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Abstract

T memory stem cells (TSCM) are a rare subset of memory lymphocytes endowed with the stem 

cell-like ability to self-renew and the multipotent capacity to reconstitute the entire spectrum of 

memory and effector subsets. Cumulative evidence in mice, non-human primates and humans 

indicates that TSCM are minimally differentiated cells at the apex of the hierarchical system of 

memory T lymphocytes. Here we describe emerging findings demonstrating that TSCM, owing to 

their extreme longevity and robust potential for immune reconstitution, are central players in many 

physiological and pathological human processes. We also discuss how TSCM stemness could be 

therapeutically leveraged to enhance the efficacy of vaccines and adoptive T-cell therapies for 

cancer and infectious diseases or, conversely, disrupted to treat TSCM-driven and sustained 

diseases such as autoimmunity, adult T-cell leukemia, and HIV-1.
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“δὶς γὰρ τὸν αὐτόν, ὥστε καὶ κτείνειν, οὐκ ἐπελάμβανεν.”

“For this disease never took any man the second time so as to be mortal.”

Thucydides, The History of the Peloponnesian War.

Translation by Thomas Hobbes
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Immunological memory – the ability to remember and respond rapidly and more vigorously 

to subsequent encounters with a pathogen – has long been recognized in human history. The 

first documentation of immunological memory was provided by the Greek historian, 

Thucydides, who vividly described the plague that struck the city of Athens in 430 BC 

recounting that “this disease never took any man the second time”1. It took us more than two 

millennia to gain insights into the cellular basis of the immune system and to understand that 

immunological memory is a fundamental property of the adaptive immunity conveyed by B 

and T lymphocytes2.

Despite the enormous progress in our understanding of basic aspects of T-cell immunity, the 

ontogeny of memory T cells remains a matter of active debate3,4. It is clear, however, that 

immunological memory and protective immunity can last several decades and perhaps a 

lifetime even in the absence of re-exposure to the pathogen5,6. This astonishing stability of 

T-cell memory in spite of the high cellular turnover characterizing the immune responses 

and the lack of replenishment of antigen-specific T cells from hematopoietic stem cells 

(HSCs) due to constraints imposed by stochastic recombination of the T-cell receptor (TCR) 

and thymic involution, has sparked the idea that T-cell immunity could be maintained via 
stem cell-like memory T cells7. Over the past decade, the realization that memory T cells 

share a core transcriptional signature with HSCs8 and display functional properties found in 

stem cells, such as the capacity to divide asymmetrically to generate cellular heterogeneity9, 

has further strengthened the view that T cells, akin to all somatic tissues, may be 

hierarchically organized and sustained by antigen-specific T memory stem cells10.

In this Review, we outline emerging findings demonstrating that a subset of minimally 

differentiated memory T cells behave as antigen-specific adult stem cells. We also discuss 

recent evidence placing these T memory stem cells (TSCM) at center stage in many 

physiological and pathological human processes. Finally, we highlight ongoing efforts 

aiming either at harnessing the therapeutic potential of TSCM for adoptive immunotherapies 

or conversely at destabilizing the TSCM compartment to eliminate drug-resistant viral 

reservoirs or treat adult T-cell leukemia and autoimmune diseases. The conceptual work and 

key discoveries that have shaped this field of investigation are summarized in the Timeline.
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The discovery of TSCM cells

Advances in multiparameter flow cytometry over the last 20 years have allowed us to dissect 

the heterogeneity of the T-cell compartment with ever-increasing precision11. In a seminal 

study, van Lier and colleagues identified human naïve, memory, and effector T-cell subsets 

based on the combinatorial expression of CD27 and CD45RA, with naïve cells expressing 

both molecules, whereas memory and effector cells expressing only CD27 or CD45RA, 

respectively12. Subsequent work by Sallusto et al.13 revealed the presence of two major 

functional subsets within the CD45RA– memory T-cell pool: central memory T cells (TCM), 

which express the lymph node homing molecules CCR7 and CD62L and have limited 

effector functions, and CCR7–CD62L– effector memory T cells (TEM), which preferentially 

traffic to peripheral tissues and mediate rapid effector functions.

The idea that memory T cells may not solely be confined to the CD45RA– T-cell 

compartment, but may also be present within what was considered to be an exclusive naïve 

T-cell realm, began to take shape following the identification in mice of a novel memory T-

cell population characterized by a naïve-like phenotype but expressing high amounts of stem 

cell antigen-1 (SCA-1) and the memory markers interleukin-2 receptor β (IL-2Rβ) and 

chemokine C-X-C motif receptor 3 (CXCR3)14. These cells were termed TSCM based on the 

observation that they were capable of sustaining graft-versus-host disease (GVHD) upon 

serial transplantation in allogeneic hosts and that they could reconstitute the full diversity of 

memory and effector T-cell subsets while maintaining their own pool size through self-

renewal14. Identifying the human counterpart of TSCM, however, has not been 

straightforward mainly due to the lack of a human ortholog of SCA-1, the prototypical 

marker of mouse TSCM. Though it was known that a significant fraction of long-lived 

antigen-specific CD8+ and CD4+ memory T cells displayed a naïve-like phenotype 

(CD45RA+CCR7+CD27+) years after infection with EBV15 or vaccination with attenuated 

smallpox or yellow fever (YF) viruses16,17, a precise set of surface markers to pinpoint this 

elusive memory phenotype in humans was missing. The breakthrough came with the 

demonstration that mouse TSCM could be successfully generated in vitro from naïve 

precursors by activating the WNT-β-catenin signaling pathway using the WNT ligand, 

