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T-MQM: Testbed based Multi-metric Quality 
Measurement of Sensor Deployment for Precision 

Agriculture-A Case Study   
Omprakash Kaiwartya, Member IEEE, Abdul Hanan Abdullah, Member IEEE, Yue Cao, Member IEEE, Ram 

Shringar Raw, Sushil Kumar, Member IEEE, Xiulei Liu, Rajiv Ratn Shah, Student Member IEEE

Abstract— Efficient sensor deployment is one of primary 

requirements of precision agriculture use case of Wireless Sensor 

Networks (WSNs) to provide qualitative and optimal coverage 

and connectivity. The application-based performance variations 

of the geometrical-model-based sensor deployment patterns 

restricts the generalization of a specific deployment pattern for 

all applications. Further, single or double metrics based 

evaluation of the deployment patterns focusing on theoretical or 

simulation aspects can be attributed to the difference in 

performance of real applications and the reported performance 

in literature. In this context, this paper proposes a Testbed based 

Multi-metric Quality Measurement (T-MQM) of sensor 

deployment for precision agriculture use case of WSNs. 

Specifically, seven metrics are derived for qualitative 

measurement of sensor deployment patterns for precision 

agriculture. The seven metrics are quantified for four sensor 

deployment patterns to measure the quality of coverage and 

connectivity. Analytical and simulation based evaluations of the 

measurements are validated through testbed experiment based 

evaluations which are carried out in ‘INDRIYA’ WSNs testbed. 

Towards realistic research impact, the investigative evaluation of 

the geometrical-model-based deployment patterns presented in 

this article could be useful for practitioners and researchers in 

developing performance guaranteed applications for precision 

agriculture and novel coverage and connectivity models for 

deployment patterns.    

Index Terms– Precision agriculture, Testbed, WSNs, Deployment  
 

I. INTRODUCTION 

pplication of Wireless Sensor Networks (WSNs) is 

expanding enormously due to the inclusion of new areas 

day by day. Few examples of the application area include 

environmental monitoring, agricultural monitoring, on-road 

traffic monitoring, vehicular communication, healthcare, home 

automation and indoor energy conservation, and warfare [1-3]. 
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In any application of WSNs, sensor deployment is one of 

the most important and critical issue since it is directly related 

to the cost and performance of the applications. A better 

sensor deployment strategy not only reduces the redundancy 

of sensors subsequently minimizing the cost of the network, 

but also extends the lifetime of the network [4].       
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Fig. 1. Precision agriculture use case of WSNs 

The deployment patterns followed in planned sensor 

deployment have significant impact on the performance of 

wireless sensor networks [5]. Therefore, these patterns are 

considerably important for the applications of sensors in 

regular terrain non-hostile environment where planned sensor 

deployment is followed. Precision agriculture is one of the 

promising use case of planed sensor deployment of WSNs in 

regular terrain non-hostile environment [6]. Recently, 

precision agriculture using WSNs has witnessed significant 

attention from industries as well as academia due to the huge 

potential to increase per hectare production in agriculture by 

efficient and automated nutrition requirement control in 

forming [7]. Various patterns for planned sensor deployment 

have been suggested for the applications in regular terrain 

non-hostile environment; e.g., precision agriculture, which are 

based on geometrical models including square, rhombus, 

pentagon and hexagon [8]. An application of square 

deployment pattern in precision agriculture is depicted in Fig. 

1 in which soil sensors are utilized to remotely monitor and 

control the nutrition requirements of plants in forming.   

The geometrical model based deployment patterns followed 

in planned sensor deployment have significant impact on the 
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overall performance of the applications of wireless sensor 

networks [9]. Due to the different physical characteristics of 

these geometrical models, considerable variations have been 

observed on performance of the deployment patterns based on 

these geometrical models in different kinds of applications 

[10]. The application-based performance variations restricts 

the generalization of the performance of a particular 

deployment pattern for all kinds of applications [11]. 

Therefore, qualitative measurements of these geometrical 

model based deployment patterns for precision agriculture use 

case of WSNs need to be investigated considering the early 

stage development in precision agriculture use case of WSNs 

[9, 12]. Further, most of these geometrical model-based 

deployment patterns have been evaluated using single [13-16] 

or double [17-20] metrics of coverage and connectivity. In real 

applications, performance of these geometrical model-based 

deployment patterns are quite different and far away from the 

reported performance in literature which are based on 

evaluations considering single or double metrics of coverage 

and connectivity [21]. Insufficient number of metrics for 

measuring coverage and connectivity is a cause of concern in 

terms of monitoring quality [22]. The inter-dependency of 

metrics have not been investigated which is also one of the 

main reasons for the quite deviation in the performance of 

applications from the reported performance [23]. It is also 

highlighted that majority of the previous works on quality 

measurement in WSNs pay attention on theoretical or 

simulation based evaluation, whereas this paper focuses on 

testbed experiment based evaluation.  

In this context, this paper proposes Testbed-based Multi-

metric Quality Measurement (T-MQM) to evaluate sensor 

deployment patterns in terms of offered quality of coverage 

and connectivity for precision agriculture use case of WSNs. 

The key contributions of the paper are as follows.  

1) The derivation of seven metrics for measuring quality of 

coverage and connectivity which are correlated with each 

other for effectively analyzing the impact of inter-

dependency of metrics on the performance of deployment 

patterns. 

2) The quantification of seven metrics for four sensor 

deployment patterns of precision agriculture use case to 

measure the quality of coverage and connectivity.  

3) The analytical and simulation evaluations of the quality of 

coverage and connectivity measurements using 

mathematical analysis and Network Simulator (NS-2); 

respectively.  

4) The testbed experiment based assessment using 

‘INDRIYA’ wireless sensor network testbed at School of 
Computing, National University of Singapore (NUS) [24] 

to validate the analytical and simulation evaluations. 

The rest of the paper is organized in following sections. 

Section II qualitatively reviews coverage and connectivity 

measurements in wireless sensor networks by categorizing the 

theme into single, double and multiple metrics based 

measurements and points out the research gap in deployment 

measurement for precision agriculture. Section III presents 

derivation of the seven metrics and measurement of quality of 

coverage and connectivity for four deployment patterns by 

quantifying the seven metrics. Section IV discusses the 

analytical, simulation and testbed based evaluations of the 

measurement of deployment patterns. Section V concludes 

this paper with some future directions of research in the theme.  

II. RELATED WORK 

     In this section, a qualitative review on coverage and 

connectivity measurements of sensor deployment in wireless 

sensor networks is presented, by classifying the theme into 

three categories including single, double and multi-metric 

based measurement. The contribution area of the paper; i.e., 

precision agriculture using WSNs, is revisited to precisely 

point out the research gap in deployment measurement for 

precision agriculture use case.  

A. Single Metric based Measurement 

   Analysis of quality of deployment in Surveillance Wireless 

Sensor Networks (SWSNs) has been performed using 

probabilistic models with detection ratio as a single metric for 

measurement [13]. Authors have suggested the usage of image 

segmentation algorithm for reducing the impact of obstacles in 

deployment strategies. The number of sensor requirement has 

been studied and analyzed experimentally considering the 

probability of detecting intrusion and time taken for detection. 

Mathematical model for measuring deployment quality and 

analytical analysis of the iso-sensing graph based approach 

has not been provided in this surveillance analysis. Various 

deployment patterns have been explored to obtain Optimal 

Deployment Patterns (ODP) for providing full coverage and k-

connectivity (k≤6) using percentage coverage metric [14]. 

Authors have presented a universal elementary deployment 

pattern to generate the other optimal deployment patterns 

considered. The universal deployment pattern is based on 

hexagon geometry. They have also suggested an approach to 

prove an optimal pattern for the situation where Voronoi 

diagram based approach is not suitable. In spite of analyzing 

regular deployment pattern, overlapped coverage area has not 

been taken into consideration. Un-even deployment of sensors 

in the sensing region or error in deployment planning may 

result into interference in wireless sensor networks.  

     Impact of Interference in Wireless Communication has 

been investigated in Fading Environment (IWC-FE) using 

outage probability metric [15]. Authors have analyzed co-

channel interference and derived mathematical functions; i.e. 

probability density function and cumulative density function 

for signal-to-noise interference ratio. Although intensity of 

interference is closely related with physical deployment of 

sensors yet, the impact of deployment patterns on interference 

has not been taken into consideration. Regular and Random 

Deployment patterns have been evaluated in terms of 

Throughput (RRD-T) metric which is significantly dependent 

on connectivity metric [16]. Authors have utilized ‘slotted 
ALOHA’ as Medium Access Control (MAC) protocol and 

Rayleigh distribution as fading channel. In particular, authors 

have mathematically derived average link throughput for three 

regular deployment patterns; namely square, triangular and 

hexagonal and compared the performance of these deployment 

patterns in terms of throughput, transmission efficiency and 

delivery capacity. Although the analysis has been validated 
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through numerical simulations yet, verification of the results 

using network simulator platform is missing.  

