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Abstract

We present a generalization of the two-sample t-test for equality of the means
to the case where the sample values are to be given unequal weights. This is a
natural situation in financial risk modelling where some samples are considered
more reliable than others in predicting a common mean. We describe pooled and
unpooled weighted t-tests, and show with an example of real credit data that using
the standard unweighted t-test can lead to the wrong statistical conclusion.

1 Introduction

A common statistical question arises when two random samples, X1, . . . , Xn and

Y1, . . . , Ym are drawn from two different normal populations, possibly with different

variances, and we wish to know whether or not the means of the two populations are

equal. This is a classical problem known as the Behrens-Fisher problem, reviewed in

section 2 below.

In this paper we address the following more general situation: it may happen that the

sample Xi’s, while independent and having the same mean, are not identically distributed

because they have different variances:

Xi ∼ N(µX , σ2
i ), i = 1, . . . , n

where N(a, b) denotes the normal distribution with mean a and variance b. This may

also be true of the Yj’s (assumed independent of the X’s):

Yj ∼ N(µY , σ′2
j), j = 1, . . . ,m.

We don’t expect to decide whether µX = µY at this level of generality because the

number of unknown parameters exceeds the size of the data. However, in some cases

the context may indicate the individual variances, up to an overall scale factor, as in the

following situation that inspired this study.

1.1 A Credit Risk Model

One way to model credit risk for bond portfolios is to use a multiple factor risk model

as described in Grinold and Kahn (2000), chapter 3, in which the correlations among

individual bond returns are assumed to be explained by a relatively small set of common

factors.
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A standard choice for the factors is simply the set of the various combinations of

sector and rating, e.g. AA Financial. We would proceed as follows.

At the end of each month, the AA Financial bonds are priced and an option adjusted

spread (OAS) is computed for each bond. The OAS measures the additional yield the

bond is paying to compensate investors for the risk of default.

The sample measurement for each bond is the change in the value of this OAS from

that of the previous month; this change is called the spread return of the bond.

Suppose there are n AA Financial bonds, and let Xi denote the spread return, in

a given month, of the ith bond. Our modelling assumption is that spread returns of

different AA Financial bonds are correlated only through linear exposure to the AA

Financial factor return, which is to be computed as an average OAS across all the AA

Financial bonds.

Since the actual spread returns vary from bond to bond, we suppose that the returns

are sampled from normal distributions with mean µ, and we then wish to estimate µ

from the sample data.

For various reasons, we expect some bonds to be more reliable than others in predict-

ing the common average spread return. For example, a heavily traded benchmark bond

A will have a price quote that a more reliable representative of real market sentiment

than will a seldom traded low-cap bond B catering only to a small part of the market.

If B is not trading or trading very little, its quoted price may be fictitious or vulnerable

to idiosyncratic fluctuations, so the spread of bond B will be less representative than

that of A as a proxy for the whole sector and rating.

We therefore assume in this paper that we will want to give some bonds greater

weight than others in computing the average spread return. This is equivalent to the

hypothesis that the distributional variance of the bond’s spread return depends on the

bond.

Suppose the mean OAS is to be computed according to the weighted average

X̄ =
n∑

i=1

wiXi,

where the wi are known positive numbers with Σwi = 1. We assume the Xi are indepen-

dent normal with a common mean. As described in Lemma 1, this is the best estimator

of the mean if and only if the variance of the ith spread return is proportional to 1/wi:

Xi ∼ N(µ, α/wi),

where α is any positive constant.
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In this situation, the specified weights will come from our financial views about which

bonds should play the most important roles in determining the estimated sector-rating

mean spread return. The constant α is probably unknown.

Now suppose we have a second collection of AA Financial bonds, but issued in

a different country and denominated in a different currency. An important question

is whether the mean spread return of the first group is equal to that of the second

(Breger et. al., 2003). A positive answer would indicate the existence of global credit

risk factors while a negative answer would indicate that different markets are driven

by different credit risk factors. Because the bonds are drawn from distributions with

different variances, the standard t-test methods don’t apply. The purpose of this paper

is to generalize the two-sample t-test method to this situation.

