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ABSTRACT

Motivation: Over the last years a number of evidences have been
accumulated about high incidence of tandem repeats in proteins
carrying fundamental biological functions and being related to a
number of human diseases. At the same time, frequently, protein
repeats are strongly degenerated during evolution and, therefore,
cannot be easily identified. To solve this problem, several computer
programs which were based on different algorithms have been
developed. Nevertheless, our tests showed that there is still room for
improvement of methods for accurate and rapid detection of tandem
repeats in proteins.
Results: We developed a new program called T-REKS for ab initio
identification of the tandem repeats. It is based on clustering
of lengths between identical short strings by using a K-means
algorithm. Benchmark of the existing programs and T-REKS on
several sequence datasets is presented. Our program being linked to
the Protein Repeat DataBase opens the way for large-scale analysis
of protein tandem repeats. T-REKS can also be applied to the
nucleotide sequences.
Availability: The algorithm has been implemented in JAVA, the
program is available upon request at http://bioinfo.montp.cnrs.fr/?
r=t-reks. Protein Repeat DataBase generated by using T-REKS is
accessible at http://bioinfo.montp.cnrs.fr/?r=repeatDB.
Contact: julien.jorda@crbm.cnrs.fr; andrey.kajava@crbm.cnrs.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
An increasing number of complete genome sequences are being
generated and deposited into the databases. The next great challenge
is to understand the genome data. A significant portion of the
proteins carrying fundamental functions contain arrays of tandem
repeats (Marcotte et al., 1999). Over the last years a number of
evidences has been accumulated about the high incidence of tandem
repeats in the sequences of virulence factors of pathogenic agents,
toxins and allergens (Kajava et al., 2006). Furthermore, the tandem
repeats frequently occur in amyloidogenic, prion and other disease-
related sequences (Baxa et al., 2006; Nelson and Eisenberg, 2006).
This implies that this class of sequences may have a broader role
in human diseases than was previously recognized. Along this
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line, the discovery of these domains and their structure–function
study promise to be a fertile direction for research leading to the
identification of targets for new medicaments and vaccines.

A systematic bioinformatics analysis of protein repeats in
genomes can provide a global view on these motifs, on their
structures, functions and evolution and, in its turn, may result in
a significant improvement of our understanding of the biological
meanings of the genome sequences. The ‘biological’ tandem
repeats are usually not perfect containing a number of mutations
(substitutions, insertions, deletions) accumulated during evolution
and some of them cannot be easily identified. Over the last
years, several algorithms, software and approaches have been
developed (Andrade et al., 2000; George and Heringa, 2000;
Heger and Holm, 2000; Landau, Schmidt et al., 2001; Kajava
and Steven, 2006; Newman and Cooper, 2007) for identification
of repeats in biological sequences. Programs such as INTREP
(Marcotte et al., 1999), RADAR (Heger and Holm, 2000) and
TRUST (Szklarczyk and Heringa, 2004) are based on sequence
self-alignment (SSA) algorithms. These programs are especially
efficient for detection of long repeats (more than ∼10 residues
long), however, they frequently fail to identify short repeats and
do not distinguish between tandem and interspersed repeats. In
addition, the SSA algorithms with their time complexity of O(n2)
(where n is the length of sequence), are relatively slow, and,
therefore, do not suit well for the large scale analysis. Other type
of programs, such as Tandem Repeats Finder (Benson, 1999),
XSTREAM (Newman and Cooper, 2007) or MREPS (Kolpakov
et al., 2003) rely on short string extension algorithm or as STAR
(Delgrange and Rivals, 2004) and TRED (Sokol et al., 2007)
use improved dynamic programming algorithms. They have time
complexity lower than SSA algorithms and therefore, are more
rapid. Most of these programs are predestined for DNA sequences.
XSTREAM is well adapted for a large-scale search of protein
repeats, however, it fails to identify some tandem repeats. It is worth
also mentioning, approaches that apply sequence profile methods
and HMMs (Gribskov et al., 1987). These approaches are the best
for detection of long imperfect repeats (Kajava et al., 1995; Lupas
et al., 1997). However, they require a priori generated alignments
of putative repeats and, therefore, are not suitable for automated
ab initio large scale analysis.

