
J
H
E
P
0
2
(
2
0
1
9
)
1
7
6

Published for SISSA by Springer

Received: January 12, 2019

Accepted: February 15, 2019

Published: February 26, 2019

T [SU(N)] duality webs: mirror symmetry, spectral

duality and gauge/CFT correspondences

Anton Nedelina Sara Pasquettia Yegor Zenkevicha,b
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1 Introduction

Over the last decade, following Nekrasov’s [1] and Pestun’s [2] seminal works, the ap-

plication of the localization technique to SUSY gauge theories on various manifolds, has

produced an unprecedented amount of exact results (for a comprehensive review see [3]

and references therein).

Localized partition functions (or vevs of BPS observables) depend on various parame-

ters such as fugacities for the global symmetries and data specifying the background. For

certain backgrounds partition functions do not depend on the gauge coupling and can be

used to test Seiberg-like dualities and mirror symmetry in various dimensions.

The exact results obtained via localization have also led to the discovery of AGT-like

correspondences which provide dictionaries to map objects in the gauge theories (partition

functions, Wilson loops vevs etc. . . ) to objects in different systems such as 2d CFTs or

TQFTs [4, 5].

It is interesting to study what happens when we take different limits of the parameters

appearing in the partition functions triggering some sort of RG flows. For example, focusing

on the global symmetry parameters we can explicitly check how certain dualities can be

obtained by taking massive deformations of other dualities. We can also consider limits

involving the data specifying the background. For manifolds of the form Md−1×S1 we can

explore what happens when the circle shrinks and in particular gather hints on the fate of

dualities in d dimensions: do they reduce to dualities in d− 1 dimensions? In recent years

these questions have been reconsidered systematically in a series of papers [6–9].

Another interesting procedure, the so-called Higgsing, involves turning on the vev of

some operator in a certain UV theory T ′ which triggers an RG flow to an IR theory T

that contains a codimension two defect, the prototypical case being a surface operator in a

4d theory. At the level of localized partition functions this procedure can be implemented

very efficiently and involves tuning the gauge and flavor parameters of the mother theory

T to specific values. At these values T typically develops some poles and picking up

their residues we obtain the partition function of the theory T with a codimension two

defect [10–16].

In this note we provide a concrete example where all these ideas and techniques come

together. We discuss 3d mirror symmetry, spectral duality and gauge/CFT correspon-

dences and explore how they behave under dimensional reduction and how they arise

via Higgsing.

Our starting point is the 3d T [SU(N)] quiver theory introduced in [17] as boundary

conditions for the 4d N = 4 supersymmetric Yang-Mills theories. T [G] has a global sym-

metry group G × GL acting respectively on the Higgs and Coulomb branch. The T [G]

has the remarkable property of being invariant (or self-mirror) under 3d mirror symmetry

which acts by exchanging the Higgs and the Coulomb branches of the theory.

In this work we will consider a closely related quiver theory, the FT [SU(N)] theory,

which contains an additional set of gauge singlet fields. The FT [SU(N)] theory is also

self-dual under a duality which we call 3d spectral duality since it descends from 5d spec-

tral duality.

– 2 –
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Figure 1. Duality web I represents the relation between 3d FT [SU(N)] quiver gauge theories

and DF representations of the N + 2-point AN−1 q-Toda conformal blocks with N degenerate

primaries. 3d mirror symmetry of the gauge theories upstairs corresponds to the spectral duality

of the CFTs downstairs.

In particular we discuss three webs of dualities:

• In Duality web I, we relate the 3d spectral pair FT [SU(N)] ↔ F̂ T [SU(N)] to a pair

of spectral dual q-CFT blocks via gauge/CFT correspondence.

• In Duality web II, we view the 3d spectral dual pair as the result of Higgsing a pair of

5d spectral dual theories and the CY three-folds which geometrically engineer them.

• In Duality web III, we reduce the 3d spectral dual pair to 2d and study the corre-

sponding limit of the q-CFT blocks.

Duality web I. Duality web I is shown in figure 1. In the top left corner we

have BD2×S1

FT [SU(N)], the D2×S1 partition function, or holomorphic block,1 of the FT [SU(N)]

theory. For this theory we turn real mass deformations for all the flavors and topological

symmetries, so that this theory has N ! isolated vacua. As we will see the FT [SU(N)]

theory is self-dual under the action of the spectral duality and correspondingly in the top

right corner we find the partition function B̂D2×S1

FT [SU(N)] of the dual theory. This edge of the

web is a genuine duality between two theories flowing to the same IR SCFT. However, here

we are only looking at the map of the mass deformed D2 × S1 partition functions which

can be regarded as a refinement of the map between the effective twisted super-potential

evaluated on the Bethe vacua [20, 21] of the two theories [22]. A thorough discussion of

this duality will be provided in [23].

In section 2 we discuss in detail the nontrivial map of the T [SU(N)] and FT [SU(N)]

holomorphic blocks under mirror symmetry and spectral duality using various approaches

including direct residue computations, the relation of the holomorphic blocks to the inte-

grable Ruijsenaars-Schneider (RS) system as in [24] and, in section 3, using the relation

between holomorphic blocks, 5d gauge theories and refined topological strings.

1The background is actually twisted with twisting parameter q, i.e. D2 is fibered over S1 so that it gets

rotated by ln q every time one turns around S1. The notation D2 ×q S
1 would be more proper, however we

omit the subscript q for the sake of brevity. The name holomorphic block is due to the fact that D2 ×q S
1

partition functions can be used to build partition functions on compact spaces, such as S3 or S2×S1 [18, 19].
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Figure 2. Duality web II incorporates duality web I (face 1 of the cube) in a more general context

of 3d-5d-CFT triality.

The vertical edges of the web in figure 1 represent correspondences between gauge

theories and conformal blocks akin to the AGT correspondence [4, 25, 26]. One can ob-

serve that the holomorphic block integrals BD2×S1
of 3d quiver theories can be directly

identified with the Dotsenko-Fateev (DF) integral representation of the conformal blocks

in q-deformed Toda theory. This correspondence is part of the so called triality proposed

in [27, 28] and generalized in [29–32].

In the particular case of the FT [SU(N)] theory we find that the holomorphic block

BD2×S1

FT [SU(N)] can be mapped to the conformal block qDF
AN−1

N+2 involving N fully-degenerate

and two generic primaries, and a particular choice of screening charges in the q-deformed

AN−1 Toda theory. The dual holomorphic block B̂D2×S1

FT [SU(N)] is also mapped to a qDF

integral block ˆqDF
AN−1

N+2 which is related to qDF
AN−1

N+2 by a “degenerate” version of spec-

tral duality. An exact meaning of this statement should become clear at the end of the

discussion of the Duality web II.

The details of the correspondence between holomorphic blocks of the FT [SU(N)] the-

ory and q-Toda integral blocks as well as spectral duality are presented in the section 2.

Duality web II. Duality web I in figure 1 can actually be understood as a consequence of

another web of dualities involving 5d N = 1 quiver theories and correlators of generic (non-

degenerate) q-deformed Toda vertex operators. More precisely, we consider the duality web

II shown in figure 2 where duality web I corresponds to the bottom face (face 1) of the cube.

In the top left corner we have the 5d N = 1 linear quiver gauge theory with (N − 1) U(N)

gauge nodes and N (anti-)fundamental matter hypermultiplets on each end of the quiver.

This theory is self-dual under 5d spectral duality which relates U(N)M−1 to U(M)N−1

linear quiver theories compactified on a circle.

– 4 –
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This is a duality between two low energy descriptions of the same strongly interacting

UV SCFT which can be conveniently understood using brane setup [33]. The details of the

maps of the parameters of the two theories are nontrivial and have been recently discussed

in [34] and [35]. This duality has been studied also in the context of integrability in [36–40].

The term spectral for this duality comes from this interpretation.

We will be focusing on the R
4 × S1 instanton partition function which can be realised

using geometric engineering as the refined topological string partition function Ztop as-

sociated to the square toric diagram depicted in figure 7(a). Then one can immediately

understand invariance of the square quiver theory under spectral duality as the fiber-base

duality corresponding to the reflection along the diagonal of the diagram.

The instanton or topological string partition functions are actually based on U(N)

quivers, so if we are interested in the SU(N) case, we should strip off the U(1) contribution.

This procedure is discussed for example in [35]. However, for the purpose of this paper,

where we discuss instanton partition functions, we can keep the U(1) parts and work with

the duality relating U(N)M−1 to U(M)N−1 theories.

In the other two vertices of face 2 we have an (N+2)-point correlator in the q-deformed

AN−1 Toda theory and its spectral dual.2

The q-Toda correlators also enjoy the spectral duality relating (K+2)-point correlators

in AN−1 q-Toda to (N + 2)-point correlators in AK−1 q-Toda theory [40, 41] which is

the avatar of the 5d spectral duality relating U(N)M−1 to U(M)N−1 5d quivers. The

identification between 5d instanton partition functions and q-Toda correlators is the 5d

uplift of the AGT correspondence [42, 43]. More precisely, the AGT map corresponds to

the diagonal edges (shown in blue in figure 2), while the map along the edges of face 2 are

from the triality approach [27, 28].

The vertical arrows going down from the 5d web (face 2) to the 3d web (face 1) indicate

a tuning procedure where the parameters are fixed to specific discrete values. On the gauge

theory side (face 3) this tuning corresponds to the so called Higgsing procedure [10–16].

By tuning the 5d Coulomb branch parameters one can degenerate the 5d partition function

into the partition function of a coupled 5d–3d system describing co-dimension two defect

coupled to the remaining 5d bulk theory. We consider particular tuning of the parameters

so that the square 5d quiver is Higgsed completely, i.e. it reduces to the 3d FT [SU(N)]

theory coupled to some free 5d hypers.3 We demonstrate this in section 3. Repeating the

Higgsing procedure on the spectral dual side we land on the 3d spectral dual FT [SU(N)]

theory. We then see that 3d (self)-duality for FT [SU(N)] follows via Higgsing from the 5d

spectral duality for the square quiver.

On the q-Toda side (face 6) the tuning procedure corresponds to the tuning of the

momenta of the vertex operators to special values (corresponding to fully degenerate vertex

operators) and to a given assignment of screening charges (corresponding to conditions on

2In the conformal block 〈V1 · · ·VN+2〉qAN−1 the primaries V1 and VN+2 have generic momenta while all

the others have momenta proportional to the same fundamental weight and correspond to simple punctures

in the AGT language.
3The T [SU(N)] vortex partition function has also been related to a ramified surface defect in the 5d

N = 2∗ theory in [24].
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Figure 3. Duality web III. Figure 1 is the top face (face 1) of the cube. The arrows going downstairs

correspond to q → 1 limits. Notice that the two theories related by the spectral duality tend to

different theories under q → 1. This asymmetry appears because one needs to choose the scaling

of the parameters with q and the spectral duality map relates two different choices.

the internal momenta, or Coulomb branch parameters). In this way the q-Toda AN−1

correlator with N semi-degenerate and two full primary operators reduces to the q-DF

representation of the conformal block.

This explains our previous statement that the integral blocks qDF
AN−1

N+2 and ˆqDF
AN−1

N+2

are related by a degenerate version of spectral duality.

Duality web III. Finally, starting from duality web I in figure 1 we can obtain another

interesting duality web by taking a suitable limit q → 1 as shown in figure 3, where the

duality web I corresponds to face 1 of the cube. Let’s consider face 3 in figure 3. Here

we are performing the reduction of a 3d spectral pair of theories on D2 × S1 from 3d to

2d by considering the q → 1 limit, which corresponds to shrinking the S1 radius. Taking

this limit is subtle, as recently discussed in [9] (and before in [44]), since there exist in fact

several meaningful limits. Concretely, one can consider the situation when some of the 3d

real mass parameters are scaled to infinity when going from 3d to 2d so that m3dR = m2d

remains finite as R → 0.

Starting from BD2×S1

FT [SU(N)] we take the so called Higgs limits which reduces it to the

N = (2, 2) gauged linear sigma-model (GLSM) BD2

FT [SU(N)]. In the Higgs limit the real

mass scaled to infinity is the FI parameter, while the matter remains light, hence the

name. This limit generally reduces a 3d gauge theory to a 2d gauge theory. However, here

we want to lift also the Higgs branch and we turn on all the mass deformations so that the

2d gauge theory is massive and has N ! isolated vacua.

Since spectral duality, similarly to mirror symmetry, swaps Higgs and Coulomb branch

parameters, on the dual side the limit has a very different effect. The dual block B̂D2×S1

FT [SU(N)]

in the q → 1 limit (which is now a Coulomb limit) reduces to the partition function of a

– 6 –
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theory of twisted chiral multiplets with twisted Landau-Ginzburg superpotential on D2.

The horizontal link in face 2 of the cube in figure 3 is, therefore, a duality of Hori-Vafa

type [45] for mass deformed theories.

In general claiming that a duality for mass deformed theories implies a duality for

massless theories is dangerous. In particular, in this context the subtleties of inferring a

genuine IR 2d duality from a duality for 2d mass deformed theories obtained from the

reduction of pairs of dual theories have been discussed in [8, 9]. Here we are not interested

in removing the mass deformations since, as we are about to see, the holomorphic blocks

for the mass deformed theories can be directly mapped to CFT conformal blocks.

Indeed if we look at face 4 of the duality web III in figure 3, we see that we are

taking several different q → 1 limits of the q-Toda conformal blocks in DF representation.

Similarly to the gauge theory side there are several possible ways to take the limit. The

limit when we scale the momenta of the vertex operators and keep the insertion points fixed

is natural from the CFT point of view and reduces q-Toda conformal blocks to conformal

blocks of the undeformed Toda CFT. This is exactly the limit we take when we reduce the

spectral dual block qD̂F
AN−1

N+2 down to the undeformed conformal block D̂F
AN−1

N+2 in 2d Toda

theory. Therefore, we have just discovered that the 2d FT [SU(N)] GLSM holomorphic

block BD2

FT [SU(N)] is mapped to a 2d CFT conformal block D̂F
AN−1

N+2 (red diagonal on the

face 4). In other terms we have derived the familiar gauge/CFT correspondence between

S2 partition functions and degenerate CFT correlators discussed in [46–48] as a limit of

our 3d spectral duality web.

Finally to complete the picture we study what is the effect of the q → 1 limit on

the qDF
AN−1

N+2 conformal block. This is a less familiar limit which reduces the qDF
AN−1

N+2

to a block in the channel with the vertex operators of certain bosonized algebra, which

we denote by d-WN , where d stands for difference in the same way as q in q-WN is for

quantum. The algebra4 d-WN is a particular limit of the q-WN algebra when q → 1.

We briefly describe the algebra, correlators and screening charges, leaving a more detailed

investigation for the future [50].

Let us also mention that the 3d → 2d reduction we consider in Duality web III can be

viewed as the Higgsed version of the reduction of the 5d N = 1 gauge theory to 4d N = 2

theory. In this approach the 2d GLSM is the Higgsed version of the 4d theory, i.e. the

theory residing on the BPS vortices in its Higgs phase.

The Duality web III is discussed in section 4.

