL anti-IFN-γ, 
anti-IL-4, 20  ng/mL IL-1β (Peprotech), IL-6, and IL-23 (R&D 
systems). Di�erentiated cells were stained using the intracellular 
staining protocol, and the frequency of �17 cells was determined 
according to the expression of IL-17A and RORγt as determined 
by �ow cytometry. Di�erentiated cells (2 × 106 cells/mouse) were 
transferred into mice through the tail vein.

Statistical Analysis
All results are shown as the mean ± SEM (biological replicates) 
or SD (technical replicates). Statistical signi�cance was analyzed 
using GraphPad Prism (GraphPad So�ware, San Diego, CA, 
USA) and a two-tailed Student’s t-test between two groups, one-
way analysis of variance, or a Kruskal–Wallis test for more than 
three groups. p < 0.05 indicated a signi�cant di�erence.

RESULTS

Type I IFN Signaling Is Dispensable for the 

Induction of Gut-Homing CTLs in the 

Inguinal Lymph Nodes (iLNs)
A�er i.m. Adv vaccination, T cell priming occurred in iLNs acting 
as draining lymph nodes for the vaccination sites, resulting in the 

induction of Ag-speci�c CTLs. First, we determined whether type I 
IFN signaling had a direct e�ect on induction of Ag-speci�c CTLs 
in iLNs. We con�rmed that the frequencies of Ag-speci�c CTLs 
among total CTLs in iLNs were similar in WT and Ifnar2−/− mice 
(Figure 1A), suggesting that T cell priming was equally induced 
in these mice. Previous reports showed that some Ag-speci�c 
CTLs in iLNs migrated into the gut-mucosal compartment by 
expressing the gut-homing molecules C–C chemokine receptor 
(CCR)9 and α4β7 integrin (8, 32). To determine whether type I IFN 
signaling is involved in the induction of gut-homing Ag-speci�c 
CTLs in iLNs, we examined the frequencies of gut-homing CTLs 
in Ag-speci�c CTL populations. �e frequencies of CCR9+α4β7 
integrin−, CCR9−α4β7 integrin+, and CCR9+α4β7 integrin+ CTLs 
were similar in WT and Ifnar2−/− mice (Figure  1B). �ese 
results suggest that type I IFN signaling was dispensable for the 
induction of Ag-speci�c CTLs and the imprinting of gut-homing 
capabilities on those CTLs in iLNs, and also indicated that type 
I IFN signaling regulated the induction of gut-mucosal CTLs 
through other mechanisms.

Type I IFN Signaling Is Required for the 

Expression of Th17-Polarizing Cytokines
T helper cells play important roles in CTL induction (33–35). 
We hypothesized that type I IFN signaling regulates �-cell 
induction, resulting in the subsequent induction of gut-mucosal 
CTLs. To investigate whether type I IFN signaling a�ects �-cell 
induction, we �rst checked the expression of several cytokines 
related to di�erentiation into each �-cell subset. �e expression 
of interleukin (Il)12b, which is related to the di�erentiation of 
�1  cells, and Il2 and tumor growth factor (Tgf)b, which are 
related to the di�erentiation of regulatory T (Treg) cells, were 
similar in WT and Ifnar2−/− mice (Figure 2A). By contrast, the 
expression of the �17-polarizing cytokines Il6, Il1b, and Il23a 
was up-regulated in the iLNs of WT mice, but not in those of 
Ifnar2−/− mice (Figure 2B). Additionally, the expression of Tg�, 
which is also involved in �17 di�erentiation (36), was not 
up-regulated in WT mice. Because recent studies reported that 
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�17 cells di�erentiate in the presence of IL-6, IL-1β, and IL-23 
(37, 38), we expected that �17 cells would di�erentiate in the 
iLNs of WT mice following i.m. Adv vaccination. �erefore, 

these data suggest that �17 di�erentiation, but not that of �1 
or Treg cells, was preferentially induced in iLNs through type I 
IFN signaling following i.m. Adv vaccination.
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FIGURE 2 | Induction of antigen-specific T helper 17 cells in the inguinal lymph nodes (iLNs) via type I interferon signaling following intramuscular (i.m.) 