In the remainder of this section, we summarize the main results. In section 2 we

recall for comparison the classical situation, and in section 3 we describe the weighted

t-statistics. At the end of this section we illustrate their use with some credit spread

data. The second example shows that using a t-test that ignores the variable weights

can lead to an erroneous failure to reject the null hypothesis.

1.2 Main Results

For i = 1, . . . , n, and j = 1, . . . ,m, let wi and w′
j be known positive numbers (weights)

with
∑

wi = 1 =
∑

w′
j. Let Xi, Yj (our sample values) be independent normal random

variables, with

Xi ∼ N(µX , σ2
i ), Yj ∼ N(µY , σ′2

j).

The question is to examine the hypothesis test

H0 : µX = µY vs. H1 : µX 6= µY .

For this task it is helpful first to recognize the best (in the sense of UMVUE – see the

next section) estimators of µX and µY . This is a straightforward generalization of the

standard fact for i.i.d. normal variables, which for convenience we state as a Lemma.

Lemma 1 The weighted means

X̄ =
n∑

i=1

wiXi, Ȳ =
m∑

j=1

w′
jYj (1)
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are the best (UMVUE) estimators of µX and µY , respectively, if and only if there exist

positive constants αX and αY such that for i = 1, . . . , n and j = 1, . . . ,m,

σ2
i =

αX

wi

and σ′2
j =

αY

w′
j

. (2)

Hence, specifying the weights that define the weighted means is equivalent to stipu-

lating the relative variances σi/σ1 and σ′
j/σ

′
1. If we are given the weights wi, then the

variances are determined from (2) up to an overall scaling constant. Conversely if the

variances are given, the weights are determined from (2) and the constraint that the

weights sum to one:

wi =
(1/σ2

i )

Σj(1/σ2
j )

.

We note that these weights are equivalent to the “credibility weights” familiar to

actuaries (see Powers, 2005 for references).

In this paper we take the view that the weights are going to be specified exogenously,

and so the question of estimating the variances boils down to estimating the constants

αX and αY .

Depending on how much is known about the scaling constants αX and αY , there are

three different test statistics to use.

Case I (the Normal test): The values αX and αY are known, i.e. all the variances

are known. We may use the test statistic

W =
X̄ − Ȳ√
αX + αY

,

which is standard Normal by Lemma 2 in section 3.1.

Case II (Pooled two-sample test: the Weighted t-statistic): The ratio αX/αY

is known. Then we may use the test statistic

Tp =
X̄ − Ȳ√

SX/αX+SY /αY

n+m−2

√
αX + αY

, (3)

where

SX =
∑

wi(Xi − X̄)2 and SY =
∑

w′
j(Yj − Ȳ )2. (4)

Case III (Unpooled two-sample test): This is the most likely case to be faced

by the practitioner: the ratio αX/αY is unknown. Then we may use the test statistic

Tu =
X̄ − Ȳ√
α̂X + α̂Y

, (5)
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where

α̂X =
SX

n− 1
and α̂Y =

SY

n− 1
. (6)

In practice, sometimes a Normal test is used even when the variances are completely

unknown. For moderately large sample sizes, the t-distribution is close to Normal, so

this practice will only cause trouble in the (not uncommon) case of small samples.

In Case III, as in the classical case, the statistic (5) does not follow any t distribution

exactly, but may be approximated by one, as discussed in Section 3.4, via a generalization

of the Welch-Satterthwaite approximation (described below).

Theorem 1 Let T (d) denote the Student’s t random variable with d degrees of freedom.

(a) Tp ∼ T (n + m− 2).

(b) Tu may be approximated by a t-distributed T (d) with

d =
(α̂X + α̂Y )2

α̂2
X

(n−1)
+

α̂2
Y

(m−1)

.

As an alternative, a simpler and more conservative choice is

d = min(m− 1, n− 1).

(c) Tu, along with T (d), tends in law to standard normal as n, m →∞.

Theorem 1 means that in either case, a t distribution may be used to reject the null

hypothesis, just as in the unweighted case. See Appendix for all proofs.

2 Review: The classical case

In this section, for the convenience of the reader, we review some well-known methods

for two-sample tests for equality of means.

2.1 Uniformly Minimum Variance Unbiased Estimators

Suppose that θ is our parameter to estimate and θ̂ is an estimator. If E(θ̂) = θ, we call

θ̂ an unbiased estimator (UE) of θ.