2 Duality web I: 3d FT [SU(N)] and q-Toda blocks

In this section we study Duality web I shown in figure 1. We first introduce the 3d holo-

morphic block BD2×S1

T [SU(N)](~µ, ~τ , q, t), then we show the effect of adding the flipping fields and

discuss the mirror and spectral duals of the theory. Finally we introduce the DF represen-

tation for the q-Toda blocks and determine the gauge/q-DF dual to BD2×S1

FT [SU(N)](~µ, ~τ , q, t).

4We thank A. Torrielli for pointing out a paper [49] in which a similar algebra has appeared earlier in a

very different context.
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Figure 4. 3d T [SU(4)] gauge theory. τa are the FI parameters. The masses of the chirals are

indicated over or under the corresponding arrows.

2.1 3d blocks for T [SU(N)], flipping fields, mirror and spectral duals

2.1.1 3d holomorphic blocks

We begin by introducing our main character BD2×S1

T [SU(N)](~µ, ~τ , q, t), the D2 × S1 partition

function, or 3d holomorphic block integral for the T [SU(N)] theory. The N = 4 T [SU(N)]

theory is a quiver theory with gauge group U(1)×U(2)×· · ·×U(N−1), with bifundamental

hypers connecting the U(Na) and U(Na+1) nodes for a = 1, · · · , N − 2 and N hypermul-

tiplets at the final node. As an example we present the quiver diagram of the T [SU(4)]

theory on figure 4. We turn on real masses M3d
a in the Cartan of the SU(N)H symmetry

rotating the Higgs branch and T 3d
a in the Cartan of the SU(N)C symmetry rotating the

Coulomb branch. We also turn on an extra real axial mass deformation m3d for U(1)A, the

anti-diagonal combination of U(1)C ×U(1)H ∈ SU(2)C × SU(2)H , which breaks the super-

symmetry down to N = 2∗. We define the dimensionless mass parameters M ′
a = RM3d

a ,

T ′
a = RT 3d

a and m′ = Rm3d and the parameter q = e~ = eRǫ, where R is the S1 circle

radius and ǫ is the equivariant parameter rotating the cigar D2 (see footnote 1).

The holomorphic block integral for this theory can be constructed as explained in [18]

and reads:

BD2×S1

T [SU(N)](~µ, ~τ , q, t) = F (q, t, ~τ)

∫

Γ

N−1∏

a=1

a∏

i=1

(
dx

(a)
i

x
(a)
i

eX
(a)
i (Ta−Ta+1)/~ t−X

(a)
i /~

)

×
N−1∏

a=1

a∏
i 6=j

(
x
(a)
j

x
(a)
i

; q
)
∞

a∏
i,j=1

(
t
x
(a)
j

x
(a)
i

; q
)
∞

N−2∏

a=1

a∏

i=1

a+1∏

j=1

(
t
x
(a+1)
j

x
(a)
i

; q
)
∞

(
x
(a+1)
j

x
(a)
i

; q
)
∞

×
N∏

p=1

N−1∏

i=1

(
t

µp

x
(N−1)
i

; q
)
∞(

µp

x
(N−1)
i

; q
)
∞

, (2.1)

where the prefactor F (q, t, ~τ) is given by

F (q, t, ~τ) = e−
2
3
N(N−1)(2N−1)~β(1−β)e−

m′2N
4~ e(1−β)

∑N−1
a=1

a2

2
(Ta+1−Ta) . (2.2)

The integral is performed over the Cartan of the gauge group. For each gauge node we

have the contribution of vector and adjoint chiral multiplets (first factor in the second line)

– 8 –
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given by a ratio of q-Pochhammer symbols defined as

(x; q)∞ =
∞∏

k=0

(
1− xqk

)
. (2.3)

The other factors in the second line are the contributions of the bifundamental chirals and

of the fundamentals attached to the last node.

More precisely (qx−1; q)∞ is the contribution to the block integral of a chiral multi-

plet of zero r-charge and charge +1 under a flavor symmetry with associated real mass

x, plus a −1
2 Chern-Simons unit. This corresponds to a chiral multiplet with Dirichlet

boundary conditions along ∂(D2 × S1) = T 2 in [51]. A chiral multiplet of r-charge +2,

charge −1 and 1
2 Chern-Simons unit contributes as (x; q)−1

∞ and corresponds to Neumann

boundary conditions.5

If we assemble the matter contribution to the block integrals taking some chirals with

Dirichlet and some with Neumann boundary conditions we induce mixed Chern-Simons

couplings (because of the attached 1
2 units) which we might need to compensate by adding

extra Chern-Simons terms to the action. With our symmetric choice of boundary condi-

tions the induced dynamical Chern-Simons couplings vanishes automatically, the induced

mixed gauge-flavor couplings (the t−X
(a)
i /~ factor in the integrand (2.1)) renormalize the FI

parameters, while the background mixed couplings contribute as the prefactor F (q, t, ~τ).

5There is a relation between these two setups:

(qx−1; q)∞ =
θq(x)

(q; q)∞
(x; q)−1

∞ , (2.4)

which can be explained by viewing the 3d theory of a single chiral multiplet φ as a linear sigma model with

target C. Dirichlet boundary conditions on ∂(D2 × S1) = T 2 correspond to a D-brane at a point φ = 0 in

the target. However, one can view the D-brane in a different way, as (an equivalence class of) a complex

of sheaves

0 → O(C)
s
→ Ω1,0(C) → 0 (2.5)

supported on the whole C. Here O(C) is the sheaf of functions on C, and Ω1,0(C) is that of (1, 0) differential

forms, e.g. g(φ)ψ, where ψ is an anticommuting coordinate on the fiber; the differential s = φψ is nilpotent

because ψ2 = 0. The relation between the brane at fixed φ = 0 and the complex is as follows. Mnemonically,

one can think that the two terms of the complex (2.5) “cancel” everywhere outside the point φ = 0. More

concretely, the space of functions on a point {φ = 0} ⊂ C can be equivalently described by the cohomology

of the complex (2.5):

H0
s (C) = ker s = 0 (2.6)

H1
s (C) = Ω1,0(C)/Im s =

{ψg(φ)}

g(φ) ∼ g(φ) + φf(φ)
= {const} = C, (2.7)

In the field theory language O(C) corresponds to a 3d free chiral with Neumann boundary conditions, while

to get the whole complex Ω•,0(C) from (2.5) one needs to add a 2d free chiral fermion ψ living on T 2 whose

partition function is precisely given by
θq(x)

(q;q)∞
. The identity (2.4) is therefore just the equivalence between

two views on the D-brane.
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To present the block in a form more convenient for the following we have shifted the

integration variables and identified a new set of exponentiated mass parameters6

x
(a)
i = eX

(a)
i , µp = eMp = eM

′
p

(q
t

)N/2
,

τp = eTp = eT
′
ptN/2, t = qβ = −q1/2e−m′

. (2.9)

An alternative procedure to write down the block integrand Υ is to view it as “square root”

of the integrand of the partition function on a compact manifold. Details of this procedure

are presented in the appendix A. This construction also indicates that the contribution of

(mixed) Chern-Simons coupling to the partition function should actually be expressed in

terms of ratios of theta functions rather than exponents

e
AB
~  

θq(e
A)θq(e

B)

θq(eA+B)(q; q)∞
(2.10)

as we discuss in appendix A. However, for the purpose of this paper we can avoid in-

troducing theta functions and work with the exponents provided that on the integration

contours on which we are going to evaluate the blocks, the theta functions and the ex-

ponents have no poles and contribute with the same residue. One can check that for

T [SU(N)] blocks (2.1) this will indeed be the case. As will be shown below, the residues of

the integrals (2.1) come in geometric progressions, i.e. a pole x∗ is accompanied by a string

of poles at qkx∗ with k ∈ Z≥0. Notice then that both sides of eq. (2.10) transform in the

same way under the ~-shifts of A and B variables, i.e. under q-shifts of eA and eB. Thus,

their contributions to the residues in the string differ only by an overall constant factor,

independent of k. This overall constant can be factored out of the integral and included in

the normalization factors.

Finally we need to discuss the integration contour on which we evaluate the block

integral. The integration in eq. (2.1) is performed over a basis of integration contours

Γ = Γα, with α = 1, . . . , N ! which are in one to one correspondence with the SUSY

vacua, the critical points of the one-loop twisted superpotential WR2×S1
. The label of the

integration contour α is essentially an element of the permutation group SN . One can

understand the origin of the contours Γα as follows.

The integrations in eq. (2.1) can be done step by step starting from x
(N−1)
i and pro-

ceeding to x
(1)
1 . There are (N − 1) integration variables at the first step. The poles of

the integrand in x
(N−1)
i correspond to zeroes of

∏N
p=1

∏N−1
i=1 (µp/x

(N−1)
i ; q)∞. Moreover,

upon closer examination one can see that each x
(N−1)
i should be of the form qk

(N−1)
i µp with

integer k
(N−1)
i and distinct values of p, i.e. each of (N−1) variables x

(N−1)
i settles at a pole

close to its own mass µp and no two of the variables can sit near the same mass. Therefore,

6The shifted mass parameters satisfy:

N
∑

i=1

Mi = ~(1− β)
N2

2
,

N
∑

i=1

Ti = ~β
N2

2
. (2.8)

The parameter t introduced in this section will be identified with the parameter of the 5d Ω-background

R
4
q,t × S1 and with the (q, t)-Toda parameter in the next sections.
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there are N possible configurations with (N − 1) variables filling N places (the integrand

is symmetric in x
(N−1)
i ). Evaluating the residues in x

(N−1)
i we can proceed to the next

step of integration. Here the situation is repeated: there are (N − 2) integration variables

x
(N−2)
i and (N − 1) variables x

(N−1)
i from the previous step play the role of µp for them.

The poles in x
(N−2)
i are located at qk

(N−2)
i −k

(N−1)
i x

(N−1)
j with integer k

(N−2)
i ≥ k

(N−1)
i and

again no two variables x
(N−2)
i can sit near the same x

(N−1)
j . There are (N −1) possibilities

at this step. Proceeding further, one notices the general pattern: the poles at each step

sit near the poles of the previous step with one free place. Equivalently, there are (N − 1)

strings of poles with lengths 1, 2, . . . , (N−1), in each of which the poles are close together,

e.g. for a string of length a we get

x(a)a = qk
(a)
a −k

(a+1)
a x(a+1)

a = qk
(a)
a −k

(a+2)
a x(a+2)

a = . . . = qk
(a)
a −k

(N−1)
a x(N−1)

a = qk
(a)
a µp (2.11)

where k
(a)
i are all integers and we have used the symmetry of the integrand in x

(a)
1 , . . . ,

x
(a)
a to set all the lower indices in the string to a. Each string terminates at the free place,

not filled by the pole on the next step. Choosing the integration contour is equivalent to

specifying which string (of length a) sits near which mass µp. Evidently, any choice can be

obtained from a given one by the unique permutaiton of masses µp. There are therefore

N ! choices in total, each one corresponding to an element of the symmetric group SN .

We will do the calculations for a certain convenient reference choice of contour α = α0,

i.e. in the reference vacuum in which

x
(a)
i = qk

(a)
i µi (in vacuum α0). (2.12)

In this vacuum one can expand the vortex partition function as a double series in µi

µi+1
and

τi
τi+1

, i.e. it is implicitly assumed that the theory sits in the chamber of the moduli space

where τi
τi+1

≪ 1. Blocks for other vacua can be obtained from the block in the reference

vacuum by analytic continuation in τi
τi+1

, taking into account the intricate (theta-function)

connection coefficients. Let us also notice that since the block is self-dual under mirror

symmetry, analytic continuation in µi and τi will give the same results.

The integration over Γα0 yields

BD2×S1, (α0)
T [SU(N)] = Z

3d, (α0)
cl Z

3d, (α0)
1−loop Z

3d, (α0)
vort (2.13)

where Z
3d, (α0)
cl , Z

3d, (α0)
1−loop and Z

3d, (α0)
vort denote the classical, perturbative one-loop and non-

perturbative vortex contributions respectively. We have7

Z
3d, (α0)
cl (~µ, ~τ , q, t) = F (q, t, ~τ) (q; q)

−N(N−1)
2∞

N∏

i=1

e
(Ti−TN )Mi

~ t−
(N−i)Mi

~

N∏

i<j

θq

(
t
µj

µi

)

θq

(
µj

µi

) . (2.14)

The one-loop factor is given by:

Z
3d, (α0)
1−loop (~µ, ~τ , q, t) =

∏

i<j

(
q µi

µj
; q
)
∞(

q
t
µi

µj
; q
)
∞

. (2.15)

7We can trade the theta-functions for exponents using the equivalence (2.10), but we retain the exact

answer for the integration for the sake of completeness.
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Notice that there are cancellations between the theta-functions in classical part and the

q-Pochhammer functions in the one-loop part. The vortex part reads8

Z
3d, (α0)
vort (~µ, ~τ , q, t)

=
∑

k
(a)
i ∈ (2.17)

N−1∏

a=1



(
t
τa
τa+1

)∑a
i=1 k

(a)
i

a∏

i 6=j

(
t µi

µj
; q
)
k
(a)
i −k

(a)
j(

µi

µj
; q
)
k
(a)
i −k

(a)
j

a∏

i=1

a+1∏

j=1

(
q
t
µi

µj
; q
)
k
(a)
i −k

(a+1)
j(

q µi

µj
; q
)
k
(a)
i −k

(a+1)
j




(2.16)

where we assume k
(N)
i = 0 and the sum is over sets of integers k

(a)
i satisfying the inequalities

k
(1)
1 ≥ k

(2)
1 ≥ k

(3)
1 ≥ · · · ≥ k

(N−1)
1 ≥ 0

k
(2)
2 ≥ k

(3)
2 ≥ · · · ≥ k

(N−1)
2 ≥ 0

k
(3)
3 ≥ · · · ≥ k

(N−1)
3 ≥ 0

. . .
...

k
(N−1)
N−1 ≥ 0

(2.17)

The block can actually be expressed through higher q-hypergeometric functions. This

representation also allows one to deduce the monodromy properties of the block under

the permutation of parameters τi → τσ(i). However, these issues will not be considered in

the present work. In the semiclassical limit BD2×S1, (α)
T [SU(N)] ∼ e

WR
2×S1

(α)
/~

where WR2×S1

(α) is the

one-loop twisted superpotential evaluated on the α-th vacuum.

2.1.2 Mirror duality

We will consider two similar but subtly different dualities of the T [SU(N)] theory: the

mirror duality and the spectral duality, explaining the relationship between them and

their differences.

