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ABSTRACT T-spherical fuzzy set (T-SPFS) is a generalization of several fuzzy concepts such as fuzzy set

(FS), intuitionistic FS, picture FS, Pythagorean FS, and q-rung orthopair FS. T-SPFS is a more powerful

mathematical tool to handle uncertain, inconsistent, and vague information than the above-defined sets.

In this paper, some limitations in the operational laws for SPF numbers (SPFNs) are discussed and some

novel operational laws for SPFNs are proposed. Furthermore, two new aggregation operators for aggregating

SPF information are proposed and are applied to multiple-attribute group decision-making (MAGDM).

To take the advantages of Muirhead mean (MM) operator and power average operator, the SPF power

MM (SPFPMM) operator, weighted SPFPMM operator, SPF power dual MM (SPFPDMM) operator,

weighted SPFPDMM operator are introduced and their anticipated properties are discussed. The main

advantage of these developed aggregation operators is that they take the relationship among fused data and

the interrelationship among aggregated values, thereby getting more information in the process of MAGDM.

Moreover, a novel approach to MAGDM based on the developed aggregation operators is established.

Finally, a numerical example is given to show the effectiveness of the developed approach and comparison

with the existing approaches is also given.

INDEX TERMS T-Spherical fuzzy set, novel operational laws, MAGDM, aggregation operator, power

average operator, MM operator, power Murihead mean operator.

I. INTRODUCTION

There are a large number of multiple attribute decision-

making (MADM) or MAGDM problems in decision making,

and the attributes used are usually ambiguous and can easily

be represented by fuzzy information. Since the initiation of

FS by Zadeh [1], FS has gained a significant concentration

from the researchers all over the world and they studied

its theoretical as well as practical aspects. Several exten-

sions of FS has been developed such as interval-valued FS

(IVFS) [2], which can be explained by the truth-membership

degree (TMD) by some closed interval the unit [0, 1],

intuitionistic FS (IFS) [3], which can be explained by the

The associate editor coordinating the review of this manuscript and
approving it for publication was Oussama Habachi.

TMD and falsity-membership degree (FMD). Clearly IFS can

define fuzziness and uncertainty more utterly than that of

FS. Although, FS and IFS work very well in many circum-

stances but still these have many issues, where we oppose

opinions that contained many kinds of answers, such as yes,

abstain, no and refusal. To deal with such type of situation,

Coung and Kreinovich [4] developed the approach of picture

fuzzy sets (PFSs), as a generalization of FSs and IFSs. PFS

consist of four membership degree namely, positive member-

ship (PM), abstain membership (AM), negative-membership

(NM) and refusal-membership (RM). Certainly, utilizing

PFS to express the uncertain information are more real-

istic and perfect than FS and IFS. After the initiation of

PFS, some authors applied this notion into the picture fuzzy
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clustering (PFC) [5]–[7]. Recently, studies have been origi-

nated onMADMwith PF information [8]. Wei et al. [9], [10]

proposed cross entropy for PFS and proposed operational

laws for PFNs and applied these to deal with MADM prob-

lem. Wang et al. [11] advanced some new operational rules

for PFNs and proposed geometric aggregation operators

based on these operational laws and applied these to MADM

problems. Ashraf et al. [12] proposed some aggregation

operator for PFNs and applied these to MAGDM problem.

Some other generalizations of IFS, which gain much more

attention from the scholars, are PGFS [13]–[15], q-rung

orthopair fuzzy sets (QROFS) [16]. But these two extensions

have same limitations as IFS have. To deal with such sit-

uations, recently, Mahmood et al. [17] developed the con-

cepts of T-spherical fuzzy set (T-SPFS), T-spherical fuzzy

number (T-SPFN) and defined some relations, operational

laws, aggregation operators and discussed there applications

in medical diagnosis and pattern recognition. Some similarity

measures for T-SPFS are defined by Ullah et al. [18] and

discussed its application in pattern recognition. However,

the defined operational laws for SPFNs have some limitations

which will discuss in Section 2.2.

Due to the enhanced complexity in real decision making

problems, we have to examine the following questions, when

modifying the best alternative. (1) In some situations, the val-

ues of the attributes provided by the decision makers may

be too low or too high, have a negative impact on the final

ranking results. The power average (PA) operator initially

developed by Yager [19] is a handy aggregation operator

that permits the evaluated values to mutually supported and

enhanced. Therefore, we may use the PA operator to diminish

such awful impact by designating distinct weights produced

by the support measure. (2) In some practical decisionmaking

the values of attribute are dependent. Therefore, the inter-

relationship among the values of the attributes should be

examined. The Bonferroni mean (BM) operator [20], [21],

Heronian mean (HM) operator [22], Murihead mean (MM)

operator [23] can attain this function. However, some advan-

tages of MM operator over BM and HM are discussed by

Liu and Li [24], Liu and You [25]. Some existing aggrega-

tion operators such as, BM and Maclaurin symmetric mean

(MSM) operator [26] are special cases of MM operator.

Moreover, MM operator consists of the parameter vector,

which enlarged the flexibility in the aggregation process.

Recently, Li et al. [27] developed the concept of powerMuri-

head mean operator under PGF environment and apply them

toMADM. From the existing literature, PA operator andMM

operator was not combined to deal with T-spherical fuzzy

environment.

Therefore, the main aim of this article is to propose some

novel operational laws for T-SPFNs, combine PA operator

with MM operator, and extend the idea to T-spherical fuzzy

environment, and develop some new aggregation operators

such as T-spherical fuzzy power Muirhead mean operator,

weighted T-spherical fuzzy power Muirhead mean opera-

tor, T-spherical fuzzy power dual Muirhead mean opera-

tor, weighted T-spherical fuzzy power dual Muirhead mean

operator and discussed some special cases of the developed

aggregation operator and apply them to MAGDM to achieve

the two requirements discussed above.

To do so, the rest of the article is organized as follows.

In Section 2, some basic definitions, about spherical fuzzy

sets, T- spherical fuzzy sets, Muirhead Mean operator, PA

operator are given. In Section 3 we extend Muirhead mean

operator to T- spherical fuzzy environment. In Section 4,

based on these proposed aggregation operators a novel

method to MAGDM is developed. In Section 5, a numerical

example is illustrated to show the effectiveness and practical-

ity of the developed approach and a comparison with some

existing methods are given.

II. PRELIMINARIES

A. SPHERICAL FUZZY SETS AND THEIR OPERATIONS

Definition 1 [17]: Let ϒ be a universe of discourse set.

A SPFS 2 is defined and mathematically denoted as:

2 = {〈a, 4 (a) , 9 (a) ,Z(a)〉 for all a ∈ ϒ} (1)

where 4 (a), 9 (a), Z(a) ∈ [0, 1] are respectively, represent-

ing the membership degree (MD), abstinence degree (AD)

and non-membership degree (NMD) such that 0 ≤ (4 (a))2+
(9 (a))2+(Z(a))2 ≤ 1, and refusal degree (RD) is expressed

by Ŵ =
√
1 − (4 (a))2 + (9 (a))2 + (Z(a))2. For compu-

tational simplicity, we shall denote a spherical fuzzy num-

ber (SPFN) by the triplet 2 = (4, 9,Z).

The operational laws for SPFS were defined by

Mahmood et al. [17] and are given below:

Definition 2 [17]: Let 21 and 22 be any two SPFSs. Then

(1) 21 ⊆ 22 iff 41 (a) ≤ 42 (a) , 91 (a) ≤
92 (a) ,Z1 (a) ≥ Z2 (a) for all a ∈ ϒ.

(2) 21 = 22 iff 21 ⊆ 22 and 22 ⊆ 21.

(3) 21 ∪ 22 = {〈a,max (41 (a) , 42 (a)) ,min(91(a),

92(a)),min (Z1 (a) ,Z2 (a))〉 for all a ∈ ϒ}.
(4) 21 ∩ 22 = {〈a,min (41 (a) , 42 (a)) ,min(91(a),

92(a)),max (Z1 (a) ,Z2 (a))〉 for all a ∈ ϒ} . For compari-

son of SPFSs 21 and22 Mahmood et al. [17] defined

the score function, accuracy function and comparison rules

which are described as follows:

S̃F(21) = 42
1 (a) − Z2

1 (a) , S̃F ∈ [−1, 1] . (2)

ÃF (21) = 42
1 (a) + 92

1 (a) + Z2
1 (a) ; ÃF ∈ [0, 1] . (3)

Comparison rules for comparing two SPFSs.

i. If S̃F (21) > S̃F (22) , then 21 is greater to 22 and is

denoted by 21 > 22;
ii. If S̃F (21) = S̃F (22) andÃF (21) > ÃF (22) , then

21 is greater to 22 and is denoted by 21 > 22;
iii. If S̃F (21) = S̃F (22) andÃF (21) = ÃF (22) , then

21 is equal to 22 and is denoted by 21 = 22.