Thus, despite the existence of a number of methods for
determination of tandem repeats there is still room for their
improvement and for development of an accurate and rapid program
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dedicated for the systematic analysis of the repeats in genomes. In
this work, we describe a new program T-REKS for protein tandem
repeat identification which is based on the analysis of distribution
of short strings within the sequence by using K-means algorithm.
Furthermore, we used output of our program to collect a database
of protein tandem repeats. The content of this database is publicly
accessible via a web-site. Our objective is to make the results of the
systematic bioinformatics analysis available via a regularly updated
web-server, which will be a useful tool for scientists interested
in structure, function, evolution and application in medicine and
technology of proteins with tandem repeats.

2 METHODS
A flowchart of the algorithm is shown on Figure 1.

2.1 Short string probes and K-means clustering
To probe an analyzed sequence for the presence of tandem repeats we use
short strings (SS) no longer than the repeat length (see example in Fig. 2).
For proteins, the size of SS was chosen equal to two because the longer SS
were less efficient for detection of two-residue repeats and some degenerous
repeats. The search with one-residue probe turned to be less selective. Prior to
the application of our algorithm, all homorepeats (tandem repeats of a single
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Fig. 1. Flowchart of the T-REKS program applied to a given sequence.

residue) were excluded from the analyzed sequences and were registered in
our Protein Repeat DataBase for further studies (Fig. 1).

In a tandem repeat region, the most frequently occurred length between
identical SSs should be equal to the repeat length. Therefore, detection of
regions of an analyzed sequence where certain lengths between identical SSs
have anomalously high occurrence may lead to the localization of the tandem
repeats. Tandem repeats in the sequences of biological macromolecules
(proteins and DNA) have two properties that may hamper the application
of this approach. First, the degenerous character of the ‘biological’ repeats
diffuses peaks of the SS length distribution. Second, a given protein or DNA
sequence can have several different tandem repeat regions. In this case the
same type of SS can be involved in different repeats and calculation of a
simple mean of the length occurrences allows to identify only repeats of one
length and leaves the remaining repeats unrecognized. To overcome these
problems, we use a well-known algorithm for unsupervised classification
called K-means algorithm (MacQueen, 1967). In our program, the lengths
between identical neighbouring SSs were used as datapoints of the K-means
algorithm to find potential lengths of the tandem repeats. For example, in
Figure 2 the datapoints are lengths 5, 10 and 11 of a short string EL. This
method partitions all datapoints into K clusters for user-defined K . For each
partition a central datapoint (centroid) may be defined. K initial centroids are
selected from the dataset either randomly, by applying hierarchical clustering
or other techniques. Then euclidian distances are calculated between each
datapoint and the centroids to assign the datapoint to the cluster which has
the nearest centroid.

After this, the positions of the centroids are changed within each of
the clusters and this procedure iteratively repeated until the consistency of
clusters does not change anymore.

Usually, the K starting datapoints are selected randomly. However, it has
been demonstrated that different choice of the initial centroids can lead to
different results. To solve this problem, we implemented an algorithm which
determines the initial centroids based on divisive hierarchical clustering
(Johnson, 1967). This algorithm starts from one single cluster which includes
all datapoints. This cluster is then iteratively subdivided into smaller clusters
based on a rule to maximize the distance between the clusters. This process
stops once the number of clusters becomes equal to user-defined K . The K
centroids of these clusters constitute starting points in subsequent clustering
by the K-means algorithm. Application of this algorithm to protein sequences
required adjustment of several parameters. For example, K can not be
less than the number of different types of tandem repeats in the analyzed
sequence.

On the other hand, time complexity of this algorithm is O(n ·K) and this
favors smaller K . Our tests suggested that K = 10 gives the most accurate
and rapid results for the identification of the protein repeats. The accuracy
of this approach is also a function of the length of the analyzed sequence.
Statistically, the longer is the sequence the higher is the number of occurences
of a given short string. The increase of the occurrences will amplify a
background noise and decrease the quality of detection at the clustering steps.
Our tests of the algorithm with K = 10 shows that this problem appears when
protein length is longer than 1500 residues. In this case, our program splits
the sequences before and concatenates after the analysis.

2.2 Establishment of tandem repeat lengths
The procedure consists of three steps:

(1) The first step is separately applied to each type of SS found in
the analyzed sequence. For example, Figure 2 demonstrates this
procedure for a short string EL. All lengths between neighbouring
ELs (5, 10, 11) are considered as datapoints for K-means algorithm.
Within each cluster generated by this algorithm, we select the most
frequent length and call it a Short string Main Length (SML). If a
cluster has several most frequent lengths that occur the same number
of times, the shortest length is chosen. As a result of this step, K
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Fig. 2. Example of establishment of SMLs for short string EL and K = 2.

different SMLs of EL are obtained. In Figure 2, K = 2 and SML1 = 11;
SML2 = 5.