The mirror duality [52] (which in this case is a self-duality [17]) swaps the Higgs and

Coulomb branches and consequently the vector masses and FI parameters Mi ↔ Ti and

sends m ↔ −m or in terms of the exponentiated parameters:

µi ↔ τi , t → q

t
. (2.18)

8There are several ways to write the instanton contributions in this sum connected to each other by

identities involving products of q-Pochhammer symbols. For example, the middle factor can be rewritten as:

a
∏

i 6=j

(

t µi

µj
; q
)

k
(a)
i

−k
(a)
j

(

µi

µj
; q
)

k
(a)
i

−k
(a)
j

=

a
∏

i 6=j

(

q µi

µj
; q
)

k
(a)
i

−k
(a)
j

(

q

t

µi

µj
; q
)

k
(a)
i

−k
(a)
j
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The mirror block is given by:

B̌D2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = BD2×S1, (α)

T [SU(N)]

(
~τ , ~µ, q,

q

t

)

= F̌ (q, t, ~τ)

∫

Γα

N−1∏

a=1

a∏

i=1

dx
(a)
i

x
(a)
i

N−1∏

a=1

a∏

i=1

eX
(a)
i (Ma−Ma+1)/~

(
t

q

)X
(a)
j /~

×
N−1∏

a=1

a∏
i 6=j

(
x
(a)
j

x
(a)
i

; q
)
∞

a∏
i,j=1

(
q
t

x
(a)
j

x
(a)
i

; q
)
∞

N−2∏

a=1

a∏

i=1

a+1∏

j=1

(
q
t

x
(a+1)
j

x
(a)
i

; q
)
∞

(
x
(a+1)
j

x
(a)
i

; q
)
∞

×
N∏

p=1

N−1∏

i=1

(
q
t

τp

x
(N−1)
i

; q
)
∞(

τp

x
(N−1)
i

; q
)
∞

. (2.19)

Showing that the T [SU(N)] holomorphic block is self-dual, i.e. that

BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = B̌D2×S1, (α′)

T [SU(N)] (~µ, ~τ , q, t) (2.20)

or equivalently

BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = BD2×S1, (α′)

T [SU(N)]

(
~τ , ~µ, q,

q

t

)
(2.21)

is fairly complicated. As discussed in [18] if we want to describe how the bases of contours

α and α′ are related we need to take into account Stokes phenomena. One approach is to

use mirror-invariant combinations of blocks, e.g. squashed sphere partition functions.

Here we take a different approach showing that the space of blocks is invariant under

the mirror map. Following [24] we can view the space of blocks for the T [SU(N)] theory

as the space of solutions to a system of linear difference equations:

Hr(µi, q
µi∂µi , q, t)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t) = er(~τ)BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) (2.22)

where the difference operators are quantum Ruijsenaars-Schneider Hamiltonians [53, 54]:

Hr = t
r(r−1)

2

∑

I⊂{1,...,N}
|I|=r

∏

i∈I
j /∈I

tµi − µj

µi − µj
q
∑

i∈I µi∂µi (2.23)

and the eigenvalues er(~τ) are elementary symmetric polynomials

er(~τ) =

N∑

i1<···<ir

τi1 · · · τir . (2.24)

We give a short proof of eq. (2.22) for r = 1 in appendix D.1. From the theory of in-

tegrable systems it is known that Ruijsenaars-Schneider system has a peculiar duality

symmetry called p-q duality. It implies that for certain choice of normalization the eigen-

functions of the Ruijsenaars-Schneider Hamiltonian are actually also eigenfunctions of the
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dual Ruijsenaars-Schneider Hamiltonian. The dual operator is obtained by the mirror map:

~τ and ~µ are exchanged as are t and q
t . We therefore have:

Hr

(
τi, q

τi∂τi , q,
q

t

)
BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = er(~µ)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t) (2.25)

We prove the simplest case of eq. (2.25) for r = 1, N = 2 in appendix D.2. The self-mirror

property of the blocks (2.21) follows from eqs. (2.22) and (2.25).

Alternatively we can check mirror symmetry by “brute force” computation of the

partition function. Using explicit expressions (2.14), (2.15) and (2.16) for the one-loop and

vortex parts of the partition function we can see that

Z
3d, (α0)
1−loop (~µ, ~τ , q, t)Z

3d, (α0)
vort (~µ, ~τ , q, t) = Z

3d, (α0)
1−loop

(
~τ , ~µ, q,

q

t

)
Z

3d (α0)
vort

(
~τ , ~µ, q,

q

t

)
(2.26)

and using the conditions (2.8) for the sum of masses and FI parameters (up to the equiv-

alence (2.10)):

Z
3d, (α0)
cl (~µ, ~τ , q, t) = Z

3d, (α0)
cl

(
~τ , ~µ, q,

q

t

)
. (2.27)

As a very simple test of the mirror symmetry (2.26) consider two degenerate limits of

the T [SU(N)] block:

1. t = q. In this case all the terms of the vortex series, except the first one vanish:

Z
3d,(α0)
vort (~µ, ~τ , q, q) = 1. (2.28)

The one-loop factor also simplifies and reads

Z
3d,(α0)
1−loop (~µ, ~τ , q, q) =

∏

i<j

1

1− µi

µj

. (2.29)

2. t = 1. In this case the vortex sum factorizes into a product of geometric progressions:

Z
3d,(α0)
vort (~µ, ~τ , q, 1) =

∏

i<j

1

1− τi
τj

. (2.30)

The one-loop part becomes trivial:

Z
3d,(α0)
1−loop (~µ, ~τ , q, 1) = 1. (2.31)

Two degenerate cases are mirror dual to each other and one immediately sees that eq. (2.26)

indeed holds in this limit.

2.1.3 Flipping fields and spectral duality

We now introduce the modification of the T [SU(N)] model, in which we add N2 singlets

fields, the flipping flieds, transforming in the adjoint of the SU(N) flavor symmetry group.

These fields modify the T [SU(N)] superpotential by the extra term

W = FijQij , (2.32)
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where Qij is the meson matrix, built from the bifundamental chirals qai at the rightmost

node of the quiver from figure 4:

Qij =
N−1∑

a=1

qai q̄
a
j , (2.33)

so that if the bifundamental has R-charge r, then R[Qij ] = 2r and R[Fij ] = 2 − 2r . We

call the resulting theory FT [SU(N)], where F indicates the flipping of the Higgs branch

operators (the meson).

Since flipping fields are gauge singlets, they simply modify the D2 × S1 partition

function of T [SU(N)] by multiplicative factors in front of the integral:

BD2×S1, (α)
FT [SU(N)] (~µ, ~τ , q, t) = f(~µ, q, t)−1BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t), (2.34)

where9

f(~µ, q, t) = e(1−2β)
∑N

i=1(i−1)Mi

N∏

k<l

(
tµk

µl
; q
)
∞(

q
t
µk

µl
; q
)
∞

. (2.35)

The factor f(~µ, q, t) crucially modifies the action of the RS Hamiltonians (2.23) on the

block. One proves by direct computation that

Hr

(
µi, q

µi∂µi , q,
q

t

)
= f(~µ, q, t)−1Hr(µi, q

µi∂µi , q, t)f(~µ, q, t). (2.36)

Since the block BD2×S1, (α)
T [SU(N)] is the eigenfunction of Hr(µi, q

µi∂µi , q, t)f(~µ, q, t), the holo-

morphic blocks of the flipped theory FT [SU(N)] are eigenfunctions of Hr

(
µi, q

µi∂µi , q, qt
)

with the same eigenvalues. Moreover, since f(~µ, q, t) does not depend on τ , the flipped

block f(~µ, q, t)−1BD2×S1

T [SU(N)](~µ, ~τ , q, t) is still an eigenfunction of the dual RS Hamiltonians

Hr(τi, q
τi∂τi , q, qt ). Hence we conclude that because BD2×S1

T [SU(N)](~µ, ~τ , q, t) is invariant under

the mirror duality (2.18), the flipped block BD2×S1

FT [SU(N)](~µ, ~τ , q, t) is invariant under the

spectral duality:

µi ↔ τi , t → t . (2.37)

We denote the spectral dual block by B̂D2×S1,(α)
FT [SU(N)](~µ, ~τ , q, t) (notice the hat instead of the

tick, which we have used for the mirror block). For our special contour α0 we have

B̂D2×S1,(α0)
FT [SU(N)] (~µ, ~τ , q, t) = BD2×S1,(α0)

FT [SU(N)] (~τ , ~µ, q, t). (2.38)

We will discuss the origin of the spectral duality when we come to the brane description

of the flipped theory in section 3. In [23] we will examine in the detail this duality together

with another duality obtained from T [SU(N)] by flipping simultaneously the Higgs and

Coulomb branch operators.

9We could equivalently use a combination of theta-functions instead of powers for the contact terms mul-

tiplying the q-factorials to make f a 2πi-periodic function of Mi. Notice also that f(~µ, q, q

t
) = f(~µ, q, t)−1.
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2.2 q-Toda blocks

In a series of works [27, 28, 31] partition functions of 3d theories have been shown to match

conformal blocks in q-deformed Toda theories.10 In this section we will demonstrate the

details of the correspondence between holomorphic blocks of the FT [SU(N)] theory and

conformal blocks of the q-Toda CFT. For this we will first review basic aspects of An Toda

CFT and derive Dotsenko-Fateev (DF) integrals describing conformal blocks in certain

channel. In this part we will closely follow [27, 28, 56]. Then we will briefly describe

quantum deformation of the Toda theory and corresponding qDF integrals. Finally we

will describe the map between parameters of FT [SU(N)] theory and q-Toda CFT that

will allow us to manifestly match holomorphic blocks and qDF integrals on two sides of

the correspondence.

2.2.1 Warm-up: conformal block of ordinary Toda

We begin by quickly introducing the integral representation of the Toda conformal blocks,

for more detailed review see [56]. The action of the theory is given by

SToda =

∫
dz dz̄

√
g

[
gzz̄(∂z~φ, ∂z̄~φ) +Qβ(~ρ, ~φ)R+

n∑

a=1

e
√
β(~φ,~e(a))

]
, (2.39)

where ~φ is the (n+ 1)−component vector whose components φ(a) are bososnic fields in 2d

Toda CFT. ~ρ and ~e(a) are the Weyl vector and the simple roots of the An Lie algebra

respectively:

(
~ρ, ~φ

)
=

1

2

n+1∑

a=1

(n− 2a+ 2)φ(a),

(
~φ, ~e(a)

)
= φ(a) − φ(a+1). (2.40)

The first term in the action (2.39) is just the canonical kinetic term with (inverse) back-

ground metric gzz̄, while (. , .) denote the standard scalar product on R
n+1. Second term

in the action is responsible for the nonminimal coupling of ~φ to the background curvature

R. Coefficient of the coupling Qβ is

Qβ =
√
β − 1√

β
, (2.41)

where β is a convenient parameter, which will be used throughout this paper. Finally

the last term in (2.39) is the Toda potential. The theory described above possess Wn+1

symmetry, which has Virasoro subalgebra with the central charge parametrized by β in the

following way:

c = n− n(n+ 1)(n+ 2)Q2
β . (2.42)

10An alternative map between q-CFT correlators and 3d partition functions have been discussed in [55].

This approach is similar to the map between S2 partition functions and CFT correlators discussed in [46–48].
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Basic ingredients we will need for finding correlators in Toda CFT are screening

currents

S(a)(x) = : exp

[
√
β
∑

k 6=0

n+1∑

b=1

1

k
c
(b)
k e

(a)
b x−k

]
: exp

[
√
β

n+1∑

b=1

Q(b)e
(a)
b

]
x

√
β

n+1
∑

b=1
e
(a)
b

P (b)

= : exp

[
√
β
∑

k 6=0

(
c
(a)
k − c

(a+1)
k

) x−k

k

]
: e

√
β(Q(a)−Q(a+1)) x

√
β(P (a)−P (a+1)), (2.43)

where the index a, which we call the sector number, runs from 1 to n for An theory. We

will also need vertex operators defined as follows:

V~α(z) = : exp

[
1√
β

∑

k 6=0

n+1∑

a=1

c
(a)
k αa

z−k

k

]
: e

1√
β

n+1
∑

a=1
Q(a)αa

z
1√
β

n+1
∑

a=1
αaP (a)

, (2.44)

where ~α is the (n + 1)−component weight of the operator. Bosonic operators c
(a)
k satisfy

the Heisenberg algebra

[c
(a)
k , c(b)m ] = k δk+m,0 δa,b , (2.45)

and P (a), Q(a) are zero-modes satisfying usual commutation relations:

[
P (a), Q(b)

]
= δa,b . (2.46)

Now assume that we would like to calculate the following chiral half of the correlator

of (l + 2) primary vertex operators in Toda theory

〈V~α(∞)(∞)V~α(1) (z1) · · ·V~α(l) (zl) V ~α(0)
(0) 〉Toda

=

∫
D~φ V~α(∞) (∞) V~α(1) (z1) · · ·V~α(l) (zl) V~α(0) (0) e−SToda , (2.47)

where zk and ~α(k) are positions and weights of corresponding vertex operator insertions.

In general, due to the complicated interaction potential, evaluation of this correlator is

extremely hard. However, one can treat Toda potential perturbatively. In this case the

full answer for the correlator can be written as the sum of the following correlators in the

theory of (n+ 1) free bosons:

DFAn

l+2(z1, . . . , zl, ~α
(0), ~α(1), . . . , ~α(l), ~N, β)

def
= 〈~α(∞)|V~α(1) (z1) . . . V~α(l) (zl)

n∏

a=1

QNa

(a)|~α
(0)〉free , (2.48)

which play the role of the conformal blocks in Toda theory and are usually referred to

as Dotsenko-Fateev (DF) integrals [57]. Here Q(a) are screening charges defined as the

integrals of the corresponding screening currents:

Q(a)
def
=

∮
dxS(a) (x) , (2.49)
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and the states |~α(0)〉 and |~α(∞)〉 are defined as follows:

|~α〉 = 1√
β
e

n+1
∑

a=1
αa Q(a)

|0〉 (2.50)

so that it is the eigenstate of the momentum operators P (a) and is annihilated by the

positive modes:

P (a)|~α〉 = 1√
β
αa|~α〉, (2.51)

c(a)n |α〉 = 0, ∀n > 0. (2.52)

Due to the operator-state correspondence the ket state |~α〉 can be created by the insertion

of the vertex operator (2.44) of weight ~α at point z = 0. Bra state 〈~α| is created by

inserting the corresponding operator at z = ∞. We understand the weight ~α(0) of the

vertex operator at zero to be a free parameter of the correlator. Then the weight ~α(∞) is

determined uniquely by the momentum conservation relation, which needs to be satisfied

in order for the correlator (2.48) to be nonzero:

2
√

βQβ~ρ = ~α(0) + ~α(∞) +
l∑

j=1

~α(j) + β
n∑

a=1

Na~e(a) , (2.53)

where ~ρ and ~e(k) are given by eqs. (2.40). The calculation of the free field correlator (2.48)

is presented in appendix B.1 and results in

DFAn

l+2(z1, . . . , zl, ~α
(0), ~α(1), . . . , ~α(l), ~N, β)

∼
l∏

p<k

(zp − zk)
1
β (~α

(p), ~α(k))
∮ n∏

a=1

Na∏

i=1

dx
(a)
i

n∏

a=1

Na∏

i=1

(
x
(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)

×
n∏

a=1

Na∏

i 6=j

(
1−

x
(a)
j

x
(a)
i

)β
n−1∏

a=1

Na∏

i=1

Na+1∏

j=1

(
1−

x
(a+1)
j

x
(a)
i

)−β
l∏

p=1

n∏

a=1

Na∏

i=1

(
1− x

(a)
i

zp

)α
(p)
a −α

(p)
a+1

.