B. SHORTCOMINGS IN THE OPERATIONS OF

SPFSs AND T-SPFSs

The defined partial order for SPFSs by Mahmood et al. [17],

has some limitations in some situations while comparing
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two SPFNs. For example let 21 = 〈0.4, 0.2, 0.2〉 and

22 = 〈0.5, 0.4, 0.1〉 be two SPFNs. Then by the partial

order defined by Mahmood et al. [17] 21 ⊆ 22. It means

that the score value of 21 < 22. But when we calculate

the score values of 21 and 22 using Equation (2), we can

have S̃F (21) = 0.12 and S̃F (22) = 0.09. This shows that

21 > 22. But from the inclusion relation we have 21 ⊆ 22.

Hence the defined inclusion relation fails in this situation.

So there is need to improve the inclusion relation defined by

Mahmood et al. [17].

Further, we discuss some limitations in the operations of

SPFNs and T-SPFNs defined by Mahmood et al. [17].

Definition 3 [17]: Let 21 = 〈41, 91,Z1〉 and 22 =
〈42, 92,Z2〉 be any two T-SPFNs m > 0. Then the opera-

tional laws defined by Mahmood et al. [17] are as follows:

(1) 21 ⊗ 22 =
〈
(41 + 91) (42 + 92) − 9192, 9192,

m

√
1 −

(
1 − Zm1

) (
1 − Zm2

)〉
; (4)

(2) 21 ⊕ 22 =
〈
m

√
1 −

(
1 − 4m

1

) (
1 − 4m

2

)
, 9192,

(Z1 + 91) (Z2 + 92) − 9192

〉
; (5)

(3) α21 =
〈
m

√
1−

(
1 − 4m

1

)α
, 9α

1 , (41+91)
α−9α

1

〉
;

(6)

(4) 2α
1 =

〈
(41+91)

α−9α
1 , 9α

1 ,
m

√
1 −

(
1 − Zm1

)α
〉
.

(7)

When m = 2, the above operational laws degenerate into the

operational laws for SPFNs defined by Mahmood et al. [17].

In the above operational rules, there exist some limitations in

the multiplication operation which is discussed below.

Let 21 = 〈1, 0, 0〉 and 22 = 〈0.7, 0.5, 0.5〉 be two

T-SPFNs or SPFNs and m = 2. When we multiply these

two T-SPFNs or SPFNs, then we can get 2 = 〈1.2, 0, 0.5〉
and we add the squares of the three functions of the obtained

SPFN the value is equal to 1.69, and the result violates the

condition for SPFN. Hence 2 is not SPFN. Similarly, for

m = 1, 2, . . . , n the values of the obtained T-SPFNs exceeds

from the previous one. Similar limitations exist in the sum

operation defined in Equation (5). For example, let 21 =
〈0, 0, 1〉 and 22 = 〈0.5, 0.5, 0.7〉 be two T-SPFNs or SPFNs
and m = 2. When we add these two T-SPFNs or SPFNs, then

we can get 2 = 〈0.5, 0, 1.2〉 and we add the squares of the

three functions of the obtained SPFN the value is equal to

1.69, and the result violates the condition for SPFN. Hence

2 is not SPFN. Similarly, for m = 1, 2, . . . , n the values of

the obtained T-SPFNs exceeds from the previous one.

Since SPFSs and T-SPFSs are the generalization of PFSs,

PGFSs, q-ROFSs. Motivated by the operational rules defined

for PGFNs and q-ROFNs, we propose some novel operational

laws for SPFNs and T-SPFNs.

C. NOVEL OPERATIONAL LAWS FOR SPFSs AND T-SPFSs

In this subpart, some novel operational laws for SPFNs and

for T-SPFNs are described:

Definition 4: Let 21 = 〈41, 91,Z1〉 and 22 =
〈42, 92,Z2〉 be any two T-SPFNs and m > 0. Then the

operational laws for T-SPFNs and SPFNs are described as

follows:

(1) 21 ⊕ 22 =
〈(

4m
1 + 4m

2 − 4m
1 4m

2

) 1
m , 9192,Z1Z2

〉
;

(8)

(2) 21 ⊗ 22 =
〈
4142,

(
9m

1 + 9m
2 − 9m

1 9m
2

) 1
m ,

(
Zm1 + Zm2 − Zm1 Z

m
2

) 1
m

〉
; (9)

(3) α21 =
〈(
1 −

(
1 − 4m

1

)α) 1
m , 9α

1 ,Zα
1

〉
; α > 0

(10)

(4) 2α
1 =

〈
4α

1 ,
(
1−

(
1−9m

1

)α) 1
m ,
(
1−

(
1−Zm1

)α) 1
m

〉
;

α > 0 (11)

(5) 2c
1 = 〈Z1, 91, 41〉 (12)

If m = 2, Then, Equations (8-12) becomes the operational

laws for SPFNs.

If we take the above example and use Equations (8) and

Equation (9), then we get 2 = 〈0.25, 0, 0.49〉 and 2 =
〈0.49, 0.25, 0.25〉 respectively and are SPFNs or T-SPFNs.
Theorem 1: Assume that 2 = 〈4, 9,Z〉 , 21 =

〈41, 91,Z1〉 and 22 = 〈42, 92,Z2〉 are three T-SPFNs and
k, k1, k2 > 0, then

(1) 21 ⊕ 22 = 22 ⊕ 21 (13)

(2) 21 ⊗ 22 = 22 ⊗ 21 (14)

(3) k (21 ⊕ 22) = k21 ⊕ k22 (15)

(4) k12 ⊕ k22 = (k1 + k2) 2 (16)

(5) 2k1 ⊗ 2k2 = 2k1+k2 (17)

(6) 2k
1 ⊗ 2k

2 = (21 ⊗ 22)
k (18)

Proof:We prove Equation (13), Equation (15) and Equa-

tion (17). The proof of other Equation is similar to these

Equations.

(1) From Equation (8), we have

21 ⊕ 22 =
〈(

4m
1 + 4m

2 − 4m
1 4m

2

) 1
m , 9192,Z1Z2

〉

=
〈(

4m
2 + 4m

1 − 4m
2 4m

1

) 1
m , 9291,Z2Z1

〉

= 22 ⊕ 21.

(3) From Equation (10), for the left hand side of Equation

(15), we can have

k (21 ⊕ 22)

= k

〈(
4m

1 + 4m
2 − 4m

1 4m
2

) 1
m , 9192,Z1Z2

〉

=
〈(
1−

(
1−

(
4m

1 +4m
2 −4m

1 4m
2

))k) 1
m
, (9192)

k , (Z1Z2)
k

〉
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Furthermore, we have

k21 =
〈(
1 −

(
1 − 4m

1

)k) 1
m

, 9k
1 ,Zk1

〉
,

and

k22

=
〈(
1 −

(
1 − 4m

2

)k) 1
m

, 9k
2 ,Zk2

〉

k21 ⊕ k22

=

〈(((
1 −

(
1 − 4m

1

)k) 1
m

)m
+
((

1 −
(
1 − 4m

2

)k) 1
m

)m

−
((

1 −
(
1 − 4m

1

)k) 1
m

)m ((
1 −

(
1 − 4m

2

)k) 1
m

)m) 1
m

,

(9192)
k , (Z1Z2)

k

〉

=
〈((

1 −
(
1 − 4m

1

)k)+
(
1 −

(
1 − 4m

2

)k)

−
(
1 −

(
1 − 4m

1

)k) (
1 −

(
1 − 4m

2

)k)) 1
m

,

(9192)
k , (Z1Z2)

k
〉

=
〈(
1 −

(
1 −

(
4m

1 + 4m
2 − 4m

1 4m
2

))k) 1
m
,

(9192)
k , (Z1Z2)

k
〉

Thus, we can have, k (21 ⊕ 22) = k21 ⊕ k22.

(5) From Equation (11), we have

2k1 =
〈
4k1 ,

(
1 −

(
1 − 9m

)k1) 1
m

,

(
1 −

(
1 − Zm

)k1) 1
m

〉
,

and

2k2 =
〈
4k2 ,

(
1 −

(
1 − 9m

)k2) 1
m

,

(
1 −

(
1 − Zm

)k2) 1
m

〉
,

Then, from Equation (9), we have the equation can be

derived, as shown at the top of next page

From the right side of Equation (17), we have

2k1+k2 =
〈
4k1+k2 ,

(
1 −

(
1 − 9m

)k1+k2) 1
m
,

(
1 −

(
1 − Zm

)k1+k2) 1
m

〉

=
〈
4k14k2 ,

(
1 −

(
1 − 9m

)k1 (1 − 9m
)k2) 1

m
,

(
1 −

(
1 − Zm

)k1 (1 − Zm
)k2) 1

m

〉
.

Hence we can have, 2k1 ⊗ 2k2 = 2k1+k2 .
Definition 5: Assume that 21 = 〈41, 91,Z1〉 and 22 =

〈42, 92,Z2〉 are two T-SPFNs. Then the normalized Ham-

ming distance between 21 and 22 is defined as follows:

D (21, 22) =
1

3

(∣∣4m
1 − 4m

2

∣∣+
∣∣9m

1 − 9m
2

∣∣+
∣∣Zm1 − Zm2

∣∣)

(19)

D. POWER AVERAGE OPERATOR

The PA operator was first introduced by Yager [19] for classi-

cal number. The dominant edge of PA operator is its capacity

to diminish the inadequate effect of unreasonably high and

low arguments on the inconclusive results.

