
T-Man: Gossip-based Overlay Topology

Management⋆

Márk Jelasity⋆⋆ and Ozalp Babaoglu

University of Bologna,
Dipartimento di Scienze dell’Informazione

Mura Anteo Zamboni 7, 40126 Bologna, Italy
jelasity,babaoglu@cs.unibo.it

Abstract. Overlay topology plays an important role in P2P systems.
Topology serves as a basis for achieving functions such as routing, search-
ing and information dissemination, and it has a major impact on their ef-
ficiency, cost and robustness. Furthermore, the solution to problems such
as sorting and clustering of nodes can also be interpreted as a topology.
In this paper we propose a generic protocol, T-Man, for constructing
and maintaining a large class of topologies. In the proposed framework,
a topology is defined with the help of a ranking function. The nodes par-
ticipating in the protocol can use this ranking function to order any set
of other nodes according to preference for choosing them as a neighbor.
This simple abstraction makes it possible to control the self-organization
process of topologies in a straightforward, intuitive and flexible manner.
At the same time, the T-Man protocol involves only local communication
to increase the quality of the current set of neighbors of each node. We
show that this bottom-up approach results in fast convergence and high
robustness in dynamic environments. The protocol can be applied as a
standalone solution as well as a component for recovery or bootstrapping
of other protocols.

1 Introduction

In large, dynamic, fully distributed systems, such as peer-to-peer (P2P) net-
works, nodes (peers) must be organized in a connected network to be able to
communicate with each other and to implement functions and services. The
neighbors of the nodes—the “who is connected to whom”, or “who knows whom”
relation—define the overlay topology of the distributed system in question. This
topology can dynamically change in time, and in every time point, it defines the
possible interactions between the nodes.

⋆ In Third International Workshop (ESOA 2005), Revised Selected Papers, LNCS
3910, pp 1-15, Springer-Verlag, 2006. (doi:10.1007/11734697 1). This work was
partially supported by the Future and Emerging Technologies unit of the Euro-
pean Commission through Project BISON (IST-2001-38923) and DELIS (IST-2002-
001907).

⋆⋆ also with MTA RGAI, SZTE, Szeged, Hungary

Although it would be desirable, it is typically very difficult to ensure that all
nodes are aware of every other participating node in the system. The reason is
that the set of participating nodes changes quickly, and (due to the large number
of nodes) it is not feasible to maintain a complete list of the nodes. This means
that all nodes are aware of only a limited subset of other nodes, so efficient and
robust algorithms are necessary to create, maintain and optimize the topology.

Overlay topology forms the basis for, or has a major impact on many func-
tions. It is well known that functions such as searching, routing, information dis-
semination, data aggregation, etc, need special topologies for good performance
and high efficiency. Furthermore, solutions to other problems including sorting
and clustering can be readily expressed as topologies. For example, in the case of
sorting, we are looking for a linear structure that represents some total ordering
relation. For all these functions, numerous topologies have been suggested and
even more protocols to construct and repair them have been proposed.

Motivated by these observations, we consider topology management as a
general purpose function that is desirable in distributed systems. In this paper we
specifically target very large scale and highly dynamic systems. Key requirements
of topology management in such environments include robustness, scalability,
flexibility and simplicity. Besides, it is a great advantage if a topology manager
is flexible enough to allow for changing the managed topology at run time on

demand, without having to develop a new protocol for each possible topology
from scratch. Since topology is a very general abstraction, that can be used
to express solutions to problems and to enhance and support other functions,
such functionality would allow us to increase the efficiency of deploying fully
distributed application dramatically. We would need only one running topology
component and the application area of the system could be changed at run time
whenever necessary. With a protocol that supports quickly changing topologies,
it even becomes possible to automatically evolve topologies through, for example,
an evolutionary process.