(2.54)

In the Virasoro (A1) case, the free field integrals are of Selberg type and can be calculated.

In the higher rank case the situation is much more complicated and it is known how to

evaluate the integrals only for special values of the momenta of the vertex operators. As

we will see in this paper we are indeed interested in special value of the momenta for which

we can calculate the integrals.

2.2.2 q-Toda conformal blocks

The An Toda theory admits a q-deformation which is described in detail in [58–60]. Below

we will use free boson representation of this deformed algebra in order to derive the corre-

sponding conformal blocks of the An q-Toda CFT. For our calculations we use screening
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currents and vertex operators from [27, 28], which are given by

Sq
(a)(x) = : exp

(
−
∑

k>0

1− tk

1− qk
c
(a)
k

x−k

k
+
∑

k>0

c
(a)
−k

xk

k

)

× exp

(
∑

k>0

1− tk

1− qk
vk c

(a+1)
k

x−k

k
−
∑

k>0

vk c
(a+1)
−k

xk

k

)
:

× e
√
βQ(a)

x
√
βP (a)

e−
√
βQ(a+1)

x−
√
βP (a+1)

(2.55)

where t = qβ and we have introduced v =
√

q
t . Similarly to the undeformed case the sector

index a runs between 1 and n. Bosonic operators c
(a)
k , Q(a), P (a) satisfy the Heisenberg

algebra (2.45).

q-deformed primary vertex operator is chosen to have the form

V q
~α (z) = : exp

(
∑

k>0

n+1∑

a=1

qkαa−1

1−qk
c
(a)
k v−ka z

−k

k
+
∑

k>0

n+1∑

a=1

(
q−kαa − v2k(N−a−1)

)

1− tk
c
(a)
−kv

ka z
k

k

)
:

×e
1√
β

n+1
∑

a=1
αa Q(a)

z
1√
β

n+1
∑

a=1
αa P (a)

, (2.56)

where ~α is the weight vector just as in eq. (2.44). Essentially this is the vertex operator

of the same form11 as the one that can be found in [27, 28]. However in the latter case

authors have omitted central part of the operator, i.e. ~α-independent part that commutes

with the screening current S(x) given in (2.55). As we will see this part appears to be

essential for us so we keep it.

As in the non-deformed case we are interested in the following free field correlator

qDFAn

l+2(z1, . . . , zl, ~α
(0), ~α(1), . . . , ~α(l), ~N, q, t)

def
= 〈~α(∞)|V q

~α(1) (z1) . . . V
q

~α(l) (zl)

n∏

a=1

QNa

(a)|~α
(0)〉free , (2.57)

where Q(a) are screening charges related to the screening currents (2.55) in the same way as

in non-deformed case (2.49). Initial and final states |~α(0)〉, |~α(∞)〉 are defined in eq. (2.50).

Conservation relation (2.53) that constraints weights of the vertex operators also holds in

the q-deformed case.

The free field calculation in the q-Toda conformal block is similar to the undeformed

case and is presented in appendix B.2. The final result is given by the following matrix in-

11For precise matching of ~α-dependent part one also needs to perform shift of weights αa → αa+
1
2
a(1−β)

for the vertex operators used in [27, 28].
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tegral:

qDFAn

l+2(z1, . . . , zl, ~α
(0), ~α(1), . . . , ~α(l), ~N, q, t)

∼ Cq
vert (~α, z)

l∏

p

z

1
β (~α

(p),~α(0))+
N
∑

a=1
Na

(

α
(p)
a −α

(p)
a+1

)

p

×
∮ n∏

a=1

Na∏

i=1

dx
(a)
i

n∏

a=1

Na∏

i=1

(
x
(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)+

l
∑

p=1

(

α
(p)
a −α

(p)
a+1

)

×
n∏

a=1

Na∏

i 6=j

(
x
(a)
j

x
(a)
i

; q

)

∞(
t
x
(a)
j

x
(a)
i

; q

)

∞

n−1∏

a=1

Na∏

i=1

Na+1∏

j=1

(
u
x
(a+1)
j

x
(a)
i

; q

)

∞(
v
x
(a+1)
j

x
(a)
i

; q

)

∞

l∏

p=1

n∏

a=1

Na∏

i=1

(
q1−α

(p)
a va

zp

x
(a)
i

; q

)

∞(
q1−α

(p)
a+1va

zp

x
(a)
i

; q

)

∞

,

(2.58)

where u =
√
qt and Cvert is the prefactor coming from ordering different vertex operators.

Precise form of this prefactor is given in (B.21). The expression appears to be very com-

plicated. However, as we will see further, in cases relevant for us, in particular when some

of the vertices are (semi-)degenerate, this expression simplifies drastically.

2.3 Map between FT [SU(N)] and q-Toda blocks

The q-Toda blocks in DF representation have been shown to map to the holomorphic

blocks of the handsaw quiver theory [27, 28]. Here we are interested in the simpler case

of the FT [SU(N)] holomorphic block which can be mapped to a AN−1 q-Toda block with

full primary initial and final states and N fully degenerate primary vertex operators be-

tween them (we again omit the prefactors in front of both integrals in holomorphic and

conformal blocks):

BD2×S1

FT [SU(N)] ∼ qDF
AN−1

N+2 . (2.59)

with the identification of parameters which we give momentarily.

We begin by considering an (N + 2)−point conformal block with the weights of the

vertex operators satisfying the following relation:

α
(p)
a+1 = α(p)

a , a = 1, . . . , N − 2, p = 1, . . . , N . (2.60)

The initial state has generic weight ~α(0) and the weight ~α(∞) is fixed by the charge con-

servation condition (2.53). We also specify the number of screening charges to be Na = a

for a = 1, . . . , N − 1. With this choice of momenta (2.60) and screening charges q-Toda

conformal block (2.58) reduces to the following expression

〈~α(∞)|V q

~α(1)(z1) · · ·V q

~α(N)(zN )

N−1∏

a=1

(
Qq

(a)

)a
|~α(0)〉

∼
∮ N−1∏

a=1

a∏

i=1

dy
(a)
i

N−1∏

i=1

(
y
(N−1)
i

)β(N−2)+α
(0)
N−1−α

(0)
N +

N
∑

p=1

(

α
(p)
N−1−α

(p)
N

)
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×
N−2∏

a=1

a∏

i=1

(
y
(a)
i

)−2β+α
(0)
a −α

(0)
a+1

N−1∏

a=1

a∏

i 6=j

(
y
(a)
j

y
(a)
i

; q

)

∞(
t
y
(a)
j

y
(a)
i

; q

)

∞

N−2∏

a=1

a∏

i=1

a+1∏

j=1

(
u
y
(a+1)
j

y
(a)
i

; q

)

∞(
v
y
(a+1)
j

y
(a)
i

; q

)

∞

×
N∏

p=1

N−1∏

i=1

(
q1−α

(p)
N−1vN−1 zp

y
(N−1)
i

; q

)

∞(
q1−α

(p)
N vN−1 zp

y
(N−1)
i

; q

)

∞

, (2.61)

where we have omitted prefactors coming from the ordering of the vertices to concentrate

only on the integral for the moment. Expression on the r.h.s. of (2.61) is almost of the same

form as the integral in BD2×S1

FT [SU(N)] block (2.1). To complete the map we need to impose a

further restriction on the q-Toda vertex operator parameters. First of all looking on the

one-loop contribution of the vector and adjoint multiplets in the block integral (2.1) we

can see that the gauge theory parameter t related to the 3d axial mass is identified with

the t-parameter of Toda CFT deformation. Then in order to match the contribution of the

bifundamental hypers with the corresponding term in the correlator (2.61) we need to make

the following identification between the integration variables y in the q-DF integral (2.61)

and x in the holomorphic block integral (2.1):

y
(a)
i = x

(a)
i v−a. (2.62)

To identify the last product in the third line of eq. (2.61) with the contribution of the

fundamental chiral multiplets we need

µp = q1−α
(p)
N v2N−2zp ,

tµp = q1−α
(p)
N−1v2N−2zp , (2.63)

which amounts to requiring

α
(p)
N − α

(p)
N−1 = β . (2.64)

Eq. (2.64) together with the condition (2.60) completely fixes all the components of the

vertex weight vectors in terms of the last components so that all weights have the form

~α(p) = (gp − β)~1 + β~ωN−1 , (2.65)

where gp is arbitrary constant and ~ωN−1 is the highest weight vector of AN−1. The

map (2.63) give us freedom to choose gp freely. For example we can absorbe it into the

definition of the insertion points z′p = qβ−gpzp and consequently have µp = v2Nz′p. Alterna-
tively we can simultaneously shift of all the components of the vertex operator weight. This

operation does not affect the q-DF integral (2.54) as it only contribute an overall factor in

front of the integral which we omit anyway. So we choose to set gp = β corresponding to

vertices with fully degenerate momenta (corresponding to simple degenerate punctures in

the AGT setup):

~α(p) = β~ωN−1 . (2.66)
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BD2×S1

FT [SU(N)] Identification qDF
AN−1

N+2

Integration parameters x
(a)
i y

(a)
i = x

(a)
i v−a Screening current positions y

(a)
i

Axial mass t t = qβ Central charge parameter β

Vector masses µp µp = v2Nzp Positions of the vertex operators zp

FI parameters Ta Ta = ~

(
α
(0)
a + (β − 1)a

)
Initial state momentum vector ~α(0)

Table 1. Map between the parameter of the FT [SU(N)] holomorphic block (2.1) and the conformal

block (2.58) of the q-Toda theory.

Finally we need to identify the FI parameters of the FT [SU(N)] theory with the compo-

nents of the initial and final momenta of q-Toda CFT α
(0)
a . This can be done by looking at

the powers of y
(a)
i in the q-DF integral (2.61) and eX

(a)
i powers in the block integral (2.1).

We arrive at the following relation:

α(0)
a − α

(0)
a+1 + 1− 2β =

Ta − Ta+1

~
− β, (2.67)

and thus

Ta = ~

(
α(0)
a + (β − 1) a

)
. (2.68)

Summarizing, the dictionary between the BD2×S1

FT [SU(N)] block (2.1) and the q-Toda block

qDF
AN−1

N+2

(
z1, . . . , zN , ~α(0), β~ωN , . . . , β~ωN , [1, 2, . . . , N − 1], q, qβ

)
is given in table 1. It is

important to notice here that with the choice (2.66) of the vertex operator weights and

the map of parameters specified in table 1 the prefactor Cq
vert in the qDF integral (2.58)

simplifies drastically and reduces to:

Cq
vert →

∏

p<r

µβ
p

(
q
t
µr

µp
; q
)
∞(

tµr

µp
; q
)
∞

. (2.69)

As we can see ratio of q-Pochhammers in this expression exactly reproduces contribu-

tion (2.35) of the flipping singlets into holomorphic block of FT [SU(N)] theory. However

we still omit mixed Chern-Simons terms since their matching would require more delicate

calculation of conformal blocks.

To complete the discussion of Duality web I in figure 1 we need to comment on the

counterpart of the 3d spectral duality relating the 3d holomorphic blocks BD2×S1

FT [SU(N)] and

B̂D2×S1

FT [SU(N)] by the map (2.37). In this context the spectral duality reads:

Ĉ qD̂F
AN−1

N+2

(
ẑ1, . . . , ẑN , ~̂α(0), β̂~ωN , . . . , β̂~ωN , [1, 2, . . . , N − 1], q, qβ̂

)

= C qDF
AN−1

N+2

(
z1, . . . , zN , ~α(0), β~ωN , . . . , β~ωN , [1, 2, . . . , N − 1], q, qβ

)
. (2.70)

The parameters of the dual DF integrals are related by the spectral duality map:

β̂ = β,

α̂(0)
p =

1

~
log zp + (1− β)(N + p), (2.71)

ẑp = qα
(0)
p +(N+p)(β−1),
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which swaps the coordinates of the vertex operators with the momenta. The prefactor

C = C
(
z1, . . . , zN , ~α(0), β

)
(and similarly Ĉ) is given by the product of the omitted factor in

front of integral in the q-Toda conformal block (2.58) and F−1(q, t, ~τ) from the holomorphic

block (2.1).

3 Duality web II: FT [SU(N)] and its spectral dual via Higgsing

In this section we will describe how to obtain the partition function of the 3d N = 2

FT [SU(N)] gauge theory on R
2
q ×S1 by Higgsing the 5d N = 1 square linear quiver theory

on the Ω-background R
4
q,t × S1.

We consider the 3d-5d version of the setup of [14, 27, 61, 62]. Physically the 3d theory

lives on the worldvolume of the vortices appearing in the Higgs phase of the 5d theory.

Using a Type IIB brane setup with NS5 and D5 branes to engineer the 5d linear quiver

theory we can realise the 3d vortex theory as the low energy theory on the D3 branes

stretched between NS5 and D5 branes. The spectral self-duality of the FT [SU(N)] theory

descends from IIB S-duality which swaps NS5 and D5 branes.

3.1 5d instanton partition function, Higgs branch and the vortex theory

Consider the 5d N = 1 square quiver gauge theory with gauge group U(N)N−1 in Ω-

background. An example of such theory for N = 4 is depicted in figure 5. The parameters

of the theory are:

1. Vacuum expectation values (vevs) of the adjoint scalar fields. We denote the ex-

ponentiated12 vev of the i-th diagonal component of the adjoint scalar of the a-the

gauge group by a
(a)
i , i = 1, . . . , N , a = 1, . . . , N − 1.

2. Couplings Λa, a = 1, . . . , (N − 1) of the gauge groups.

3. Masses mi (resp. m̄i) of the fundamental (resp. antifundamental) hypermultiplets

coupled to the first (resp. the last) gauge groups in the linear quiver.

4. Bifundamental masses m
(a,a+1)
bif . Since we consider the U(N) case these param-

eters could be eliminated by shifting the ratio of trace parts
∏N

i=1
a
(a)
i

a
(a+1)
i

→
∏N

i=1
a
(a)
i

m
(a,a+1)
bif a

(a+1)
i

. However, we will keep them as separate parameters to make

the formulas more symmetric.