Definition 6 [19]: Let Rz(z = 1, 2, . . . , a) be a group of

classical numbers. Then the PA operator is represented as

follows:

PA (R1,R2, . . . ,Ra) =
a∑

z=1




(1 + T (Rz))
a∑

x=1

(1 + T (Rx))

Rz


 (20)

where T (Rz) =
a∑

x=1

Supp (Rz,Rx) and Supp (Rz,Rx) are the

support degree for Rz and Rx . The support degree must satisfy

the following axioms:

(1) Supp (Rz,Rx) ∈ [0, 1];

(2) Supp (Rz,Rx) = Supp (Rx ,Rz);

(3) if D (Rz,Rx) < D (Rl,Rm), then Supp (Rz,Rx) >

Supp (Rl,Rm), where D (Rz,Rx) is the distance measure

among Rz and Rx .

E. MUIRHEAD MEAN OPERATOR

The MM operator was first introduced by Murihead [23] for

classical numbers. MM operator has the advantage of consid-

ering the interrelationship among all aggregated arguments.

Definition 7:LetRz(z = 1, 2, . . . , a) be a group of classical

numbers and Q = (q1, q2, . . . , qa) ∈ R̃a be a vector of

parameters. Then, the MM operator is explained as

MMQ (R1,R2, . . . ,Ra) =


 1

a!
∑

θ∈Sa

a∏

z=1

R
qz
θ (z)




1
a∑
z=1

qz

(21)

where, Sa is the group of permutation of (1, 2, . . . , a) and θ (z)

is any permutation of (1, 2, . . . , a).

Now we can give some special cases with respect to the

parameter vector Q of MM operator. Which are shown as

follows:

(1) If Q = (1, 0, 0, . . . , 0), then MM operator degenerate

to the following form:

MM (1,0,...,0) (R1,R2, . . . ,Ra) =
1

a

a∑

z=1

Rz (22)

That is theMMoperator degenerate into arithmetic averaging

operator.

(2) If Q =
(
1
a
, 1
a
, . . . , 1

a

)
, then MM operator degenerate

to the following form:

MM

(
1
a , 1a ,..., 1a

)

(R1,R2, . . . ,Ra) =
1

a

a∏

z=1

Ra (23)

That is the MM operator degenerate into geometric averaging

operator.
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2k1 ⊗ 2k2 =

〈
4k14k1 ,

(((
1 −

(
1 − 9m

)k1) 1
m

)m
+
((

1 −
(
1 − 9m

)k2) 1
m

)m

−
((

1 −
(
1 − 9m

)k1) 1
m

)m ((
1 −

(
1 − 9m

)k2) 1
m

)m)
,

(((
1 −

(
1 − Zm

)k1) 1
m

)m

((
1 −

(
1 − Zm

)k2) 1
m

)m
−
((

1 −
(
1 − Zm

)k1) 1
m

)m ((
1 −

(
1 − Zm

)k2) 1
m

)m)〉

=
〈
4k14k1 ,

((
1 −

(
1 − 9m

)k1)+
(
1 −

(
1 − 9m

)k2)−
(
1 −

(
1 − 9m

)k1) (1 −
(
1 − 9m

)k2)) 1
m

,

((
1 −

(
1 − Zm

)k1)+
(
1 −

(
1 − Zm

)k2)−
(
1 −

(
1 − Zm

)k1) (1 −
(
1 − Zm

)k2)) 1
m

〉

=
〈
4k14k2 ,

(
1 −

(
1 − 9m

)k1 (1 − 9m
)k2) 1

m
,

(
1 −

(
1 − Zm

)k1 (1 − Zm
)k2) 1

m

〉

(3) If Q = (1, 1, 0, . . . , 0), then MM operator degenerate

to the following form:

MM (1,1,0,...,0) (R1,R2, . . . ,Ra)

=




1

a (a+ 1)

a∑

z, x = 1
z 6= x

RzRx




1
2

(24)

That is the MM operator degenerates into BM operator.

(4) If Q =




c︷ ︸︸ ︷
1, 1, . . . , 1,

a−c︷ ︸︸ ︷
0, . . . , 0


, then MM operator

degenerates to the following form:

MM




d︷ ︸︸ ︷
1, 1, . . . , 1,

a−d︷ ︸︸ ︷
0, . . . , 0




(R1,R2, . . . ,Ra)

=




∑
1≤x1<x2<...<xd≤a

d∏
y=1

Rzy

Cd
a




1
d

(25)

That is the MM operator degenerate into MSM operator.

III. POWER MUIRHEAD MEAN OPERATOR FOR T-SPFSs

In this part, we first give the definitions of PMM operator

and propose the concept of PDMMoperator. Then, we extend

both the aggregation operators to SVN environment.

Definition 8 [27]: Let Rz(z = 1, 2, . . . , a) be a group of

classical numbers and Q = (q1, q2, . . . , qa) ∈ R̃a be a vector

of parameters. Then, the PMM operator is defined as

PMMQ (R1,R2, . . . ,Ra)

=




1

a!
∑

θ∈Sa

a∏

z=1



a
(
1 + T

(
Rθ (z)

))

a∑
x=1

(1 + T (Rx))

Rθ (z)




qz



1
a∑
z=1

qz

(26)

where T (Rz) =
a∑

x = 1
x 6= z

Supp (Rz,Rx) and Supp (Rz,Rx) is the

support degree for Rz and Rz, satisfying the above conditions.

Definition 9:LetRz(z = 1, 2, . . . , a) be a group of classical

numbers and Q = (q1, q2, . . . , qa) ∈ R̃a be a vector of

parameters. Then, the PDMM operator is given as

PDMMQ (R1,R2, . . . ,Ra)

=
1
a∑
z=1

qz



∑

θ∈Sa

a∏

z=1

qzR

a(1+T(Rθ(z)))
a∑

x=1
(1+T (Rx ))

θ (z)




1
a!

(27)

where T (Rz) =
a∑

x = 1
x 6= z

Supp (Rz,Rx) and Supp (Rz,Rx) is the

support degree for Rz and Rz, satisfying the above conditions.

A. THE T-SPFNPMM OPERATOR

Definition 10:Let2z(z = 1, 2, . . . , a) be a group of T-SPFNs

and Q = (q1, q2, . . . , qa) ∈ R̃a be a vector of parameters. If

T − SPFPMMQ (21, 22, . . . . , 2a)

=




1

a!
∑

θ∈Sa

a∏

z=1



a
(
1 + T

(
2θ(z)

))

a∑
x=1

(1 + T (2x))

2θ (z)




qz



1
a∑
z=1

qz

(28)

Then, we call SPFPMMQ the T-spherical fuzzy power Muri-

head mean operator, where Sa is the group of all permuta-

tion, θ (z) is any permutation of (1, 2, . . . , a) and T (2x) =
a∑

x = 1
x 6= z

Supp (2z, 2x), Supp (2z, 2x) is the support degree for

2z and 2x , satisfying the following axioms:

(1) Supp (2z, 2x) ∈ [0, 1] ;
(2) Supp (2z, 2x) = Supp (2x , 2z) ;
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(3) If D(2z, 2x) < D(2u, 2v), then Supp(2z, 2x) >

Supp(2u, 2v), where D(2z, 2x) is distance among 2z and

2x .

To write Equation (28) in a simple form, we can specify it

as

Ŵz =
(1 + T (2z))
a∑

x=1

(1 + T (2x))

(29)

For suitability, we can call (Ŵ1, Ŵ2, . . . , Ŵa)
T the power

weight vector (PMV), such that Ŵz ∈ [0, 1] and
A∑

Z=1

Ŵz =

1. From the use of Equation (29), Equation (28) can be

expressed as

T − SPFPMMQ (21, 22, . . . . , 2a)

=


 1

a!
∑

θ∈Sa

a∏

z=1

(
aŴz2θ(z)

)qz



1
a∑
z=1

qz

(30)

Based on the operational rules given in Definition 4 for

T-SPFNs, andDefinition 10, we can have the following result.

Theorem 2: Let 2z(z = 1, 2, . . . , a) be a group of

T-SPFNNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of

parameters. Then, the aggregated value obtained by using

Equation (16) is still a SPFNN and (31), as shown at the top

of the next page

Proof: According to operational laws for T-SPFNs,

we have

aŴz2θ (z) =

〈
m

√
1 −

(
1 − 4m

θ (z)

)aŴz
, 9

maŴz
θ (z) ,Z

maŴz
θ(z)

〉
,

Therefore,

(
aŴz2θ (z)

)qz

=

〈(
m

√
1 −

(
1 − 4m

θ (z)

)aŴz
)qz

,

m

√
1 −

(
1 − 9

maŴz
θ (z)

)qz
,

m

√
1 −

(
1 − Z

maŴz
θ (z)

)qz
〉

,

So,

a∏

z=1

(
aŴz2θ (z)

)qz

=

〈
a∏

z=1

(
m

√
1 −

(
1 − 4m

θ(z)

)aŴz
)qz

,

m

√√√√1 −
a∏

z=1

(
1 − 9

maŴz
θ(z)

)qz
, m

√√√√1 −
a∏

z=1

(
1 − Z

maŴz
θ (z)

)qz
〉

,

and

∑

θ∈Sa

a∏

z=1

(
aŴz2θ(z)

)qz

=

〈
m

√√√√1 −
∏

θ∈Sa

(
a∏

z=1

(
1 −

(
1 − 4m

θ(z)

)aŴz)qz
)

,

∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 − 9

maŴz
θ (z)

)qz

,

∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 − Z

maŴz
θ(z)

)qz


〉
,

Furthermore,

1

a!
∑

θ∈Sa

a∏

z=1

(
aŴz2θ (z)

)qz

=

〈
m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 − 4m

θ(z)

)aŴz)qz
)


1
a!