In this paper we propose a generic protocol, T-Man, with the aim of fulfilling
the requirements outlined above. The desired topology is described using a single
ranking function that all nodes can apply to order any subset of potential neigh-
bors according to preference for actually being selected as a neighbor. Using only
local gossip messages, T-Man gradually evolves the current topology towards the
desired target structure with the help of the ranking function. We show experi-
mentally that the protocol is scalable and fast, with convergence times that grow
only as the logarithm of the network size. These properties allow T-Man to be
practical even when several different topologies have to be created on demand,
and also in dynamic systems where the set of nodes or their properties change
rapidly. Additionally, the general formulation of the ranking function allows us
to deal with a wide range of different topologies.

Although this work is concerned mainly with exploring the basic properties
of T-Man by examining simple topologies like ring, mesh and binary tree, it is
possible to illustrate its practicality with more realistic applications. We briefly
outline three such applications: sorting, clustering and a distributed hash table
(DHT).

Related work includes gossip-based protocols, that have gained notable pop-
ularity in various contexts [1,2,14]. In this paper we suggest a novel application
of the gossip communication model to solve the topology management problem.
Issues related to topology management itself have also received considerable at-
tention. Examples from the vast literature include DHTs [7,11,13], unstructured
overlays [3,9], and superpeer topologies [16]. As for topology construction, Mas-
soulié and Kermarrec [6] propose a protocol to evolve a topology that reflects
proximity, Voulgaris and van Steen [15] propose a method to jump-start Pastry.
Unlike these specific solutions, T-Man is a generic framework and can be used
to construct and maintain a large class of different topologies quickly in a simple
and scalable manner.

2 The problem

We assume that we are given a (perhaps random) overlay network, and we
are interested in constructing some desirable topology by connecting all nodes
in the network to the right neighbors. The topology can be defined in many
different ways and it will typically depend on some properties of the nodes like
geographical location, semantic description of stored content, storage capacity,
etc. We need a formal framework that is simple yet powerful enough to be able to
capture most of the interesting structures. Our proposal is the ranking function

that defines the target topology through allowing all nodes to sort any subset
of nodes (potential neighbors) according to preference to be selected as their
neighbor.

For a more formal definition, let us first define some basic concepts. We
consider a set of nodes connected through a routed network. Each node has an
address that is necessary and sufficient for sending it a message. Nodes maintain
addresses of other nodes through partial views (views for short), which are sets of
c node descriptors. In addition to an address, a node descriptor contains a profile,
which contains those properties of the nodes that are relevant for defining the
topology, such as ID, geographical location, etc. The addresses contained in views
at nodes define the links of the overlay network topology, or simply the topology.
Note that parameter c defines the node degree of the overlay network and is
uniform for all nodes.

We can now define the topology construction problem. The input of the prob-
lem is a set of N nodes, the view size c and a ranking function R that can
order a list of nodes according to preference from a given node. The ranking
function R takes as parameters a base node x and a set of nodes {y1, . . . , ym}
and outputs a set of orderings of these m nodes. The task is to construct the
views of the nodes such that the view of node x, denoted viewx, contains ex-
actly the first c elements of a “good” ranking of the entire node set, that is,
R(x, {all nodes except x}) contains a ranking that starts with the elements of
viewx. We will call this topology the target topology.

In the presence of churn (ie, when nodes constantly join and leave the overlay
network) we talk about maintenance of the target topology instead of construc-
tion. Instead of a formal definition, we define the problem as staying “as close

as possible” to the target topology. The actual figures of merit to characterize
maintenance can be largely application dependent in this case.

One (but not the only) way of obtaining ranking functions is through a
distance function that defines a metric space over the set of nodes. The ranking
function can simply order the given set according to increasing distance from
the base node. Let us define some example distance-based topologies of different
characteristics. From now on, to simplify our language and notation, we use the
nodes and their profiles interchangeably.

Line and ring The profile of a node is a real number. The distance function
for the line is d(a, b) = |a − b|. In the case of a ring, profiles are from an
interval [0, N] and distance is defined by d(a, b) = min(N − |a − b|, |a − b|)
Ranking is defined through this distance function as described above.

Mesh, tube and torus The 1-dimensional topology defined above can be eas-
ily generalized to arbitrary dimensions to get for example a mesh or a torus.
The profiles are two-dimensional real vectors. The distance for the mesh is
the Manhattan distance. It is given by calculating the 1-dimensional dis-
tance described above along the two coordinates and returning the sum of
these distances. Applying the periodic boundary condition (as for the ring)
results in a tube for one coordinate and a three dimensional torus for both
coordinates.