5. Parameters q and t of the Ω-deformation.

The Ω-background partition function of the theory is given by (the 5d version of) the

instanton partition function [1]. It is the product of three factors: the classical piece Z5d
cl ,

12The exponentiated vev (resp. mass, coupling) is related to the physical vev A (resp. mass M , complex-

ified coupling T ) by the formula a = eA (resp. m = eM , Λ = eT ). The masses M and vevs A in these

formulas are made dimensionless, by measuring them in units of inverse radius R−1 of the compactification

circle S1.
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U(4) U(4) U(4)4 4

a
(1)
i

a
(2)
i

a
(3)
i

mi m̄i

m
(12)
bif m

(23)
bif

Λ1 Λ2 Λ3

Figure 5. 5d linear “square” quiver gauge theory with gauge group U(4)3. a
(a)
i are the exponen-

tiated vevs of the adjoint scalars. m
(a,a+1)
bif , mi, m̄i and Λ(a) are the exponentiated masses and

gauge couplings.

the one-loop determinant Z5d
1−loop and the instanton part Z5d

inst, of which we write down

explicitly only the last one:

Z5d
inst(a

(a)
i ,mi, m̄i,m

(a,a+1)
bif ,Λa)

=
∑

~Y (1),...,~Y (N−1)

N−1∏

a=1

Λ|~Y (a)|
a zfund(~m,~a(1), ~Y (1))

×
∏N−2

a=1 zbif(m
(a,a+1)
bif ,~a(a+1),~a(a), ~Y (a+1), ~Y (a))
∏N−1

a=1 zvect(~a(a), ~Y (a))
zfund( ~̄m,~a(N−1), ~Y (N−1)) (3.1)

where ~Y (a), a = 1, . . . , (N − 1) each denote the N -tuple of Young diagrams, ~Y (a) =

{Y (a)
1 , . . . , Y

(a)
N } and

zfund(~m,~a, ~Y ) =

N∏

r=1

N∏

s=1

∏

(i,j)∈Yr

(
1− ar

ms
qj−1t1−i

)
, (3.2)

zfund(~m,~a, ~Y ) =

N∏

r=1

N∏

s=1

∏

(i,j)∈Yr

(
1− ms

ar
q1−jti−1

)
, (3.3)

zbif(mbif ,~a,~b, ~Y , ~W ) =

N∏

r=1

N∏

s=1

∏

(i,j)∈Yr

(
1− ar

mbifbs
qYr,i−jtW

T
s,j−i+1

)
(3.4)

×
∏

(k,l)∈Ws

(
1− ar

mbifbs
q−Ws,i+j−1t−Y T

r,j+i

)
, (3.5)

zvect(~a, ~Y ) = zbif(1,~a,~a, ~Y , ~Y ). (3.6)

We are now going to show how the instanton partition functions can be reduced via Hig-

gsing to the 3d vortex partition function for the FT [SU(N)] theory. As mentioned in the

Introduction, Higgsing a 5d partition function typically produces the partition function of

a coupled 5d-3d system describing a codimension-two surface operator coupled to the bulk

theory. Here we are interested in the case where the 5d bulk theory is trivial, consisting

only of a bunch of decoupled hypermultiplets and so rather than reducing to a coupled

system, the Higgsing directly yields the 3d vortex theory.

FT [SU(2)] case. Let us start with the simplest example of the square U(2) theory, i.e.

the U(2) gauge theory with two fundamental and two antifundamental multiplets. The
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Higgs branch touches the Coulomb branch at the point ai = mi, i = 1, 2. The theory

on the Higgs branch contains nonabelian vortex strings with worldvolumes spanning13

R
2
q × S1 ⊂ R

4
q,t × S1. The 3d theory on charge M vortices is the N = 2 U(M) theory with

• adjoint multiplet with mass t,

• two fundamental multiplets with masses µi = mi,

• two antifundamental multiplets with masses µ̄i
q
t = m̄i.

When the 3d FI parameter is turned on the 3d theory is on the Higgs branch and the gauge

group is broken to U(M1)×U(M2) with M1 +M2 = M .

The vortex theory is actually dual to the theory at certain discrete points on the

Coulomb branch without any vortices [14]. In particular the 5d theory on the Higgs branch

with U(M1)×U(M2) vortex is equivalent to the theory on the Coulomb branch with

ai = mi t
Mi , i = 1, 2. (3.7)

Indeed for ai = mi t
Mi the sum over Young tableaux in the instanton partition function

Z5d
inst (3.1) truncates so that only the diagrams Yi of length l(Yi) ≤ Mi contribute. The

surviving diagrams correspond to the values of the 3d adjoint scalar fields fixed under the

localization, which in the IR are diagonal M1 ×M1 and M2 ×M2 matrices. The instanton

contributions for these diagrams indeed match those of the vortex expansion Z3d
vort of the

3d theory [27] with the following dictionary:

5d square U(2) 3d vortex theory

coupling Λ τ FI parameter

fundamental masses mi µi fundamental masses

antifundamental masses m̄i µ̄i =
q
t m̄i antifundamental masses

Coulomb parameters ai = mit
Mi U(M1)×U(M2) rank of the gauge groups

Ω-parameter t t adjoint mass

Ω-parameter q q Ω-parameter

To obtain the FT [SU(2)] vortex partition functions one needs to further tune the param-

eters of the 3d/5d setup choosing M1 = 1 and M2 = 0 and setting the antifundamental

masses to m̄i =
t2

q mi (consistent with the cubic superpotential of the N = 2∗ theory).

FT [SU(N)] case. The Higgsing procedure described above can be easily extended to

the FT [SU(N)] case which can be obtained from the square U(N)N−1 5d by tuning the

13Of course, since the Ω-background localizes all the vortices at the origin of R
2
q, one can equivalently

view them as vortices spanning R
2
t × S1 ⊂ R

4
q,t × S1. The equivalence between the two viewpoints gives

rise to the famous Langlands correspondence [63].
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masses and the Coulomb parameters to the following values:

a
(1)
1 = m1t,

a
(1)
2 = m2,

a
(1)
3 = m3,

...

a
(1)
N−1 = mN−1,

a
(1)
N = mN ,

a
(2)
1 = m1t,

a
(2)
2 = m2t,

a
(2)
3 = m3,

...

a
(2)
N−1 = mN−1,

a
(2)
N = mN ,

· · ·

a
(N−1)
1 = m1t,

a
(N−1)
2 = m2t,

a
(N−1)
3 = m3t,

...

a
(N−1)
N−1 = mN−1t,

a
(N−1)
N = mN ,

m̄1 = m1
t2

q ,

m̄2 = m2
t2

q ,

m̄3 = m3
t2

q ,
...

m̄N−1 = mN−1
t2

q ,

m̄N = mN
t2

q ,

(3.8)

and m
(r,r+1)
bif = 1 for all r. After this specialization the instanton sum in (3.1) over N -

tuples of Young diagrams ~Y (a) truncates: the only surviving terms are those with ~Y (a) of

the following form:

Y
(1)
1 = [k

(1)
1 ],

Y
(1)
2 = ∅,

Y
(1)
3 = ∅,

...

Y
(1)
N−1 = ∅,

Y
(1)
N = ∅,

Y
(2)
1 = [k

(2)
1 ],

Y
(2)
2 = [k

(2)
2 ],

Y
(2)
3 = ∅,

...

Y
(2)
N−1 = ∅,

Y
(2)
N = ∅,

· · ·

Y
(N−1)
1 = [k

(N−1)
1 ],

Y
(N−1)
2 = [k

(N−1)
2 ],

Y
(N−1)
3 = [k

(N−1)
3 ],

...

Y
(N−1)
N−1 = [k

(N−1)
N−1 ],

Y
(N−1)
N = ∅,

(3.9)

where the integers k
(a)
i satisfy the constraints (2.17). We then see that the instanton

partition function reduces exactly to the vortex series (2.16).

3.2 (p, q)-webs, topological strings and the geometric transition

We can realize 3d and 5d theories in terms of (p, q)-brane webs in Type IIB string the-

ory [33]. The (p, q)-brane web S for the U(N)N−1 theory consists of N NS5 branes (ver-

tical) and N D5’ branes (horizontal)14 as shown in figure 6(a). The NS5 and D5’ branes

fuse to form (1, 1)-branes, which are diagonal in figure 6. The tensions of the branes are

balanced regardless of their relative positions, therefore the system has moduli, correspond-

ing to the parameters of the gauge theory. The 5d theory obtained in this way lies on the

Coulomb branch, so some of the brane moduli are Coulomb parameters. Others correspond

to masses and gauge couplings. Concretely, changing the Coulomb moduli means changing

the positions of the internal branes, while fixing the semi-infinite ones.

Where is the Higgs branch in the brane setup? The origin of the Higgs branch appears

when at least one NS5 brane does not fuse with any of the D5’ branes passing vertically

through the whole picture. The NS5 brane can then be separated from the rest of the (p, q)-

web in the directions perpendicular to the plane of the picture, as shown in figure 6(b).

The position of the NS5 brane in these directions corresponds to the Higgs branch moduli.

14We can take the NS5 branes extending in directions 012789 and the D5’ in 012478.
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D5’

D5’

D5’

D5’

NS5 NS5

NS5 NS5

M2D3

M1D3
D5’

D5’

D5’

D5’

NS5 NS5

NS5

(a) (b)

D3

D3

D5’

D5’

NS5 NS5

τ1

τ2

µ1

µ2

D3

D3

D5’

D5’

NS5 NS5

λ

µ1

µ2

t

U(1) 2

τ1

τ2
µi

tµi

(c) (d) (e)

Figure 6. (a) (p, q)-brane web S, corresponding to the 5d U(2) square gauge theory. The picture

can also be viewed as the toric diagram of the CY. Compactifying M-theory on this CY one arrives

at the same gauge theory. (b) One NS5 brane is separated in the transverse direction, so that the

gauge theory goes onto the Higgs branch. The dashed lines denote two stacks of M1 and M2 D3

branes respectively stretching between the NS5 and D5’ branes. One can also view this picture as

describing the CY background after the geometric transition. (c) The brane setup corresponding

to the 3d FT [SU(2)] theory where M1 = 1 and M2 = 0. The masses µ1,2 and FI parameters τ1,2
of the gauge theory are encoded in the positions of the branes as shown. Notice that the second

NS5 brane is also detached from the web and a single D3 is stretched between it and the second

D5’ brane. This imposes the condition µ̄i = tµi. (d) Another projection of the brane setup (c).

The distance between the NS5 branes in the transversal directions λ corresponds to the coupling

constant of the 3d theory which does not enter the holomorphic block. (e) The 3d FT [SU(2)] gauge

theory obtained form the brane setup (c), (d). The deformation parameter t giving mass to the

adjoint multiplet originates from the Ω-background in the R
4
q,t part of the 10d geometry.

The vortex strings appearing in the Higgs phase of the 5d theory correspond to the D3

branes stretching between the D5’ branes and the separated NS5 brane. 3d FT [SU(N)]

theory is obtained by further tuning the positions of the branes as shown in figure 6.

Notice that we need also to detach the last NS5 brane from the web and stretch a single

D3 between it and one of the D5’ brane. This imposes the condition on the fundamental

chiral masses µ̄i = tµi. Notice the resulting diagonal pattern of the D3 branes.

To find the matter content of the 3d theory on the D3 branes it is instructive to look

at a different projection of the brane setup shown in figure 6(d). The D3 segment between
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the two NS5 branes supports 4d U(1) theory, which in the IR becomes 3d, since the length

of the segment is finite, while open strings stretching between D3 branes across NS5 branes

give rise to bifundamental filelds. The flipping fields arise, because the D3 branes can move

along the five-branes in the directions perpendicular to those drawn in figure 6.

The distance between the D5’ branes µ1

µ2
determines the masses of the fundamental

multiplets while the distance between the NS5 branes in the “Coulomb” direction τ1
τ2

gives

the FI parameter of the 3d FT [SU(2)] gauge theory.

We can now observe that the brane web in figure 6(c) under the action of Type IIB S-

duality which exchanges the NS5 and D5’ branes, thus effectively taking the mirror image

along the diagonal, is sent into an identical web diagram with mass and FI parameters

exchanged. This is due to two properties.

1. We have N NS5 and N D5’ branes. This is the reason why we call it square theory.

2. The number of D3 branes sitting at each intersection is tuned so that the whole

collection is symmetric along the diagonal.

This construction indicates that the 3d spectral self-duality of the FT [SU(N)] theory

follows from Type IIB S-duality.

We can see this very explicitly if we transform our Type IIB (p, q)-brane web into a

purely geometric background of M-theory without any five-branes (this technique is known

as geometric engineering of gauge theories). The background is a toric CY three-fold S

with toric diagram copied after the (p, q)-brane web. One can then compute the partition

function of M-theory on S× R
4
q,t × S1 by computing the refined (with (q, t)-deformation)

topological string partition function Ztop[X] [64, 65].

The positions of the five-branes become complexified Kähler parameters of the CY S.

It will be natural for us to trade the Kähler parameters of the compact two-cycles on CY

for the so-called spectral parameters living on the edges of the diagram. They are defined

so that for two parallel lines on the diagram with spectral parameters z and w the Kähler

parameter of the two-cycle between the lines is given by z
w :

z

w

def
=

z w

(3.10)

and are conserved at the brane junctions:

u

z

uz

(3.11)
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m1 a
(1)
1 a

(2)
1 a

(3)
1 m̄1

m2 a
(1)
2 a

(2)
2 a

(3)
2 m̄2

m3 a
(1)
3 a

(2)
3 a

(3)
3 m̄3

m4 a
(1)
4 a

(2)
4 a

(3)
4 m̄4

1 Λ1 Λ1Λ2 Λ1Λ2Λ3

QL

QR

QD

QD
QL

QR

t
q

t
q

def
=

QL QR

QD

QD
QL

QR

(a) (b)

Figure 7. (a) The toric diagram S producing the square gauge theory from figure 5. The labels of

the lines correspond to the spectral parameters on the toric diagram and encode the parameters of

the gauge theory. (b) The shorthand notation for the crossings: black circles denote the resolved

conifold geometries with general Kähler parameters. Notice that the spectral parameter on the

upper vertical leg is determined by the “conservation law”.

The toric diagram of the CY background S corresponding to the 5d U(4)3 square

gauge theory is shown in figure 7 (we use the shorthand notation for the resolved conifold

pieces of the geometry, as shown in (b)). The Higgs branch of the 5d gauge theory appears

when all the conifold resolutions along one of the vertical lines become degenerate, i.e. their

Kähler parameters vanish. In this case the CY can be deformed, so that each crossing looks

like a deformed conifold geometry, locally a T ∗S3. Resolved and deformed backgrounds of

(refined) topological strings are related by the geometric transition [66, 67], i.e. at quantized

values of the conifold Kähler parameter Q =
√

q
t t

N the resolution is equivalent to the

deformed geometry with a stack of N Lagrangian branes wrapped over the compact three-

cycle. The background after the geometric transition can be illustrated by figure 6(b) and

(c) with dashed lines now playing the role of Lagrangian branes. Quantized values of the

Kähler parameters correspond to the points (3.7) on the Coulomb branch of the 5d gauge

theory, while the deformed geometry with Lagrangian branes corresponds to 5d theory on

the Higgs branch with a collection of vortices, on which the 3d FT [SU(N)] theory leaves.

We call the Higgsed version of CY S by S (so that S represents a particular point in

the Kähler moduli space of S). In this way, geometric transition explains the Higgsing

procedure described above.