When we have more than one unbiased estimator, we prefer one with smaller variance;

hence we seek the minimum variance unbiased estimator (MVUE). One difficulty is that

the MVUE may depend not just on the sample values but also on θ itself. If it does not,
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then it is called the uniformly minimum variance estimator (UMVUE). If the UMVUE

exists, it is unique. There are many ways to find the UMVUE, for example, via the

Rao-Cramer rule or using exponential family properties. The reader can consult Hogg

and Craig (1995) or Lehmann (1983) for detailed discussion of the UMVUE.

2.2 Two-Sample t-tests

Suppose we have a sequence of independent samples from a normal distribution with

mean µX and variance σ2
X . Denote the sample values by X1, X2, . . . , Xn, so Xi ∼

N(µX , σ2
X).

The UMVUE of the mean µ is the sample mean

X̄ =
1

n

n∑
i=1

Xi.

If Y1, Y2, . . . , Ym is another group of independent samples with Yi ∼ N(µY , σ2
Y ),we

could ask whether or not µX = µY . We take the null hypothesis to be the statement

that this equality is true. In other word, we are interested in the following hypothesis

test:

H0 : µX = µY vs. H1 : µX 6= µY .

Given our sample data, we cannot determine the truth or falsity of the null hypothe-

sis, but we can determine the likelihood of the realized sample values assuming the null

hypothesis. To accomplish this, we look for a test statistic T where we can determine the

probability, given H0, that |T | is greater than or equal to the magnitude of the realized

value. Typically, if this probability (the “p-value”) is below 5% or 1%, we reject H0 in

favor of H1.

There are three cases. First, if the variances σX and σY are known, we can use the

normal test with

W =
X̄ − Ȳ√
αX + αY

.

More commonly we do not know the variances, but we may know their ratio (e.g.

they may be equal). Then we can use the pooled two-sample t-statistic (Moore and

McCabe, 1999)

T =
X̄ − Ȳ√

(n−1)σ̂2
X+(m−1)ασ̂2

Y

n+m−2
( 1

n
+ 1

m
)

(7)
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as a test statistic, where

σ̂2
X =

1

n− 1

n∑
i=1

(Xi − X̄)2

is the sample variance of X, and similarly for Y . The test statistic T has a (Student’s)

t-distribution with n + m− 2 degrees of freedom.

The third case is when we have no information on σX , σY . This is the case of

the well-known Behrens-Fisher problem (see, e.g. Duong and Shorrock, 1996; Scheffe,

1970). The most popular of many approaches to this problem is the Welch-Satterthwaite

approximation.

In the Welch-Satterthwaite method, The test statistic is given by

T =
X̄ − Ȳ√
ˆσX

2

n
+

ˆσY
2

m

(8)

In this case, (8) does not follow a t-distribution exactly, but may be approximated

by a formula of Satterthwaite (1946) for the optimal number of degrees of freedom. It

is common to use the more conservative choice d.f.= min(n− 1, m− 1) for convenience.

3 The Weighted t-tests

3.1 Set-Up

We formalize our statistical set-up as follows.

Standing assumptions:

Let αX and αY be fixed positive numbers. For i = 1, . . . , n, and j = 1, . . . ,m, let wi

and w′
j be positive numbers and Xi, Yj independent random variables such that

•
∑n

i=1 wi = 1 and
∑m

j=1 w′
j = 1, and

• for each i, j, Xi ∼ N(µ, αX/wi) and Yj ∼ N(µ, αY /w′
j).

Notation:

• X̄ =
∑

wiXi and Ȳ =
∑

w′
jYj

• SX =
∑

wi(Xi − X̄)2 and SY =
∑

w′
j(Yj − Ȳ )2

Lemma 2 With notation and assumptions as above,
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1. X̄ ∼ N(µ, αX) and Ȳ ∼ N(µ, αY ).

2. X̄, Ȳ , SX , and SY are mutually independent.

3. SX/αX ∼ χ2(n− 1) and SY /αY ∼ χ2(m− 1), where χ2(k) denotes the chi-squared

distribution with k degrees of freedom.

4.