Binary tree A low diameter topology can be constructed from a binary tree:
the profiles are binary strings of length m, excluding the all zero string.
Distance is defined as the shortest path length between the two nodes in the
following undirected rooted binary tree. The string 0 . . . 01 is the root. Any
string 0a2 . . . am has two children a2 . . . am0 and a2 . . . am1. Strings starting
with 1 are leafs. This topology is of interest because (unlike the previous
ones) it has a very short (logarithmic) diameter of 2m.

There are very important ranking functions that cannot be defined by a
global distance function, therefore the ranking function is a more general concept
than distance. The ranking functions that define sorting or proximity topologies
belong to this category. Examples will be given in Section 6.1.

3 The proposed solution

The topology construction problem becomes interesting when c is small and the
number of nodes is very large. Randomized, gossip-based approaches in simi-
lar settings, but for other problem domains like information dissemination or
data aggregation, have proven to be successful [2, 4]. Our solution to topology
construction is also based on a gossip communication scheme.

3.1 The protocol

Each node executes the same protocol shown in Figure 1. The protocol consists
of two threads: an active thread initiating communication with other nodes, and
a passive thread waiting for incoming messages.

do at a random time once in each
consecutive interval of T time units

p← selectPeer()
myDescriptor ← (myAddress,myProfile)
buffer ← merge(view,{myDescriptor})
buffer ← merge(buffer,rnd.view)
send buffer to p

receive bufferp from p

buffer ← merge(bufferp,view)
view ← selectView(buffer)

(a) active thread

do forever
receive bufferq from q

myDescriptor ← (myAddress,myprofile)
buffer ← merge(view,{myDescriptor})
buffer ← merge(buffer,rnd.view)
send buffer to q

buffer ← merge(bufferq,view)
view ← selectView(buffer)

(b) passive thread

Fig. 1. The T-Man protocol.

Each nodes maintains a view. The view is a set of node descriptors. A call
to merge(view1,view2) returns the union of view1 and view2.

The two key methods are selectPeer and selectView. Method selectPeer

uses the current view to return an address. First, it applies the ranking function
to order the elements in the view. Next, it returns the first descriptor (according
to this ordering) that belongs to a live node. Method selectView(buffer) also
applies the ranking function to order the elements in the buffer. Subsequently,
it returns the first c elements of the buffer according to ranking order.

The underlying idea is that in this manner nodes improve their views using
the views of their current neighbors, so that their new neighbors will be “closer”
according to the target topology. Since all nodes do the same concurrently, neigh-
bors in the subsequent topologies will be gradually closer and closer. This also
means that the views of the neighbors will keep serving as a useful source of
additional, even better links for the next iteration.

Last but not least, we need to explain the origin and role of the buffer
rnd.view. This buffer contains a random sample of the nodes from the entire
network. It is provided by a peer sampling service [3]. The peer sampling service
described in [3] is implemented in a very similar fashion: nodes periodically ex-
change their random views and update their local views thereby creating a new
random sample. These random views define an approximately random overlay
network. The buffer rnd.view is the current set of neighbors in this random
overlay network. The peer sampling service is extremely robust to failure and
maintains a connected network with a very high probability.

The role of the random buffer is most important in large diameter topologies.
In this case, if a node has a low quality neighbor set and if most of the rest of
the nodes have a high quality neighbor set (forming a large diameter topology,
e.g., a ring), then this node needs to perform many exchanges until it can reach
the optimal set of neighbors, because the speed of “finding its neighborhood”

after 3 cycles after 5 cycles after 8 cycles after 15 cycles

Fig. 2. Illustrative example of constructing a torus over 50×50 = 2500 nodes, starting
from a uniform random topology with c = 20. For clarity, only the nearest 4 neighbors
(out of 20) of each node are displayed.

is related to the diameter of the topology. The random buffer adds long range
links that help speeding up convergence.