B. Double Metrics based Measurement 

Quality of Connectivity of Regular Topologies (QC-RT) 

has been evaluated using two metrics; namely, isolation 

probability and end-to-end connectivity for geometrical 

deployment patterns [17]. Authors have used probabilistic 

models to analyze connectivity considering reliability of 

sensors and fading of channels due to the interferers and 

multiple channel access. Three different fading models; 

namely, Rayleigh, Nakagami and Log normal have been used 

to analyze probabilistic connectivity in terms of node isolation 

probability and end-to-end network connectivity. The analysis 

did not consider coverage in spite of the fact that coverage and 

connectivity should be studied together due to their 

companion nature. Minimum number of sensors required for 

retaining a sensor network functioning with desired level of 

coverage and connectivity has been estimated using distance 

and degree metrics of graph theory in Connectivity Coverage 

and Power Consumption (CCPC) [18]. Authors have 

suggested a network management protocol for equalizing the 

remaining energy among all the sensors by switching off 

appropriate sensors in time slots while maintaining the desired 

coverage and connectivity. Presence of obstacles has not been 

taken into consideration in spite of analyzing random wireless 

sensor networks which are mostly deployed in hostile 

environment where presence of obstacles is un-avoidable. 

Two deployment strategies; namely, Expected-area 

Coverage Deployment (ECD) and Boundary Assistant 

Deployment (BOAD) have been suggested and evaluated 

using deployment quality and deployment error metrics for 

providing guaranteed coverage in wireless sensor networks 

[19]. Authors have addressed the problem of overestimation of 

coverage through their deployment strategies. Although 

random deployment has been considered yet, the presence of 

obstacles in the field of interest has not been realized. 

Uncertainty Aware Deployment Technique (UADT) has been 

evaluated using detection probability and connectivity 

percentage in mixed wireless sensor networks [20]. In 

particular, authors have suggested a deployment approach 

which discovers coverage holes by computing joint detection 

probability and moves the appropriate mobile sensors into 

coverage holes using bipartite graph based approach. 

Uncertainty aware deployment approach assumes that only 

static sensors are unreliable but the reliability of movable 

sensors has not been taken into account.   

C. Multi-Metrics based Measurement 

The multi-metric measurement of coverage and 

connectivity in WSNs have not been explored accountably for 

the applications of WSNs in regular terrain non-hostile 

environment. Some of the following investigations are 

restricted to either for a specific application which could not 

be generalized, or for particular type of WSNs with theoretical 

or simulation perspective. Coverage and connectivity have 

been evaluated using three metrics; namely, probability of 

instantaneous event detection, probability of delayed event 

capture and probability of communication in Duty-Cycled 

partitioned synchronous Wireless Sensor Networks (DC-

WSNs) [25]. The probabilistic models of these metrics have 

been derived for both synchronous and asynchronous 

networks. The impact of ratio of duty time and time interval 

on the performance of these metrics have been explored using 

mathematical and analytical analysis. Although the 

optimization of network performance in partitioned 

synchronous network is a challenging task considering the 

cooperation requirements among sensors yet, the applicability 

of the network is minimal due to the synchronization 

constraints. For bridge monitoring applications, sensor 

deployment has been evaluated using the metrics including 

model strain energy index, modal assurance criterion and 

modal participant factor [26]. Specifically, an optimal sensors 

placement method has been presented by optimizing multiple 

performance metrics and resources. There are two major 

operational steps in the method. Firstly, modal energy index of 

randomly deployed sensor’s locations are enhanced using 

Modal Strain Energy (MSE) as initial assignment of sensors 

on the bridge. Secondly, Adapted Genetic Algorithm (AGA) is 

developed using root mean square based fitness function for 

optimizing both number of sensors and their locations. No 

pattern is followed in the evaluation therefore, generalization 

of the measurement is not possible. 

D. The Contribution Area-Precision Agriculture 

The applicability of the findings of measurement of the 

deployment strategies in which any geometrical patterns are 

not followed, is lesser in other applications in regular terrain 

non-hostile environment; e.g., precision agriculture.  Readers 

are advised to go through the article [27] to explore more 

about application-based deployment strategies and related 

issues. These deployment measurements could not be 

generalized for other applications of wireless sensor networks 

in regular terrain non-hostile environment. Precision 

agriculture is one of the fine use case of WSNs in regular 

terrain non-hostile environment. Recently, the early stage 

studies in precision agriculture use case of WSNs has focused 

on addressing the implementation issues of precision 

agriculture system. Cluster based WSNs has been considered 

to optimize IEEE 802.15.4 MAC parameters for precision 

agriculture [28]. Star topology has been utilized within 

clusters with a cluster head in each cluster working as getaway 

for the cluster. The impact of topology change on the 

performance of the network has not been explored in the MAC 

parameter optimization. Automated actions based on the 

intelligence acquired from the perceived, processed and 

analysed data by sensors is one of the fundamental objectives 

of precision agriculture which has been investigated as data 

logger for precision agriculture [29]. 

A complete system implementation for precision agriculture 

using WSNs is presented considering two types of sensors; 

namely, management and normal sensors [30]. Random 

deployment of normal sensors within monitoring area has 

been considered therefore, the system lacks the cost and 

performance optimization using sensor deployment patterns. 

To address the battery power limitation, and thus replacement 

or recharging, attached with normal sensor, pluggable Radio 

Frequency Identification (RFID) based wireless sensor 

network system for precision agriculture is suggested [31]. 
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The aforementioned recent and early stage investigations on 

precision agriculture use case of WSNs have considered the 

design and development of data acquisition system for 

precision agriculture and claimed that the system is adaptable 

to different requirements of precision agriculture. From the 

best of our knowledge, qualitative evaluation of sensor 

deployment patterns and the impact of deployment patterns on 

the quality of coverage and connectivity for precision 

agriculture use case have not been taken into consideration yet 

[28-31]. It is also observed that majority the works in related 

literature pay attention on theoretical or simulation based 

study, whereas this paper focuses on testbed based study. 

In this context, Testbed based Multi-metric Quality 

Measurement (T-MQM) is presented to evaluate geometrical 

model based sensor deployment patterns for precision 

agriculture using wireless sensor networks in regular terrain 

non-hostile environment. Efficient sensor deployment is one 

of the primary functional module in precision agriculture use 

case of WSNs. Some of the key requirements of a sensor 

deployment technique for large scale sensor-based 

applications; e.g., precision agriculture, include covering the 

complete sensing field with minimum overlapping coverage 

area among sensors [32], maintaining quality of connectivity 

among sensors throughout the networks [33] and reducing 

network operation cost [34]. To optimize these requirements, 

the quality of sensor deployment patterns need to be verified 

through multiple metrics and testbed based measurements 

rather than relying on single or double metrics and theoretical 

or simulation based measurements. 

III. TESTBED BASED MULTI-METRIC QUALITY MEASUREMENT 

In this section, T-MQM is presented for measuring the 

quality of coverage and connectivity as a real research impact. 

Firstly, seven metrics are derived to measure the quality of 

coverage and connectivity of sensor deployment patterns. The 

metrics include total coverage area, effective coverage area, 

net effective coverage area, net effective coverage area ratio, 

total overlapped coverage area, total non-overlapped coverage 

area, and quality of connectivity. Secondly, the seven metrics 

are quantified for four sensor deployment patterns including 

square, rhombus, pentagon and hexagon patterns to measure 

the quality of coverage and connectivity. The nomenclature 

used in the design of T-MQM are precisely introduced in 

Table 1. 
Table 1. Nomenclature 

Notation Description  CaT Total coverage area  CaTO Total overlapped coverage area  CaTNO Total non-overlapped coverage area  CaE Effective coverage area 𝐶𝑎1 Coverage area of a sensor 𝑁 Number of sensors  CaNE Net effective coverage area  CaIO Individual overlapped coverage area within a sensor  𝐶𝑎𝑁𝐸𝑅 Net effective coverage area ratio  CaTNO Total non-overlapped coverage area  CaTO Total overlapped coverage area  𝑄𝑐 Quality of connectivity  K Conversion constant 𝑆𝑖  𝑖𝑡ℎsensor in a sensor deployment pattern 𝑟 Sensing range 𝑡 Transmission range 𝜋 Constant 

𝑃 Length of a side of a deployment pattern 𝑑 Distance between two sensors  ℎ Height of the arcs of the intersection area between two sensors  θ An angle in a deployment pattern geometry 

A. The Metrics 

The seven metrics are derived to measure quality of 

coverage and connectivity of sensor deployment pattern for 

precision agriculture. The metrics are also applicable for other 

applications of WSNs in regular terrain non-hostile 

environment. However, the Squared Error (SE) metric is more 

relevant for the applications where the requirement of quality 

of coverage varies on the different sub-regions of a region of 

interest [35]. This can be attributed to the fact that the SE 

metric considers the difference between achieved and required 

detection/miss probabilities on each sub-region before 

deploying a sensor on any sub-region of a region of interest. In 

these applications, the constraints in terms of quality of 

coverage requirement on the different sub-regions, are 

significant. However, in the context of precision agriculture, 

different quality of coverage on the sub-regions of a farming 

region is not considered. The constraints are not attached in 

case of precision agriculture, and thus, the following metrics 

are suitable.  