α̂X =
1

n− 1

n∑
i=1

wi(Xi−X̄)2 =
1

n− 1
SX , α̂Y =

1

m− 1

m∑
i=1

wi(Yj−Ȳ )2 =
1

m− 1
SY

(9)

are the UMVUEs of the α’s.

3.2 When αX and αY are known

In the easiest case, both αX and αY are known. Then we can use

W =
X̄ − Ȳ√
αX + αY

as our test statistic. From Lemma 1, X̄ ∼ N(µ, αX), Ȳ ∼ N(µ, αY ) and they are

independent. Therefore X̄ − Ȳ ∼ N(0, αX + αY ) under H0 and W follows the standard

Normal distribution under H0.

3.3 When the α ratio is known

The question of interest is how to proceed with incomplete information about the vari-

ances of the sample distributions. Suppose we know only the ratio of α’s.

The natural generalization of the classical pooled t-test is

Tp =
X̄ − Ȳ√

SX/αX+SY /αY

n+m−2

√
αX + αY

. (10)

Setting wi = 1/n, w′
i = 1/m, and αY = (n/m)αX reduces this expression to equation

(7).

Note that Tp is independent of the scale of (αX , αY ), so depends only on the ratio

αX/αY . Theorem 1 says that it is a true t-statistic with n + m− 2 degrees of freedom.

If we believe a priori that αX

αY
= r, we may wish to confirm this with a separate test.

In this case, the following F test is useful. Our hypotheses are
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H0 :
αX

αY

= r v.s. H1 :
αX

αY

6= r.

Here is the test.

Theorem 2 F = α̂X

rα̂Y
follows the F -distribution F (n− 1, m− 1) under H0.

If the F -test is not significant, we may safely assume the ratio is r, and use the

statistic Tp in equation (10). Otherwise we should use the following test.

3.4 When the α ratio is unknown

This is a generalization of the Behrens-Fisher problem. The natural extension of Sat-

terthwaite’s approximate t-distribution method is to use

Tu =
X̄ − Ȳ√
α̂X + α̂Y

as our test statistic.

Observe that

Tu =
X̄ − Ȳ√

α̂X+α̂Y

αX+αY

√
αX + αY

=
W√

α̂X+α̂Y

αX+αY

, (11)

where W follows N(0, 1).

If Tu were to follow a t-distribution, then α̂X+α̂Y

αX+αY
would be of the form V

r
, where V

follows a chi-square distribution with r degree of freedom.

By Lemma 2, we see that

α̂X + α̂Y

αX + αY

v
αX

αX + αY

1

n− 1
χ2(n− 1) +

αY

αX + αY

1

m− 1
χ2(m− 1),

which is clearly not of the form V
r

unless n = m. However, following Satterthwaite

we can use an approximating chi-square distribution in which the number of degrees of

freedom is chosen to provide good agreement with the exact distribution in the sense

that the variances agree.

Observe that the variance of α̂X+α̂Y

αX+αY
is given by

V ar(
α̂X + α̂Y

αX + αY

) = 2(
αX

αX + αY

1

n− 1
)2(n− 1) + 2(

αY

αX + αY

1

m− 1
)2(m− 1)

=
2

(αX + αY )2
{ αX

2

n− 1
+

αY
2

m− 1
}.
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Since Var(V
r
) = 2

r
, we conclude that the d.f. of the approximating chi-squared V

should have

d.f. =
(αX + αY )2

αX
2

n−1
+ αY

2

m−1

.

Since we don’t know the true values of the α’s, following Satterthwaite we replace

them with α̂’s. Hence our approximation of Tu is the t-distribution with number of

degrees of freedom equal to

(α̂X + α̂Y )2

α̂X
2

n−1
+ α̂Y

2

m−1

. (12)

Note that this quantity is not necessarily an integer. In a classical two sample t-test

case, it’s common to use the more convenient expression d.f.=min(n− 1, m− 1) instead.

If n > m,

(αX + αY )2

αX
2

n−1
+ αY

2

m−1

>
(αX + αY )2

αX
2+αY

2

m−1

=
(αX + αY )2

αX
2 + αY

2
(m− 1) > m− 1.

Since the the tail of the t-distribution gets fatter tail as the number of degrees of

freedom gets smaller, if we use m − 1 instead of (12), we have more conservative test.

This conclusion is consistent with classical theory.