(2) Not all SMLs may correspond to the tandem repeat lengths, because
a given short string may occur more than one time within a repeat
(Fig. 2). To unmask the real repeat length, we use a procedure of SS
‘weed’. First, we consider only ELs which are separated by lengths
that are equal or close to the SMLs. The threshold of closeness of
the length to the SML (�l) is defined by users as a value which is
proportional to the length. This is to take into account the variability of
the lengths in biological tandem repeats. Second, we scan the analyzed
sequence and do not consider a downstream EL of the neighbouring
SS except for those which length correspond to one chosen SML
(weeded ELs are in grey in Fig. 2). After this, we recalculate lengths
and store them. The scanning is repeated for each of the SMLs and
leads to K new sets of recalculated lengths. If the most frequent
recalculated length differs from the current SML of a given set, it
will be considered as a new SML (SML1 = SML2 = 16 in Fig. 2) and
the weed is applied to the next SML. This operation ends when all
K SMLs are tested. The original SML remains unchanged when it
occurs more frequently than the recalculated lengths or if SMLs and
the recalculation lengths are equal to each other. Steps 1 and 2 are
performed one by one for all types of SSs of the analyzed sequence.

(3) Finally, K-means algorithm is simultaneous applied to all SMLs of all
type of short strings. This operation provides K most frequent SMLs
that can be considered as candidates for the real repeat lengths of the
analysed sequence.

2.3 Contiguity filtering
An array of tandem repeats is defined as at least two adjacent copies having
similar lengths. To take into account the contiguity of the repeats, we select
SSs whose SMLs are equal or close (within user-defined �l) to the most
frequent SML of a given cluster created after the last step of K-means
algorithm. Then, we scan the sequence by considering only these SSs and
by looking for sequential repetitions of approximately equal lengths that we
define as ‘runs’ of SMLs. Regions containing these ‘runs’ may represent
tandem repeats. This procedure is redone one by one for all K clusters
of SMLs. According to the locations and values of SML found in runs,
hypothetical repeats are identified.

2.4 Extension and bridging of runs
Runs with the same SML can be interrupted by a region that is 2 or more
times larger than this SML. To clarify the question, whether this region
together with two flunking runs belongs to one tandem repeat or not we
apply the following procedure. First, we divide the sequence downstream of
the run into strings of length equals to the SMLs identified for the current
cluster. Then each string joins the preceding run one by one in their order of
appearance in the sequence if it contains half or more occurrences of short
strings whose SMLs are present in the current cluster. In a special case of
two-residue repeats, when the repeat length is equal to the SS length, we
consider a string as a part of the run if it has at least one common residue
with the SS. We add strings to the preceding runs until we arrive to the
next run and by doing so we ‘bridge’ two runs with the same SMLs. This
process starts after each run and stops at any string that has unacceptable SS
composition.

2.5 Similarity filtering
The final step of the program is to evaluate the level of sequence similarity
between the putative repeats of each run by using Multiple Sequence
Alignement (MSA) approaches. For this purpose we used a combination of
three MSA programs, a build-in program based on ‘center-star algorithm’,
and two external programs CLUSTALW (Thompson et al., 1994) and
MUSCLE (Edgar, 2004).

Based on the obtained MSA of the repeats constituting the runs, we
deduce a consensus sequence and subsequently use it as a reference for
similarity calculation. Let us consider an alignment made by m repeats
of length l. In this alignment an indel is considered as an additional 21st
type of amino acid residues. We calculate Di that is a Hamming distance
(Hamming, 1950) between the consensus sequence and a repeat Ri with
1≤ i ≤ m. Then, we define a similarity coefficient for the whole alignment
as Psim = (N −∑m

i=1 Di)/N with N = m × l and 0 ≤ Psim ≤ 1. Our program
allows to select the runs which have the repeat similarities higher than a
user-defined Psim threshold (elsewhere noted as P∗sim).

Sometimes, strings located at the extremities of the alignment can diminish
the total level of the alignment similarity. To solve this problem, we apply an
additional trimming to alignments with similarities not exceeding the P∗sim.
The operation eliminates the extreme strings one by one until it passes the
threshold.