,


∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 − 9

ma2z

θ(z)

)qz





1
a!

,


∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 − Z

ma2z

θ (z)

)qz





1
a! 〉

Hence, the equation can be derived, as shown at the top of

next page.

This is the required proof of Theorem 2.

In the above equations, we calculate the PWV Ŵ, we first

have to calculate the support degree Supp (2z, 2x). Accord-

ing to the Equation (19), we can get Supp (2z, 2x) utilizing

Supp (2z, 2x) = 1 − D (2z, 2x) (32)

Therefore, we use the equation

T (2z) =
a∑

z = 1
z 6= x

Supp (2z, 2x) (33)

To determine, T (2z) (z = 1, 2 . . . , a). Then according to

Equation (29) we can get the PWV.

Theorem 3 (Idempotency): Let 2z(z = 1, 2, . . . , a) be a

group of T-SPFNs, and 2z = 2 for all z = 1, 2, . . . , a. Then

T − SPFPMMQ (21, 22, . . . ,2a) = 2 (34)

Proof: As 2z = 2 for all z = 1, 2, . . . , a, we have

Supp (2z, 2x) = 1 for all z, x = 1, 2, . . . , a. Therefore,

we can get Ŵz = 1
a
for all z. Moreover, the equation can be

derived, as shown at the top of next page,Which is the require

proof of Theorem 3.

Theorem 4 (Boundedness): Let 2z(z = 1, 2, . . . , a)

be a group of T-SPFNs,
−
2 = min (21, 22, . . . ,2a) =

(
4−, 9+,Z+) and

+
2 = max (21, 22, . . . ,2a) =(

4+, 9−,Z−) . Then
u ≤ T − SPFPMMQ (21, 22, . . . ,2a) ≤ v (35)
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T − SPFPMMQ (21, 22, . . . ,2a) =

〈



m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 − 4m

θ (z)

)aŴz)qz
)


1
a!




1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − 9

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − Z

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

〉
. (31)


 1

a!
∑

θ∈Sa

a∏

z=1

(
aŴz2θ(z)

)qz



1
a∑
z=1

qz

=

〈



m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 − 4m

θ (z)

)aŴz)qz
)


1
a!




1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − 9

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

,
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − Z

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

〉
.

T − SPFPMMQ (21, 22, . . . ,2a)

=

〈



m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 − 4m

θ (z)

)aŴz)qz
)


1
a!




1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − 9

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

,
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − Z

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

〉
.

where, u, as shown at the top of next page, and v, as shown at

the top of next page,

Proof: Since

aŴz2θ (z) =

〈
m

√
1 −

(
1 − 4m

θ (z)

)aŴz
, 9

maŴz
θ (z) ,Z

maŴz
θ(z)

〉

≥

〈
m

√
1 −

(
1 −

m

4
θ(z)

)aŴz
,

+
9

maŴz
θ (z) ,

+
Z
maŴz
θ (z)

〉
,

Therefore,
(
aŴz2θ (z)

)qz , as shown at the top the page 9,

So,
a∏
z=1

(
aŴz2θ(z)

)qz , as shown at the top the page 9, and

∑
θ∈Sa

a∏
z=1

(
aŴz2θ(z)

)qz , as shown at the top the page 9, Further-

more, 1
a!
∑

θ∈Sa

a∏
z=1

(
aŴz2θ (z)

)qz , as shown at the top the page 9,

Hence,

(
1
a!
∑

θ∈Sa

a∏
z=1

(
aŴz2θ (z)

)qz
) 1

a∑
z=1

qz

, as shown at the top

the page 10.

This implies that u ≤ T − SPFPMMQ (21, 22, . . . ,2a) .

In a similar way we can also show that T −
SPFPMMQ (21, 22, . . . ,2a) ≤ v.. So u ≤ T −
SPFPMMQ (21, 22, . . . ,2a) ≤ v.

T-SPFPMM operator does not have the property of

monotonicity.
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T − SPFPMMQ (21, 22, . . . ,2a)

= T − SPFPMMQ (2, 2, . . . , 2)

=

〈



m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − (1 − 4m)a

1
a

)qz
)


1
a!




1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − 9

m
(
a 1
a

))qz) 1
a!



1
a∑
z=1

qz

,
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − Z

m
(
a 1
a

))qz) 1
a!



1
a∑
z=1

qz

〉

=

〈
m

√√√√√√√√


1 −





1 − (1 − (1 − 4m))

a∑
z=1

qz



a!



1
a!



1
a∑
z=1

qz

,

m

√√√√√√√1 −


1 −


1 − (1 − 9m)

a∑
z=1

qz



a! 1
a!



1
a∑
z=1

qz

,
m

√√√√√√√1 −


1 −


1 − (1 − Zm)

a∑
z=1

qz



a! 1
a!



1
a∑
z=1

qz
〉

=
〈
m
√

4m,
m
√

9m,
m
√
Zm
〉
= 〈4, 9,Z〉 = 2.

u =

〈



m

√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 −

−
4

m

θ (z)

)aŴz)qz)



1
a!



1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

+
9

ma2z

θ (z)

)qz) 1
a!



1
a∑
z=1

qz

,
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

−
Z

ma2z

θ(z)

)qz) 1
a!



1
a∑
z=1

qz

〉
,

v =

〈



m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 −

+
4

m

θ(z)

)aŴz)qz)



1
a!




1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

−
9

ma2z

θ (z)

)qz) 1
a!



1
a∑
z=1

qz

,
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

−
Z
ma2z

θ (z)

)qz) 1
a!



1
a∑
z=1

qz

〉
,

(
aŴz2θ (z)

)qz =

〈(
m

√
1 −

(
1 − 4m

θ (z)

)aŴz
)qz

,
m

√
1 −

(
1 − 9

maŴz
θ (z)

)qz
,

m

√
1 −

(
1 − Z

maŴz
θ(z)

)qz
〉

≥

〈
 m

√

1 −
(
1 −

−
4

m

θ(z)

)aŴz


qz

,
m

√
1 −

(
1 −

+
9

maŴz

θ (z)

)qz
,

m

√√√√1 −

(
1 −

+
Z

maŴz

θ(z)

)qz〉
,

22620 VOLUME 7, 2019



P. Liu et al.: T-Spherical Fuzzy Power MM Operator Based on Novel Operational Laws and Their Application in MAGDM

a∏

z=1

(
aŴz2θ(z)

)qz =

〈
a∏

z=1

(
m

√
1 −

(
1 − 4m

θ(z)

)aŴz
)qz

, m

√√√√1 −
a∏

z=1

(
1 − 9

maŴz
θ (z)

)qz
, m

√√√√1 −
a∏

z=1

(
1 − Z

maŴz
θ (z)

)qz
〉

≥

〈
a∏

z=1


 m

√

1 −
(
1 −

−
4

m

θ(z)

)aŴz


qz

, m

√√√√1 −
a∏

z=1

(
1 −

+
9

maŴz

θ (z)

)qz
, m

√√√√1 −
a∏

z=1

(
1 −

−
Z

maŴz

θ (z)

)qz〉
,

∑

θ∈Sa

a∏

z=1

(
aŴz2θ (z)

)qz =

〈
m

√√√√1 −
∏

θ∈Sa

(
a∏

z=1

(
1 −

(
1 − 4m

θ (z)

)aŴz)qz
)

,
∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 − 9

maŴz
θ (z)

)qz

,

∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 − Z

maŴz
θ (z)

)qz


〉

≥

〈
m

√√√√1 −
∏

θ∈Sa

(
a∏

z=1

(
1 −

(
1 −

m

4
θ(z)

)aŴz)qz)
,

∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 −

+
9

maŴz

θ (z)

)qz

,

∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 −

+
Z

maŴz

θ (z)

)qz

〉
,

1

a!
∑

θ∈Sa

a∏

z=1

(
aŴz2θ(z)

)qz =

〈
m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 − 4m

θ(z)

)aŴz)qz
)


1
a!

,


∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 − 9

ma2z

θ (z)

)qz





1
a!

,


∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 − Z

ma2z

θ (z)

)qz





1
a! 〉

≥

〈
m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 −

−
4

m

θ (z)

)aŴz)qz)



1
a!

,


∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 −

+
9

ma2z

θ (z)

)qz





1
a!

,


∏

θ∈Sa


 m

√√√√1 −
a∏

z=1

(
1 −

+
Z

ma2z

θ (z)

)qz




1
a! 〉

,

One of the leading advantage of T-SPFPMM is its capacity

to represent the interrelationship among T-SPFNs. Further-

more, T-SPFPMM operator is more flexible in aggregation

process due to parameter vector. Now we will discuss some

special cases of T-SPFPMM operators by assigning different

values to the parameter vector.