WNT3A, or inhibitors of glycogen synthase kinase-3β18. Translated to humans, this strategy 

has recently allowed the identification of human TSCM
19. Similar to their murine 

counterparts, human and non-human primate (NHP) TSCM are clonally expanded cells 

expressing a largely naïve-like phenotype in conjunction with a core of memory markers 

such as CD95, CXCR3, IL-2Rβ, CD58 and CD11a19,20. These cells represent a small 

fraction of circulating T lymphocytes (≈ 2–3%). Interestingly, the frequency of circulating 

TSCM does not significantly vary with age21, but it appears to be heritable and associated 

with single nucleotide polymorphisms at a genetic locus containing CD9522, suggesting a 

potential role of FAS signaling in the regulation of TSCM homeostasis. TSCM exhibit all the 

defining properties of memory cells, including a diluted content of TCR excision circles, the 

ability to rapidly proliferate and release inflammatory cytokines in response to antigen re-

exposure, and a dependence on IL-15 and IL-7 for homeostatic turnover19,23. Despite being 

functionally distinct from naïve T cells, they share similar recirculation patterns and 

distribution in vivo as evidenced by detailed compartmentalization studies in NHP24. For 
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instance, TSCM are found more abundantly in lymph nodes compared to the spleen and bone 

marrow and are virtually absent from peripheral mucosae24. Thus, TSCM represent a subset 

of minimally differentiated T cells characterized by phenotypic and functional properties 

bridging naïve and conventional memory cells (Fig. 1).

TSCM cells: Evidence of stemness

The concept of stemness embraces the capacity both to self-renew and to generate the entire 

spectrum of more differentiated cells25. When the existence of a stem cell pool of memory T 

lymphocytes was initially postulated by Fearon and colleagues7, the authors pointed to TCM 

as putative T memory stem cells. This assumption was based on the evidence that TCM are 

less differentiated than TEM and effector cells, as shown by their longer telomeres and lower 

expression of perforin, granzymes and other effector molecules13. Furthermore, it was 

intuitive to assume that the pool of T memory stem cells should be confined in lymph nodes 

and secondary lymphoid organs, and TCM were, at that time, the only antigen-experienced T 

cells known to express CCR7 and CD62L. The notion that TCM might function as T memory 

stem cells was further supported by subsequent findings demonstrating that TCM have 

superior immune reconstitution capacity and a greater ability to persist in vivo than TEM
26. 

Recent clonogenic experiments in mice based on single cell serial transfer have formally 

demonstrated the ability of murine TCM to self-renew and generate TEM and effector 

progenies in vivo27,28. Strikingly, TEM were unable to serially reconstitute the host even 

when transferred at 100-fold higher numbers, showing a limited capacity for self-renewal. 

Although these experiments did not evaluate TSCM, these results, combined with that of 

sophisticated experiments tracking T cell fates in mice based on genetic barcoding29 and on 

single naïve T-cell transfer30, provided strong support for the progressive model of T-cell 

differentiation originally developed by Sallusto and Lanzavecchia31. Indeed, three separate 

models have been proposed to explain memory T-cell differentiation3: according to the first 

2 models memory T cells originate from effectors either after26 or before32 the peak of T-

cell expansion. The progressive differentiation model, on the contrary, suggests that memory 

T cells are derived directly from naïve lymphocytes upon priming, and further differentiate 

into shorter-lived effector subsets in a hierarchical differentiation tree, similar to that of other 

organ systems31 (Fig. 1). Using hematopoietic stem cell transplantation (HSCT) from 

haploidentical donors as a model system to study T-cell differentiation, two independent 

groups have recently showed at polyclonal, antigen-specific, and clonal levels, that human 

TSCM differentiate directly from naïve precursors, emerging early upon in vivo priming33,34. 

By multiparametric flow cytometry and TCR sequencing of individual T lymphocytes it was 

possible to trace and quantify, at the clonal level, the in vivo differentiation landscapes of 

transferred naïve and antigen-experienced T cells, highlighting TSCM as privileged players in 

the diversification of naïve cells upon priming33,34. Indeed, discrete T-cell subsets traced 

across HSCT behaved preferentially within a progressive framework of differentiation. 

Notably, only naïve T cells and TSCM were able to reconstitute the entire heterogeneity of 

memory T-cell subsets, including TSCM
33. A fraction of originally TEM reverted to a TCM 

phenotype33. By contrast, only a very limited number of TCM and TEM converted to TSCM
33. 