adenovirus vector (Adv) vaccination. (A,B) At 0, 8, 24, and 48 h after i.m. Ad-LacZ vaccination, total RNA was extracted from mononuclear cells in iLNs, and 

mRNA expression of (A) Il12b, Il2, tumor growth factor b, (B) Il1b, Il6, and Il23a was measured by quantitative reverse transcription-polymerase chain reaction 

(qRT-PCR) and normalized against Actb expression. Graphs represent the relative mRNA expression of each gene normalized against its expression in wild-type 

(WT) mice at 0 h. (C) At 1, 3, and 7 days after i.m. Ad-LacZ vaccination, CD4+ T cells in the iLNs of WT mice were sorted and co-cultured with splenic dendritic 

cells (DCs) in the presence of β-gal for 24 h. The mRNA expression of Il17a, Il17f, and Il22 was measured by qRT-PCR and normalized against Actb expression. 

Graphs represent the relative mRNA expression of each gene normalized against its level in non-stimulated CD4+ T cells on day 1. (D) Enriched CD4+ T cells 

from spleens were co-cultured with Adv-infected bone-marrow-derived DCs, and the frequencies of T-bet+, GATA-3+, Foxp3+, and RORγt+ cells in CD4+ T cell 

populations were measured by flow cytometry. (E) At 7 days after vaccination, CD4+ T cells in iLNs were sorted and co-cultured with splenic DCs in the 

presence of β-gal for 4 days. The amounts of IL-17A and IL-22 were measured by enzyme-linked immunosorbent assay. Data are (A,B) the pools of three 

independent experiments and are shown as the mean ± SEM (n = 3). Data are representative of (C,E) two and (D) three independent experiments and are 

shown as the mean ± SD (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001 [(A,B) Student’s t-test at each time point; (C,D) one-way analysis of variance; (E) 

Student’s t-test].
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Th17 Differentiation Is Induced in iLNs 

through Type I IFN Signaling
To examine the induction of Ag-speci�c �17  cells in iLNs, 
CD4+ T cells puri�ed from the iLNs of Adv-administered mice 
were co-cultured with Ag-presenting cells in the presence of β-
gal, followed by measurement of �17-producing cytokines. In 
iLN CD4+ T cells from Adv-administered WT mice, the mRNA 
expression of the �17-producing cytokines Il17a, Il17f, and 
Il22 was signi�cantly up-regulated following in vitro Ag-speci�c 
stimulation (Figure  2C), indicating that Ag-speci�c �17  cells 
were induced in the iLNs of WT mice following i.m. Adv vaccina-
tion. Consistent with these data, we observed that Adv-infected 
BMDCs induced �17 di�erentiation (Figure  2D). Moreover, 
a�er 7 days, IL-17A levels in iLN CD4+ T cells were 363 ± 70.5 pg/
mL (for WT mice) and 220 ± 112 pg/mL (for Ifnar2−/− mice), with 
no signi�cant di�erence between them. In addition, IL-22 level in 
iLN CD4+ T cells from Ifnar2−/− mice was signi�cantly lower than 
the level in iLN CD4+ T cells from WT mice (Figure 2E). �ese 
data suggest that type I IFN signaling is important for the induc-
tion of Ag-speci�c �17 cells in iLNs following Adv vaccination.

Type I IFN Signaling Initiates Recruitment 

of Inflammatory DCs (inf DCs) to iLNs and 

Their Subsequent Activation
We considered the possibility that the disruption of the Ifnar2 
gene in CD4+ T cells might a�ect �17 di�erentiation in iLNs. 
However, we con�rmed that Ifnar2−/− CD4+ T cells di�erenti-
ated normally into �17  cells in the presence of IL-6, IL-1β, 
and IL-23 in vitro (Figure S1 in Supplementary Material). Both 
polarizing cytokines and myeloid cells, which are responsible 