Although the protocol is not synchronous, it is often convenient to refer to
cycles of the protocol. We define a cycle to be a time interval of T/2 time units
where T is the parameter of the protocol in Figure 1. Note that during a cycle,
each node is updated once on the average.

Figure 2 illustrates the results of the protocol when used to construct a small
torus (visualizations were done using [5]). For this example, it is clear that 15
cycles are sufficient for convergence, and the target topology is already evident
even after very few cycles. As we will see, T-Man proves to be extremely scalable
and the time complexity of the protocol remains in this order of magnitude even
for a million nodes.

3.2 Optimizations

We can increase the performance of the protocol by applying two well known
techniques described in [1]. First, we set a connection limit of 1, that is, in each
interval of T time units (i.e., two cycles), we allow each node to receive at most
one connection. Since each node also initiates one connection in this interval, this
means that during two cycles, each node communicates at most twice. Second, we
also apply hunting, that is, instead of trying only one peer, each node actively
keeps looking for nodes (from the current view) that have not exceeded their
connection limit in the given interval. Our preliminary experiments indicate
that these techniques noticeably improve the convergence speed of T-Man.

As another possibility for optimization, note that a node does not need to
send the entire buffer containing the union of the fresh descriptor, the old view
and the random buffer. In fact, the contacted node will use at most the c closest
items from this buffer so it is sufficient to first sort the buffer applying the
ranking function of the peer, and sending the first c items. Since all nodes use
the same ranking function, they can easily emulate the ordering from the point
of view of any other node.

4 Simulation Experiments

All the simulation results presented in this paper were produced using PeerSim,
an open-source simulator developed at the University of Bologna [10].

We examine the three distance-based ranking functions that define the ring,
torus and binary tree topologies, as defined in Section 2. The motivation of this
choice is that the ring is a large diameter topology and it is relevant for the
sorting application (Section 6.1), the binary tree is of a logarithmic diameter
and the torus is relevant in proximity problems being based on a 2-dimensional
grid. The network sizes (N) examined are 214, 217 and 220. We initialize the
profiles of the nodes in a regular manner, that is, in the case of the ring topol-
ogy, we assign the numbers 1, 2, . . . , N to the nodes, and likewise for the torus
((1, 1), (1, 2), . . . , (

√
N,

√
N)) and the binary tree (all binary strings of length

log2 N).
This regularity is not critical for the success of the protocol. On the contrary,

one of the important applications is sorting an arbitrary set of numbers, as we
argue in Section 6.1. However, this controlled setting allows us to monitor the
dynamics of the protocol in a more informed manner as the distance function
becomes equivalent to the hop count in the target topology defined by the links
that connect nodes at distance 1 (the target links). During the experiments we
focus on the dynamics of the number of target links that are found. As a measure
of performance, the convergence factor is defined as the factor by which the
number of target links found increases from one cycle to the next. Note that a
constant convergence factor means exponential increase.

The newscast protocol was used as the implementation of the peer sampling
service [3], which works very similarly to T-Man maintaining a dynamic ran-
dom overlay and using it to provide random peers. The newscast protocol is
extremely scalable and robust, and its communication cost is similar to that of
T-Man. The cache size of newscast was 30 and its cycle length was identical to
that of T-Man. In this section, we focus on convergence starting from a random
network, that is, the views are initialized at random and the nodes start to run
the protocol at the same time. In Section 5 we examine the effect of churn, that
is, with nodes continuously joining and leaving the network.

The results are shown in Figure 3. The results clearly indicate a logarithmic
relationship between network size and convergence speed. This is illustrated es-
pecially well by the plots comparing the convergence factor for different network
sizes as a function of time. We can see a constant shift of convergence time when
the network size is increased by the same multiplicative factor (23). Quite in-
terestingly, initial convergence does not depend on the view size c, nor does it
depend on the characteristics of the target topology.