Echoing these findings, the transfer of genetically-modified virus-specific T cells 

reconstituted the full diversity of the T-cell memory compartment – inclusive of TSCM, TCM 
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and TEM – only when TSCM were present within the infused cell product35. Altogether these 

results strengthen earlier in vitro observations in human19 and NHP24 showing that the 

potential to form diverse progeny is progressively restricted proceeding from TSCM to TCM 

and TEM. Thus, granting some level of plasticity to the system, these data point to a 

progressive model of T-cell differentiation, in which TSCM are at the apex of the hierarchical 

tree. In line with this concept, the gene expression profile of human T-cell subsets partitions 

TSCM with antigen-experienced T cells, and places them at a hierarchically superior level 

than TCM
19,23,36,37.

The concept of stemness also involves self-renewal and implicates long-term persistence25. 

The long-term persisting ability of TSCM and other antigen-experienced T cells cannot be 

easily addressed in humans, since naïve T cells are continuously generated, and several 

antigenic contacts might occur after the initial encounter. Longitudinal monitoring of 

genetically-engineered lymphocytes infused as antigen-experienced cells and distinguishable 

from endogenous lymphocytes thanks to the retroviral integration and transgene expression, 

has recently allowed the tracking of single T-cell clonotypes over time. In patients affected 

by ADA-SCID, genetically-engineered TSCM persisted and preserved their precursor 

potential for decades38. In leukemic patients treated with haploidentical HSCT and donor 

lymphocytes retrovirally transduced to express a suicide gene, engineered lymphocytes were 

traced for up to 14 years35. This study revealed that the extent of expansion and the amount 

of persisting gene-marked T cells tightly correlate with the number of TSCM infused, 

indicating that this subset of memory cells is endowed with enhanced proliferative potential, 

immune reconstitution capacity and longevity35. Interestingly, the same observation has 

been reported in a clinical trial based on the infusion of autologous T cells genetically-

engineered to express a chimeric antigen receptor (CAR)39, underscoring that this 

phenomenon is not confined to the HSCT model. In patients treated with suicide gene 

therapy, by combining T-cell sorting with sequencing of integration, TCRα and TCRβ 
clonal markers, it was possible to show that dominant long-term T-cell clones preferentially 

originate from infused TSCM and to a lesser degree from TCM clones35. Together, these 

results indicate that human TSCM have an exceptional capacity to persist long-term. Similar 

conclusions were reached by monitoring T-cell subset dynamics in NHP infection models24 

and HIV-1 patients undergoing antiretroviral therapy (ART)40, in which antigen load and 

time of antigen exposure can be precisely controlled. Taking advantage of the peculiar 

biology of the Tat-specific epitope TL8, which uniformly undergoes escape mutation within 

4–5 weeks after Simian Immunodeficiency Virus (SIV) infection, Lugli et al.24 investigated 

the persistence of different memory T-cell subsets in the virtual absence of any antigen 

perturbation. In this setting, TSCM were able to persist at unchanged levels for up to 70 days 

after infection, whereas TCM and TEM contracted 10-fold and 100-fold, repesctively24. 

Likewise, pharmacological antigen withdrawal in ART-treated HIV-1 patients was associated 

with a decline of HIV-1-specific TEM and terminally differentiated effector cells (TTE), 

whereas TSCM were restored and even expanded under these conditions40. Mirroring these 

findings, YF-specific T-cell subsets declined after vaccination with attrition rates 

progressively increasing along with a differentiation from TCM to TEM and TTE
36. 

Remarkably, the frequency of YF-specific TSCM was stably maintained even 25 years after 

vaccination36. Taken together, this series of studies provides compelling evidence that 
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human TSCM are generated directly from naïve lymphocytes and are endowed with long-

term self-renewal capacity and multipotency.

TSCM cells in antimicrobial immune defense and after vaccination

Human TSCM have been increasingly identified in acute and chronic infections caused by a 

variety of pathogens, including viruses, bacteria and parasites19,35,36,40–42. These results 

demonstrate that TSCM are commonly generated during natural immune responses against 

foreign pathogens, but the underlying mechanisms remain poorly understood. Human 

studies are limited in that the exact time of infection is usually unknown, making it difficult 

to study T-cell priming and kinetics. By contrast, active vaccination offers the possibility to 

induce an immune response in a supervised fashion. Smallpox and YF vaccines are 

particularly suitable models of human primary acute viral infection as they consist of live 

attenuated, replication competent viruses capable of inducing strong immune responses with 

consequent clinical symptoms43. Using YF vaccination as model system, the kinetics of 

TSCM formation and long-term maintenance have recently been studied in great detail36. 

Consistent with findings from studies of SIV infection in NHP24, YF-specific TSCM were 

detectable at early time points after vaccination when the immune response was dominated 

by effector T cells36. These TSCM persisted at stable levels, becoming the major YF-specific 

memory T-cell population in the circulation decades after the initial immunization36. 

Considering that YF vaccination provides life-long protection43, it is reasonable to assume 

that TSCM play a central role in the maintenance of long-term T-cell memory.

The presence of a relevant pool of TSCM might also be essential for the control of persisting 

infections, in which effector T cells undergoing functional exhaustion and replicative 

senescence need to be continuously replenished by less-differentiated T-cell subsets44–46. 