1) Total Coverage Area  

The total coverage area CaT of a sensor deployment pattern in 

a sensing field is the total area covered by all the sensors. It is 

the sum of the total overlapped coverage area  CaTO and total 

non-overlapped coverage area  CaTNOamong sensing range of 

the sensors deployed in a sensing field. In terms of precision 

agriculture, it defines the area of the part of the form where 

actual forming is practiced. It can be measured as expressed 

by Eq. (1).  𝐶𝑎𝑇 =  CaTO +  CaTNO      (1) 

2) Effective Coverage Area 

In a sensing field where N number of sensors are deployed, 

the effective coverage area CaE of a deployment pattern is the 

ratio of total coverage area and the sum of coverage area of all 

the individual sensors. In terms of precision agriculture, it 

defines the area referring to cost effectiveness of deployment 

pattern. It can be measured as expressed by Eq. (2).  𝐶𝑎𝐸 =  𝐶𝑎𝑇𝑁𝐶𝑎1 =  CaTO+  CaTNO𝑁𝜋𝑟2     (2) 

where, 𝐶𝑎1 is the coverage area of an individual sensor and 𝑟 is 

the sensing range, 𝐶𝑎𝑇 ≤ 𝑁𝐶𝑎1 and  1𝑁 ≤ 𝐶𝑎𝐸 ≤ 1. 

3) Net Effective Coverage Area 

In a sensor deployment pattern, the net effective coverage 

area  CaNE is the area covered by an individual sensor only. It is 

the difference between the area  Ca1 covered by an individual 

sensor and the overlapped coverage area  CaIO  within an 

individual sensor’s coverage area in the deployment pattern. In 
terms of precision agriculture, it defines the area referring to 

the unit of coverage in terms of a sensor. It can be measured as 

expressed by Eq. (3).  𝐶𝑎𝑁𝐸 =  𝐶𝑎1 −  CaIO = 𝜋𝑟2 (1 −  CaIO𝜋𝑟2) ,  0 < 𝐶aNE ≤ 𝜋𝑟2    (3)  

4) Net Effective Coverage Area Ratio 

In a sensing field where N number of sensors are deployed, 

the net effective coverage area ratio  𝐶𝑎𝑁𝐸𝑅of a deployment 
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pattern is the ratio of net effective coverage area and an 

individual sensor’s coverage area. In terms of precision 
agriculture, it defines the unit of qualitative coverage area 

offered in the return of an asset in terms of an individual 

sensor’s coverage area in a particular deployment patterns.  It 
can be measured as expressed by Eq. (4).  𝐶𝑎𝑁𝐸𝑅 =  𝐶𝑎𝑁𝐸𝐶𝑎1 = 𝜋𝑟2(1− CaIO𝜋𝑟2)𝜋𝑟2 = 1 −   CaIO𝜋𝑟2 , 0 < 𝐶aNER ≤ 1    (4) 

5) Total Non-overlapped Coverage Area 

The total non-overlapped coverage area  CaTNO  of a 

deployment pattern is the total coverage area covered by 

individual sensors only in the sensing field. In terms of 

precision agriculture, it defines the overall area within the 

form which is qualitatively monitored by geometrically 

deployed sensors following a particular deployment pattern. It 

can be measured as expressed by Eq. (5).  𝐶𝑎𝑇𝑁𝑂 =  𝑁𝐶𝑎𝑁𝐸 = 𝑁(𝜋𝑟2 −  CaIO) = 𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2)    (5) 

6) Total Overlapped Coverage Area 

The total overlapped coverage area  CaTO  of a deployment 

pattern is the total area covered by more than one sensors. In 

terms of precision agriculture, it defines the overall coverage 

interference area within the form consequently resulting in 

coverage capability depletion and coverage quality 

degradation by redundant sensors. It can be measured as 

expressed by Eq. (6).  𝐶𝑎𝑇𝑂 =  𝐶𝑎𝑇 −  𝐶𝑎𝑇𝑁𝑂 =  𝐶𝑎𝑇 − {𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2)}      (6) 

7) Quality of Connectivity 

The quality of connectivity 𝑄𝑐  of a deployment pattern 

defines the communication quality among the geometrically 

sensors. Apart from the impact of the geometrical pattern 

followed in a particular deployment, quality of communication 

medium or environment also significantly affects the quality 

of connectivity of a deployment pattern. In terms of precision 

agriculture, it defines the overall quality of the system 

employed to enhance and ease agriculture process. It can be 

measured as expressed by Eq. (7). 𝑄𝑐 =  𝐾 𝐶𝑎𝑇𝑂 𝐶𝑎𝐸 = 𝐾[ 𝐶𝑎𝑇−{𝑁𝜋𝑟2(1− CaIO𝜋𝑟2)}] CaTO+  CaTNO𝑁𝜋𝑟2 = 𝐾𝑁𝜋𝑟2{ 𝐶𝑎𝑇−𝑁𝜋𝑟2+𝑁 CaIO} 𝐶𝑎𝑇    = 𝐾𝑁𝜋𝑟2 {1 − 𝑁𝜋𝑟2 𝐶𝑎𝑇 + 𝑁 CaIO 𝐶𝑎𝑇 }  (7) 

where,  K is the quality of connectivity conversion constant. 

For ideal case K = 1  has been considered. The quality of 

connectivity has been normalized to obtain the value of quality 

of connectivity in the defined range.  

8) Multi-objective Optimization 

The aforementioned seven metrics are considered as objective 

functions of the Multi-objective Optimization (MOO) 

formulation. The formulation can be expressed as given by Eq. 

(8). 𝑀𝑎𝑥(𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6−1, 𝑓7 )   (8) 

where  𝑓1 =  𝐶𝑎𝑇 represents total coverage area, 𝑓2 =  𝐶𝑎𝐸 

represents effective coverage area, 𝑓3 =  𝐶𝑎𝑁𝐸 represents net 

effective coverage area, 𝑓4 =  𝐶𝑎𝑁𝐸𝑅 represents net effective 

coverage area ratio, 𝑓5 =  𝐶𝑎𝑇𝑁𝑂represents total no-overlapped 

coverage area, 𝑓6−1 = ( 𝐶𝑎𝑇𝑂)−1 represents total overlapped 

coverage area, and 𝑓7 =  𝑄𝑐represents quality of connectivity. 

The constraints of each metric denotes the constraints of the 

MOO formulation. The constraints include  𝐶𝑎𝑇 ≤𝑁𝐶𝑎1,  1𝑁 ≤ 𝐶𝑎𝐸 ≤ 1, 0 < 𝐶aNE ≤ 𝜋𝑟2, 0 < 𝐶aNER ≤ 1.       

The cost of deployment has significant impact on the overall 

cost of WSNs in case of heterogeneous sensors or hostile 

environments [36]. Thus, it could be considered as a metric. 

However, uniform quality of coverage requirement and ease of 

access of farming regions reduce the relevance of cost of 

deployment in precision agriculture using WSNs.  

B. The Measurements 

The aforementioned metrics for measuring quality of 

coverage and connectivity are utilized to evaluate four 

geometrical model based deployment patterns. The exact 

mathematical derivation of all the metrics are obtained for 

each deployment pattern exploiting their geometrical 

characteristics. Using the mathematical derivations, each of 

the metric has been quantified which can be used to compare 

the quality of coverage and connectivity of deployment 

patterns. 