If a run meets all the criteria defined above, it will be considered as a
tandem repeat.
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2.6 Sequence databases for tests of T-REKS and the
other programs

During debugging and tests of T-REKS we used two tandem repeat databases.
First, we downloaded from TRIPS website (Katti et al., 2000) a database
of tandem repeats detected by a sliding window technique and empirical
mismatch levels from Swissprot Release of July 1999. The tandem repeats
of TRIPS contain only residue substitutions and not indels. We extracted
from this database all the data except homorepeats that brought the number
of sequences to 890. Second, we generated artificial databanks of 1000
amino acid sequences each of them 1000 residue long. These sequences
contained tandem repeats with a priori known features. For this, we used
a built-in Java linear congruential generator to produce random sequences
from an alphabet of 20 amino acids. Then, we inserted one array of perfect
tandem repeats in each of these random sequences. The inserted tandem
repeats were different between each other having variable repeat lengths
(from 2 to 21), number of copies (from 2 to 20). Then we randomly
mutated the perfect repeats by substitutions of amino acid residues or by
introduction of indels (either insertion or deletion). One original sequence
with a perfect tandem repeat yielded a set of sequences with the similarity
levels between a user defined Psim value and 1. The generated repeats
were then aligned, their similarity level was calculated and if it was over
P∗sim the tandem repeat was removed. Following the described procedure,
we generated nine databanks with different similarity levels (Psim ≥ 0.50;
Psim ≥ 0.55; Psim ≥ 0.60; Psim ≥ 0.65; Psim ≥ 0.70; Psim ≥ 0.75; Psim ≥ 0.80;
Psim ≥ 0.85 and Psim ≥ 0.90) and stored them in Generated Repeat Databanks
(GRD) from GRD50 to GRD90 correspondingly. Each sequence in the
GRDs contains one tandem repeat which is flanked by the randomized
sequences. None of the tested programs (see Section 3.2) found tandem
repeats within the random sequences of the GRDs. Positive hits were always
located within the inserted tandem repeats. Therefore, during the tests,
number of the hits was counted as number of sequences with the identified
repeats.

To control the level of false positive results, we also generated a databank
of 890 random sequences (the same number of sequences and characters
as in TRIPS). The first random protein sequence was obtained by using the
RandSeq tool from Expasy (Gasteiger et al., 2003) with the average amino
acid composition of SwissProt. Then, this random sequence has been shuffled
by the ShuffleSeq tool from EMBOSS (Rice et al., 2000) to obtain the other
random sequences. To draw a line between true and false positive results
we used the following procedure. Frequently, the random sequences also
contain short runs of tandem repeats. We assume that the number of perfect
tandem repeats X found by chance in a random sequence database follows
a binomial distribution X ∼ B(n,p) approximated by a Poisson Distribution
with parameter λ = np where p = (1/20)l∗(m−1), n = 1.5×108 residues (size of
the SwissProt database) and l ×m is the total length of the tandem repeat
region. Based on this approximation, occurrences of tandem repeats with
l×m equal or longer than 14 residues is λ = 0.1 and the probability not
to find such repeats P(X = 0) is 0.896 (Fig. 3). Therefore, we considered
14 residues as the minimal length of the true repeat run with potential
biological meaning. Within T-REKS, homorepeats are treated differently, so
we found it reasonable to fix their minimal length separately. In accordance
with our calculations [λ = 0.005 and P(X = 0) = 0.994], it is equal to 9
residues.

3 RESULTS AND DISCUSSION

3.1 Performance of T-REKS depending on its
parameters and options

T-REKS was tested against the GRDs having different levels of
similarity Psim. Figure 4a shows decrease of the number of the
undetected repeats with the increase of the repeat similarity. During
this test the allowed similarity threshold P∗sim of T-REKS was
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Fig. 3. Distribution of expected number (λ) of tandem repeats with different
l found in a random protein sequence of 1.5 ×108 residues depending on total
length of the repetitive region.

set to 0.7. Another test of T-REKS against the random sequence
databank by varying its P∗sim threshold showed that the number
of false positive results (that are hits of total length more than 14
residues) drastically drops to 0 when P∗sim becomes equal or more
than 0.7 (Fig. 4b). We selected P∗sim ≥0.7 as the default value for
the web version of T-REKS.

The test also revealed that at a given P∗sim value of the program a
MSA mode which uses one by one external programs CLUSTALW
and MUSCLE find the biggest number of tandem repeats.

3.2 T-REKS performance compared with the other
programs

Tests of the other existing programs for identification of protein
repeats, such as TRED, INTREP and XSTREAM demonstrated
that they, similarly to T-REKS (Fig. 4) face difficulties in correct
determination of repeats with the decrease of the repeat similarity
level. At the same time, all four programs passed successfully the
test against the random sequence databank, since no false positives
repeats could be detected.