for presenting Ag to T cells, are essential for the induction of 
�-cell di�erentiation. To determine the types of myeloid cells 
involved in �17 di�erentiation in iLNs, we analyzed β-gal-
bearing myeloid-cell populations in iLNs at 8 h a�er Adv vac-
cination according to �ow cytometry-based detection of β-gal+ 
cells using a �uorogenic galactosidase substrate (39). In WT 
mice, although the frequency of β-gal+CD11b+/−CD11chi cells 
failed to increase at this early time point following i.m. Adv 
vaccination, we observed elevations in the frequency of β-gal
+CD11b+CD11cint cells (Figure  3A). However, the amount of 
β-gal+CD11b+CD11cint cells in the iLNs of Ifnar2−/− mice was 
signi�cantly lower than the levels in WT mice, suggesting that 
Ag-bearing CD11b+CD11cint cells were recruited to iLNs via 
type I IFN signaling. Previous studies reported that inf DCs, 
which are included in CD11b+CD11cint populations, induce 
�17 di�erentiation under in�ammatory conditions in humans 
and mice (40, 41). As expected, we found that the frequency of 
inf DCs in the iLNs of WT mice increased following Adv vac-
cination (Figure 3B; Figure S2A in Supplementary Material). 
By contrast, the inf DC frequency in Ifnar2−/− mice did not 
increase, indicating that inf DCs were recruited to iLNs via 
type I IFN signaling. Additionally, we observed lower expres-
sion of the activation markers CD80 and CD86 on inf DCs in 
Ifnar2−/− mice than that in WT mice (Figure 3C). �ese results 
suggest that inf DCs were activated through type I IFN signaling 
and were capable of inducing �17 di�erentiation in iLNs. In 
general, inf DCs di�erentiate from in�ammatory monocytes 
(inf MOs), and during infection and in�ammation, inf MOs are 
recruited to in�amed tissue and activated by innate immune 
signaling (42). We speculated that inf MOs were recruited to 
the quadriceps muscles, which were the vaccination sites in this 
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FIGURE 4 | Type I interferon signaling is required for induction of antigen-

specific T helper 17 cells in the gut mucosa following intramuscular 

adenovirus vector vaccination. At 2 weeks after vaccination, CD4+ T cells in 

the lamina propria were sorted and co-cultured with splenic dendritic cells in 

the presence of β-gal for 4 days, and the amounts of IL-17A and IL-22 were 

measured by enzyme-linked immunosorbent assay. Data are representative 

of three independent experiments and are shown as the mean ± SD (n = 3). 
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FIGURE 3 | Inflammatory dendritic cells (inf DCs) are recruited to inguinal lymph nodes (iLNs) through type I interferon signaling. (A) At 8 h after intramuscular 

Ad-LacZ vaccination, the frequency of β-gal+ cells in iLNs was measured by flow cytometry. (B) Inf DCs were gated as CCR2+Ly-6ChiMHC-II+CD11bhiCD11cint cells. 

At 0, 8, 24, and 48 h after vaccination, the frequency of inf DCs in iLNs was measured by flow cytometry. (C) At 48 h after vaccination, the expression of the 

activation markers CD80 and CD86 on inf DCs in iLNs was analyzed by flow cytometry. (D) At 24 h after vaccination, the frequency of CCR2+Ly-6ChiCD11b+ 

inflammatory monocytes (inf MOs) in CD45+ cells from quadriceps muscles was measured by flow cytometry. (E) At 48 h after vaccination, the expression of the 

activation markers CD80, CD86, and MHC-II on inf MOs from quadriceps muscles was analyzed by flow cytometry. (F) At 8 h after vaccination, mRNA expression of 

Ccl2 and Ccl7 was measured by quantitative reverse transcription-polymerase chain reaction and normalized against Gapdh expression. Graphs represent the 

relative mRNA expression of each gene normalized against its expression in PBS-administrated wild-type mice. Data are the pools of (A,C–F) three and (B) four 

independent experiments and are shown as the mean ± SEM [(A): n = 3; (B): n = 4–5; (C–E): n = 5–6; (F): n = 8–9]. *p < 0.05; **p < 0.01; ***p < 0.001 [(A, C–F): 