1) Metric Quantification in Square Pattern based forming 

Square deployment pattern is one of simplest deployment 

approach in WSNs. Two cases of square deployment pattern 

are explored. In the first case, nine sensors are deployed at the 

vertices of four adjoining squares (see Fig. 2(a)). In the second 

case, sixteen sensors are deployed at the vertices of nine 

adjoining squares (see Fig. 2(b)). The length of side of squares 

is considered equal to the sensing range of sensors in both the 

cases of measurement. 

 Total Coverage Area  𝐶𝑎𝑇 = 4(⌔𝐴𝑆1𝐻) + 4(⌔𝐴𝑆2𝐵) + 8(∆𝐴𝑆1𝑆2) + □𝑆1𝑆3𝑆9𝑆7  

 = 4(150360𝜋𝑟2) + 4 (𝜋6 𝑟2) + 8 (√34 𝑟2) + 4𝑟2 = (7𝜋3 + 2√3 + 4) 𝑟2 (9) 
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Fig. 2.  Square pattern based forming (a) Nine sensors (b) sixteen sensors  

 Effective Coverage Area 𝐶𝑎𝐸 =  CaTO+  CaTNO𝑁𝜋𝑟2 = (7𝜋3 +2√3+4)𝑟29𝜋𝑟2 = 727+ 2√39𝜋 + 49𝜋 = 0.52 (10) 

 Net Effective Coverage Area  𝐶𝑎𝑁𝐸 = 𝜋𝑟2 −  CaIO = 𝜋𝑟2 − {𝜋4 𝑟2 + 2(𝜋6 𝑟2) + 2(𝜋6 𝑟2 − √34 𝑟2)} = 𝜋𝑟2 − {𝜋4 𝑟2 + 2𝜋3 𝑟2 − √34 𝑟2} = 𝜋+6√312 𝑟2   
(11) 

 Net Effective Coverage Area Ratio  𝐶𝑎𝑁𝐸𝑅 = 1 −   CaIO𝜋𝑟2 = 1 − {𝜋4𝑟2+2𝜋3 𝑟2−√34 𝑟2}𝜋𝑟2 =  0.35  (12) 

(a) (b) 
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 Total Non-overlapped Coverage Area  

 𝐶𝑎𝑇𝑁𝑂 = 𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2) = 9𝜋𝑟2( 
 1 − {𝜋4 𝑟2 + 2𝜋3 𝑟2 − √34 𝑟2}𝜋𝑟2 ) 

 
 

= 3(𝜋+6√34 ) 𝑟2     (13) 

 Total Overlapped Coverage Area   𝐶𝑎𝑇𝑂 =  𝐶𝑎𝑇 − {𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2)} = (7𝜋3 + 2√3 + 4) 𝑟2 −3(𝜋+6√34 𝑟2) = (19𝜋12 − 5√32 + 4) 𝑟2            (14) 

 Quality of Connectivity 𝑄𝑐 = 𝐾𝑁𝜋𝑟2 {1 − 𝑁𝜋𝑟2 𝐶𝑎𝑇 + 𝑁 CaIO 𝐶𝑎𝑇 } = 9𝜋𝑟2 {1 − 9𝜋𝑟2(7𝜋3 +2√3+4)𝑟2 +9{𝜋4𝑟2+2𝜋3 𝑟2−√34 𝑟2}(7𝜋3 +2√3+4)𝑟2 } = (19𝜋12 −5√32 +4)𝑟20.52   (15) 

In the second case, sixteen sensors are deployed at the vertices 

of nine adjoining squares (see Fig 2(b)). All the sensors S1 to S16  have equal sensing range and the length of the side of 

square is equal to the sensing range. The quality of the sixteen 

sensor square deployment pattern is measured below. 

 Total Coverage Area  𝐶𝑎𝑇 = 4(⌔𝐴𝑆1𝐿) + 8(⌔𝐴𝑆2𝐵) + 12(∆𝐴𝑆1𝑆2) + 𝑆1𝑆4𝑆16𝑆13  = 4(150360𝜋𝑟2) + 8 (𝜋6 𝑟2) + 12 (√34 𝑟2) + 9𝑟2    = (3𝜋 + 3√3 + 9)𝑟2  (16) 

 Effective Coverage Area  𝐶𝑎𝐸 =  CaTO+  CaTNO𝑁𝜋𝑟2 = (3𝜋+3√3+9)𝑟216𝜋𝑟2 = 316+ 3√316𝜋 + 916𝜋 = 0.47(17) 

 Net Effective Coverage Area  𝐶𝑎𝑁𝐸 = 𝜋𝑟2 −  CaIO = 𝜋𝑟2 − {𝜋4 𝑟2 + 2 (𝜋6 𝑟2) + 2(𝜋6 𝑟2 − √34 𝑟2)} = 𝜋𝑟2 − {𝜋4 𝑟2 + 2𝜋3 𝑟2 − √34 𝑟2} = 𝜋+6√312 𝑟2   
(18) 

 Net Effective Coverage Area Ratio  𝐶𝑎𝑁𝐸𝑅 = 1 −   CaIO𝜋𝑟2 = 1 − {𝜋4𝑟2+2𝜋3 𝑟2−√34 𝑟2}𝜋𝑟2 = 0.35  (19) 

 Total Non-overlapped Coverage Area   𝐶𝑎𝑇𝑁𝑂 = 𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2) = 16𝜋𝑟2 (1 − {𝜋4𝑟2+2𝜋3 𝑟2−√34 𝑟2}𝜋𝑟2 )
 = 4(𝜋+6√33 ) 𝑟2     (20) 

 Total Overlapped Coverage Area   𝐶𝑎𝑇𝑂 =  𝐶𝑎𝑇 − {𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2)} = (3𝜋 + 3√3 + 9)𝑟2 −4(𝜋+6√33 𝑟2) = (5𝜋3 + 5√3 + 9) 𝑟2   
 (21)

 

 Quality of Connectivity 𝑄𝑐 = 𝐾𝑁𝜋𝑟2 {1 − 𝑁𝜋𝑟2 𝐶𝑎𝑇 + 𝑁 CaIO 𝐶𝑎𝑇 }     = 16𝜋𝑟2 {1 − 16𝜋𝑟2(3𝜋+3√3+9)𝑟2 + 16{𝜋4𝑟2+2𝜋3 𝑟2−√34 𝑟2}(3𝜋+3√3+9)𝑟2 } = (5𝜋3 +5√3+9)𝑟20.47 (22) 

2) Metric Quantification in Pentagon Pattern based forming 

The pentagon deployment pattern is a modified 

consideration of triangular deployment patter in which five 

sensors are deployed at the vertices of a pentagon and one 

sensor at the center of pentagon (see Fig. 3). The sensing 

range of the sensors has been considered as r and the side of 

the pentagon has been considered as  P . The value P =

2r tan(36o)  can be calculated using simple geometrical 

calculations. Considering radius AS1  as tangent to the circle 

having center at S5, the radius S5A will be perpendicular to the AS1 . In other words, the angle < S5A S1 = 90o and thus, < 𝐴S5S1 =< 𝐴S1S5 = 45o . The quality of coverage and 

connectivity of pentagon deployment pattern are measured 

below. 
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Fig. 3. Pentagon pattern based forming   Fig. 4. Rhombus pattern based   

                                                                             forming 

 Total Coverage Area  𝐶𝑎𝑇 = 5{⌔ 𝐴𝑆1𝐵 + ∆𝐴𝑆1𝑆5 + ∆𝑆3𝑆4𝑆6}    = 5 {(162𝜋360 𝑟2) + (𝑟22 ) + 𝑟2 tan(36𝑜)} = (9𝜋4 + 6.13) 𝑟2  (23)
 

 Effective Coverage Area  𝐶𝑎𝐸 =  CaTO+  CaTNO𝑁𝜋𝑟2 = (9𝜋4 +6.13)𝑟26𝜋𝑟2 = 0.88   (24) 

 Net Effective Coverage Area  𝐶𝑎𝑁𝐸 = 𝜋𝑟2 −  CaIO = 𝜋𝑟2 − {108𝜇360 𝑟2 + 2(45𝜋360 𝑟2)}   = 𝜋𝑟2 − {11𝜋20 𝑟2} = 9𝜋20 𝑟2    
(25) 

 Net Effective Coverage Area Ratio  𝐶𝑎𝑁𝐸𝑅 = 1 −   CaIO𝜋𝑟2 = 1 −  {11𝜋20 𝑟2}𝜋𝑟2 = 0.80  (26) 

 Total Non-overlapped Coverage Area   𝐶𝑎𝑇𝑁𝑂 = 𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2) = 6𝜋𝑟2 (1 − {11𝜋20 𝑟2}𝜋𝑟2 ) = 2710 𝑟2  
  (27) 