To benchmark T-REKS and these programs we used databank
of repeats TRIPS and SwissProt (Release of January, 2009) taken
from the repository of NCBI. It is worth mentioning that the
comparison of the programs is complicated by differences in the
tandem repeat definitions. T-REKS and XSTREAM have the closest
definitions. To match the definitions given by these two programs
we set the similarity filtering parameters P∗sim of T-REKS and I of
XSTREAM to 0.7. The minimal total length of tandem repeat has
been set to 14 residues for both T-REKS and XSTREAM. Our tests
show that T-REKS finds more tandem repeats in protein sequences
than other tested programs (Table 1). (Supplemental Data show
examples of the tandem repeats of TRIPS databank that were found
only by T-REKS and not by XSTREAM which is the most rapid
program with similar definition of the repeats). At the same time,
the performance of T-REKS was one of the most rapid. Although
XSTREAM is faster than T-REKS, speed is becoming an uncritical
issue when both programs need only minutes to analyse one genome.
For example, T-REKS needs 17 min to analyse a medium size
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Fig. 4. (a) Number of sequences not detected by programs among the 1000 ones of each GRD. P∗sim = 0.7 for T-REKS and I = 0.7 for XSTREAM. (b)
Number of false positive sequences found in the Random sequence databank by T-REKS depending on its P∗sim treshold.

Table 1. Benchmark of T-REKS, INTREP, TRED and XSTREAM programs
executed on two databanks of protein sequences

TRIPS (890 sequences
with tandem repeats)

SWISSPROT (356 232
sequences)

Sequences
identifieda

Execution
time

Sequences
identifieda

Execution
time

T-REKSb 888 4 min 33 780 4 h 30 min
INTREPc 863 25 min 20 607d 23 h
TREDe 865 4 min 15 274 13 h 25 min
XSTREAMf 872 50 s 15 204 25 min

Benchmark has been performed with a Personal Computer Pentium 4 3.00 GHz and
2 Gb of RAM.
aSometimes, the number of identified tandem repeats exceeds the number of sequences
due to ability of programs to find several tandem repeats in the same sequence.
bThis work, tandem repeats are defined as having the minimal length of 14 residues
(nine residues for homorepeats) and Psim ≥0.70.
cMarcotte et al. (1999) repeats are defined as having P-value <10−3 (default value).
dINTREP results include both tandem and interspersed repeats.
eSokol and Benson (2007) to match with T-REKS, 14 residue minimal length of tandem
repeat region was selected, other parameters were set to their default values.
f Newman and Cooper (2007) to match the definition of tandem repeats with T-REKS
the following parameters were used: I = i = 0.7, minP = 1, minC = 2, mind = 14, sort seed
length = 2.

genome of Drosophila melanogaster (by using a Personal Computer
Pentium 4 3.00 GHz and 2 Gb of RAM), while XSTREAM uses
2 min.

3.3 Implementation
T-REKS has been implemented in Java language and has a built-in
GUI to allow the user to set parameters needed for the identification
of tandem repeats. Although, T-REKS is tuned to explore protein
sequences, the same version of the program can also be used
for nucleotidic sequences or ones based on another alphabet. A
standalone version of the program can be downloaded from our
web page (http://bioinfo.montp.cnrs.fr/?r=t-reks). The program can
also be used through a web interface at the same webpage. The web

version, in addition to the basic features, is adjusted to treat large-
scale protein sequence databanks such as Swissprot, NR or PDB
taken from the NCBI repository.

Several parameters and options of the program can be defined
by users. Among them are: �l—allowed percentage of length
variability (default value, which is fixed in the web version, is equal
to 20% of l. It was chosen based on the analysis of the known repeats
of biological importance.), P∗sim—similarity threshold (default
value is equal to 0.7) and an option to allow/disallow overlaps of
different tandem repeats that can be detected in the same region
of a given sequence. In the case of the overlapping tandem repeat
regions, priority was given to the longer one with the higher Psim. In
the standalone version, it is possible to choose between three MSA
modes:

(1) a built-in mode which uses a ‘center-star’ algorithm,

(2) an external mode that uses two external programs
CLUSTALW and MUSCLE one after another or

(3) a hybrid mode which uses in sequential order the ‘center-star’,
CLUSTALW and MUSCLE programs.