one-way analysis of variance; (B) Student’s t-test at each time point].
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study. Because the mechanisms associated with activation of 
the innate immune response at muscle sites following i.m. Adv 
vaccination have not been clari�ed, we investigated this activity 
in mouse quadriceps muscles. At 24 h a�er Adv vaccination, we 
observed that the frequency of inf MOs, but not neutrophils or 
macrophages, signi�cantly increased in the muscles of WT mice 
(Figure 3D; Figure S2B in Supplementary Material). However, 
in Adv-administered Ifnar2−/− mice, the frequency of inf MOs 
did not increase, indicating that inf MOs were preferentially 
recruited to the muscles by type I IFN signaling. Moreover, we 
observed signi�cantly lower expression of activation markers on 
inf MOs in Ifnar2−/− mice when compared with levels observed 
in WT mice (Figure 3E). Multiple reports showed that CCR2 
ligands, such as C–C chemokine ligand (CCL)2 and CCL7, 
mediate inf MO recruitment under in�ammatory conditions 
(42, 43). We hypothesized that type I IFN-signaling-dependent 
recruitment of inf MOs was regulated by these chemokines, 
subsequently �nding that the expression of CCL2 and CCL7 
was up-regulated in the muscles of WT mice, but not in those 
of Ifnar2−/− mice (Figure 3F). �ese data indicate that type I IFN 
signaling initiated recruitment of inf MOs to muscles through 
induction of CCL2 and CCL7 expression. Our �ndings suggest 
that the induction of inf DCs in iLNs was dependent on type 
I IFN-signaling-related tra�cking of inf MOs to the muscles.

Reduction of Th17 Cells in the Gut Mucosa 

of Ifnar2−/− Mice
We demonstrated that type I IFN signaling is important for 
induction of �17 cells in iLNs. Consistent with previous studies 
(37, 38, 44), our results shown in Figures 2A,B also suggest that 
naïve CD4+ T cells di�erentiate into pro-in�ammatory �17 cells 
in the presence of IL-1β. Recent studies have reported that 
�17 cells promote CTL proliferation and activation in tumor-
bearing mice (45–47), and in some of these reports, �17 cells 

that di�erentiated in the presence of IL-1β were also capable of 
promoting CTL induction to a greater extent than those in the 
presence of TGF-β (46, 47). Furthermore, �17 cells also exhibit 
gut-homing capacity (48–50). Taken together, these results led 
us to hypothesize that �17  cells induced in iLNs a�er Adv 
vaccination would be able to migrate to the gut mucosa and to 
promote the induction of Ag-speci�c gut-mucosal CTLs. To 
test this hypothesis, we assessed the induction of Ag-speci�c 
gut-mucosal �17  cells. Determination of the production of 
the �17-producing cytokines IL-17A and IL-22 following 
Ag stimulation of gut-mucosal CD4+ T  cells in Ifnar2−/− mice 
revealed signi�cantly lower levels when compared with those in 
WT mice (Figure 4). �ese data indicate that type I IFN signaling 
was required for induction of Ag-speci�c �17 cells in the gut 
mucosa.
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Ifnar2−/− mice, and (D) Th17-transferred WT mice was measured by flow cytometry. Data are the pools of (C) three and (D) four independent experiments and are 
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Th17 Cells Promote the Induction of Ag-

Specific CTLs in Gut Mucosa
To determine whether �17  cells promote the induction of 
Ag-speci�c CTLs in the gut mucosa of Ifnar2−/− mice, we 
transferred in vitro-di�erentiated �17 cells into Ifnar2−/− mice 
prior to Adv vaccination (Figures 5A,B). At 2 weeks a�er Adv 
vaccination, the frequency of β-gal-speci�c CTLs in the spleens 
of Ifnar2−/− mice did not increase a�er �17 transfer (Figure 5C). 
By contrast, we observed increases in β-gal-speci�c CTLs in the 
gut mucosa of Ifnar2−/− mice following �17 transfer to the level 
of WT mice (Figure  5C), indicating that �17  cells played an 
important role in the induction of Ag-speci�c CTLs in the gut 
mucosa through type I IFN signaling. To test the hypothesis 
that enhancement of �17 induction could promote the induc-
tion of gut-mucosal CTLs, we transferred in vitro-di�erentiated 

�17  cells into WT mice (Figure  5D). As expected, while the 
frequency of occurrence of β-gal-speci�c CTLs in the spleen 
increased by 1.10-folds a�er �17 transfer, that in the gut mucosa 
increased by 1.60-folds. �ese data indicate that �17  cells 
promote the induction of Ag-speci�c CTLs in the gut-mucosal 
compartment, but not in systemic compartments.