 Total Overlapped Coverage Area  𝐶𝑎𝑇𝑂 =  𝐶𝑎𝑇 − {𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2)} = (9𝜋4 + 6.13) 𝑟2 − 2710 𝑟2  = (9𝜋4 + 3.43) 𝑟2    
(28) 

 Quality of Connectivity 𝑄𝑐 = 𝐾𝑁𝜋𝑟2 {1 − 𝑁𝜋𝑟2 𝐶𝑎𝑇 + 𝑁 CaIO 𝐶𝑎𝑇 } = 6𝜋𝑟2 {1 − 6𝜋𝑟2 𝐶𝑎𝑇 +6{11𝜋20 𝑟2} 𝐶𝑎𝑇 } = (9𝜋4 +3.43)𝑟20.88            (29)  

3) Metric Quantification in Rhombus Pattern based forming 

In rhombus deployment pattern, sensors are deployed at the 

vertices of adjoining rhombus. Following the pattern, nine 

sensors are deployed at the vertices of rhombus (see Fig. 4). In 

this deployment pattern, the intersection coverage area 

between any two sensors is always equal. To determine the 

intersection coverage area, the distance between the sensors is 

considered as d . The angle θ = cos−1(d 2r⁄ ) is derived using 
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trigonometry rules. The value h = √r2 − (d 2⁄ )2  is derived 

using triangle rules and it is used to calculate the area 

of ∆AS7B = d (√r2 − (d 2⁄ )2) 2⁄ . The intersection coverage 

area between the two sensors s7  and s8  can be derived 

subtracting the area of the triangle ∆AS7B from the area of the 

sector  AS7B = θr2 . Thus, the intersection coverage area is 2 {θr2 − (d (√r2 − (d 2⁄ )2) 2⁄ )} .The quality of coverage 

and connectivity of rhombus deployment pattern is measured 

through following derivations. 

 Total Coverage Area  𝐶𝑎𝑇 = 9(𝜋𝑟2) − 16 (2 {𝜃𝑟2 − (𝑑 (√𝑟2 − (𝑑 2⁄ )2) 2⁄ )}) 

To simplify the calculation, d = r  is considered. In other 

words, the sensing range of two neoghboring sensors passes 

through the centers. Thus, the value of θ = 60o can be derived 

using simple geometrical calculations. The the value of  CaT 

can be calculated as expressed by Eq. (30).   𝐶𝑎𝑇 = 9(𝜋𝑟2) − 16 {(𝟐𝝅−𝟑√𝟑)𝒓𝟐𝟔 } = (11𝜋3 + 8√3) 𝑟2 (30) 

 Effective Coverage Area  𝐶𝑎𝐸 =  CaTO+  CaTNO𝑁𝜋𝑟2 = (11𝜋3 +8√3)𝑟29𝜋𝑟2 = 0.7  (31) 

 Net Effective Coverage Area  𝐶𝑎𝑁𝐸 = 𝜋𝑟2 −  CaIO = 𝜋𝑟2 − 2 {(𝟐𝝅−𝟑√𝟑)𝒓𝟐𝟔 } = (𝜋+3√33 ) 𝑟2(32) 

 Net Effective Coverage Area Ratio  𝐶𝑎𝑁𝐸𝑅 = 1 −   CaIO𝜋𝑟2 = 1 − 2{(𝟐𝝅−𝟑√𝟑)𝒓𝟐𝟔 }𝜋𝑟2 =  0.45 (33) 

 Total Non-overlapped Coverage Area  

      𝐶𝑎𝑇𝑁𝑂 = 𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2) = 9𝜋𝑟2 (1 − 2{(𝟐𝝅−𝟑√𝟑)𝒓𝟐𝟔 }𝜋𝑟2 )  = 3(𝜋 + 3√3)𝑟2   (34) 

 Total Overlapped Coverage Area   𝐶𝑎𝑇𝑂 =  𝐶𝑎𝑇 − {𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2)} = (11𝜋3 + 8√3) 𝑟2 −3(𝜋 + 3√3)𝑟2 = (2𝜋3 − √3) 𝑟2           (35)
 

 Quality of Connectivity 𝑄𝑐 = 𝐾𝑁𝜋𝑟2 {1 − 𝑁𝜋𝑟2 𝐶𝑎𝑇 + 𝑁 CaIO 𝐶𝑎𝑇 } = 9𝜋𝑟2 {1 − 9𝜋𝑟2(11𝜋3 +8√3)𝑟2 +92{(𝟐𝝅−𝟑√𝟑)𝒓𝟐𝟔 }(11𝜋3 +8√3)𝑟2 } = (2𝜋3 −√3)𝑟20.7    (36) 

4) Metric Quantification in Hexagon Pattern based forming 

In hexagon deployment pattern, six sensors are deployed at 

the vertices of hexagon and one sensor is deployed at the 

center of the hexagon (see Fig.5). In this deployment pattern 

also, the intersection coverage area between the sensing range 

of any two sensors is always equal. The calculation of 

intersection coverage area in hexagon deployment is similar to 

what is performed to calculate intersection area in rhombus 

deployment pattern. Following the steps, the intersection 

coverage area in hexagon deployment can be calculated 

as 2 {θr2 − (d (√r2 − (d 2⁄ )2) 2⁄ )}. The quality of coverage 

and connectivity of hexagon deployment pattern is measured 

below. 

s1 s2

s3

s4
s5

s6

s7

d

r 

 
Fig. 5.  Hexagon pattern based forming 

 Total Coverage Area  𝐶𝑎𝑇 = 7(𝜋𝑟2) − 12 (2 {𝜃𝑟2 − (𝑑 (√𝑟2 − (𝑑 2⁄ )2) 2⁄ )}) 

    
  

Here in this section also, the case has been simplified with 

same assumption as considered in case of rhombus 

deployment; i.e., d = r. With this assumption, total coverage 

area  CaT can be calculated as expressed by Eq. (37).  

   𝐶𝑎𝑇 = 7(𝜋𝑟2) − 12 {(𝟐𝝅−𝟑√𝟑)𝒓𝟐6 } = (3𝜋 + 6√3)𝑟2       (37) 

 Effective Coverage Area  𝐶𝑎𝐸 =  CaTO+  CaTNO𝑁𝜋𝑟2 = (3𝜋+6√3)𝑟27𝜋𝑟2 = 37+ 6√37𝜋 = 0.90    (38) 

 Net Effective Coverage Area  𝐶𝑎𝑁𝐸 = 𝜋𝑟2 −  CaIO = 𝜋𝑟2 − 3 {(2𝜋−3√3)𝑟26 } = 3√32  𝑟2   
   (39) 

 Net Effective Coverage Area Ratio  𝐶𝑎𝑁𝐸𝑅 = 1 −   CaIO𝜋𝑟2 = 1 −  3{(2𝜋−3√3)𝑟26 }𝜋𝑟2 = 3√32  𝑟2𝜋𝑟2 = 0.82     (40) 

 Total Non-overlapped Coverage Area  

      𝐶𝑎𝑇𝑁𝑂 = 𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2) = 7𝜋𝑟2 (1 − 3{(2𝜋−3√3)𝑟26 }𝜋𝑟2 )  

= (21√32  ) 𝑟2   
(41) 

 Total Overlapped Coverage Area   𝐶𝑎𝑇𝑂 =  𝐶𝑎𝑇 − {𝑁𝜋𝑟2 (1 −  CaIO𝜋𝑟2)} = (3𝜋 + 6√3)𝑟2 −(21√32  ) 𝑟2 = (3𝜋 − 9√32 ) 𝑟2                       (42) 

 Quality of Connectivity 𝑄𝑐 = 𝐾𝑁𝜋𝑟2 {1 − 𝑁𝜋𝑟2 𝐶𝑎𝑇 + 𝑁 CaIO 𝐶𝑎𝑇 } = 7𝜋𝑟2 {1 − 7𝜋𝑟2(3𝜋+6√3)𝑟2 +21{(2𝜋−3√3)𝑟26 }(3𝜋+6√3)𝑟2 } = (3𝜋−9√32 )𝑟20.90  (43) 

IV. EMPIRICAL RESULTS 

In this section, analytical, simulation and testbed results are 

discussed for measuring the quality of coverage and 

connectivity of deployment patterns in terms of the considered 

metrics.  This section is broadly divided into three parts. In the 

first part, the analytical results are discussed whereas in the 

second and third parts simulation and testbed results are 

discussed; respectively. 
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A. Analytical Results 