3.5 Sample Results

3.5.1 cross-sectional data

To illustrate the use of these statistics, we test the difference of weighted means of one-

month spread returns for a basket of Euro-denominated (X) and Sterling-denominated

(Y ) Financial AA bonds for each of three months: September, October, and November

2000. Each bond’s weight is taken to be it’s duration. The null hypothesis is that the

weighted mean spread return of the Euro bonds is equal to that of the Sterling bonds.

Table 1 summarizes the results. The columns are: the values of the weighted mean

spread returns in basis points, with the sample size in parentheses, and the sample

(weighted) standard deviations; the value of the unpooled test statistic Tu; the p-value

determined by using an approximate t-distribution with degrees of freedom computed

via (12) and indicated in parentheses; the pooled test statistic Tp computed using a

hypothesized alpha ratio shown in parentheses; and the p-value for the t-statistic Tp.

It is clear that by either the pooled or the unpooled method we may easily reject the

null hypothesis in September and October, but not in November. (Examining longer
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history shows low correlation between between the two monthly means; see Breger et.

al. (2003)). The full data are presented graphically in Figure 1.

Month X̄ (#) SX Ȳ (#) SY Tu p-value (df) Tp (αX

αY
) p-value

Sep 00 -4.31 (51) 34.4 7.23 (36) 201 -4.59 < 10−4 (43) -4.50 (1
9
) < 10−4

Oct 00 -0.86 (53) 1.2 7.02 (31) 21.1 -9.25 < 10−10 (40) -9.32 ( 1
30

) < 10−10

Nov 00 2.09 (58) 2.6 1.30 (33) 42.8 0.67 0.508 (34) 0.66 ( 1
30

) 0.507

Table 1: Sample Bond Return Data Summarized

3.5.2 Time series data

The following example shows that use of the weighted t-statistic will sometimes prevent

an erroneous conclusion caused by inappropriately applying the usual unweighted test.

We use a ten year time series (1991 – 2001) of monthly factor return data for US bonds,

comparing a basket of BB rated Energy bonds with BB rated Transportation bonds.

The factor return for a given month is an average of the spread returns over that month

for all the bonds in the basket. This time, weighting is exponential with a half-life of

24 months, where the most recent data is weighted highest. We compare our weighted,

unpooled test using Tu with a naive classical test using (8), where the weights are

ignored. In this case applying the weighted test allows us to reject the null hypothesis

(95% confidence), while the naive test fails to reject the null hypothesis. The data are

presented in Figure 2, and summarized in Tables 2 and 3, where X denotes Energy BB,

and Y denotes Transportation BB. The number of degrees of freedom used is the best

approximate value as given by (12).

factor no. months weighted time average weighted variance

Energy BB 138 -5.83 SX = 1053

Transportation BB 125 13.94 SY = 9628

Table 2: Time series average factor return for two US bond baskets

4 Conclusions

We have provided test statistics for testing the equality of means when the intrasam-

ple variances are not necessarily all equal, which corresponds to the case of unequally

weighted means.
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Figure 1: Spread return data for a selection of Financial AA bonds

It can happen, as illustrated above, that incorrectly using the classical equal-weighted

test statistic leads to the wrong statistical conclusion. Hence investigators should take

care to use the weighted statistics Tp or Tu described here.
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test method approx. d.f. p-value conclusion

weighted Tu = 2.13 148 0.0348 reject H0

unweighted T = 1.52 151 0.1287 accept H0

Table 3: Weighted vs Unweighted t-test results

Typically practitioners will use the unpooled statistic Tu, which in practice means

using a t-approximation with appropriately chosen number of degrees of freedom as

described in Theorem 1.

Our sample results suggest it may not matter too much whether Tp or Tu is being

used. This is because of the general fact that when the number of degrees of freedom is

not too small (greater than 10 or so, say), the distributions of Tu and the t-distributions

are all very close to Standard Normal.

To illustrate the quality of the approximation, we use the data from September 2000

in the cross-sectional sample described above to compare the density functions of Tu and

T (d) in Figure 3. Here the distribution of Tu computed from (11) by simulation, and

the distribution of T (d) is plotted for d = 43, the Satterthwaite approximate number

of degrees of freedom. Notice that the two density functions are almost identical to the

naked eye (and very close to standard normal). The sample size for the simulation was

106 samples.