Interestingly, recent studies in chronic viral40,47 and parasitic infections42 have shown the 

existence of a negative correlation between the severity of disease and the frequency of 

circulating TSCM. It is unclear whether these observations result from the inability of TSCM 

to be maintained under conditions of strong inflammation and high antigenic load, or vice 

versa, the lack of physiological numbers of TSCM impairs the ability of the immune system 

to keep the infection in check. However, emerging findings suggest that TSCM are a 

fundamental pillar of immune homeostasis as high levels of infection and subsequent 

functional perturbation of the TSCM compartment have been linked to the development of 

symptomatic immune deficiency following SIV and HIV-1 infections48,49. Indeed, high 

quantities of SIV DNA were found in CD4+ TSCM from rhesus macaques, who typically 

develop an AIDS-like clinical picture when left untreated, but not in CD4+ TSCM from SIV-

infected sooty mangabeys, a group of NHP who are refractory to clinical or laboratory signs 

of immune deficiency even when high levels of virus circulate in the peripheral 

blood48,50,51. Resonating with this observation, viremic non-progressors – a rare group of 

untreated HIV-1 patients, who develop high levels of HIV-1 replication in the absence of 

clinical immune deficiency – exhibit reduced levels of HIV-1 DNA in CD4+ TSCM in 

comparison to HIV-1 patients with ordinary rates of disease progression, who instead show 

high amounts of HIV-1 infected TSCM despite a relative depletion of the total CD4+ TSCM 

compartment49. Altogether these results underscore a critical function of TSCM in sustaining 

long-lasting cellular immunity against acute and chronic microbial infections.
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Given the pivotal role of TSCM in maintaining life-long immunological memory, it would be 

desirable to develop vaccines capable of inducing significant numbers of TSCM. The 

majority of clinical vaccine formulations designed to stimulate CD8+ T-cell-mediated 

immunity induce predominantly TEM, with only little emergence of memory cells52,53. 

These vaccines are generally poorly efficient and rarely protective compared to those 

inducing protective antibodies2,54. Indeed, current T-cell vaccines appear unable to trigger 

mechanisms that are key for the development of memory T cells, including optimal 

signaling via the TCR and induction of appropriate metabolic programs, transcription 

factors, and chromatin reorganization55. Considering that the activation of CD8+ T cells 

under conditions of low-level inflammation enhances memory cell formation, one may 

consider that novel vaccines should preferentially activate T cells without triggering the 

excessive release of pro-inflammatory cytokines56. It is however debatable whether optimal 

generation of memory T cells requires the avoidance of effector cell differentiation. This is 

illustrated by the fact that natural infections generate sound memory T-cell responses, 

including TSCM, despite initial predominance of effector cells43. Much work remains to be 

done in this area, however, the induction of TSCM by novel vaccines should not be at the 

expense of more differentiated TEM and tissue-resident memory cells, which assure 

immediate protection at the entry site of re-infection in peripheral tissues57–59. Ideally, new 

vaccines will be able to recreate the large heterogeneity of memory cells, including long-

lived TSCM, that human pathogens and their pathophysiological properties induce in 
vivo60,61.

TSCM cells in human diseases

The complex biology of TSCM can make it difficult to discriminate between their protective 

and pathogenic effects because the very characteristics that enable TSCM to represent the 

backbone of life-long cellular immunity under physiologic conditions may empower these 

cells to drive disease pathogenesis62. This seems particularly relevant in the setting of a 

growing list of immune-mediated diseases associated with aberrant and autoreactive 

memory T cells. For instance, recent correlative studies have suggested an increased 

frequency and activation state of CD8+ TSCM in individuals with aplastic anemia, a disease 

mediated by autoreactive cytotoxic T cells targeting hematopoietic progenitors63. Moreover, 

an elevated number of CD8+ TSCM after immunosuppressive treatment was associated with 

treatment failure and subsequent disease relapse63. Elevated quantities of TSCM were also 

noted in patients with uveitis, but not with systemic lupus erythematosus, an immune-

mediated disease primarily characterized by autoreactive humoral responses63. Further 

pointing towards a role of TSCM in the pathogenesis of autoimmune diseases and other 

illnesses of the lymphatic system, a recent genome-wide association study found a strong 

association between genetic polymorphisms affecting susceptibility to juvenile idiopathic 

arthritis or chronic lymphocytic leukemia, and the frequency of CD4+ TSCM
22. How TSCM 

can influence autoimmune diseases will have to be studied in dedicated investigations, but 

based on current knowledge it is reasonable to hypothesize that long-lasting autoreactive or 

abnormally activated TSCM may induce self-renewing inflammatory cellular responses that 

are responsible for the durable, and in most cases life-long persistence of such diseases64. 

The possible role of TSCM in other diseases with profound disturbance of cellular immune 
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responses, such as autoimmune hepatitis, thyroiditis, type I diabetes and certain types of 

glomerulonephritis, are currently unknown but represent a high priority area of future 

research.