We can then calculate the closed topological string partition Ztop(~µ, ~τ , q, t) for the

CY background S with tuned Kähler paramters in figure 8 using the refined topological

vertex [64, 65] or using the techniques of [68, 69] and check that it reproduces the vortex

plus one loop factor of the holomorphic block BD2×S1

FT [SU(N)](~µ, ~τ , q, t):

∏

i<j

(
q
t
µi

µj
; q
)
∞(

t µi

µj
; q
)
∞

Z
3d, (α0)
1−loop (~µ, ~τ , q, t)Z

3d, (α0)
vort (~µ, ~τ , q, t) = Ztop(~µ, ~τ , q, t) (3.12)

where we have omitted an overall constant independent of ~µ and ~τ in Ztop. The first factor

in the l.h.s. of eq. (3.12) is the contribution of the flipping fields (it is essentially f(~µ, q, t)−1

up to a power factor).
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τ1

τ2

τ3

τ4

µ1µ2µ3µ4

QL

√

q

t
QL

QD

√

t

q
QD

t
q

t
q

def
=

QL

QD

(a) (b)

QL

√

q

t
t−1QL

QD

√

t

q
tQD

t
q

t
q

def
=

QL

QD

=

D5

NS5

D3

(c)

Figure 8. (a) The toric diagram S for the higgsed gauge theory, i.e. for parameters tuned as in

eq. (3.8). We have rotated the picture compared to figure 6 by π
2 to aid explicit refined topological

string computations. b) The “empty crossing” denotes the fully degenerate refined conifold ampli-

tude. (c) The “higgsed crossing” denote refined conifold amplitude corresponding to the geometric

transition of the deformed geometry with a single brane wrapping S3.

Notice how the two sides of eq. (3.12) behave in the unrefined limit t = q. The

topological string partition function for t = q simplifies, and in particular empty cross-

ings become really non-interacting, so that the whole diagram in figure 8(a) splits into

a product of non-interacting resolved conifold pieces, so that Ztop(~µ, ~τ , q, q) = 1. This

agrees with the behavior of the one-loop and vortex partition functions we have observed

in eqs. (2.28), (2.29).

3.3 Fiber-base and spectral duality

Finally we discuss how the spectral self-duality of the FT [SU(N)] holomorphic block ap-

pears from the geometric engineering perspective. The CY background S in figure 8 is

invariant under the action of the fiber-base duality (reflection along the diagonal) which

swaps fiber and base Kähler parameters or, equivalently, exchanges µi with τi. So is the

corresponding refined topological string partition function which satisfies:15

Ztop(~µ, ~τ , q, t) = Ztop(~τ , ~µ, q, t) . (3.13)

15Notice that in the brane web there is a so-called preferred direction. When the mirror image is taken

the direction is modified but the closed string amplitudes are invariant under this change. As we discuss in

the next section this can be understood in the algebraic approach to the vertex. For open string amplitudes

the situation is more subtle, see [41].
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Notice that the parameters q and t of the refined topological string are left invariant by

the action of the fiber-base duality.

Considering the Higgsing relation (3.12) we see that eq. (3.13) implies

∏

i<j

(
q
t
µi

µj
; q
)
∞(

t µi

µj
; q
)
∞

Z
3d, (α0)
1−loop (~µ, ~τ , q, t)Z

3d, (α0)
vort (~µ, ~τ , q, t)

=
∏

i<j

(
q
t
τi
τj
; q
)
∞(

t τiτj ; q
)
∞

Z
3d, (α0)
1−loop (~τ , ~µ, q, t)Z

3d, (α0)
vort (~τ , ~µ, q, t) . (3.14)

We can then easily check that the contact terms in f(~µ, q, t) satisfy the following relation

e−(1−2β)
∑N

i=1(i−1)MiZ
3d, (α0)
cl (~µ, ~τ , q, t) = e−(1−2β)

∑N
i=1(i−1)TiZ

3d, (α0)
cl (~τ , ~µ, q, t). (3.15)

Hence we conclude that

BD2×S1

FT [SU(N)] (~τ , ~µ, q, t) =
∏

i<j

(
q
t
µi

µj
; q
)
∞(

t µi

µj
; q
)
∞

Z
3d, (α0)
1−loop (~µ, ~τ , q, t)Z

3d, (α0)
vort (~µ, ~τ , q, t)

=
∏

i<j

(
q
t
τi
τj
; q
)
∞(

t τiτj ; q
)
∞

Z
3d, (α0)
1−loop (~τ , ~µ, q, t)Z

3d, (α0)
vort (~τ , ~µ, q, t)

= BD2×S1

FT [SU(N)] (~µ, ~τ , q, t) (3.16)

This is one of our main results: we have an explicit realization of how the 3d spectral

duality relation (2.37) follows from the fiber-base self-duality of the CY background S.
We will provide more examples of this idea in [23].

3.3.1 Symmetries of the blocks: the Ding-Iohara-Miki algebra approach

In this section we briefly discuss the algebraic version of the topological vertex for-

malism [70] based on the representation theory of Ding-Iohara-Miki (DIM) algebra

Uq,t(
̂̂
gl1) [71, 72]. This algebra is a central extension and quantum deformation of the

algebra of double loops in C, i.e. of the polynomials xnym, n,m ∈ Z. The deformation

parameters q and t correspond to the parameters of the Ω-background in the 5d gauge

theory, or to the parameters of the N = 2 deformation of the 3d N = 4 T [SU(N)] theory.

The algebra is symmetric under any permutation of the triplet of parameters (q, t−1, t
q ).

However, the representations retain only part of this symmetry. The simplest representa-

tion is the representation on the Fock space F with convenient choice of basis given by

Macdonald polynomials M
(q,t)
Y (a−n)|vac〉. It (along with its tensor powers) corresponds

to the action of the algebra on the equivariant cohomology of instanton moduli space of

the 5d gauge theory. The representation is invariant under the exchange of q and t−1,

provided one maps the creation operators a−n into −1−qn

1−tn a−n. In particular, in the basis
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of Macdonald polynomials the symmetry corresponds to the transposition of the Young

diagram Y :

M
(t−1,q−1)

Y T (a−n)|vac〉 = M
(q,t)
Y

(
−1− qn

1− tn
a−n

)
|vac〉 (3.17)

From physical point of view this symmetry is natural, since q and t−1 are two equivariant

parameters acting along two orthogonal planes in the R
4
q,t.

In the algebraic construction of refined topological strings each leg of the brane web

corresponds to a Fock representation. The direction of the leg corresponds to vector of

two central charges (k1, k2) of the DIM algebra. Thus we call Fock representations vertical

or horizontal depending on the value of the central charges. Brane junction corresponds

to DIM algebra intertwining operator acting from the tensor product of two Fock spaces

(e.g. vertical and horizontal) into a single Fock space (e.g. diagonal) or vice versa. Gluing

of vertices corresponds to the composition of intertwiners. Spectral duality of the brane

web corresponds to the Miki automorphism of the DIM algebra, which in particular takes

the mirror image of the central charge vector (k1, k2) 7→ (k2,−k1). Mirror image of charge

vectors implies mirror image of all the brane web. Miki automorphism does not change q

and t parameters. Thus, we conclude that partition function of refined topological string

corresponding to the brane web in figure 8(a) is invariant under the symmetry (3.13).16

When composing two intertwiners (or gluing two vertices in the brane web) we need to

perform the sum over intermediate states belonging to the Fock representation, i.e. over all

Young diagrams Y . However, for the specific choice of spectral parameters corresponding

to the higgsed theory, only a subset of diagrams yields nonzero matrix elements. In the

setup shown in figure 8. Those are diagrams with at most one column, i.e. Y = [k].

The sum over these diagrams corresponds to the sum over k
(a)
i in the vortex partition

function (2.16). The subspace of the Fock representation F retains larger symmetry of

the original DIM algebra. In particular it turns out that, besides the standard q ↔ t−1

symmetry, the symmetry t ↔ q
t is also secretly preserved in the partition function. A simple

example of such situation occurs in the basis of Macdonald polynomials. The polynomials

corresponding to totally antisymmetric reps do not depend on q and t, so they do not feel

the exchange of t and q
t . We plan to return to this point in the future.

4 Duality web III

In this section we study the Duality web III depicted in figure 3.

4.1 2d GLSM, Hori-Vafa dual and Toda blocks

On the gauge theory side (face 3) we consider the limit where we shrink the S1 circle and

reduce the FT [SU(N)] theory from D2 × S1 to the cigar D2. This corresponds to taking

16There is a subtle part in this argument, because the definition of the intertwiner requires the choice

of a coproduct in the algebra. It turns out that this choice amounts to the choice of a direction in the

brane web — the so-called preferred direction. When the mirror image is taken the direction is modified.

However, different directions are related by a Drinfeld twist and give the same answer for all closed string

amplitudes, in particular for the partition function.
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q = e~ → 1 since ~ = Rǫ where R is the circle radius and ǫ is the equivariant parameter

rotating the cigar which we keep fixed (and indeed can set its numerical value to one).

As we have already mentioned in the Introduction there are various ways to take the

2d limit, here we consider the limit which is the ordinary dimensional reduction of the 3d

FT [SU(N)] theory down to the theory with the same matter content in 2d. This limit is

called the Higgs limit in [9, 44], since the 3d FI parameters are large and lift the Coulomb

branch while the matter fields remain light.

In our conventions (where the 3d real mass parameters are dimensionless as they have

already been rescaled by R), this limit is implemented by taking Ta finite as ~ → 0 and

µj = eMj ≡ e~fj = qfj , t = qβ . (4.1)

We identify fj and β as the (dimensionless) twisted mass parameters for the SU(N)×U(1)A
symmetries. We will keep all these deformations finite to ensure that the theory has N

isolated massive vacua.

When we take the limit on the partition functions we also have to consider possible

rescaling of the integration variable which can single out the contribution for vacua located

at infinite distances. In the Higgs limit case the vacua remain at finite distances which

corresponds to taking:

x
(a)
i = eX

(a)
i = e~w

(a)
i = qw

(a)
i . (4.2)

With this parameterisation, using the following limit discussed in the appendix C

lim
q→1

(qx; q)∞
(q; q)∞

= (−~)1−x 1

Γ(x)
, (4.3)

we can take the q → 1 limit of the block BD2×S1

FT[SU(N)] and find:

lim
q→1

BD2×S1

FT[SU(N)] = ~
N(N−1)(β−1)

2 (−1)
1
2
N(N−1)β

N−1∏

a=1

e(1−β)a2(Ta+1−Ta)
N∏

k<l

Γ(fk − fl + β)

Γ(fk − fl + 1− β)

×
∫ N−1∏

a=1

a∏

i=1

dw
(a)
i

N−1∏

a=1

a∏

i=1

ew
(a)
i (Ta−Ta+1)

N−1∏

a=1

a∏
i,j

Γ
(
β + w

(a)
i − w

(a)
j

)

a∏
i 6=j

Γ
(
w

(a)
i − w

(a)
j

)

×
N−2∏

a=1

a∏

i=1

a+1∏

j=1

Γ
(
w

(a+1)
j − w

(a)
i

)

Γ
(
β + w

(a+1)
j − w

(a)
i

)
N∏

p=1

N−1∏

i=1

Γ
(
fp − w

(N−1)
i

)

Γ
(
β + fp − w

(N−1)
i

)

∼ ~
N(N−1)(β−1)

2 BD2

FT[SU(N)] . (4.4)

The divergent ~ prefactor in the above expressions is the leading contribution to the

saddle point and we will have to match it to analogue divergence arising from the limit of the

dual block. Then we identified up to a contact term the D2 partition functions BD2

FT[SU(N)]

of the N = (2, 2) FT [SU(N)] theory which can be written down following [73, 74]. The

chiral multiplets contributions to the partition function are now given by Gamma functions
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which sit in the numerator or in the denominator depending whether they correspond to

Neumann or Dirichlet boundary conditions as in the 3d case. Our symmetric choice of

the boundary condition for the chiral multiplets corresponds to a particular boundary

condition.

On the spectral dual side, where the FI and mass parameters are swapped the limit

we have just described acts very differently and it corresponds to the so called Coulomb

limit. Indeed now the chirals are massive and the Higgs branch is lifted. As before however

we keep all the deformations parameters non zero so that the 2d theory still has isolated

vacua. This time however the vacua are at infinity. In our convention this means that the

3d Coulomb brach parameters x
(a)
i = eX

(a)
i stay finite as ~ → 0.

In this case we will use the following property of q-Pochhammer symbols

lim
q→1

(qax; q)∞
(qbx; q)∞

= (1− x)b−a , (4.5)

which is proven in the appendix C and find that:

lim
q→1

B̂D2×S1

FT [SU(N)] = (−~)
N(N−1)

2
(β−1)Γ(β)

N(N−1)
2 e(2β−1)

∑N
a=1(a−1)Ta

N∏

k<l

(1− τk
τl
)2β−1

×
∫ N−1∏

a=1

a∏

i=1

dx
(a)
i

x
(a)
i

N−1∏

a=1

a∏

i=1

(
x
(a)
i

)f (a)−f (a+1)−β
N−1∏

a=1

a∏

i 6=j

(
1−

x
(a)
j

x
(a)
i

)β

×
N−2∏

a=1

a∏

i=1

a+1∏

j=1

(
1−

x
(a+1)
j

x
(a)
i

)−β
N∏

p=1

N−1∏

i=1

(
1− τp

x
(N−1)
i

)−β

∼ ~
N(N−1)(β−1)

2 D̂F
AN−1

N+2 . (4.6)

We notice first of all that the divergent prefactor in the above expression matches the

one we found by taking the limit on the spectral dual side, which guarantees that we are

comparing the right set of vacua on both sides of the duality.

In the last equality we identified the integral block D̂F
AN−1

N+2 of (N + 2) vertex operators

in AN−1 Toda CFT with screening charges Na = a and the following identification of

parameters:

~̂α(p) = β~ωN−1 , α̂(0)
a = f (a) + (1− β)a , ẑp = τp , β̂ = β . (4.7)

As before we put ∼ in (4.6) because we omitted the overall zp dependent factor in the Toda

conformal block (2.54).17

Thus we have obtained the red diagonal link in the web 3 which relates the 2d gauge the-

ory to the CFT block. Notice that the map (4.7) between the parameters of the gauge the-

ory and Toda block is consistent with the ~ → 0 limit of the previously derived gauge/CFT

correspondence map (see table 1) after the spectral duality transformation τp ↔ µp, β → β.

17The prefactor
∏N

k<l

(

1− τk
τl

)2β−1

in eq. (4.6) has a different power of β compared to the contribution

we would get from the normal ordering of vertices from eq. (2.44). This is due to the fact that, as we have

mentioned earlier, our deformed vertices naturally incorporate the contribution of the central (also called

the U(1)) part, whereas the conventional undeformed Toda vertices do not.
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To make contact with the Hori-Vafa dual theory of twisted chiral multiplets which

we expect to find on the bottom right corner of face 3 in figure 3 we simply need to

exponentiate the integrand I in eq. (4.6) as I = exp(log I) and identify log(I) with W
the twisted superpotential contribution to the D2 partition function of the Hori-Vafa dual

theory. The dual theory also has N(N − 1)/2 un-gauged chiral multiplets which yield the

Γ(β) factors.

Notice that we keep all the FI and the twisted mass deformations on. This is necessary

for the convergence of the integrals (and to relate them to CFT) so the match of the D2

partition functions is a check of the duality for the mass deformed theories with isolated

vacua. As recently discussed in [8, 9] it is quite subtle to understand what happens when

these deformations are lifted and generically we are not guaranteed to find a proper IR

duality for massless theories.