When the topology has already converged, the few nodes that are still incor-
rectly linked can be though of as “climbing” on the converged structure during
the consecutive cycles of T-Man. This means that in this end phase convergence
time does depend on the target topology. Accordingly, in the binary tree topol-
ogy, we observe rapid convergence. In fact, logarithmic convergence, because the
evolved structure allows for efficient routing, being low diameter. Similar argu-

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5 10 15 20 25 30

c
o
n
v
e
rg

e
n
c
e
 f
a
c
to

r

cycles

(a) ring

c=20, N=2
14

c=20, N=2
17

c=20, N=2
20

c=40, N=2
14

c=40, N=2
17

c=40, N=2
20

c=80, N=2
14

c=80, N=2
17

c=80, N=2
20

10
4

10
3

10
2

10
1

1

 100 80 70 60 50 40 30 20 15

n
u
m

b
e
r

o
f
m

is
s
in

g
 t
a
rg

e
t
li
n
k
s

cycles

(d) N=2
14

binary tree, c=20
binary tree, c=40
binary tree, c=80

ring, c=20
ring, c=40
ring, c=80

torus, c=20
torus, c=40
torus, c=80

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5 10 15 20 25 30

c
o
n
v
e
rg

e
n
c
e
 f
a
c
to

r

cycles

(b) torus

10
5

10
4

10
3

10
2

10
1

1

 100 80 70 60 50 40 30 20 15

n
u
m

b
e
r

o
f
m

is
s
in

g
 t
a
rg

e
t
li
n
k
s

cycles

(e) N=2
17

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5 10 15 20 25 30

c
o
n
v
e
rg

e
n
c
e
 f
a
c
to

r

cycles

(c) binary tree

10
6

10
5

10
4

10
3

10
2

10
1

1

 100 80 70 60 50 40 30 20 15

n
u
m

b
e
r

o
f
m

is
s
in

g
 t
a
rg

e
t
li
n
k
s

cycles

(f) N=2
20

Fig. 3. Comparison of convergence speed in the initial phase and in the final phase for
network sizes N = 214, 217, 220 and c = 20, 40, 80 for the ring, torus and binary tree
topologies. The results displayed are averages of 10 runs for N = 214 and N = 217, and
show a single run for the case N = 220.

ments hold for the torus, only the convergence time there is not logarithmic but
grows with the square root of the network size in the worst case. In both cases,
we can observe fast convergence even for the smallest view size.

The case of the ring is different, because the target topology has a large di-
ameter that grows linearly with the network size, so the remaining few misplaced
nodes reach their destination slower. Still, for c = 80 we have perfect convergence
after cycle 72 even for N = 220, and only a small percentage of target links are
missing with c = 20 and c = 40. For the smaller network sizes we always observe
full convergence in less than 80 cycles, independently of the characteristics of
the target topology.

5 Self-healing

In this section we consider scenarios with churn, that is, with nodes constantly
leaving and joining the network. We introduce a simple extension of the proto-
col to increase its adaptivity and subsequently we experimentally evaluate the
proposed solution.

5.1 Age-based view update

We extend the protocol given in Figure 1 by a simple technique to handle dy-
namic environments. The key idea is that we remove a few old descriptors from
the view in each cycle. As a result, we expect to decrease the number of “dead
links”, that is, descriptors describing nodes that are no longer in the network.
By decreasing the number of dead links, we expect to increase the quality of the
views of the live nodes.

To implement this idea, the node descriptors stored in the view must also
contain an age field. This field is initialized to be zero (when the node adds its
own descriptor to the buffer to send) and increased for all view entries every
time the node communicates. Before merging the view to the buffer to be sent,
each node removes the H oldest descriptors from the view. Finally, the merge

operation has to be modified to prefer the freshest item when removing duplicate
items.