In addition to their role in autoimmunity, TSCM may have a distinct role in viral diseases in 

which T cells represent the predominant targets, such as infections caused by CD4+ T-cell 

tropic retroviruses. Notably, work in the context of HIV-1 infection has shown that CD4+ 

TSCM can effectively support both productive viral replication and a transcriptionally-silent 

form of infection65. Moreover, by infecting long-lived CD4+ TSCM, HIV-1 is able to exploit 

their stemness to establish an extremely durable, self-renewing viral reservoir that can 

persist for decades despite ART, and continuously replenish virally-infected cells, 

perpetuating a disease they are meant to restrict66. Indeed, the half-life of HIV-1-infected 

TSCM in ART-treated individuals has been estimated to last for 277 months, a time period 

significantly longer than that observed for viral reservoirs established in more short-lived T-

cell populations67. In line with these observations, phylogenetic studies demonstrated close 

associations between viruses circulating early after HIV-1 infection and viral sequences 

isolated from CD4+ TSCM after almost a decade of suppressive ART66. Notably, the ability 

to use CD4+ TSCM as a long-term viral reservoir also seems to occur in individuals infected 

with HTLV-1, a retrovirus related to HIV-1 that is the primary cause of adult T-cell leukemia 

(ATL). Emerging data indicate that transformed, HTLV-1 infected CD4+ TSCM can act as 

progenitors for dominant circulating ATL clones, and efficiently repopulate ATL clones 

upon transplantation in animal models68 suggesting that they can serve as a cancer stem cell 

population responsible for propagating and maintaining HTLV-1 infected malignant cells.

Targeting TSCM cells for therapy

Harnessing TSCM cells for adoptive T-cell therapy

The extreme longevity, the robust proliferative potential and the capacity to reconstitute a 

wide-ranging diversity of the T-cell compartment make TSCM an ideal cell population to 

employ in adoptive immunotherapy (Fig. 2). Driven by the growing success of clinical trials 

based on the transfer of naturally occurring and genetically-engineered tumor-reactive T 

lymphocytes, adoptive immunotherapies are rapidly becoming a real therapeutic option for 

patients with cancer69,70. Although these regimens can induce complete and durable tumor 

regressions in patients with advanced cancer, current response rates remain mostly 

inadequate underscoring the need for further improvements69,70. There is now extensive 

evidence indicating that objective responses strongly correlate with the level of T-cell 

engraftment and peak of expansion earlier after transfer71–77. T-cell persistence, though not 

strictly indispensable in certain conditions72–75,78, has also been associated with the 

likelihood of objective responses in numerous trials 76,77,79–83 and might be required to 

sustain durable remissions84. These parameters are considerably influenced by the 

composition of the infused T-cell product as T-cell subsets differ widely in terms of 

proliferative capacity, immune reconstitution and long-term survival10,85. Indeed, the 

administration of cells with longer telomeres81,86 or cell products comprising higher 

fractions of CD62L+, CD28+ or CD27+ T cells has been shown to correlate with objective 

tumor responses in patients81,86–88, suggesting that less-differentiated T cells are 
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therapeutically superior to TTE. Notably, the engraftment and expansion of T cells 

engineered to express a CD19-specific CAR39 or a suicide gene35 correlated with the 

frequency of infused CD8+CD45RA+CCR7+ TSCM. Adoptive transfer experiments in mice 

using defined T-cell subsets have formally demonstrated that the infusion of less-

differentiated CD62L+ T-cell populations results in enhanced T-cell engraftment, expansion 

and persistence, ultimately leading to more profound and durable tumor 

regressions18,19,89–93. Consistent with the developmental hierarchy, minimally differentiated 

TSCM mediate more potent antitumor responses than TCM, which in turn are more effective 

than highly differentiated TEM
18,19,94. Some level of plasticity, however, must be granted to 

the hierarchical model of memory T-cell differentiation. In NHP, genetically-engineered 

CMV-specific effectors derived from purified TCM proved superior to effectors derived from 

TEM in terms of in vivo expansion and persistence, showing that even after in vitro 
manipulation and apparently a similar degree of terminal differentiation, T cells maintain 

some characteristics of the subset of origin, and can possibly, at least in part, revert to that 

original phenotype and function95.

Despite overwhelming preclinical data indicating a therapeutic advantage to transferring 

tumor-reactive CD62L+ T-cell subsets18,19,89–93, clinical trials have largely employed 

unselected intratumoral or peripheral blood mononuclear cell (PBMC)-derived T-cell 

populations. Tumor infiltrating lymphocytes are typically in a state of terminal 

differentiation and functional exhaustion making the isolation of early memory T-cell 

subsets impractical96,97. However, the selection of less-differentiated T-cell subsets becomes 

realistic and desirable in the context of immunotherapies aiming at conferring tumor 

reactivity to circulating T cells via TCR or CAR gene-engineering. The isolation of less-

differentiated T-cell populations also has the advantage of reproducibly generating more 

consistent and defined T-cell products. Indeed, PBMC composition can vary significantly 

between individuals as a consequence of age98, pathogen exposure99, and prior systemic 

treatments100. Moreover, unselected populations containing high proportions of TEM and 

effector cells might fail to generate viable clinical products due to poor in vitro cell 