Case 1: If Q = (1, 0, . . . , 0) , then T-SPFPMM operators

degenerate into the following form:

T − SPFPMM (1,0,...,0) (21, 22, . . . . , 2a)

=




a∑

z=1

(1 + T (2z))
a∑

x=1

(1 + T (2x))

2z


 (36)

This is the SPF power averaging operator.

Case 2: IfQ =
(
1
a
, 1
a
, . . . , 1

a

)
, then T-SPFPMMoperators

degenerate into the following form:

T − SPFPMM

(
1
a , 1a ,..., 1a

)

(21, 22, . . . . , 2a)

=
a∏

z=1

2

(1+T(2θ (z)))
a∑

x=1
(1+T (2x ))

z (37)

This is T-SPF power geometric operator.

Case 3: If Q = (1, 1, . . . , 0) , then T-SPFPMM operators

degenerate into the following form (38), as shown at the top

of the next page:

This is the T-SPF power Bonferroni mean operator

(p = q = 1) .
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
 1

a!
∑

θ∈Sa

a∏

z=1

(
aŴz2θ (z)

)qz



1
a∑
z=1

qz

=

〈



m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 − 4m

θ (z)

)aŴz)qz
)


1
a!




1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − 9

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

,
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − Z

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

〉

≥

〈



m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 −

−
4

m

θ(z)

)aŴz)qz)



1
a!




1
a∑
z=1

qz

,
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

+
9

maŴz

θ (z)

)qz) 1
a!



1
a∑
z=1

qz

,

m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

+
Z

maŴz

θ (z)

)qz) 1
a!



1
a∑
z=1

qz
〉

.

T − SPFPMM (1,1,0,...,0) = (21, 22, . . . ,2a) =

〈


1 −




a∏

z, x = 1
z 6= x

(
1 −

(
1 −

(
1 − 4m

z

)Ŵz) (1 −
(
1 − 4m

x

)Ŵx))



1

a2−a



1
2m

,

1 −



1 −




a∏

z, x = 1
z 6= x

(
1 −

(
1 − 9mŴz

z

) (
1 − 9mŴx

x

))




1

a2−a



1
2m

,

1 −



1 −




a∏

z, x = 1
z 6= x

(
1 −

(
1 − ZmŴz

z

) (
1 − ZmŴx

x

))




1

a2−a



1
2m

〉
. (38)

Case 4: If Q =




i︷ ︸︸ ︷
1, 1, . . . , 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0


 , then T-

SPFPMM operators degenerate into the following form (39),

as shown at the top of the next page: This is the T-SPF power

Maclaurin symmetric mean operator.

IV. WEIGHTED T-SPHERICAL FUZZY POWER MURIHEAD

MEAN (WSPFPMM) OPERATOR

The T-SPFPMM operator does not consider the weight

of the aggregated T-SPFNs. In this subpart, we develop

the weighted T-spherical fuzzy power Murihead mean

(WT-SPFPMM) operator, which has the capacity of taking

the weights of T-SPFNs.

Definition 11: Let 2z(z = 1, 2, . . . , a) be a group of

T-SPFNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of

parameters. If

WT − SPFPMMQ (21, 22, . . . . , 2a)

=




1

a!
∑

θ∈Sa

a∏

z=1



aϒϑ(z)Ŵθ (z)

a∑
x=1

ϒxŴx

2θ (z)




qz



1
a∑
z=1

qz

(40)
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T − SPFPMM




i︷ ︸︸ ︷
1, 1, , ., 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0




= (Ŵ1, Ŵ2, . . . , Ŵa)

=

〈
1 −

∏

1≤y1<y2<...<yi≤a

(
1 −

i∏

x=1

(
1 −

(
1 − 4m

zx

)2zx

))
1

Cia




1
mk

,

1 −


1 −

∏

1≤y1<y2<...<yi≤a

(
1 −

i∏

x=1

(
1 − 9

m2zx
zx

))
1

Cia




1
mk

,

1 −


1 −

∏

1≤y1<y2<...<yi≤a

(
1 −

i∏

x=1

(
1 − Z

2zx
zx

))
1

Cia




1
mk 〉

. (39)

Then, we call T − WSPFPMMQ the weighted T-spherical

fuzzy power Murihead mean operator, where ϒ =
(ϒ1, ϒ2, . . . , ϒa)

T is theweight vector of2z (z=1, 2, . . . , a)

such that ϒz ∈ [0, 1] ,
a∑
z=1

ϒz = 1, Sa is the group of all

permutation, θ (z) is any permutation of (1, 2, . . . , a) and

2z is PVW satisfying Ŵz = (1 + T (2z))/
a∑
z=1

(1 + T (2z)),

T(2x) =
a∑

x=1,x 6=z
Supp (2z, 2x), Supp (2z, 2x) is the sup-

port degree for 2z and 2x , satisfying the following axioms:

(1)Supp (2z, 2x) ∈ [0, 1] ;
(2) Supp (2z, 2x) = Supp (2x , 2z) ;
(3) If D(2z, 2x) < D(2u, 2v), then Supp(2z, 2x) >

Supp(2u, 2v), where D(2z, 2x) is distance among 2z and

2x .

From Definition 11, we have the following Theorem 5.

Theorem 4: Let2z(z = 1, 2, . . . , a) be a group of T-SPFNs

and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of parameters.

Then, the aggregated value obtained by using Equation (40)

is still a T-SPFN and (41), as shown at the top of the next

page.

Proof: Proof of Theorem 5 is same as Theorem 2.

A. THE T-SPHERICAL FUZZY POWER DUAL MURIHEAD

MEAN (SPFPDMM) OPERATOR

In this subpart, we develop the T-SPFPDMM operator and

discuss some related properties.

Definition 12: Let 2z(z = 1, 2, . . . , a) be a group of

T-SPFNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of

parameters. If

T − SPFPDMMQ (21, 22, . . . ,2a)

=
1
a∑
z=1

qz



∏

θ∈Sa

a∑

z=1


qz2

a(1+T(2θ(z)))
a∑

x=1
(1+T (2x ))

θ (z)







1
a!

(42)

Then, we call T − SPFPDMMQ the T-spherical fuzzy power

dual Murihead mean operator, where Sa is the group of all

permutation, θ (z) is any permutation of (1, 2, . . . , a) and

T (2x) =
a∑

x=1,x 6=z
Supp (2z, 2x), Supp (2z, 2x) is the sup-

port degree for 2z and 2x , satisfying the following axioms:

(1) Supp (2z, 2x) ∈ [0, 1] ;
(2) Supp (2z, 2x) = Supp (2x , 2z) ;
(3) If D(2z, 2x) < D(2u, 2v), then Supp(2z, 2x) >

Supp(2u, 2v), where D(2z, 2x) is distance among 2z and

2x .

To write Equation (42) in a simple form, we can specify it

as

Ŵz =
(1 + T (2z))
a∑

x=1

(1 + T (2x))

(43)

For suitability, we can call (Ŵ1, Ŵ2, . . . , Ŵa)
T the power

weight vector (PMV), such that Ŵz ∈ [0, 1] and
a∑
z=1

Ŵz =

1. From the use of Equation (43), Equation (42) can be

expressed as

T − SPFPDMMQ (21, 22, . . . ,2a)

=
1
a∑
z=1

qz


∏

θ∈Sa

a∑

z=1

(
qz2

aŴθ (z)

θ (z)

)



1
a!

(44)

Theorem 6: Let2z(z = 1, 2, . . . , a) be a group of T-SPFNs

and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of parameters.

Then, the aggregated value obtained by using Equation (42)

is still a T-SPFN and (45), as shown at the top of the next

page.

Proof: Same as Theorem 1.

Theorem 7 (Idempotency): Let 2z(z = 1, 2, . . . , a) be a

group of T-SPFNs, and 2z = 2 for all z = 1, 2, . . . , a. Then

T − SPFPDMMQ (21, 22, . . . ,2a) = 2. (46)
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WT − SPFPMMQ (21, 22, . . . ,2a)

=

〈



m

√√√√√√√√1 −



∏

θ∈Sa


1 −

a∏

z=1


1 −

(
1 − 4m

θ (z)

)
aŴθ (z)ϒϑ(z)
a∑

x=1
Ŵxϒx




qz






1
a!




1
a∑
z=1

qz

,

m

√√√√√√√√√√
1 −



1 −

∏

θ∈Sa


1 −

a∏

z=1


1 − 9

m
aŴθ (z)ϒϑ(z)
a∑

x=1
Ŵxϒx

θ (z)




qz


1
a!



1
a∑
z=1

qz

,

m

√√√√√√√√√√
1 −



1 −

∏

θ∈Sa


1 −

a∏

z=1


1 − Z

m
aŴθ (z)ϒϑ(z)
a∑

x=1
Ŵxϒx

θ (z)




qz


1
a!



1
a∑
z=1

qz 〉
. (41)

T − SPFPDMMQ (21, 22, . . . ,2a)

=

〈
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 − 4

maŴz
θ (z)

)qz
) 1

a!



1
a∑
z=1

qz

,




m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 − 9m

θ(z)

)aŴz)qz
)


1
a!