We can also compare the 95th percentile values of the two distributions, which we

computed as 1.678 for Tu and 1.681 for T (43). These are more than sufficiently close for

purposes of statistical inference.

In practice, for at least moderate sample sizes, practitioners may find it convenient

to simply use Tu as if it followed a t-distribution with d.f. equal to min(m − 1, n − 1).

This is no more difficult computationally than using the classical statistic (8).

We remark that Satterthwaite’s approximate t-distribution method for the unpooled

case is not the only way to handle the situation. There is a large literature on the

Behrens-Fisher problem, see e.g. Scheffe (1970), Wang (1971), Yuen (1974).
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Figure 2: Monthly factor returns for two US bond factors 1991–2001. The horizontal

axes measure months into the past, starting with the latest returns.

14



−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

de
ns

ity

T_u
Satterthwaite T(43)

Figure 3: Comparison of densities for Tu and T (43) using Sept 2000 data
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A Appendix: Proofs

A.1 Proof of Theorem 1

(a) Let

W =
X̄ − Ȳ√
αX + αY

and

V = SX/αX + SY /αY .

By Lemma 2, W and V are independent, W is a standard normal random variable, and

V ∼ χ2(n + m− 2). Hence

T =
W√

V/(n + m− 2)

has the Student’s t distribution with n + m− 2 degrees of freedom.

(b) This part is proved in the discussion of Section 3.4.

(c) From equation 11 and the following discussion, we see that Tu is distributed as

the ratio of a standard normal to an independent random variable√
α̂X + α̂Y

αX + αY

whose variance tends to zero as n,m → ∞. Hence the distribution of Tu tends to that

of a standard normal, just as does a t-distributed random variable.

A.2 Proof of Lemma 1

We consider only the µX and αX cases; the proof is the same for µY and αY .

First, suppose X̄ =
∑

wiXi is the UMVUE. Write Xi = µ + εi, where εi has mean 0

and variance σ2
i . Since, by assumption, the variables εi are independent, the variance of

X̄ is given by

E[(X̄ − µ)2] = E[(
∑

wiei)
2]

=
∑

E[w2
i ε

2
i ]

=
∑

w2
i σ

2
i .

It is straightforward to check via Lagrange multipliers that this quantity is minimized,

under the constraint
∑

wi = 1, when

wi =
1/σ2

i∑n
j=1(1/σ

2
j )

.
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Equivalently,

σ2
i = α/wi (13)

for all i and some positive constant α.

Conversely, suppose, for some positive α, that (13) holds for each i.

The joint p.d.f. of Xi’s is given by

f(x1, ..., xn) =
n∏

i=1

√
wi

2παX

exp{−1

2

wi

αX

(xi − µ)2}

= exp{1

2

n∑
i=1

log(
wi

2παX

)− 1

2

n∑
i=1

wi

αX

(xi − µ)2}

= exp{− 1

2αX

n∑
i=1

wix
2
i +

µ

2αX

n∑
i=1

wixi −
µ2

2αX

+
1

2

n∑
i=1

log(
wi

2παX

)}.

This defines an Exponential family.(See Section 1.4 of Lehmann, 1983 for details.)

By Theorems 5.2 and 5.6 in Section 1.5 of Lehman (1983), (
∑n

i=1 wix
2
i ,

∑n
i=1 wixi)

become complete sufficient statistics for (µX , αX).

Notice that

E(X̄) = E(
n∑

i=1

wiXi) =
n∑

i=1

wiµ = µ,

which implies X̄ is an unbiased estimator of µX . Since X̄ is a function of complete

sufficient statistics, by Theorem 1.2 (ii) in Section 2.1 of Lehmann (1983), X̄ is a UMVUE

of µX .

A.3 Proof of Lemma 2

(1) X̄ ∼ N(µ, αX) and Ȳ ∼ N(µ, αY ).

This is a straightforward computation using the fact that a sum of independent

normals is normal and variances add.

(2) X̄, Ȳ , SX , and SY are mutually independent.

Clearly X̄ and Ȳ are independent, and similarly for SX and SY . We show that X̄

is independent of SX , and the same argument works for Y . The argument is a direct

generalization of the proof for the equal weighted case found, e.g., in Hogg and Craig

(1995, ch. 4), which we include here for the reader’s convenience.