expansion101. Recently, two clinical trials in which CD19-specific CAR T cells were 

generated from isolated TCM have been reported84,102,103. This strategy led to the generation 

of infusion products comprising significantly more TEM than those originating from 

unselected PBMC indicating that, in the absence of culture conditions restraining T-cell 

differentiation18,104–108, the benefit of depleting highly-differentiated T cell subsets is 

outweighed by the concomitant removal of naïve and TSCM
102. Notwithstanding the 

reduction of less-differentiated T-cell subsets, the rates of objective remissions in acute 

lymphoblastic leukemia (ALL) patients were comparable to trials using unselected T-cell 

populations72,73,76,102,109,110. Whether differences in manufacturing and T-cell product 

composition will affect rates and duration of clinical responses in other diseases and settings 

remains to be shown.

So far, the clinical exploitation of TSCM has been hindered by their relative paucity in the 

circulation19,20 and the lack – until recently – of robust, clinical-grade manufacturing 

protocols capable of generating and maintaining this cell type in vitro. These strategies rely 

on programming and redirecting TSCM from naïve-like T cells isolated from PBMC23,111 

(Fig. 2). Although the isolation of naïve T cells adds complexity to the manufacturing 
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process, it is a critical step because the presence of more differentiated T-cell subsets during 

naïve T-cell stimulation accelerates naïve T-cell differentiation into TEM and TTE cells112. It 

should also be considered that purifying large numbers of specific cell subsets over multiple 

parameters under GMP conditions is becoming increasingly accessible thanks to recent 

developments in clinical cell sorting technologies85,113. IL-7 and IL-15 have successfully 

been used to generate tumor-redirected or suicide gene-modified TSCM from naïve cell 

precursors23 (Fig. 2). IL-7 is essential for the development of these cells23,114, while IL-15 

primarily sustains their expansion23. IL-7 and IL-15-programmed TSCM possess a core gene 

signature of naturally occurring TSCM, display an enhanced proliferative capacity compared 

to other T-cell subsets and are uniquely capable of expanding and mediating GVHD upon 

serial transplantation23. This cytokine combination could also be employed to generate large 

numbers of TCR gene-edited TSCM by combining Zinc Finger Nuclease sets specific for the 

endogenous TCR gene loci with lentiviral vectors encoding tumor-specific TCRs115 (Fig. 2). 

Moreover, the ability of IL-7 and IL-15 to support the formation and expansion of TSCM 

makes it an ideal strategy to generate TSCM without the need to redirect their specificity. 

This may be particularly suitable for the generation of virus-specific TSCM for the treatment 

and prevention of life-threatening infections after transplantation (Fig. 2) as infection control 

can be obtained by transferring relatively small numbers of virus-specific memory cells116. 

A demonstration that IL-7 and IL-15 could be successfully employed to generate and expand 

virus-specific TSCM starting from isolated naïve-like cells was recently provided by Volk 

and colleagues117. This protocol could also be adapted to generate CAR-modified virus-

specific TSCM, which may lower the risk of GVHD given the restricted TCR repertoire and 

exhibit additional proliferative and survival advantages as result of the in vivo triggering of 

the native virus-specific TCRs by antigens from persistent viruses80,118. Another clinical-

grade strategy promoting the generation of tumor-reactive TSCM is based on the activation of 

naïve-like lymphocytes in the presence of IL-7, IL-21 and the WNT agonist TWS119111. 

Although both IL-15119,120 and IL-21121-123 have been implicated in the generation and 

maintenance of memory T cells, IL-21 is more effective in restraining T-cell 

differentiation105 due to its specific ability to activate STAT3 signaling124 and to sustain the 

expression of WNT-β-catenin transcription factors TCF7 and LEF1105. TWS119 provides a 

synergistic effect with IL-21 to induce maximal expression of TCF7 and LEF1 by stabilizing 

β-catenin111. CAR-modified TSCM generated under these culture conditions are 

phenotypically, functionally, and transcriptionally equivalent to their naturally occurring 

counterparts111. Moreover, they exhibit metabolic features characteristic of long-lived 

memory T cells such as a high spare respiratory capacity125 and low glycolytic 

metabolism126. Although these culture conditions profoundly inhibit T-cell proliferation, 

TSCM can be efficiently redirected against a tumor antigen and expanded to clinically 

relevant numbers111. More importantly, CAR-modified CD8+ TSCM mediated superior and 

more durable anti-tumor responses than cells generated with protocols currently employed in 

clinical trials111. CAR-modified TSCM may also provide an attractive approach for 

immunotherapy in the setting of non-malignant diseases, such as HIV-1 infection or other 

chronic viral illnesses127,128 (Fig. 2). Altogether, these studies provide both a strong 

scientific rationale and practical methodologies for the rapid advancement of TSCM in 

human clinical trials of adoptive immunotherapy129.
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Disrupting TSCM cell reservoirs in retroviral infections and autoimmune diseases

The emerging role of CD4+ TSCM in the pathogenesis of chronic viral infections such as 