DISCUSSION

Although Adv is among the most promising vectors for vac-
cine development due to its ability to establish functional and 
durable adaptive immunity in both systemic and gut-mucosal 
compartments, the molecular mechanisms associated with how 
Adv induces gut-mucosal immunity remain to be clari�ed. In a 
previous study, we showed that type I IFN signaling following 
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i.m. Adv vaccination was required for induction of Ag-speci�c 
CTLs in the gut-mucosal site, but not in the systemic site (24). 
Type I IFNs suppress transgene expression (51, 52), with Quinn 
et al. showing that excessive type I IFN expression initiated by 
polyI:C injection limits Ag expression and systemic adaptive 
immunity following i.m. Adv vaccination (53). �ese data sug-
gest that enhancement of adaptive mucosal immunity would not 
be promoted by induction of excessive type I IFN production. 
�erefore, to investigate mechanisms for strengthening adaptive 
immunity in gut mucosa by i.m. Adv vaccination, we explored 
the physiological role of type I IFN signaling in Adv-vaccination-
induced Ag-speci�c CTLs in gut mucosa. Our �ndings revealed 
cell types and molecules regulated by type I IFN signaling that 
might constitute viable targets for improving Adv-vaccine 
e�cacy.

We found type I IFN signaling dispensable for induction of 
gut-homing Ag-speci�c CTLs and indispensable for induction 
of Ag-speci�c �17 cells in iLNs and gut mucosa following i.m. 
Adv vaccination. �17  cells are associated with clearance of 
some microorganisms and cancers, as well as the pathogenesis 
of autoimmune and in�ammatory diseases (54, 55). However, 
the relationship between �17 cells and a CTL-inducing vac-
cine, such as Adv, remains unclear. Surprisingly, we found that 
�17 cells promoted induction of Ag-speci�c CTLs in the gut-
mucosal compartment, but not in the systemic compartment, 
following i.m. Adv vaccination. Because �17 cells enhanced the 
induction of gut-mucosal CTLs, we hypothesized that cytokines 
produced from �17 cells are important in this process. IL-17 
targets non-immune cells, resulting in the production of several 
pro-in�ammatory cytokines and chemokines, including tumor 
necrosis factor-α, granulocyte-macrophage colony stimulating 
factor, prostaglandin E2, CCL2, and CCL20 (54, 55). �erefore, 

�17 cells might migrate to the gut mucosa and, through their 
IL-17 production, activate residential stromal cells to secrete 
other chemokines, resulting in CTL recruitment to the gut 
mucosa. Additionally, IL-21, also produced by �17 cells (54, 
55), might promote the proliferation of tumor Ag-speci�c 
CTLs (56–58). �erefore, it is also possible that IL-21 might 
in�uence the induction of Ag-speci�c CTLs in gut mucosa. In 
future experiments, the mechanisms associated with vaccine-
mediated �17-cell induction of Ag-speci�c CTLs will be 
explored.

Here, we demonstrated that Ag-speci�c CTLs and �17 cells 
were induced in the gut mucosa following i.m. Adv vaccination. 
Although CTLs establish immunological protection against 
intracellular pathogens, recent studies showed that �17  cells 
play a key role in the induction of protective immunity against 
extracellular pathogens in the gut mucosa, with �17 responses 
initiating production of antimicrobial peptides by epithelial 
cells in the intestinal lumen and the recruitment of monocytes, 
macrophages, and neutrophils to gut-mucosal sites (59–61). 
Additionally, IL-17A secretion is capable of enhancing phagocy-
tosis of pathogens by neutrophils (62). �erefore, our �ndings are 
important because they suggest that the Adv vaccine is capable of 
inducing both CTL and �17 responses to initiate the clearance 
of various intracellular and extracellular pathogens.

In summary, we revealed the molecular mechanism associ-
ated with induction of gut-mucosal CTLs through type I IFN 
signaling following i.m. Adv vaccination (Figure 6). Our results 
show that �17 cells translate systemic type I IFN signaling into 
a gut-mucosal CTL response following Adv vaccination, and that 
the enhancement of �17 induction promotes CTL responses. 
To the best of our knowledge, this study is the �rst to suggest 
that �17  cells induce Ag-speci�c CTLs exclusively in the gut 
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