The build-in MSA mode 1 was developed to make the standalone
version of T-REKS more convenient for downloading. The
combination of CLUSTALW and MUCLE yields the best alignment
results and is the only mode available in the web version to favour
accuracy at the expense of rapidity. This MSA mode 2 is applied to
obtain the most reliable results for our protein repeat database called
PRDB (see next section). The hybrid mode 3 represents the most
optimal version in terms of accuracy and rapidity.

3.4 Protein Repeats DataBase (PRDB)
T-REKS output is used to fill our PRDB.Apilot version of PRDB can
be found on our website http://bioinfo.montp.cnrs.fr/?r=repeatDB.
At this moment, the PRDB contains about 1105 entries of tandem
repeats from PDB, 50 789 from Swissprot. The information about
the identified repeats is displayed in a table with characteristics such
as organism, repeat length, number of copies, level of the repeat
similarity, consensus sequence, position in the sequence, subcellular
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Table 2. Comparison of repeats found by our program and Tandem Repeats
Finder in the Human Frataxin gene intron 1

T-REKSa/TRFb

Start End Copy length Copy number

163/– 188/– 12/ – 2/ –
822/822 856/854 7/14 5/2.4
1786/1787 1912/1874 44/44 3/2
2167/– 2184/– 1/– 18/–
2185/2183 2210/2211 3/3 9/9.7
2387/– 2410/– 6/– 3/–

Additional repeats identified by T-REKS are indicated in bold.
aThis work.
bBenson (1999).

localization and complete alignment of the copies. It allows users
to choose repeats based on their organism, the consensus pattern,
amino acid composition, tendency to be unstructured and the other
parameters. We plan to improve, regularly update and maintain this
database.

3.5 Application of T-REKS to the identification of
tandem repeats in DNA sequences

T-REKS can, in principle, be also applied to nucleotide sequences
because its algorithm is not linked to any particular alphabet.
However, depending on the number of the characters in the alphabet,
T-REKS may require optimization of certain parameters. The
probability to find tandem repeats by chance in DNA sequences
is higher than in protein sequences with correspondingly 4- and
20-letter alphabet. For example, comparing random ‘Bernoulli’
DNA and protein sequences of the same size, the expected (mean)
number of repeats of l-residue length, copied m-times in DNA is
(20/4)*l*(m−1) times higher than in proteins. Thus, DNA sequences
have a higher background noise in the distribution of the SS lengths
and this can hamper the tandem repeats detection. To improve
performance of T-REKS on DNA sequences we increase the length
of SS to four residues. This modification reduced the gap between
the expected values of tandem repeats found by chance in proteins
and DNA. In addition, the number of clusters, K , was increased from
10 (for proteins) to 20 (for DNA). Similarly to protein sequences,
T-REKS splits the DNA sequences that are longer than 1500 residues
before and concatenates after the analysis. After these modifications,
T-REKS yields better results on DNAsequences than its version with
protein-specific parameters. For example, our tests of T-REKS on
the Human Frataxin Gene (Friedreich’s ataxia) intron 1 sequence,
showed that it detects not only tandem repeats previously obtained
by Tandem Repeats Finder (TRF) (Benson, 1999) but also some
additional repeats (Table 2). Thus, T-REKS can also be used for
detection of tandem repeats in DNA sequence databases. We are
aware that DNA sequences of 1500 nucleotides may, in principle,
contain more than 20 different lengths of tandem repeats (maximum
number of clusters at K = 20) and that the splitting step may lead
to the failure to detect some repeats. More accurate tests and
optimization of the T-REKS parameters for DNA is a subject of
our further studies.

4 CONCLUSIONS
In this article, we described a new program for ab initio identification
of tandem repeats in protein sequences called T-REKS. It is based on
K-means clustering of putative lengths of tandem repeats. T-REKS
finds more tandem repeats in protein sequences than other tested
programs. At the same time, it demonstrates one of the most rapid
performances. Thus, this approach is well-suited for large scale
analysis of tandem repeats.

T-REKS has been developped in a dual mode: a standalone mode
with a user-friendly graphical interface for local use, and a Web-
interface version. The latter version of the program is connected to
our webserver and is able to store the results in a database of protein
tandem repeats called PRDB. Both versions of T-REKS and the
database PRDB are available to public via our webpage at http://
bioinfo.montp.cnrs.fr/?r=t-reks. We plan to use this database for
systematic large scale analysis of protein tandem repeats in genomes
in order to obtain a global view on the structure, function and
evolution of these motifs. T-REKS can be also used for detection of
tandem repeats in DNA. Its further optimization for DNA sequences
will be a subject of our future studies.
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