5.2 Experimental results

To test the efficiency of this solution, we performed experiments with different
scenarios involving churn. In all experiments, network size was 104, and c = 20.
The cache size of newscast (the applied peer sampling service) was 30 and its
cycle length was identical to that of T-Man. Churn was modeled by removing
a given percentage of randomly selected nodes from the network in each cycle
and replacing them with new nodes that were initialized with random links.
The ranking function defined a 1-dimensional ring. However, due to churn, node
profiles were initialized by a random 62 bit integer, not regularly as in Section 4.
For this reason, to define a connected ring, we applied the direction dependent
version of the ranking function as described in Section 6.1.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

p
ro

p
o
rt

io
n
 o

f
ta

rg
e
t
lin

k
s
 f
o
u
n
d

healing parameter (H)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

p
ro

p
o
rt

io
n
 o

f
ta

rg
e
t
lin

k
s
 f
o
u
n
d

healing parameter (H)

churn=0%
churn=0.1%
churn=0.2%
churn=1%
churn=5%
churn=10%

(a) all nodes (b) nodes older than 10 cycles

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

p
ro

p
o
rt

io
n
 o

f
ta

rg
e
t
lin

k
s
 f
o
u
n
d

healing parameter (H)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 1 2 3 4

p
ro

p
o
rt

io
n
 o

f
ta

rg
e
t
lin

k
s
 f
o
u
n
d

healing parameter (H)

(c) nodes older than 20 cycles (d) same as (b), different scale

Fig. 4. Experimental results in the presence of churn. N = 10, 000, c = 20.

The results of the experiments, illustrating various settings for the healing
parameter H and churn rates, are shown in Figure 4. First of all, note that the
churn rates can be considered very high. If we set the cycle length parameter
T/2 = 10s, then, based on the Gnutella trace described in [12], the churn rate is
less than 0.2% per cycle. In this light, 5% or especially 10% churn is extremely
high.

Each point in the plots was generated by running the respective scenario
until 300 cycles, to make sure that the proportion of correctly identified target
links converges, and taking this converged value. The first observation is that
over all the nodes, high churn rates decrease the overall quality of the views in
the network quite significantly. However, for such high churn rates, the network
always contains many newcomers. If we consider the convergence times presented
in Section 4, we can note that for a newcomer at least 10 cycles are necessary to
optimize its view, so we cannot reasonably expect better performance according
to this measurement. However, if we restrict ourselves to nodes that are old
enough, we get a very different picture. For H = 1 and H = 2, we observe a very
good quality network even for churn rates of 10% which is especially notable
because the expected lifetime of a node in this network is only 10 cycles. In

fact, the number of nodes older than 10 cycles is around 3500, one third of the
network.

We can also observe that too aggressive “healing” in fact damages the net-
work even when there is no churn. The setting H = 6 is consistently worse than
any other setting. However, the positive effect of self-healing can be observed
when comparing the case of H = 1 with H = 0 (no healing). This consistently
results in a significant performance improvement. In general, H = 1 appears to
be the best choice, except in the most extreme churn where H = 2 is slightly
better.

As a final note, it is interesting to observe that performance is in fact no so
bad even without the application of the healing method (H = 0). This is due
to the fact, that in our scenarios the overall number of dead links is guaranteed
not to decrease below 50%. To see this, consider the case when the proportion of
dead links is p in the network and we remove n nodes, replacing them by n new
nodes, that have links to random live nodes. Due to the removal, the number of
dead links on average decreases by ncp while it increases by the number of links
that pointed to these nodes: on average nc(1− p). if we assume that all nodes in
the network have the same in-degree (it is true for our ranking function here).
This dynamics always converges to p = 0.5. This fact emphasizes the importance
of the bootstrapping method, especially in the presence of extreme churn.

6 Application Examples

The primary goal of this section is to underline the generality of the approach
by outlining the main ideas in using T-Man to solve some potentially important
applications.

6.1 Clustering and Sorting

So far we have considered rather artificial settings to understand the behavior of
T-Man better. In particular, the profiles of the nodes were initialized in a regular
manner. In practice this will hardly happen. Typically, the properties of the
nodes follow some specific distribution. This distribution can also be “patchy”,
there can be dense clusters separated by unrepresented regions in the profile
space. Very informally, when applying T-Man in such a setting using a simple
distance-based ranking function, the resulting topology will be clustered and
most likely disconnected, because nodes in the same cluster will eventually be
linked to each other only. An illustrative example is given in Figure 5 for the 1-
and 2-dimensional cases. In many applications, like clustering based on semantic,
geographic or any other definition of proximity, this property can be exploited
to find the desired clusters.