In this section, the derivations obtained in terms of coverage 

and connectivity metrics for each of the considered 

deployment pattern are analytically evaluated using 

mathematical tool. The sensing range r = 15 m  and 

transmission range t = 25 m are considered while measuring 

coverage to focus on coverage metrics whereas both sensing 

range and transmission range are considered equal; i.e., r = t = 15 m  for measuring connectivity to focus on 

connectivity metric.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Analytical results: (a) coverage fraction, (b) effective coverage area 

Fig.6 (a) shows the impact of sensor density on coverage 

fraction of deployment patterns. The coverage fraction is 

defined as ratio of total covered sensing area and total area of 

sensing field considered for the experiment.  It can be clearly 

observed that hexagon deployment pattern provides 100% 

coverage with least number of sensors; i.e., approximately 

with 620 sensors.  All the other considered deployment 

patterns require more number of sensors for providing 100% 

coverage as compared to hexagon deployment. Specifically, 

the number of sensors required for providing 100% coverage 

is approximately 720 for pentagon and it is above 900 for all 

the other considered deployment patterns. Therefore, 

hexagonal deployment pattern is far better than other 

deployment patterns in providing coverage fraction. The 

results in Fig.6 (b) show the impact of sensor density on 

effective coverage area  CaE of deployment pattern. The results 

reveal that sensor density has negligible impact on effective 

coverage area of the considered deployment patterns. The 

results confirm the constant values of effective coverage area 

obtained in the derivations in previous section for each of the 

considered deployment pattern. In particular, the effective 

coverage area for hexagonal and pentagon deployment 

patterns are approximately equal to 0.9 whereas it is 0.7 for 

rhombus and near 0.5  for both the considered square 

deployment patterns.  

Fig. 7(a) shows the impact of sensor density on net effective 

coverage area  CaNE  of deployment patters. It can be clearly 

observed from the results that hexagon deployment pattern 

offers higher net effective coverage area as compared to those 

of the other considered deployment patterns. This can be 

attributed to the fact that the overlapping of coverage area is 

lower in hexagon as compared to the other deployment 

patterns. Pentagon deployment pattern offers lesser net 

effective coverage area as compared to hexagon deployment 

but the net effective coverage area offered by pentagon 

deployment is closer to what is offered by hexagon 

deployment for each of the considered density of sensors. The 

net effective coverage area offered by the other deployment 

patterns which includes rhombus, square-9 and square-16 are 

far less than what is offered by hexagon or pentagon 

deployment patterns due to the higher coverage overlapping. 

The results in Fig. 7(b) show the impact of sensor density on 

net effective coverage area ratio  CaNER  of the deployment 

patterns. The results reveal that sensor density has negligible 

impact on net effective coverage area ration of the considered 

deployment patterns. The results attest the constant values 

obtained for net effective coverage area ratio metric in the 

derivations of the metric in previous section for each of the 

considered deployment patterns. In particular, the net effective 

coverage area ratio of hexagon deployment pattern is noted 

as 0.82 which is the maximum value of net effective coverage 

area among the considered deployment patterns. The value of  CaNERof pentagon deployment pattern is 0.8 which is close to 

the value offered by hexagon. The value of  CaNER for the other 

considered deployment patterns is far below than  0.5. Two 

different deployment strategies considered under square 

deployment pattern show equal value of net effective coverage 

area ratio due to the similar geometrical shape resulting in 

equal coverage overlapping within an individual sensor’s 
coverage area.   

 

 

 
 

 

 

 

 

 

 

 

Fig.7. Analytical results: (a) net effective coverage area, (b) net effective 

coverage area ratio 

Fig.8 (a) demonstrate the impact of sensor density on total 

overlapped coverage area  CaTO  of the deployment patterns.  

The rapid increment in total overlapped coverage area for all 

the deployment patterns can be clearly observed from the 

results. The total overlapped coverage area in hexagon 

deployment pattern is smaller than that of other deployment 

patterns for each of the sensor density taken into consideration. 

In case of pentagon,  CaTO is definitely bigger than that of 

hexagon but it is closer to the hexagon’s  CaTOas compared to 

the rhombus and square deployment patterns. . This is because 

of geometrical shape similarity between pentagon and 

hexagon. The results in Fig.8 (b) show the impact of sensor 

density on quality of connectivity of the network. Square 

deployment patterns offer higher quality of connectivity 

among the considered deployment patterns which confirms the 

derivation of quality of connectivity carried out in previous 

section. For all the deployment patterns considered, quality of 

connectivity of the network is approximately constant up to 500 sensors and it increases linearly when number of sensors 

are more than 500. This can be attributed to the fact that till 
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500sensors coverage overlapping is lesser as evident from Fig. 

8(a). Once the closeness of sensors increase with more than 500 sensors, the better quality of connectivity is noted for the 

deployment patterns. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 8. Analytical Results: (a) total overlapped coverage area, (b) quality of 

connectivity 
   

1) Analysis of the Multi-objective Optimization 

In MOO, a better solution or Pareto optimal solution 𝑆(∗) in 

comparison with another solution 𝑆(𝐴)  is defined as  ∀ 𝑖 ∈{1,2, … ,7}, 𝑆(∗)𝑖 ≮ 𝑆(𝐴)𝑖 ∧ ∃ 𝑖 ∈ {1,2, … ,7}, 𝑆(∗)𝑖 > 𝑆(𝐴)𝑖 . 

The set of all Pareto solutions in the objective space is mapped 

to Pareto optimal Front (PF) [37]. Due to the number of 

metrics considered, a solution which optimizes all the metrics 

with maximum values at the same time, rarely exists. 

Therefore, Pareto optimal solutions are aimed. This analysis 

would provide some insights of the properties and features of 

the solutions in the PF of the MOO. Three different set of 

objectives are considered for analysis due to the number of 

direction representation in space. In Fig. 9(a), the objectives 

including 𝑓1 =  𝐶𝑎𝑇 , 𝑓2 =  𝐶𝑎𝐸and 𝑓3 =  𝐶𝑎𝑁𝐸are considered. The 

optimal solution is designed analytically considering each 

objective. The optimal solution considering objective  𝑓1  is 

represented by  𝑆(𝐶𝑎𝑇)  which has maximum  𝐶𝑎𝑇  but 

minimum  𝐶𝑎𝐸  and  𝐶𝑎𝑁𝐸 . The maximum value of  𝐶𝑎𝑇  and 

minimum value of  𝐶𝑎𝐸 and  𝐶𝑎𝑁𝐸   represented by the 

solution  𝑆(𝐶𝑎𝑇) , i.e.,  𝐶𝑎𝑇 (𝑆(𝐶𝑎𝑇)) = max(𝐶𝑎𝑇) , 𝐶𝑎𝐸  (𝑆(𝐶𝑎𝑇)) =𝑚𝑖𝑛(𝐶𝑎𝐸) and 𝐶𝑎𝑁𝐸  (𝑆(𝐶𝑎𝑇)) = 𝑚𝑖𝑛(𝐶𝑎𝑁𝐸) can be defined and 

normalized with the help of the constraints of the 

corresponding metrics.    The optimal solution considering 

objective 𝑓2 is represented by 𝑆(𝐶𝑎𝐸) which has maximum 𝐶𝑎𝐸 

but minimum  𝐶𝑎𝑇 and 𝐶𝑎𝑁𝐸. The optimal values of the metrics 

defined by the solution  𝑆(𝐶𝑎𝐸) , i.e., 𝐶𝑎𝐸  (𝑆(𝐶𝑎𝐸)) =max(𝐶𝑎𝑇) , 𝐶𝑎𝑇 (𝑆(𝐶𝑎𝐸)) = 𝑚𝑖𝑛(𝐶𝑎𝑇)  and  𝐶𝑎𝑁𝐸  (𝑆(𝐶𝑎𝐸)) =𝑚𝑖𝑛(𝐶𝑎𝑁𝐸) can be generated and normalized considering the 

related constraints. The optimal solution considering 

objective  𝑓3  is represented by  𝑆(𝐶𝑎𝑁𝐸)  which has 

maximum 𝐶𝑎𝑁𝐸 but minimum 𝐶𝑎𝑇 and 𝐶𝑎𝐸.  The maximum value 

of 𝐶𝑎𝑁𝐸 and minimum value  𝐶𝑎𝑇 and 𝐶𝑎𝐸, i.e., 𝐶𝑎𝑁𝐸 (𝑆(𝐶𝑎𝑁𝐸)) =𝑚𝑎𝑥(𝐶𝑎𝑁𝐸), 𝐶𝑎𝑇 (𝑆(𝐶𝑎𝑁𝐸)) = 𝑚𝑖𝑛(𝐶𝑎𝑇)  and  𝐶𝑎𝐸  (𝑆(𝐶𝑎𝑁𝐸)) =𝑚𝑖𝑛(𝐶𝑎𝐸)  can be obtained and normalized based on the 