1
a∑
z=1

qz

,




m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 − Zmθ (z)

)aŴz)qz
)


1
a!




1
a∑
z=1

qz 〉
(45)

Theorem 8 (Boundedness): Let 2z(z = 1, 2, . . . , a)

be a group of T-SPFNs,
−
2 = min (21, 22, . . . ,2a) =

(
4−, 9+,Z+) and

+
2 = max (21, 22, . . . ,2a) =(

4+, 9−,Z−) . Then

u ≤ SPFPDMMQ (21, 22, . . . ,2a) ≤ v (47)

where u, as shown at the top of next page, and v, as shown at

the top of next page,

Now we will discuss some special cases of T-SPFPDMM

operator with respect to the parameter vector Q.

Case 1: IfQ = (1, 0, . . . , 0) , then T-SPFPDMMoperators

degenerate into the following form:

T − SPFPMM (1,0,...,0) (21, 22, . . . . , 2a)

=




a∏

z=1

2

(1+T(2z))
a∑

x=1
(1+T (2x ))

z


 (48)

This is the T-SPF power geometric averaging operator.

Case 2: If Q =
(
1
a
, 1
a
, . . . . , 1

a

)
, then T-SPFPMM opera-

tors degenerate into the following form:

T − SPFPMM

(
1
a , 1a ,..., 1a

)

(21, 22, . . . . , 2a)

=
a∑

z=1

(1 + T (2z))
a∑

x=1

(1 + T (2x))

2z (49)

This is T-SPF power arithmetic averaging operator.
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u =

〈
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

−
4

maŴz

θ (z)

)qz) 1
a!



1
a∑
z=1

qz

,




m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 −

m

9
θ(z)

)aŴz)qz)



1
a!




1
a∑
z=1

qz

,




m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 −

−
Z
m

θ (z)

)aŴz)qz)



1
a!




1
a∑
z=1

qz 〉
.

v =

〈
m

√√√√√√1 −


1 −

∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

+
4

maŴz

θ (z)

)qz) 1
a!



1
a∑
z=1

qz

,




m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 −

−
9

m

θ (z)

)aŴz)qz)



1
a!




1
a∑
z=1

qz

,




m

√√√√√√1 −


∏

θ∈Sa

(
1 −

a∏

z=1

(
1 −

(
1 −

−
Z
m

θ (z)

)aŴz)qz)



1
a!




1
a∑
z=1

qz 〉
.

T − SPFPDMM (1,1,0,...,0) = (21, 22, . . . ,2a)

=

〈
1 −


1 −




a∏

z,x=1
z 6=x

(
1 −

(
1 − 4mŴz

z

) (
1 − 4mŴx

x

))



1

a2−a



1
2m

,


1 −




a∏

z,x=1
z 6=x

(
1 −

(
1 −

(
1 − 9m

z

)2z
) (

1 −
(
1 − 9m

x

)Ŵx))



1

a2−a



1
2m


1 −




a∏

z,x=1
z6=x

(
1 −

(
1 −

(
1 − Zmz

)Ŵz) (1 −
(
1 − Zmx

)Ŵx))



1

a2−a



1
2m

〉
. (50)

Case 3: If Q = (1, 1, 0, . . . , 0) , then T-SPFPDMM oper-

ators degenerate into the following form (50), as shown at the

top of this page:

This is the T-SFP power geometric Bonferroni mean operator

(p = q = 1) .

Case 4: If Q =




i︷ ︸︸ ︷
1, 1, . . . , 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0


 , then

T-SPFPDMM operators degenerate into the following form

(51), as shown at the top of the next page.

This is the T-SPF power Dual Maclaurin symmetric mean

operator.

B. WEIGHTED T-SPHERICAL FUZZY POWER DUAL

MURIHEAD MEAN (WSPFPDMM) OPERATOR

The T-SPFPDMM operator does not consider the weight of

the aggregated T-SPFNs. In this subpart, we develop the

weighted spherical fuzzy power dualMuriheadmean (WSPF-

PDMM) operator, which has the capacity of taking the

weights of T-SPFNs.

Definition 13: Let 2z(z = 1, 2, . . . , a) be a group of

T-SPFNNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of

parameters. If

WT − SPFPDMMQ (21, 22, . . . ,2a)
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T − SPFPDMM




i︷ ︸︸ ︷
1, 1, , ., 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0




= (21, 22, . . . ,2a)

=

〈

1 −


1 −

∏

1≤y1<y2<...<yi≤a

(
1 −

i∏

x=1

(
1 − 4

mŴzx
zx

))
1

Cia




1
k




1
m

,


1 −

∏

1≤y1<y2<...<yi≤a

(
1 −

i∏

x=1

(
1 −

(
1 − 9m

zx

)Ŵzx )
) 1

Cia




1
mk

,


1 −

∏

1≤y1<y2<...<yi≤a

(
1 −

i∏

x=1

(
1 −

(
1 − Zmzx

)Ŵzx )
) 1

Cia




1
mk 〉

. (51)

=
1
a∑
z=1

qz



∏

θ∈Sa

a∑

z=1


qz2

aϒϑ(z)Ŵθ (z)
a∑

x=1
ϒxŴx

θ (z)







1
a!

(52)

Then, we call WT − SPFPDMMQ the weighted T-spherical

fuzzy power dual Murihead mean operator, where ϒ =
(ϒ1, ϒ2, . . . , ϒa)

T is theweight vector of2z (z=1, 2, . . . , a)

such that ϒz ∈ [0, 1] ,
a∑
z=1

ϒz = 1, Sa is the group of all

permutation, θ (z) is any permutation of (1, 2, . . . , a) and 2z

is PVW satisfying

Ŵz = (1 + T (2z))/

a∑

z=1

(1 + T (2z)),

a∑

z=1

Ŵz = 1,

T (2x) =
a∑

x=1,x 6=z
Supp (2z, 2x),

Supp (2z, 2x) is the support degree for2z and2x , satisfying

the following axioms:

(1) Supp (2z, 2x) ∈ [0, 1] ;
(2) Supp (2z, 2x) = Supp (2x , 2z) ;
(3) If D(2z, 2x) < D(2u, 2v), then Supp(2z, 2x) >

Supp(2u, 2v), where D(2z, 2x) is distance among 2z

and 2x .

From Definition 13, we have the following Theorem 9.

Theorem 8: Let2z(z = 1, 2, . . . , a) be a group of T-SPFNs

and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of parameters.

Then, the aggregated value obtained by using Equation (52)

is still a T-SPFN and (53), as shown at the top of the next

page.

Proof: Proof of Theorem 9 is same as Theorem 2.

V. THE MAGDM METHOD BASED ON WT-SPFPMM AND

WT-SPFPDMM OPERATORS

In this part, an innovative method to MAGDMwith T-SPFNs

is introduced, in which the weights of the expert’s and

attributes are known. Let the set of alternatives and attributes

be respectively, expressed as ℏ = {ℏ1, ℏ2, . . . , ℏa} , -λ =
{ -λ1, -λ2, . . . , -λb} and the set of experts is represented by Z =
{Z1,Z2, . . . ,Zc}. Suppose that the assessment value for the

alternative ℏg given by the expert Zk about the attribute -λh is

expressed by the form 2k
gh =

〈
4k
gh, 9

k
gh,Z

k
gh

〉
. The weight

vector of the attributes { -λ1, -λ2, . . . , -λb} is denoted by ̟ =

(̟1, ̟2, . . . ,̟b)
T such that ̟h ∈ [0, 1] ,

b∑
h=1

̟h = 1.3 =

(31, 32, . . . , 3c)
T represent the weight vector of the expert

such that 3k ∈ [0, 1] ,
c∑

k=1

3k = 1. Then the aim of this

MAGDM problem is to rank the alternatives. To do the fol-

lowing steps are to followed.

Step 1: Standardize the decision matrix. Generally, there

are two types of attributes, one is of cost type and the other is

of benefit type. We need to convert the cost type of attributes

into benefit types of attributes by utilizing the following

formula:

2k
gh =

〈
4k
gh, 9

k
gh,Z

k
gh

〉

=





〈
4k
gh, 9

k
gh,Z

k
gh

〉
for benefit attribute 2h〈

Zkgh, 9
k
gh, 4

k
gh

〉
for cost attribute 2h

(54)

Hence the decision matrix M =
[
2k
gh

]
a×b

can be trans-

formed to matrix N =
[
δkgh

]
a×b

.

Step 2: Determine the supports

Supp
(
δkgh, δ

k
gl

)
(1, 2, . . . , a;

h, l = 1, 2, . . . , b, k = 1, 2, . . . , c)

by

Supp
(
δkgh, δ

k
gl

)
= 1 − D

(
δkgh, δ

k
gl

)
(55)
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WT − PFPDMMQ (21, 22, . . . ,2a)

=

〈
m

√√√√√√√√√√
1 −



1 −

∏

θ∈Sa


1 −

a∏

z=1


1 − 4

m
aŴθ (z)ϒϑ(z)
a∑

x=1
Ŵxϒx

θ(z)




qz


1
a!