In the case of the sorting problem, where we would like to connect each
node to those nodes that directly preceed and follow them according to some
total ordering relation, we need to prevent clustering. This can be achieved
by the following direction dependent ranking. First, separate the set of nodes

(a) 1-dimensional, distance based (b) 1-dimensional, direction dependent

(c) 2-dimensional, distance based (d) 2-dimensional, direction dependent

Fig. 5. Illustrative example of converged topologies obtained with distance-based and
direction dependent ranking, with N = 1000, c = 20. The line is displayed as spiral for
convenience. Only the closest 2 and 4 links are shown from each node for the 1- and
2-dimensional example, respectively.

to be ranked into two groups: one that is to the left, and another that is to
the right of the base node. Order these two sets according to the underlying
desired ordering. Merge the ordered sets so that a node that had index i in
any of the sets is assigned index 2i or 2i + 1 in the final ranking, choosing
randomly between these two possibilities. Applying the 1-dimensional ranking
function makes it possible to practically reduce the sorting problem to the one
dimensional topology construction problem that we have studied extensively in
Section 4. In Section 5 we used exactly this sorting method as a ranking function.

Direction dependent ranking can be easily extended to other problems, for
example, creating a connected topology in two dimensions that reflects geo-
graphical proximity. In this case, a node divides the space into four quarters,
and classifies each node to be ranked into four categories accordingly. The node
then sorts the nodes in each class according to an underlying distance function,
and produces the ranking similarly to the two dimensional case: if a node has
index i in any of the four quarters, then it will be assigned an index randomly
from between 4i and 4i + 3.

The effect of direction dependent ranking is illustrated by two small examples
in Figure 5. In the case of both the distance based and direction dependent rank-
ing the nodes are mapped to points forming the plotted structures: equal length
intervals in 1-dimension and letter-shaped clusters in 2-dimensions. The profile

of the nodes is defined as their 1- or 2-dimensional coordinates, respectively.
Observe the clustering effect with the distance based ranking and, with direc-
tion dependent ranking, the perfect sorting in 1-dimension and the connected
topology in 2-dimensions.

6.2 A DHT

As an illustration, we very briefly present a simplistic way of evolving a dis-
tributed hashtable (DHT) topology with T-Man. The ranking function for the
target topology is defined by a XOR-based distance. The distance we use is not
that of [7]. Instead, we define the XOR distance over a set of binary numbers
as the number of bit positions in which they have a different digit. This ranking
function is responsible for evolving long range links. The idea is that in this
topology each node should know about nodes that differ from it in a few digits
only, resulting in a link set pointing to ID-s with a varying length of common
prefix (including long prefixes); a well known way of achieving efficient routing.

As a backup, we also evolve a sorted ring topology using another instance of
T-Man as described above, to maximize the probability that routing is successful.
The routing table is composed of the neighbors in these two topologies, and the
next hop for a target is selected based on numeric difference between the ID of
the target and the table entries (now interpreting ID-s as numbers). We require
strictly decreasing difference to avoid loops. The links from the ring topology
are used only if no suitable links are available in the XOR-based topology. If the
distance cannot be decreased but the target is not found, the routing attempt
is failed.

Figure 6 illustrates the convergence of the routing performance while the
topology is being evolved, starting from random routing tables. We can observe
that the number of missed targets quickly becomes insignificant (from cycle 23
only 3 cases out of the 5300 shown in the figure), and the hop count of both
the successful and unsuccessful routes remains low. Note that in our example,
assuming a perfect topology, the worst case hop count would be 20.

Finally, note that this approach is mainly for illustration. The protocol pre-
sented in [8] for building the Chord [13] DHT represents a more realistic example.