HIV-1 and HTLV-1 infection may also offer novel opportunities to prevent, treat or cure 

these diseases. In the context of HIV-1 infection, specific interventions that eliminate HIV-1-

infected CD4+ TSCM may allow for the destabilization of HIV-1 reservoirs by reducing the 

number of HIV-1-infected source cells from which new HIV-1+ viral and cellular progeny 

can continuously originate, despite suppressive ART. As the molecular programs governing 

the stem cell-like behavior of TSCM continue to be understood, new molecules regulating 

proliferation and self-renewal of TSCM may represent attractive targets for reducing viral 

persistence in CD4+ TSCM. For instance, WNT-β-catenin signaling has been identified as a 

key driver for the homeostasis of TSCM
18, and pharmaceutical inhibition of this pathway 

may therefore translate into a more limited ability of HIV-1 to use the TSCM compartment 

for maintaining survival of virally-infected cells (Fig. 2). This approach may be facilitated 

by the availability of existing pharmacological inhibitors of WNT-β-catenin designed to 

target cancer stem cells130. Although such as strategy might be not entirely specific for 

eliminating HIV-1-specific CD4+ TSCM, advances in nanotechnology may allow for 

selective delivery of WNT-β-catenin antagonists or short hairpin RNAs targeting key 

mediators of WNT signaling to CD4+ T cells or virally-infected cells via nanoparticles or 

aptamer-based targeting systems131,132 (Fig. 2). Similar strategies are also conceivable to 

target HTLV-1-infected TSCM in the setting of ATL or to disrupt long-lasting reservoirs of 

autoreactive TSCM in autoimmune diseases. Additionally, recent advances in ex-vivo gene 

editing may allow the design of CD4+ TSCM that are intrinsically resistant to HIV-1, through 

e. g. targeted deletion of the chemokine receptor CCR5, which is necessary for viral 

entry133, thus mimicking the CCR5Δ32 mutation known to confer resistance to HIV-1 

infection134 (Fig. 2). Such a population of long-lasting, HIV-1-resistant CD4+ T cells could 

be used in adoptive immunotherapy strategies to establish a durable cellular immune system 

that is no longer able to support HIV-1 infection, and may allow for drug-free remission of 

HIV-1 infection.

Concluding Remarks

TSCM are rare antigen-experienced T cells, likely generated directly from naïve lymphocytes 

and endowed with long-term self-renewal capacity and multipotency. Compelling evidence 

in mice, NHP, and humans points towards a scenario in which TSCM represent the apex of 

the memory T-cell differentiation tree. Their longevity and their capacity to reconstitute the 

entire heterogeneity of the T-cell memory compartment entail a double edged – protective or 

pathogenic – role for TSCM in human diseases. The increasingly recognized protective role 

of TSCM in acute and chronic infections makes them optimal candidates for therapeutic 

exploitation in vaccination and adoptive T-cell therapy against infectious diseases and 

cancer. Conversely, their relevance in the pathogenesis of autoimmunity, adult T-cell 

leukemia and HIV-1, makes TSCM an attractive target to tame for these pathological 

conditions. Several issues regarding TSCM biology remain to be addressed: characterization 

of their metabolic requirements, epigenetic and transcriptional programs, and anatomical 

niches (Box 1) will possibly guide innovative TSCM-based therapeutic interventions for 

human diseases.
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TSCM epigenetic and transcriptional programs.

Genome-wide transcriptomic analyses of whole19,135 and yellow fever-specific TSCM
36,37 

have shown a high relatedness between these cells and central memory T cells (TCM). These 

findings suggest that the majority of signaling pathways and transcriptional factors that 

shape the development and maintenance of TCM might be to a certain degree involved in the 

regulation of TSCM. This reasoning is exemplified by the demonstration that WNT-β-catenin 

signaling, which is essential for TCM formation and long-term survival141–144, is also critical 

for the generation of TSCM
18,19,111. Likewise, tempering mTOR signaling has been shown to 

enhance the development of both TCM
145,146 and TSCM

135. Whether specific transcriptional 

networks are uniquely activated to influence TSCM fate is unknown. It is also currently 

unclear what is the role of CD95-FASL signaling in TSCM homeostasis. The epigenetic 

programs in TSCM remain largely undefined. Emerging genome-wide analysis of histone 

methylation on two histone H3 lysine residues (H3K4me3 and H3K27me3) in naïve and in 
vitro-generated murine CD8+ T cell subsets have revealed that chromatin accessibility is 

mostly regulated in a progressive fashion further supporting a hierarchical model of T-cell 

differentiation, in which TSCM represent the least differentiated antigen-experienced T cell 

subset136.

TSCM metabolism.