4.2 2d GLSM and the d-Virasoro algebra

Finally the remaining corner of face 2, labelled dDF
AN−1

N+2 is to be interpreted as a con-

formal block of an unconventional limit of the q-WN algebra. Here we briefly sketch the

construction of this theory restricting ourselves to the case N = 2. We then start from the

q-Virasoro algebra which is generated by the current T (z) satisfying the quadratic relation:

f
(w
z

)
T (z)T (w)−f

( z

w

)
T (w)T (z) = −(1− q)(1− t−1)

1− q
t

(
δ×
(q
t

w

z

)
− δ×

(
t

q

w

z

))
(4.8)

where

f(x) = exp


∑

n≥1

(1− qn)(1− t−n)

1 +
( q
t

)n
xn

n


 =

(
qx; q

2

t2

)
∞

(
t−1x; q

2

t2

)
∞

(1− x)
(
q2

t x;
q2

t2

)
∞

(
q
t2
x; q

2

t2

)
∞

(4.9)

and δ×(x) =
∑

n∈Z x
n is the multiplicative delta-function. One can understand δ×(x) as

the delta function on the unit circle, where x = eiφ, since

∑

n∈Z
einφ =

∑

m∈Z
δ+(φ− 2πm),

and δ+(u) is the standard (additive) Dirac delta-function.

The q-Virasoro algebra in the familiar limit q = e~ → 1 and t = qβ with fixed β

reduces to the Virasoro algebra. This can be seen by taking the above limit in eq. (4.8)

keeping fixed also the positions of the currents z and w. In this case one recovers the

quadratic relation for the ordinary Virasoro algebra. The current T (z) also reduces to the

Virasoro current L(z):

T (z) = 2 + β~2

(
z2L(z) +

1

4

(√
β − 1√

β

)2
)

+ . . . (4.10)

We can also take an unconventional limit of the quadratic relation (4.8) where positions

z and w scale as powers of q:

z = qu, w = qv, (4.11)
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and the current t(u) = limq→1 T (q
u) remains finite then the relations of the algebra become

g(v − u)t(u)t(v)− g(u− v)t(v)t(u) = − β

1− β
(δ+(v − u+ 1− β)− δ+(v − u− 1 + β))

(4.12)

where the structure function becomes

g(u) =
2(1− β)

u

Γ
(
u+2−β
2(1−β)

)
Γ
(
u+1−2β
2(1−β)

)

Γ
(

u+1
2(1−β)

)
Γ
(

u−β
2(1−β)

) . (4.13)

The main effect of the limit is that the q-Pochhammer symbols in the definition of the q-

Virasoro structure function (4.9) turn into Euler gamma functions. Essentially this algebra,

which we will call d-Virasoro algebra, is the additive analogue of the q-Virasoro algebra.

We claim that conformal blocks of the d-Virasoro algebra have the DF representation

which coincides with the GLSM localization integrals. Moreover, these blocks are spectral

dual to the ordinary CFT conformal blocks, so that the positions of the vertex operators

in d-Virasoro become momenta in the dual CFT and vice versa.

The algebra (4.12) can be bosonized as follows. We express the current as:

t(u) = Λ1(u) + Λ2(u), (4.14)

where

Λ1(u) = eQ̃ (g(u))P̃ : exp

[
∑

n≥1

1

n
c−n (u

n − (u− β)n)

−
∑

k≥0

∑

n≥1

1

n
cn(−1)k

(
(u− (1− β)k)−n − (u− 1− (1− β)k)−n

)
]
: , (4.15)

Λ2(u) = e−Q̃ (g(u))−P̃ : exp

[
−
∑

n≥1

1

n
c−n ((u+ β − 1)n − (u− 1)n)

+
∑

k≥0

∑

n≥1

1

n
cn(−1)k

{
(u+ β − 1− (1− β)k)−n − (u+ β − 2− (1− β)k)−n

}
]
:

(4.16)

and the generators cn, Q̃ and P̃ obey the Heisenberg algebra. Notice that the sums over k

in the exponentials converge for generic u.

The screening current commuting with the generator t(u) up to total difference is

given by

s(x) = eQ̃+Q

(
Γ(β − u)Γ(1− u)

Γ(−u)Γ(1− β − u)

)P̃

eβxP : exp

[
−
∑

n≥1

un

n
c−n

+
∑

n≥1

∑

k≥0

1

n
cn
{
(u−k)−n−(u−β−k)−n+(u+β−1−k)−n−(u−1−k)−n

}
]
:

(4.17)
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where we have introduced an additional pair of zero modes P and Q, which commute with

the Heisenberg algebra formed by P̃ , Q̃ and cn.

We can immediately check that the normal ordering of the screening currents correctly

reproduces the gamma function measure of the GLSM integral measure:18

n∏

i=1

s(wi) = :
n∏

i=1

s(wi) :
∏

i<j

Γ(wj − wi + β)Γ(wj − wi + 1)

Γ(wj − wi)Γ(wj − wi + 1− β)

= :

n∏

i=1

s(wi) :
∏

i<j

sin(π(wi − wj + β))

sin(π(wi − wj))

∏

i 6=j

Γ(wj − wi + β)

Γ(wj − wi)
. (4.18)

We then introduce vertex operators:

vα(x) = eαQ̃+αQ

(
Γ(−α− x)

Γ(−x)

)P̃

eαxP

× : exp


∑

n≥1

xn

n
c−n −

∑

n≥1

∑

k≥0

1

n
cn
{
(x− k)−n − (x+ α− k)−n

}

 : , (4.19)

and assume that the initial state |α(0)〉 of the conformal block is annihilated by P̃ and is

the eigenfunction of P :

P̃ |α(0)〉 = 0, P |α(0)〉 = α(0)|α(0)〉. (4.20)

We can then combine all the pieces and calculate our d-DF integral for (n + 2)-point

conformal block which as expected reproduces the FT [SU(N)] partition function eq. (4.4):

dDFA1
n+2(u1, . . . , un, α(0), α(1), . . . , α(n), N, β)

def
= 〈α(∞)|vα(1)

(u1) · · · vα(n)
(un)

(∮
dw s(w)

)N

|α(0)〉

∼
∫

dNw e(α(0)+N)
∑N

i=1 wi

∏

i 6=j

Γ(wi − wj + β)

Γ(wi − wj)

N∏

i=1

n∏

p=1

Γ(wi − up)

Γ(wi − up − α(p))
. (4.21)

The Duality web in (face 4) figure 3 indicates that the d-DF blocks are dual to the DF block

of the ordinary Wn algebra. This is a consequence of the spectral duality for deformed

Toda correlators. In particular in the N = 2 case we have a duality between the four-

point d-Virasoro block and the 4-points ordinary Virasoro block. Notice that while the

evaluation of the DF blocks is quite intricate (even in the simple cases involving vertices

with degenerate momenta) the evaluation d-DF blocks can be performed quite easily on

contours encircling the poles of the Γ functions. One can than regard the map of ordinary

DF blocks to d-DF blocks or to GLSM partition functions as an efficient computational

strategy. We will continue this discussion in [50].

18The ratio of sines in the second line of eq. (4.18) is a periodic function with period 1 and will factor

out of the integral block. This happens for the same reason as in the q-deformed case: the residues of the

integrand which is a product of gamma functions appear in strings with period 1.
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5 Conclusions and outlook

In this work we have studied several webs of dualities for the FT [SU(N)] quiver theory:

the spectral duality, the q-deformed Dotsenko-Fateev representation and its realisation via

Higgsing. We have proven these dualities and correspondences focusing on the D2 × S1

partition function BD2×S1

FT [SU(N)].

The main results of our paper are:

1. derivation of the 3d spectral duality for the FT [SU(N)] theory from fiber-base duality

of 5d gauge theories,

2. identification of the gauge/Toda correspondence [46–48] between the N = (2, 2)

FT [SU(N)] theory and the Dotsenko-Fateev block with (N + 2) vertex operators in

AN−1 Toda CFT as a limit of our 3d spectral duality.

Our results open up a vista full of possible directions for future research. Below we

propose a number of projects which can provide better understanding and further expand

our conjectures.

First of all in our paper we have focused on the FT [SU(N)] theory, however via Hig-

gsing, we can generate infinitely many 3d spectral dual pairs (some examples will be given

in [23]). For each of them we could construct duality webs similar to those considered in

above. In particular, by taking the q → 1 limits we should obtain pairs of 2d GLSMs and

Dotsenko-Fateev blocks related by the standard GLSM/CFT correspondence.

The duality web III shown in figure 3 has two more corners which we have not discussed

much in our paper. One corner contains partition function BD2

LG of the Landau-Ginzburg

theory on D2. According to the logic of the duality web III it should be connected to

the DF integral in Toda CFT by simple identification of the parameters. However at

the moment this interesting connection between two seemingly distinct objects seems not

completely obvious.

Another corner of the web contains what we called dDF
AN−1

N+2 integrals. These inte-

grals correspond to conformal blocks with (N + 2) primary vertex operators of the d-WN

algebra. In section 4 we have described this algebra for the case of N = 2, wrote down its

bosonization and conformal blocks. It would be interesting to generalize this construction

to the case of d-WN algebra with general N and study its properties and possible relations

to integrable models. We plan to do it in [50].
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A Partition function on D2 × S1

In this appendix we quickly record the steps to obtain the holomorphic block integral for

the T [SU(N)] theory from the factorisation of the S3
b partition function. For details and

notation we refer the reader to [18, 19]. The key point is the following chain of relations

relating the partition function on a compact three-manifold which can be obtained gluing

to solid tori D2 × S1 with some SL(2, Z) element, which in the squashed three sphere case

S3
b is the element S and the 3d holomorphic blocks:

ZS3
b
=

∫
||Υ||2S =

∑

α

∣∣∣∣
∣∣∣∣
∫

Γα

Υ

∣∣∣∣
∣∣∣∣
2

S

=
∑

α

∣∣∣
∣∣∣BD2×S1

α

∣∣∣
∣∣∣
2

S
. (A.1)

This very non-trivial chain of identities provides us with a practical way to obtain the block

integrand Υ by factorising the integrand of the S3
b partition function which consists of the

classical contribution of the mixed Chern-Simons couplings and the one-loop contribution

of the vector and chiral multiplets:

ZS3
b
=

∫
ZCSZvecZmatter . (A.2)

The factorisation of the S3
b integrand follows from the fact that the vector and matter

contributions are expressed in terms of the double sine function S2(X) which can be fac-

torised as:

S2(X) = e
iπ
2
B22(X)

(
e2πibX ; e2πib

2
)
∞

(
e2πib

−1X ; e2πib
−2
)
∞

≡ e
iπ
2
B22(X)

∣∣∣
∣∣∣
(
e2πibX ; e2πib

2
)
∞

∣∣∣
∣∣∣
2

S
, (A.3)

where B22(X) stands for the quadratic Bernoulli polynomial

B22(X) =
(
X − ω

2

)2
− 1

12

(
b2 + b−2

)
, (A.4)

where ω = b+ b−1. Using this property we can factorise the one-loop contributions to the

T [SU(N)] partition function on S3
b :

1. Bifundamental hypermultiplet of mass m̃ conneting nodes a and b:

Z
(a,b)
bifund

[
S3
b

]
=
∏

±

Na∏

i=1

Nb∏

j=1

S−1
2

(
ω

4
− i

m̃

2
± i
(
X̃

(a)
i − X̃

(b)
j

))

=

Na∏

i=1

Nb∏

j=1

S2

(
3ω
4 + i m̃2 + i

(
X̃

(a)
i − X̃

(b)
j

))

S2

(
ω
4 − im̃

2 + i
(
X̃

(a)
i − X̃

(b)
j

)) , (A.5)

and using the factorization formula (A.3) can be expressed as:

Z
(a,b)
bifund

[
S3
b

]
=

Na∏

i=1

Nb∏

j=1

e
iπ
2

[

B22

(

3ω
4
+ im̃

2
+i

(

X̃
(a)
i −X̃

(b)
j

))

−B22

(

ω
4
− im̃

2
+i

(

X̃
(a)
i −X̃

(b)
j

))]

×

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

(
e
2πib

[

3ω
4
+ im̃

2
+i

(

X̃
(a)
i −X̃

(b)
j

)]

; q
)
∞(

e
2πib

[

ω
4
− im̃

2
+i

(

X̃
(a)
i −X̃

(b)
j

)]

; q
)
∞

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

S

(A.6)
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This general expression can be significantly simplified in for the matter content of

T [SU(N)] theory. In this case only two adjacent nodes are connected with the bifun-

damental hypermultiplet so that we should take b = a + 1 in the expression above.

Also we fix the ranks of the gauge groups in the following form Na = a. Then we

can write the contribution of all bifundamental hypers in T [SU(N)] quiver in the

following form:

Zbifund

[
S3
b

]
=

N−2∏

a=1

Z
(a,a+1)
bifund

[
S3
b

]

= e−
~

12
N(N−1)(N−2)β(1−β)

N−1∏

j=1

t−(N−2)X
(N−1)
j /2~

×
N−2∏

a=1

a∏

i=1

tX
(a)
i /~

N−1∏

a=1

a∏

i,j=1

∣∣∣∣∣∣

∣∣∣∣∣∣

(
tx

(a+1)
j /x

(a)
i ; q

)
∞(

x
(a+1)
j /x

(a)
i ; q

)
∞

∣∣∣∣∣∣

∣∣∣∣∣∣

2

S

, (A.7)

where we made the following identification with the holomorphic block variables:

e2πib
2 ≡ q = e~ , e2πbX̃

(a)
i e2πiba(

ω
4
−i m̃

2 ) ≡ eX
(a)
i = x

(a)
i ,

e2πib(
ω
2
+im̃) ≡ − q1/2e−m′

= t . (A.8)

So we identify 2πbm̃ ≡ m′ where m̃ are the dimensionless real masses parameters (use

S3
b radius) entering in the S3

b partition function while m′ = Rm3d is the dimensionless

axial mass appearing in the holomorphic block. And the S3
b and D2 × S1 Coulomb

branch variables 2πbX̃
(a)
i ≡ X ′(a)

i which is then further shifted to X
(a)
i .

2. Nf hypers of masses M̃p (p = 1, . . . , N
(a)
f ) connected to the U(N−1) node. Factorising

the double sine as in the previous case and expressing the result in terms of the shifted

exponentiated variables we find:

Zfund

[
S3
b

]
= e−

~

4
N(N2−1)β(1−β)

N−1∏

i=1

tNX
(N−1)
i /2~

N−1∏

i=1

N∏

p=1

∣∣∣∣∣∣

∣∣∣∣∣∣

(
tµp/x

(N−1)
i ; q

)
∞(

µp/x
(N−1)
i ; q

)
∞

∣∣∣∣∣∣

∣∣∣∣∣∣

2

S

,

(A.9)

where we also introduced

µp = e2πbM̃pe2πibN(
ω
4
−i m̃

2 ) = eM
(a)
p . (A.10)

again we have the identification 2πbM̃p = M ′
p between the dimensionless mass pa-

rameters M̃p on S3
b and the dimensionless mass parameters M ′

p = RM3d
p on D2×S1.