corresponding constraints of the metrics.  However, the Pareto 

optimal solutions  𝑃𝐹 − {𝑆(𝐶𝑎𝑇), 𝑆(𝐶𝑎𝐸), 𝑆(𝐶𝑎𝑁𝐸)}  are more 

significant, because some of these solutions optimize all the 

three objectives at the same time. These solutions are 

represented by  𝑆(𝐶𝑎𝑇 , 𝐶𝑎𝐸, 𝐶𝑎𝑁𝐸) . Similar observations can be 

made in Fig. 9(b) where the other three objectives 

including  𝑓4 =  𝐶𝑎𝑁𝐸𝑅, 𝑓5 =  𝐶𝑎𝑇𝑁𝑂 and  𝑓6−1 = ( 𝐶𝑎𝑇𝑂)−1  are 

considered. The optimal solutions considering objectives 𝑓4, 𝑓5 

and 𝑓6−1  are represented by  𝑆(𝐶𝑎𝑁𝐸𝑅), 𝑆(𝐶𝑎𝑇𝑁𝑂) 
and 𝑆(( 𝐶𝑎𝑇𝑂)−1), respectively. However, the more significant 

Pareto optimal solution is represented 

by 𝑆(𝐶𝑎𝑁𝐸𝑅 , 𝐶𝑎𝑇𝑁𝑂, ( 𝐶𝑎𝑇𝑂)−1 ).  

 
(a) 

 
(b) 

Fig. 9. The solution characteristics of the MOO: (a) with 𝒇𝟏 =  𝑪𝒂𝑻, 𝒇𝟐 = 𝑪𝒂𝑬and 𝒇𝟑 =  𝑪𝒂𝑵𝑬, (b) with 𝒇𝟒 =  𝑪𝒂𝑵𝑬𝑹, 𝒇𝟓 =  𝑪𝒂𝑻𝑵𝑶and 𝒇𝟔−𝟏 = ( 𝑪𝒂𝑻𝑶)−𝟏 

B. Simulation Results 

In this section, simulations are performed in Network 

Simulator (NS-2) to measure the performance of deployment 

patterns in terms of quality of coverage and connectivity in 

realistic environment for verifying the analytical results 

obtained in the previous section.  The simulation experiments 

are conducted for each of the deployment patterns considered 

one-by-one. For each experiments, simulation area of 1500 ×1500 m2   is considered and sensors are deployed in the 

range 200 − 1000 following a particular deployment patterns. 

After following a particular pattern, the impact of exceeded 

sensors is not considered for simplicity in comparative 

evaluation. For example, with 200 sensors in the network, 2 

sensors exceeded in square-9, rhombus and pentagon, 4 

sensors exceeded in hexagon, and 8  sensors exceeded in 

square-16 deployment patterns. Two percent sensors are 

randomly selected as active senders for communication in 

each experiment. Each sensor generates data following 

Poisson process of rate  μ , where  1 𝜇⁄ = 0.1/𝑠 . In each 

experiment, the destination sensor is changed following 
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exponential distribution of rate  δ = 1 20⁄ 𝑚𝑠 . During the 

simulation of coverage metric, sensing range r = 15 m  and 

transmission range t = 25 m are considered for focusing on 

coverage measurement. For quality of connectivity 

measurement, both sensing range and transmission range are 

considered equal; i.e., r = t = 15 m. The data rate considered 

in the simulation for communication among sensor nodes 

is 40 kbps. Propagation delay during transmission has been 

considered negligible taking into account the specified 

simulation area.  The basic parameter values used in the 

simulations are summarized in Table-2. Each experiment has 

been repeated 30 times over different seeds and average has 

been taken for data record utilized in the results with  95% 

confidence interval. 
Table 2. Basic parameter setting for simulations 

Parameter Value Parameter Value 

Simulation area 1500 × 1500 𝑚2 Packet Type 𝑈𝐷𝑃 

Simulation time 600𝑠 Ifqlen 50 
No of sensors 200 − 1000 Channel Type 𝑊𝑖𝑟𝑒𝑙𝑒𝑠𝑠 
Bandwidth 40 Kbps Propagation model 𝑆ℎ𝑎𝑑𝑜𝑤𝑖𝑛𝑔 t 15𝑚 𝑎𝑛𝑑 25 𝑚 Antenna Model 𝑂𝑚𝑛𝑖 𝑑𝑖𝑟. r 15𝑚 MAC protocol 𝐼𝐸𝐸𝐸 802.11 
Data senders 2% 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 Query period 3𝑠 1 𝜇⁄  0.1/𝑠 Hello timeout 1𝑠 𝛿 1/20 𝑚𝑠 Packet Type 𝑈𝐷𝑃 

 

 

 
 

 

 

 

 

 

 

 

Fig. 10. Simulation Results: (a) coverage fraction, (b) effective coverage area 

Simulation results shown in Fig. 10(a) corroborate the 

analytical results of coverage fraction.  It can be clearly 

observed that hexagon deployment pattern provides higher 

coverage fraction with lesser number of sensors as compared 

to the other regular deployment patterns considered. Although 

the coverage fractions obtained through simulations is lesser 

from the estimated coverage fraction in analytical results for 

each of sensor density considered but they are very close the 

analytically estimated coverage fractions. For example, N = 500  sensors, the coverage fraction offered by hexagon 

deployment is 0.93  in simulation whereas it is 0.98 in 

analytical results as depicted in Fig. 6(a). Simulation results 

shown in Fig. 10(b) confirm the corresponding analytical 

results for effective coverage area. In simulation results, 

effective coverage area provided by the considered 

deployment patterns are not exactly constant as estimated in 

analytical results but they are slightly varying around constant 

values observed in analytical results. Hexagon deployment 

pattern which provide bigger effective coverage area among 

the considered deployment patterns in analytical results is 

validated by simulation results. For example, for N = 600 −

1000 sensors, the constant value of effective coverage area for 

hexagon deployment pattern is approximately 0.89 which is 

close to what is noted in analytical results; i.e., 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Simulation Results (a) net effective coverage area, (b) net effective 

coverage area ratio 

Simulation results depicted in Fig. 11(a) verifies the 

analytical results for net effective coverage area metric. The 

increment in 𝐶𝑎𝑁𝐸with the increase in number of sensors is 

similar to what is observed in analytical results.  For example, N = 200, 600  and  1000 , hexagon deployment offers 

approximately 230, 440  and 690 m2  net effective coverage 

area; respectively, whereas it offers approximately 260, 480 

and 706 m2 net effective coverage area in analytical results. 

The other deployment patterns also offer similar increment in 𝐶𝑎𝑁𝐸  to what is offered in analytical results. Therefore, the 

higher net effective coverage area offered by hexagon and 

pentagon deployments due to lower coverage overlapping is 

verified by simulation results. Fig. 11(b) shows simulation 

results for net effective coverage area ratio metric and attest 

the observed constant values in analytical results for each 

deployment pattern. Although 𝐶𝑎𝑁𝐸𝑅is not exactly constant in 

simulation results yet, it is varying near the constant values 

observed in analytical results. Specifically, net effective 

coverage area ratio of hexagon deployment varies in the range 0.78 − 0.81 in simulation results which close to the constant 

value of 0.81  observed in analytical results. Similarly, the 

ratio of pentagon deployment varies in the range 0.75 − 0.78 

in simulation results which is also close to the constant value 

of 0.8 observed in analytical results. It is also noteworthy that 

there is slight fluctuation in the net effective coverage area 

ratio of square-9 and square-16 deployment patterns due to the 

difference of number of exceeded sensors after following 

these two deployment patterns in the network with specified 

number of sensors. Thus, the higher and constant net effective 

coverage area ratio provided by both hexagon and pentagon 

deployments in analytical results are attested by simulation 

results. 

Total overlapped coverage area of deployment patterns 

measured through simulation is shown in Fig.12 (a). 