A growing body of work has recently highlighted the importance of cell metabolism in 

regulating the activity and fate commitment of T lymphocytes147. Fatty acid oxidation, 

increased mitochondrial biomass and spare respiratory capacity (SRC) have been shown to 

support the development of memory T cells and confer on them a bioenergetic advantage 

necessary to sustain rapid recall responses125,148. Conversely, aerobic glycolysis has been 

associated with the formation of short-lived terminally differentiated effector cells and 

defects in the establishment of T cell memory126. Emerging findings indicate that naturally-

occurring and in vitro-generated human TSCM also exhibit the prototypical ‘metabolic 

signature’ of memory cells with reduced glycolytic flux, preferential lipid oxidative 

metabolism, and high SRC111,135. Recently, HSC and T cell stemness have been linked to 

presence of decreased mitochondrial membrane potential (ΔΨm)149. Consistent with these 

findings, TSCM display lower ΔΨm than other antigen-experienced T cell subsets, including 

TCM
135,149. Whether TSCM maintain fused mitochondrial networks with tight cristae 

organization, which have been shown to facilitate electron transport chain activity in 

conventional memory T cells150 remains to be determined. Future area of research also 

include a more global characterization of the TSCM metabolome and a deeper understanding 

of the role of amino acids in TSCM metabolism and function.

TSCM anatomical niches.

Stem cell niches are instrumental in regulating stem cell behavior and tissue homeostasis151. 

Specialized niches in the bone marrow provide not only physical support but also soluble 

factors and cellular interactions that guide HSCs’ decision to either self-renew or 

differentiate151. Increasing evidence has recently underscored the critical role of the bone 

marrow also in sustaining life-long persistence of conventional memory T cells152–155. 

Whether the bone marrow can similarly serve as a niche for TSCM is a fundamental question 
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that needs to be addressed. Alternatively, it might be evaluated whether, akin to naïve T 

cells156, TSCM rely on homeostatic cues provided by fibroblastic reticular cell niches within 

T-cell zones of secondary lymphoid organs. Finally, it would be critical to characterize cell 

contact-dependent cross-talk, cytokine networks and metabolite constituents regulating 

TSCM differentiation and function in their niches.
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Box 1:

TSCM cell biology: outstanding questions

Several questions regarding TSCM biology have yet to be addressed. A major unresolved 

issue is how TSCM physiologically form during the course of an infection and the impact 

of the strenght of antigen stimulation. Is TSCM fate immediately programmed at the time 

of naïve T cell priming or is it shaped throughout the number of antigen encounters and 

the diverse inflammatory environments that their progenies experience in the acute phase 

of the infection? A glimpse into TSCM transcriptional and epigenetic 

landscapes19,36,37,135,136, and early work exploring TSCM metabolism111,135 have begun 

to shed light on the molecular and metabolic programs regulating TSCM formation and 

homeostasis, but much ground remains to be covered. For instance, it is still unknown 

whether and to what extent asymmetric partitioning of key transcription factors137,138 

and metabolic master regulators139,140 is programming TSCM formation. Additionally, 

studies examining TSCM anatomical niches are entirely missing. Progress in these area of 

investigation has been hampered to some extent by the rareness of TSCM in the 

circulation, which is a limiting factor for epigenetic, proteomic and metabolomic studies. 

A major hurdle is the lack of mouse infection models capable of generating robust 

numbers of TSCM, which so far has precluded researchers to precisely evaluate specific 

gene contributions to TSCM physiology and physiopathology with genetic tools, and to 

image TSCM dynamics in tissues by real-time in vivo microscopy.
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Figure 1: Hierarchical model of human T-cell differentiation.
Following antigen priming, naïve T cells (TN) progressively differentiate into diverse 

memory T-cell subpopulations and ultimately into terminally differentiated effector T cells 

(TTE). T-cell subsets are distinguished by the combinatorial expression of the indicated 

surface markers. As TN progressively differentiate into TTE, they lose or acquire specific 

functional and metabolic attributes. TSCM, T memory stem cell; TCM, central memory T 

cell; TEM, effector memory T cell; ΔΨm, mitochondrial membrane potential.
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Figure 2: TSCM-based therapeutic interventions for human diseases.
T memory stem cells (TSCM) can be either tamed (left panel) to treat TSCM-driven diseases 

such as autoimmunity, T-cell leukemia and T-cell tropic infections or exploited (right panel) 

to potentiate T cell-based immunotherapies against cancer and infectious diseases. Left 

panel: WNT antagonists or short hairpin RNA (shRNA) targeting key molecules involved in 

WNT signaling such as T cell factor 7 (TCF7) could be used to disrupt long-lasting, self-

renewing TSCM reservoirs by driving them to differentiate into short-lived subsets such as 

effector memory T cells (TEM). Nanoparticle or aptamer technology could be employed to 

specifically target CD4+ T cells or virally-infected T cells. Right panel: patient- or donor-

derived naïve-like T cells can be used to generate and in vitro expand TSCM with or without 

gene engineering. Gene modifications include the insertion of tumor or virus-specific 

chimeric antigen receptor (CAR) or T cell receptor (TCR) genes, tumor or virus-specific 

TCR gene editing, suicide gene transfer in the context of donor lymphocyte infusion 

following hematopoietic stem cell transplantation, and CCR5 deletion in the setting of 
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HIV-1 infection. Virus-specific TSCM can also be expanded from the naturally-occurring 

antigen-specific TCR repertoire through in vitro sensitization protocols favoring the 

generation of TSCM. TN, naïve T cell; TCM, central memory T cell; APC, antigen presenting 

cell.
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