7 Conclusions and Future Work

We have presented a protocol for topology management, T-Man, that is simple,
general and fast. Simplicity makes it easier to implement, debug and understand.
Generality allows it to be applied as an off-the-shelf component for prototyping
or even as a production solution that could be implemented even before the
final desired topology is known. In fact, the ranking function can be generated
dynamically by users, or by some monitoring service, and the corresponding
topology can be created on the fly. Finally, speed makes it possible to construct
a topology quickly from scratch (recovery from massive failures or bootstrapping
other protocols on demand) or where topology maintenance is in fact equivalent
to the continuous re-creation of the topology (for example, due to massive churn).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

h
o
p
s

cycles

succesful
unsuccesful

Fig. 6. Hop count and success of routing as a function of time (cycles). Each point
represents the result of the routing algorithm from a random node to another random
node. In each cycle 100 experiments are shown, with a small random translation. Node
ID-s are random 62 bit integers, network size is 220(> 106), size of routing table is 60:
30 from the Pastry-inspired topology, 30 from the ring.

Our current work is towards the application of T-Man for jump-starting ex-
isting DHT implementations and providing them robustness in the presence of
massive failures and extreme churn [8]. We are also continuing our study of
T-Man at an abstract level to better understand its behavior and characterize
its scope and performance. In particular, it would be important to characterize
the class of topologies that are “easy” or “difficult” for T-Man. Note that any
arbitrary topologies can be expressed by at least one appropriate ranking func-
tion; in fact in general by many ranking functions: any function that ranks the
neighbors in the target topology highest is suitable. This means that the open
questions are: which of the possible ranking functions is optimal for a given
problem, and how does convergence and the speed of convergence depend on
the different topologies. Although the protocol does certainly not work with the
same efficiency for all problems, we observed very similar performance for rather
different and important topologies, so the empirical results are promising.

References

1. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database maintenance. In Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC’87), pages 1–12, Vancouver, British
Columbia, Canada, August 1987. ACM Press.

2. Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Mas-
soulié. Epidemic information dissemination in distributed systems. IEEE Com-
puter, 37(5):60–67, May 2004.

3. Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van Steen.
The peer sampling service: Experimental evaluation of unstructured gossip-based
implementations. In Hans-Arno Jacobsen, editor, Middleware 2004, volume 3231
of Lecture Notes in Computer Science, pages 79–98. Springer-Verlag, 2004.

4. Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation
in large dynamic networks. ACM Transactions on Computer Systems, 23(3):219–
252, August 2005.

5. Yehuda Koren. Embedder. http://www.research.att.com/~yehuda/index_

programs.html.
6. Laurent Massoulié, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh. Network

awareness and failure resilience in self-organising overlays networks. In Proceedings
of the 22nd Symposium on Reliable Distributed Systems (SRDS 2003), pages 47–55,
Florence, Italy, 2003.

7. Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric. In Proceedings for the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA, 2001.

8. Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Chord on demand. In
Proceedings of the Fifth IEEE International Conference on Peer-to-Peer Comput-
ing (P2P 2005), pages 87–94, Konstanz, Germany, August 2005. IEEE Computer
Society.

9. Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-diameter
peer-to-peer networks. IEEE Journal on Selected Areas in Communications
(JSAC), 21(6):995–1002, August 2003.

10. PeerSim. http://peersim.sourceforge.net/.
11. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems. In Rachid Guerraoui, editor,
Middleware 2001, volume 2218 of Lecture Notes in Computer Science, pages 329–
350. Springer-Verlag, 2001.

12. Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. Measuring and an-
alyzing the characteristics of Napster and Gnutella hosts. Multimedia Systems
Journal, 9(2):170–184, August 2003.

13. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), pages 149–160, San
Diego, CA, 2001. ACM, ACM Press.

14. Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust
and scalable technology for distributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems, 21(2):164–206, May 2003.

15. Spyros Voulgaris and Maarten van Steen. An epidemic protocol for managing
routing tables in very large peer-to-peer networks. In Proceedings of the 14th
IFIP/IEEE International Workshop on Distributed Systems: Operations and Man-
agement, (DSOM 2003), number 2867 in Lecture Notes in Computer Science.
Springer, 2003.

16. Beverly Yang and Hector Garcia-Molina. Designing a super-peer network. In Pro-
ceedings of the 19th International Conference on Data Engineering (ICDE 2003),
Los Alamitos, CA, March 2003. IEEE Computer Society Press.