Simulation results attest the lower coverage overlapping 

provided by hexagon and pentagon deployment patters in 

analytical results. The results also verify the higher coverage 

overlapping of square deployment patterns. For example, 𝑁 = 200, the total overlapped coverage area of hexagon and 

pentagon deployments are 1275  and 2575 𝑚2 ; respectively, 

which are lower as compared to that of other deployment 
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patters. For 𝑁 = 1000, the total overlapped coverage area of 

square-16 and square-9 deployments are 71000  and 66000 𝑚2; respectively, which are higher as compared to that 

of other deployment patters.  Simulation results of quality of 

connectivity of deployment patterns is shown in Fig. 12(b) 

which contradict with what is observed in analytical results 

due to the no consideration of interference in the derivation of 

the metric. Specifically, quality of connectivity of hexagon 

deployment pattern is higher due to the lower coverage 

overlapping resulting in lower interference. Quality of 

connectivity is lower for square deployment patterns due to 

the higher interference resulting from higher coverage 

overlapping. Therefore, in realistic simulation scenario, the 

quality of connectivity is considerably affected by interference 

of the network resulting from coverage overlapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.12. Simulation Results: (a) total overlapped coverage area, (b) quality of 

connectivity 

C. Testbed Results 

In this section, sensor deployment patters are evaluated in 

‘INDRIYA’ wireless sensor network testbed of the School of 
Computing, National University of Singapore (NUS) [22]. 

Total 139 number of wireless sensor network nodes which are 

commonly known as motes  𝑁𝑚  are available in the testbed for 

experiment. Most of the motes are in good condition and 

available to researchers for experiment through online and 

offline ways.  There are four types of sensors utilized in these 

motes; namely, WiEye, SBT30, SBT80 and TelosB. The 

different kinds of motes are used for monitoring different 

activities required for precision agriculture use case.  

As an example experiment, the deployment of motes is 

depicted in Fig. 13 where different deployment patterns are 

implemented in different sets of motes of ‘INDRIYA’. 
Different set of motes are selected for implementing the 

considered deployment patterns. The set of nodes are selected 

in such a way that the patterns can be implemented with 

minimum possible error in terms of geometrical model. Some 

of the example of patterns are as follows. For square 

deployment pattern the set of motes that can be selected from 

the 1
st
 set are 13, 11, 21, 8, 12, 19, 1, 16 and 22. Pentagon and 

rhombus deployment patterns can be implemented in 2
nd

 set 

using the motes 70, 72, 77, 71, 84, 76 and 52, 74, 67, 75, 69, 

62, 68, 60, 63; respectively. Hexagonal deployment patterns 

can be implemented in 3rd set with the motes 90, 103, 124, 

137, 139, 104 and 97. The probability of connectivity of most 

of links among the motes is 1.0  and very few links are 

connected with probability in between 0.8 and 1.0, 0.6 and 0.8, 

and less than 0.6.  The connectivity is measured at the default 

maximum transmission power  0𝑑𝐵𝑀 . Some physical 

characteristics of the devices used in the motes are shown in 

Table-3. For measuring coverage area, monitoring of activities 

related to precision agriculture is carried out and the measured 

sensory data of the motes are analyzed. Thirty measurements 

are performed for each different types of deployment patterns. 

Flowchart of the workflow of the testbed implementation is 

provided in Fig. 14. 
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Fig.14. Workflow diagram for Testbed experiment  

Table 3. Physical characteristics of the motes 

Characteristics Value Characteristics Value 

Processor 16 bit and 8 MHz Internal Flash 48 KB 

ADC 12 bit Sensitivity -95dBm 

RAM 10 KB Transceiver 250 Kbps 

RF chip TI-2420 Microcontroller TI-MSP430 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.15. Testbed Results; (a) coverage fraction, (b) effective coverage area 

Testbed results shown in Fig. 15(a) validates the simulation 

and analytical results for coverage fraction metric of 

deployment patterns.  It can be clearly observed that the 

coverage fraction obtained of hexagon and pentagon 

deployment patterns are higher as compared to the rhombus 

and square deployment patterns. This is because of the 
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geometrical shape property of hexagon which results in lower 

coverage overlapping. The lower coverage overlapping 

significantly enhances coverage fraction of hexagon and 

pentagon deployment patterns. The higher effective coverage 

area in hexagonal deployment pattern is noted in testbed 

results shown in Fig. 15 (b) which attest the simulation and 

analytical results of effective coverage area metric. The impact 

of number of motes on effective coverage area is negligible 

and the values are constants. Specifically, net effective 

coverage area noted for hexagon and pentagon deployment 

patterns are above 0.8  which is quite similar to what is 

observed in simulation and analytical results. The effective 

coverage area observed for rhombus and square deployment 

are above 0.4 and 0.6; respectively, which are also similar to 

the noted values in simulation and analytical results. 

 

 

 

 

 

 

Fig.16. Testbed Results; (a) net effective coverage area, (b) net effective 

coverage area ratio 

Testbed results shown in Fig. 16(a) validates the simulation 

and analytical results for net effective coverage area metric of 

deployment patterns. The continuous increment of net 

effective coverage area with the increase in number of motes 

is clearly the same observation what it is noted in simulation 

and analytical results. The size of net effective coverage area 

noted in testbed results is smaller than what it is observed in 

simulation and analytical results due to the lesser number of 

motes available for experiment in the testbed. Specifically, the 

maximum net effective coverage area noted in testbed results 

is less than 120 𝑚2  whereas it is 700 𝑚2 in simulation and 

testbed results. The constant values of net effective coverage 

area ratio metrics of deployment patterns observed in testbed 

results are depicted in Fig 16(b) which strongly validate the 

constant values observed in analytical and simulation results 

for the metric. The values of the metric for hexagon and 

pentagon deployment patters are higher as compared to those 

of other deployment patters. The constant values for hexagon 

and pentagon deployment patterns are also close to each other. 

The higher and closer constant values of the metric for 

hexagon and pentagon deployment is similar to what is 

observed in simulation and analytical results. 

Testbed results in Fig. 17(a) attest the higher coverage 

overlapping in square deployment pattern as compared to the 

hexagon and pentagon deployment patterns which is observed 

in simulation and analytical results as well. Although the size 

of the total overlapped coverage area noted in testbed results is 

smaller than what it is observed in simulation and analytical 

results yet, the increment pattern with the increase of number 

of motes is quite similar to the simulation and analytical 

results. The difference in total overlapped coverage area is due 

to the lesser number of motes available for experiment in 

testbed as compared the number of sensors considered in 

simulation and analytical results. The better quality of 

connectivity in hexagon deployment pattern is observed in 

testbed results depicted in Fig. 17 (b) which confirms the 

simulation and analytical results regarding quality of 

connectivity. This can be attributed to the fact that the lower 

total overlapped coverage area is noted in hexagonal 

deployment pattern resulting in lower interference and better 

quality of connectivity as compared to the other deployment 

patterns. Due to the deployment of motes in precisely 

calculated locations at the three floors of NUS, the quality of 

connectivity is stable in testbed results which can be noticed 

as constant values for deployment patterns. 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig.17. Testbed Results; (a) total overlapped coverage area, (b) quality of 

connectivity 

D. Summary of Observations 

From the derivation, implementation and analysis of 

experimental results, following is the summary of 

observations. The metrics for measurement of quality of 

coverage and connectivity are closely inter-related and have 

considerable impact on each other. The coverage overlapping 

resulting in interference substantially impacts the quality of 

connectivity of deployment patterns. Due to the geometrical 

shape property, lower coverage overlapping is observed in 

case of hexagon deployment pattern. The performance of 

hexagon and pentagon deployment is better as compared to 

rhombus and square deployment in case of most of the 

considered metrics. The larger total overlapped coverage area 

is observed for square deployment patterns. Analytical results 

shows the performance of deployment patterns in ideal 

environment whereas simulation results shows the 

performance of deployment patterns in realistically modelled 

environment. The testbed results shows the performance of 

deployment patterns in real environment. 

V. CONCLUSION AND FUTURE WORK 

In this paper, a Testbed based Multi-metric Quality 

Measurement (T-MQM) of sensor deployment patterns for 

precision agriculture using WSNs is presented. The seven 

metrics are derived and quantified for four sensor deployment 

patterns in precision agriculture to measure the quality of 

coverage and connectivity. The measurement practically 
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evaluates the quality of coverage and connectivity of 

deployment patterns in precision agriculture through testbed 

implementation. The measurements and evaluations through 

analytical and simulation based studies which are validated 

using testbed experiments, are accurate and helpful for 

realistic implementations. The measurement should be useful 

for practitioners in developing performance guaranteed 

applications for precision agriculture whereas it should be 

useful for researchers in developing novel coverage and 

connectivity models for deployment patterns.  In future 

research work, authors will explore three dimensional 

deployment patterns for precision agriculture. The impact of 

external interferers on quality of coverage and connectivity 

and development of hybrid deployment pattern exploiting 

mathematical geometry will also be the quest.  
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