Write α = αX and denote the variance of Xi by σi
2 ( = α/wi). The joint pdf of

X1, X2, . . . , Xn is

17



f(x1, . . . , xn) =
1

(
∏n

i=1

√
2πσi)

exp[−
n∑

i=1

(xi − µ)2

2σ2
i

]

Our strategy is to change variables in such a way that the independence of X̄ and

SX will be evident.Letting x̄ =
∑

wixi, straightforward computation verifies that

α =
1∑n

i=1 1/σ2
i

and

n∑
i=1

(xi − µ)2

σ2
i

=
n∑

i=1

(xi − x̄)2

σ2
i

+ (x̄− µ)/α (14)

Hence

f(x1, . . . , xn) =
1

(
∏n

i=1

√
2πσi)

exp[−
n∑

i=1

(xi − x̄)2

2σ2
i

− (x̄− µ)2

2α
] (15)

Consider the linear transformation (u1, . . . , un) = L(x1, . . . , xn) defined byu1 =

x̄, u2 = x2 − x̄, . . . , un = xn − x̄, with inverse transformation

x1 = u1 − (
σ1

2

σ2
2

)u2 − (
σ2

1

σ2
3

)u3 − · · · − (
σ2

1

σ2
n

)un,

x2 = u1 + u2,

...

xn = u1 + un

Likewise define new random variables U1 = X̄, U2 = X2 − X̄, . . . , Un = Xn − X̄.If J

denotes the Jacobian of L, then the joint pdf of U1, . . . , Un is

J

(
∏n

i=1

√
2πσi)

exp[−
(−(

σ2
1

σ2
2
)u2 − (

σ2
1

σ2
3
)u3 − · · · − (

σ2
1

σ2
n
)un)2

2σ2
1

−
n∑

i=2

u2
i

2σ2
i

− (u1 − µ)2

2α
]

This now factors as a product of the pdf of U1 and the joint pdf of U2, . . . , Un. Hence

U1 = X̄is independent of U2, . . . , Un, and hence also independent of

α[(−(
σ2

1

σ2
2

)U2 − (
σ2

1

σ2
3

)U3 − · · · − (
σ2

1

σ2
n

)Un)2 +
n∑

i=2

U2
i

σ2
i

]
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= α

n∑
i=1

(Xi − X̄)2

σ2
i

= SX

(3) SX/αX ∼ χ2(n − 1) and SY /αY ∼ χ2(m − 1), where χ2(k) denotes the chi-squared

distribution with k degrees of freedom.

The proofs for X and Y are similar. Let

A =
n∑
1

(Xi − µX)2

σ2
i

,

B =
n∑
1

(Xi − X̄)2

σ2
i

,

and

C =
(X̄ − µX)2

αX

.

Then by equation (14), A = B + C. Since Xi ∼ N(µX , σ2
i ), A ∼ χ2(n). Similarly

C ∼ χ2(1). This implies that B = SX/αX ∼ χ2(n − 1) provided that B and C are

independent, which follows from the proof of part (i).

(4) As in the proof of Lemma 1,

E(
1

n− 1
SX) = αX

shows that 1
n−1

SX is an unbiased estimator of αX . In addition,

1

n− 1
SX =

1

n− 1
{

n∑
i=1

wix
2
i − (

n∑
i=1

wixi)
2}

is a function of complete sufficient statistics, which implies 1
n−1

SX is a UMVUE of αX .

A.4 Proof of Theorem 2

Recall that the F (r1, r2) distribution is defined by F =
V1
r1
V2
r2

, where V1 v χ2(r1) and

V2 v χ2(r2)

are independent. By Lemma 2 and (9), we see that

α̂X

αX

=
1

n− 1

SX

αX

v
χ2(n− 1)

n− 1
,
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and

α̂Y

αY

=
1

m− 1

SY

αY

v
χ2(m− 1)

m− 1
.

Since SX and SY are independent, we have

α̂X

αX

α̂Y

αY

v F (n− 1, m− 1). (16)

If H0 is true, then αX = rαY and (16) becomes

F =
α̂X

rα̂Y

,

which follows F (n− 1, m− 1) only when H0 is true.
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