1
a∑
z=1

qz

,




m

√√√√√√√√√√
1 −




∏

θ∈Sa



1 −

a∏

z=1



1 −

(
1 − 9m

θ (z)

)
aŴθ (z)ϒϑ(z)
a∑

x=1
Ŵxϒx




qz





1
a!




1
a∑
z=1

qz

,




m

√√√√√√√√√√
1 −




∏

θ∈Sa



1 −

a∏

z=1



1 −

(
1 − Zmθ (z)

)
aŴθ(z)ϒϑ(z)
a∑

x=1
Ŵxϒx




qz





1
a!




1
a∑
z=1

qz

〉
(53)

where D
(
δkgh, δ

k
gl

)
is the distance measure among two

SVNNs δkgh and δkgl defined in Definition (5).

Step 3: Determine T
(
δkgh

)
by

T
(
δkgh

)
=

b∑

l=1
l 6=h

Supp
(
δkgh, δ

k
gl

)
(1, 2, . . . , a;

h, l = 1, 2, . . . , b, k = 1, 2, . . . , c) (56)

Step 4: Determine

8k
gh =

b̟h

(
1 + T

(
δkgh

))

b∑
d=1

̟d

(
1 + T

(
δkgd

)) (g = 1, 2, . . . , a;

h, d = 1, 2, . . . , b, k = 1, 2, . . . , c). (57)

Step 5:Utilize the WT-SPFPMM orWT-SPFPDMM oper-

ators

δkg =
〈
4k
g, 9

k
g ,Z

k
g

〉
= WT − SPFPMMQ

(
δkg1, δ

k
g2, . . . , δ

k
gb

)

(58)

or

= WT − SPFPDMMQ
(
δkg1, δ

k
g2, . . . , δ

k
gb

)
(59)

To calculate the overall T-SPFNs δkg (g = 1, 2, . . . , a;
k = 1, 2, . . . , c).

Step 6: Determine the supports Supp
(
δkg , δ

m
g

)

(g = 1, 2, . . . , a;m, k = 1, 2, . . . , c) by

Supp
(
δkg , δ

m
g

)
= 1 − D

(
δkg , δ

m
g

)
(60)

where, D
(
δkg , δ

m
g

)
is the distance measure among two

T-SPFNs δkg and δmg defined in Definition (5).

Step 7: Determine T
(
δkg

)
by

T
(
δkg

)
=

b∑

m=1
m 6=g

Supp
(
δkg , δ

m
g

)
(g = 1, 2, . . . , a;

h,m, k = 1, 2, . . . , c) (61)

Step 8: Determine

Kk
g =

c3k

(
1 + T

(
δkg

))

c∑
k=1

3c

(
1 + T

(
δkg

)) (g = 1, 2, . . . , a;

h, k = 1, 2, . . . , c). (62)

Step 9: Utilize the WT-SPFPMM or WT-SPPDMM opera-

tors

δg =
〈
4g, 9g,Zg

〉
= WT − SPFPMMQ

(
δ1g, δ

2
g, . . . , δ

c
g

)

(63)

or

= WT − SPFPDMMQ
(
δ1g, δ

2
g, . . . , δ

c
g

)
(64)

Step 10: Using Definition 2, Equation (2), to calculate the

score values of the overall T-SPFNs δg(g = 1, 2, . . . , a).

Step 11: Rank all the alternatives and the select the best

one.

Step 12: End.
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TABLE 1. Air quality data from station Z1.

TABLE 2. Air quality data from station Z2.

TABLE 3. Air quality data from station Z3.

VI. ILLUSTRATIVE EXAMPLE

In this section, a numerical example is given to show the

effectiveness and practicality of the proposed aggregation

operators and decision making approach is initiated. The

following examples are adapted from Ashraf et al. [12].

Example 1: Let {ℏ1, ℏ2, ℏ3, ℏ4} be the set of four

alternatives, respectively, showing the air quality in

Guangzhou city for November 2006, November 2007,

November 2008 and of November 2009. The following

three attributes are taken under consideration, which are

SO2( -λ1),NO2( -λ2) and PM10( -λ3). The weight vector of the

attributes is ̟ = (0.314, 0.355, 0.331)T . Let us assume

that there are three decision makers, that three air qual-

ity monitoring stations represented by {Z1,Z2,Z3} and

the weight vector of these monitoring stations is 3 =
(0.40, 0.20, 0.40)T . The evaluation values of the three

air quality monitoring stations under the three attributes

are provided in the form of T-SPFNs, which are given

in Table 1,2 and 3.

The evaluation steps by utilizing WT-SPFPMM operator

or WTSPFPMM are as follows.

Step 1: Since all the attributes are of the same type, so there

is no need to normalize it.

Step 2: Determine the supports

Supp
(
2k
gh, 2

k
gl

)

(1, 2, 3, 4; h, l = 1, 2, 3, k = 1, 2, 3, h 6= l)

using Equation (55). We shall denote Supp
(
2k
gh, 2

k
gl

)
by

Suppkgh,gl , which are given below, (assume m = 2):

Supp111,12 = Supp121,11 = 0.9540,

Supp111,13 = Supp131,11 = 0.9536,

Supp112,13 = Supp113,12 = 0.9076;
Supp121,22 = Supp122,21 = 0.9401,

Supp121,23 = Supp123,21 = 0.9456,

Supp122,23 = Supp123,22 = 0.91753;
Supp131,32 = Supp132,31 = 0.9411,

Supp131,33 = Supp133,31 = 0.9691,

Supp132,33 = Supp133,32 = 0.9352;
Supp141,42 = Supp142,41 = 0.9764,

Supp141,43 = Supp143,41 = 0.8956,

Supp142,43 = Supp143,42 = 0.8720;
Supp211,12 = Supp221,11 = 0.9628,

Supp211,13 = Supp231,11 = 0.9135,

Supp212,13 = Supp213,12 = 0.9211;
Supp221,22 = Supp222,21 = 0.9844,

Supp221,23 = Supp223,21 = 0.85448,

Supp222,23 = Supp223,22 = 0.8701;
Supp231,32 = Supp232,31 = 0.9134,

Supp231,33 = Supp233,31 = 0.9374,

Supp232,33 = Supp233,32 = 0.9728;
Supp241,42 = Supp242,41 = 0.9764,

Supp241,43 = Supp243,41 = 0.9445,

Supp242,43 = Supp243,42 = 0.9258;
Supp311,12 = Supp321,11 = 0.9831,

Supp311,13 = Supp331,11 = 0.9630,

Supp312,13 = Supp313,12 = 0.9623;
Supp321,22 = Supp322,21 = 0.9311,

Supp321,23 = Supp323,21 = 0.9020,

Supp322,23 = Supp323,22 = 0.8331;
Supp331,32 = Supp332,31 = 0.9341,

Supp331,33 = Supp333,31 = 0.9491,

Supp332,33 = Supp333,32 = 0.9804;
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Supp341,42 = Supp342,41 = 0.9355,

Supp341,43 = Supp343,41 = 0.9153,

Supp342,43 = Supp343,42 = 0.9404.

Step 3: Determine

T
(
2k
gh

)
(g = 1, 2, 3, 4, h = 1, 2, 3, k = 1, 2, 3) ,

using formula (56) for simplicity we shall denote T
(
2k
gh

)
by

T kgh, which is given below:

T 1
11 = 1.9080, T 1

12 = 1.8615, T 1
31 = 1.8611,

T 1
21 = 1.8857, T 1

22 = 1.8576, T 1
23 = 1.8631;

T 1
31 = 1.9103, T 1

32 = 1.8763, T 1
33 = 1.9043,

T 1
41 = 1.8720, T 1

42 = 1.8484, T 1
43 = 1.7676;

T 2
11 = 1.8763, T 2

12 = 1.8839, T 2
31 = 1.8346,

T 2
21 = 1.8389, T 2

22 = 1.8545, T 2
23 = 1.7246;

T 2
31 = 1.8508, T 2

32 = 1.886, T 2
33 = 1.9101,

T 2
41 = 1.9209, T 2

42 = 1.9022, T 2
43 = 1.8703;

T 3
11 = 1.9460, T 3

12 = 1.9454, T 3
31 = 1.9253,

T 3
21 = 1.8331, T 3

22 = 1.7642, T 3
23 = 1.7351;

T 3
31 = 1.8832, T 3

32 = 1.9145, T 3
33 = 1.9295,

T 3
41 = 1.8508, T 3

42 = 1.8759, T 3
43 = 1.8557;

Step 4: Determine 8k
gh by utilizing formula (57)

81
11 = 0.9524, 81

12 = 1.05969, 81
13 = 0.9879,

81
21 = 0.9477, 81

22 = 1.0611, 81
23 = 0.9912,

81
31 = 0.9466, 81

32 = 1.0577, 81
33 = 0.9958,

81
41 = 0.9563, 81

42 = 1.0723, 81
43 = 0.9714;

82
11 = 0.9457, 82

12 = 1.07194, 82
13 = 0.9824,

82
21 = 0.9528, 82

22 = 1.0831, 82
23 = 0.9640,

82
31 = 0.9315, 82

32 = 1.0662, 82
33 = 1.0024,

82
41 = 0.9496, 82

42 = 1.0667, 82
43 = 0.9837;

83
11 = 0.9443, 83

12 = 1.0674, 83
13 = 0.9884,

83
21 = 0.9613, 83

22 = 1.0604, 83
23 = 0.9783,

83
31 = 0.9334, 83

32 = 1.0668, 83
33 = 0.9998,

83
41 = 0.9385, 83

42 = 1.0704, 83
43 = 0.9911.

Step 5: Utilize the WT-SPFPMM operators defined in

Equation (58), we have (assume m = 2). The collective

decision matrix is given in Table 4.

Step 6: Determine the supports

Supp
(
2k
g, 2

m
g

)
(g = 1, 2, . . . , 4;m, k = 1, 2, 3)

using Equation (60), we have

S11 = 0.9405, S12 = 0.9399, S13 = 0.9876,

S21 = 0.9261, S22 = 0.9479, S23 = 0.9565;

S31 = 0.9023, S31 = 0.9597, S31 = 0.8798,

TABLE 4. Collective decision matrix U WT-SPFPMM operator.

S41 = 0.9818, S42 = 0.9758, S43 = 0.9722.

Step 7: Determine the T
(
2k
g

)
(g = 1, 2, 3, 4; k = 1, 2, 3)

using Equation (61), we have

T11 = 1.8804, T12 = 1.9281, T13 = 1.9274,

T21 = 1.8741, T22 = 1.8826, T23 = 1.9044,

T31 = 1.8620, T32 = 1.7821, T33 = 1.8395,

T41 = 1.9576, T42 = 1.9540, T43 = 1.9480.

Step 8: Determine Kk
g utilizing formula (62), we have

K11 = 1.1883, K12 = 0.6040, K13 = 1.2077,

K21 = 1.1943, K22 = 0.5989, K23 = 1.2069;

K31 = 1.2106, K32 = 0.5884, K33 = 1.201,

K41 = 1.2018, K42 = 0.6002, K43 = 1.1980.

Step 9: Utilize the WT-SPFPMM given in Equation (63),

to get the overall T-SPFN. (Assume m = 2), we have

21 = 〈0.2370, 0.6382, 0.5545〉 ,

22 = 〈0.2672, 0.6341, 0.5550〉 ,

23 = 〈0.3569, 0.6401, 0.4819〉 ,

24 = 〈0.3643, 0.6169, 0.4846〉 .

Step 10: Utilizing Equation (2), to get the score values of

the T-SPFNs.

S̃C (21) = −0.2513, S̃C (22) = −0.2366,

S̃C (23) = −0.1049, S̃C (24) = −0.1021.

Step 11: Utilizing the comparison rules defined for T-

SPFNs in Definition (2), and select the best one.

24 > 23 > 22 > 21.

Hence 24 is the best alternative, while 21 is the worst one.

In a similar way, we utilize WT-SPFPDMM operator.

Steps 1-4 are same

Step 5: Utilize the WT-SPFPDMM operators defined in

Equation (59), we have (assume m = 2). The collective

decision matrix is given in Table 5.
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TABLE 5. Collective decision matrix U utilizing WT-SPPDMM operator.

Step 6: Determine the supports

Supp
(
2k
g, 2

m
g

)
(g = 1, 2, . . . , 4;m, k = 1, 2, 3)

using Equation (60), we have

S11 = 0.9428, S12 = 0.9445, S13 = 0.9983,

S21 = 0.8871, S22 = 0.9146, S23 = 0.9542;
S31 = 0.8436, S31 = 0.9540, S31 = 0.8804,

S41 = 0.9184, S42 = 0.9093, S43 = 0.9615.

Step 7: Determine the T
(
2k
g

)
(g = 1, 2, 3, 4; k = 1, 2, 3)

using Equation (61), we have

T11 = 1.8873, T12 = 1.9411, T13 = 1.9428,

T21 = 1.8017, T22 = 1.8412, T23 = 1.8688,

T31 = 1.7976, T32 = 1.724, T33 = 1.8344,

T41 = 1.828, T42 = 1.880, T43 = 1.8709.

Step 8: Determine Kk
g utilizing formula (62), we have

K11 = 1.1865, K12 = 0.6043, K13 = 1.2093,

K21 = 1.1853, K22 = 0.6010, K23 = 1.2137;

K31 = 1.2000, K32 = 0.5842, K33 = 1.2158,

K41 = 1.1883, K42 = 0.6051, K43 = 1.2065.

Step 9:Utilize the WT-SPFPDMM given in Equation (64),

to get the overall T-SPFN. (Assume m = 2), we have

21 = 〈0.3043, 0.4035,0.3084〉 ,

22 = 〈0.4020, 0.3498, 0.3142〉 ,

23 = 〈0.4668,0.3685,0.2133〉 ,

24 = 〈0.4700, 0.3719, 0.2012〉 .

Step 10: Utilizing Equation (2), to get the score values of the

T-SPFNs.

S̃C (21) = −0.00253, S̃C (22) = 0.0629,

S̃C (23) = 0.1724, S̃C (24) = 0.1804.

Step 11: Utilizing the comparison rules defined for

T-SPFNs in Definition (2), and select the best one.

24 > 23 > 22 > 21.

Hence 24 is the best alternative, while 21 is the worst one.

TABLE 6. Effect of the parameter on the decision making results utilizing
WT-SPFPMM.

A. EFFECT OF THE DIFFERENT PARAMETER VALUE Q

In this subpart, different values to the parameter vector

Q utilizing WT-SPFPMM and WT-SPFPDMM operators

are given. The score values and ranking order are shown

in Table 6 and Table 7. From Table 6 and Table 7, we can

see that, when the value of the parameter vector is (1, 0, 0),

then the best alternative is 23, while the worst one remains

the same. In simple words, when we do not consider the inter-

relationship among the input arguments the best alternative is

23. When the value of the parameter vector is (1, 1, 0), then

from Table 6 the best alternative is 23, while in Table 7 the

best alternative is 24. Similarly, for other values the score

values vary.

B. EFFECT OF m ON THE DECISION RESULT UTILIZING

PROPOSE AGGREGATION OPERATOR

In this subpart, we take different values for m and the score

values and ranking order are shown in Table 8 and Table 9.

From Table 8 we see that the sore values are different for

different values of m. The best alternative remains the same

but the worst alternative changed, when the values of m are

odd using WT-SPFPMM operator. From Table 9, we can see

that when the values of m ≤ 4, utilizing WT-SPFPDMM

operator, the ranking order are same as obtained above. values

of m > 4, utilizing WT-SPFPDMM operator, the ranking

order change and the best alternative is 23, while the worst

one remain the same.

C. COMPARISON AND DISCUSSION

To epitomize the usefulness and advantages of the devel-

oped method, a comparative analysis is managed. We uti-

lize some existing methods to solve the same example

and examine the result. In this subsection, we compare

our developed approach with that developed by Wei [10]

based on picture fuzzy weighted averaging (PFWA) oper-

ator, Mahmood et al. [17] based on T-SPFGWA operator,
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TABLE 7. Effect of the parameter on the decision making results DPMMM.

TABLE 8. Score values and ranking result for different values of m using
WT-SPFPMM (For fix Q(1, 1, 1)).

picture fuzzy Bonferroni mean (PFBM) operator extended

from Xu et al. [21]. The ranking score values and ranking

orders obtained by these methods are shown in Table 10.

The methods developed by Wei [10], Mahmood et al. [17]

are based on basic weighted averaging and weighted geomet-

ric operators for PFNs and T-SPFNs. Both methods cannot

consider the interrelationships among PFNs and T-SPFNs.

In addition, both methods cannot diminish the effect of awk-

ward data. Our developed method is based on WT-SPFPMM

operator and WT-SPFPDMM operator, which can consider

the interrelationship among input arguments and also elimi-

nate the effect of awkward data at the same time. Thus our

developed method is more judicious and practical in MADM

and MAGDM problems.

TABLE 9. Score values and ranking result for different values of m using
WT-SPFPDMM (For fix Q(1, 1, 1)).

TABLE 10. Comparison with other aggregation.

The Xu et al. [21] is based on Bonferroni mean, for IFS,

we extend it for picture fuzzy sets, and solve the same

example. The Xu et al. [21] method can consider the inter-

relationship between any two arguments and cannot remove

the influence of the awkward data. The main advantage of

the proposed aggregation operator is that, these aggregation

operators are special cases of it.

VII. CONCLUSION

In this article, some limitations in the operational laws for

SPFNs and T-SPFNs are found out, and some novel opera-

tional laws for SPFNs and T-SPFNs are defined. Then based

on these operational laws, some new aggregation operators

are defined such as SPF power Murihead mean (SPFPMM)

operator, weighted SPFPMM operator, SPF power dual MM
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operator, weighted SPFPDMM operator and discussed its

desired properties. The developed aggregation operator take

full advantage MM operator and PA operator at the same

time. In simple words the developed aggregation operator

can consider the interrelationship among input arguments by

MM operator and eliminate the effect of awkward data by

PA operator at the same time. Furthermore, based on these

aggregation operators, we developed a novel MAGDM with

T-SPF information. Finally, we give a numerical example

to show the effectiveness and advantages of the proposed

aggregation operators.

In future, we shall extend the proposed aggregation opera-

tors to different environment, such as IFS [3], PGFS [13], and

so on.
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