3. Vector+adjoint multiplet of mass m̃ at node a. Finally the contribution of vector and

adjoint hypers is given by:

Zvec+adj

[
S3
b

]
= e

~

4
N(N−1)β(1−β)e−

m′2
4~

N

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

N−1∏

a=1

Na∏
i 6=j

(
x
(a)
j /x

(a)
i ; q

)
∞

Na∏
i,j

(
tx

(a)
j /x

(a)
i ; q

)
∞

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

2

S

. (A.11)
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4. Mixed Chern-Simon terms. Finally we need to discuss the contribution of the mixed

Chern-Simon terms. In the T [SU(N)] theory we have turned on real masses Ta+1−Ta

for the topological symmetry of the a-th gauge node. These mixed Chern-Simons

terms contribute to partition function as:

Z
(a)
FI

[
S3
b

]
= e

aNa
2

(1−β)(Ta+1−Ta)
Na∏

i=1

eX
(a)
i (Ta−Ta+1)/~ , (A.12)

where the first factor comes from the change of variables from X̃
(a)
i to X

(a)
i .

Other mixed gauge-flavor Chern-Simons coupling are induced by the factorisation

of the chiral multiplets (linear in X
(a)
i ) in (A.7), (A.9). Finally all the remain-

ing exponential terms in (A.7), (A.9) and (A.11) are mixed background Chern-

Simons contributions.

At this point we should express these Chern-Simons contributions as squares. To

do so one can use the following rewriting of the modular transformation of the Jacobi-

theta function:

e−
(X−(iπ+~/2))2

2~ = θq(x)θq̃(x̃) = ||θq(x)||2S (A.13)

where θq(x) = (qx−1; q)∞(x; q)∞. Using this identity we can convert quadratic exponential

into squares of theta functions and deduce the combination of theta functions which repre-

sent the contribution of the Chern-Simons coupling to the block integral. For more details

we refer the reader to [18]. In [51] the theta functions appearing in the block integrals have

been shown to arise as one-loop contributions of 2d multiplets on the boundary torus.

B Calculation of free field correlators

In this appendix we show how to get the DF representation of the conformal blocks in

Toda theory and its q-deformed version.

B.1 Toda conformal block

To calculate free field correlators of the form (2.48) we normal order all our expressions using

the standard normal ordering identity valid for the operators vi commuting on a c-number:
∏

i

: evi : = :
∏

i

evi :
∏

i<j

e[v
+
i , v−j ]. (B.1)

Then using the Heisenberg algebra (2.45) it is straightforward to obtain the following rela-

tions for the normal ordering of the screening currents (2.43) and vertex operators (2.44).

1. Normal ordering the screening currents from the same sector

Na∏

i=1

S(a)

(
x
(a)
i

)
= C(a,a)

(
x(a)

)
:

Na∏

i=1

S(a)

(
x
(a)
i

)
: , (B.2)

C(a,a)
(
x(a)

)
=
∏

i

(
x
(a)
i

)β(N−1)∏

i 6=j

(
1−

x
(a)
j

x
(a)
i

)β

. (B.3)
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2. Normal ordering the screening currents from different sectors

:

Na∏

i=1

S(a)

(
x
(a)
i

)
: :

Nb∏

j=1

S(b)

(
x
(b)
j

)
: (B.4)

= C(a,b)
(
x(a), x(b)

)
:

Na∏

i=1

S(a)

(
x
(a)
i

) Nb∏

j=1

S(b)

(
x
(b)
j

)
: ,

where

C(a,b)
(
x(a), x(b)

)
= (δb,a+1 + δb,a−1)

Na∏

i=1

(
x
(a)
i

)−β Nb
Na∏

i=1

Nb∏

j=1

(
1−

x
(b)
j

x
(a)
i

)−β

. (B.5)

3. Normal ordering the screening currents and vertex operators

V~α (z)

Na∏

i=1

S(a)

(
x
(a)
i

)
= C(a)

(
x(a), z, ~α

)
:V~α (z)

Na∏

i=1

S(a)

(
x
(a)
i

)
: ,

C(a)
(
x(a), z, ~α

)
∼

Na∏

i=1

(
1− x

(a)
i

z

)αa−αa+1

, (B.6)

where we have omitted an overall constant factor.

4. Normal ordering of different vertex operators

l∏

p=1

V T
~α(p)(zp) = Cvert.(~α, z) :

l∏

p=1

V T
~α(p)(zp) : , (B.7)

where

Cvert. (~α, z) =

l∏

p<k

(zp − zk)
1
β (~α

(p), ~α(k)) . (B.8)

5. Vertex operator at the origin. To evaluate it we notice that after the normal ordering

under the integral we get the term of the form

n∏

a=1

Na∏

i=1

(
x
(a)
i

)√β(P (a)−P (a+1))
|~α(0)〉 =

n∏

a=1

Na∏

i=1

(
x
(a)
i

)(α(0)
a −α

(0)
a+1

)

|~α(0)〉. (B.9)

Another way to obtain the factor (B.9) is to take z → 0 limit of eq. (B.6).
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Finally collecting all the factors we have derived above we find that the free field

correlator (2.48) becomes the following matrix integral:

DFAn

l+2 ∼
l∏

p<k

(zp − zk)
1
β (~α

(p), ~α(k))
∮ n∏

a=1

Na∏

i=1

dx
(a)
i

n∏

a=1

Na∏

i=1

(
x
(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)

×
n∏

a=1

Na∏

i 6=j

(
1−

x
(a)
j

x
(a)
i

)β
n−1∏

a=1

Na∏

i=1

Na+1∏

j=1

(
1−

x
(a+1)
j

x
(a)
i

)−β

×
l∏

p=1

n∏

a=1

Na∏

i=1

(
1− x

(a)
i

zp

)α
(p)
a −α

(p)
a+1

(B.10)

where we have omitted some of the coefficients of the conformal block, that stands in front

of the integral. In general this coefficient depends on the coordinates of the vertex operators

insertions.

B.2 q-Toda conformal block

Repeating the normal ordering calculation of the previous section for the screening cur-

rents (2.55) and vertex operators (2.56) we obtain the following relations:

1. Normal ordering the screening currents from the same sector

Na∏

i=1

Sq
(a)

(
x
(a)
i

)
=



∏

i<j

(
x
(a)
i

x
(a)
j

)β (
1−

x
(a)
j

x
(a)
i

)
(

q
t

x
(a)
j

x
(a)
i

; q

)

∞(
t
x
(a)
j

x
(a)
i

; q

)

∞


 :

Na∏

i=1

Sq
(a)

(
x
(a)
i

)
: (B.11)

We notice that the function

∏

i<j

(
xi
xj

)β

(
txi x

−1
j ; q

)
∞

(
qt−1xj x

−1
i ; q

)
∞(

xi x
−1
j ; q

)
∞

(
qxj x

−1
i ; q

)
∞

, (B.12)

is q-periodic and thus yields an overall constant in front of the integral. We can then

rewrite previous expression in a more convenient form

Na∏

i=1

Sq
(a)

(
x
(a)
i

)
= C(a,a)

q

(
x(a)

)
:

Na∏

i=1

Sq
(a)

(
x
(a)
i

)
: , (B.13)

C(a,a)
q

(
x(a)

)
=

Na∏

i=1

(
x
(a)
i

)β(Na−1)
Na∏

i 6=j

(
x
(a)
j

x
(a)
i

; q

)

∞(
t
x
(a)
j

x
(a)
i

; q

)

∞

. (B.14)

2. Normal ordering the screening currents from different sectors

:

Na∏

i=1

Sq
(a)

(
x
(a)
i

)
: :

Nb∏

j=1

Sq
(b)

(
x
(b)
j

)
:

= C(a,b)
q

(
x(a), x(b)

)
:

Na∏

i=1

Sq
(a)

(
x
(a)
i

) Nb∏

j=1

Sq
(b)

(
x
(b)
j

)
: , (B.15)
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where

C(a,b)
q

(
x(a), x(b)

)
=
(
δ(b,a+1) + δ(b,a−1)

) Na∏

i=1

(
x
(a)
i

)−β Nb
Na∏

i=1

Nb∏

j=1

(
u
x
(b)
j

x
(a)
i

; q

)

∞(
v
x
(b)
j

x
(a)
i

; q

)

∞

,

(B.16)

and v =
√
qt−1, u =

√
qt.

3. Normal ordering the screening currents and vertex operators

V q
~α (z)

Na∏

i=1

Sq
(a)

(
x
(a)
i

)
= C(a)

q

(
x(a), z, ~α

)
: V q

~α (z)

Na∏

i=1

Sq
(a)

(
x
(a)
i

)
: , (B.17)

where

C(a)
q

(
x(a), z, ~α

)
∼

Na∏

i=1

(
qαa+1v−a x

(a)
i

z ; q
)
∞(

qαav−a x
(a)
i

z ; q
)
∞

=

Na∏

i=1

cq

(
x
(a)
i , ~α, z

)(
x
(a)
i

)αa−αa+1

(
q1−αava z

x
(a)
i

; q
)
∞(

q1−αa+1va z

x
(a)
i

; q
)
∞

, (B.18)

where we have omitted an overall z-dependent factor and we have also introduced

the following q-periodic function:

cq

(
x
(a)
i , ~α, z

)
=
(
x
(a)
i

)αa+1−αa
θq

(
qαa+1v−a x

(a)
i

z

)

θq

(
qαav−a x

(a)
i

z

) (B.19)

4. Normal ordering of different vertex operators

l∏

p=1

V~α(p) = Cq
vert (z, ~α) :

l∏

p=1

V~α(p) : , (B.20)

where

Cq
vert (z, ~α) =

l∏

p<r

exp




n∑

a=1

∑

k>0

qk
(
qkα

(p)
a − 1

)(
q−kα

(r)
a − v2k(n−a−1)

)

(1− qk) (1− tk)

1

k

(
zr
zp

)k



×
l∏

p<r

z
1
β (~α

(p),~α(r))
p

=
n∏

a=1

l∏

p<r

(
q1−α

(r)
a zr

zp
; q, t; q

)
∞(

q1+α
(p)
a −α

(r)
a zr

zp
; q, t; q

)
∞

×

(
q1+α

(p)
a v2(n−a−1) zr

zp
; q, t; q

)
∞(

qv2(n−a−1) zr
zp
; q, t; q

)
∞

l∏

p<r

z
1
β (~α

(p),~α(r))
p , (B.21)
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where we have used the definition of q-Pochhammer symbol with multiple parameters

defined as follows

(x; q1, . . . , qn)
def
=

∏

k1,..., kn≥1

(
1− x qk11 · · · qknn

)
. (B.22)

5. Initial and final states yield the same factor (B.9) as in the non-deformed case. Notice

however, that in the q-deformed case one cannot use the operator-state correspon-

dence to argue that the initial and final states are limits of the vertex operators (B.6)

for z → 0 and z → ∞ respectively. We need simply to define the initial state (2.50)

separately as the momentum operator eigenstate.

Collecting all the factors we have obtained above, the free field correlator of (l + 2)

vertex operators is given by the following matrix integral:

qDFAn

l+2 ∼ Cq
vert (~α, z)

l∏

p

z

1
β (~α

(p),~α(0))+
n
∑

a=1
Na

(

α
(p)
a −α

(p)
a+1

)

p

×
∮ n∏

a=1

Na∏

i=1

dx
(a)
i

n∏

a=1

Na∏

i=1

(
x
(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)+

l
∑

p=1

(

α
(p)
a −α

(p)
a+1

)

×
n∏

a=1

Na∏

i 6=j

(
x
(a)
j

x
(a)
i

; q

)

∞(
t
x
(a)
j

x
(a)
i

; q

)

∞

n−1∏

a=1

Na∏

i=1

Na+1∏

j=1

(
u
x
(a+1)
j

x
(a)
i

; q

)

∞(
v
x
(a+1)
j

x
(a)
i

; q

)

∞

×
l∏

p=1

n∏

a=1

Na∏

i=1

(
q1−α

(p)
a va

zp

x
(a)
i

; q

)

∞(
q1−α

(p)
a+1va

zp

x
(a)
i

; q

)

∞

, (B.23)

where we have omitted a q-periodic function of zp in front of the integral. Notice that in

the q → 1 limit the expression above reduces to eq. (2.54). To see this we should employ

the following identity for the q → 1 limit of the ratio of two q-Pochhammer symbols:

lim
q→1

(qcx; q)∞
(x; q)∞

= (1− x)−c, (B.24)

which we derive in the appendix C. Using this formula get

lim
q→1

qDFAn

l+2 ∼
∏

p<r

z
1
β (~α

(p),~α(r))
p

(
1− zr

zp

) 1
β (~α

(p),~α(r))+
∑n

a=1(β−1−1)(n−a−1)α
(p)
a

×
∮ n∏

a=1

Na∏

i=1

dx
(a)
i

n∏

a=1

Na∏

i=1

(
x
(a)
i

)β(Na−Na+1−1)+(α
(0)
a −α

(0)
a+1)+

l
∑

p=1

(

α
(p)
a −α

(p)
a+1

)

×
n∏

a=1

Na∏

i 6=j

(
1−

x
(a)
j

x
(a)
i

)β
n−1∏

a=1

Na∏

i=1

Na+1∏

j=1

(
1−

x
(a+1)
j

x
(a)
i

)−β
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×
l∏

p=1

n∏

a=1

Na∏

i=1

(
1− zp

x
(a)
i

)α
(p)
a −α

(p)
a+1

∼ DFAn

l+2 , (B.25)

which coincides with the ordinary Toda conformal block (2.54) up to z-dependent prefactor

coming from the normal ordering of vertices. This discrepancy happens since q-deformed

vertex we defined in (2.55) includes so called U(1) factor, which is required to match Toda

conformal blocks with Nekrasov partition functions. For details see discussion after eq. (4.6)

and [75].

C q → 1 limits

In our work we use various formulas for the q → 1 limit of q-Pochhammer symbols. In this

appendix we give proofs for these formulas.

We start with the derivation of the standard formula for the following limit:

lim
q→1

(qa x; q)∞
(qb x; q)∞

= (1− x)b−a , (C.1)

with x variable held fixed during the limit. To prove this formula we need to take loga-

rithm of the right hand side, use q-Pochhammer definition and perform expansion of the

logarithms:

lim
q→1

∞∑

n=0

log

(
1− qa+nx

1− qb+nx

)
= lim

q→1

∞∑

n=0

∞∑

k=1

qbk − qak

k
xk

1

1− qk

=

∞∑

k=1

(a− b)
xk

k
= log(1− x)b−a , (C.2)

which completes the proof of (C.1).

Second formula we would like to discuss is given in (4.3):

lim
q→1−

(q; q)∞
(qx; q)∞

= (−~)x−1 Γ(x) . (C.3)

To prove this relation we need to use the definition of q-Gamma function:

Γq(x) ≡
(q; q)∞
(qx; q)∞

(1− q)−x , (C.4)

Then it is known that

lim
q→1−

Γq(x) = Γ(x) . (C.5)

Here we provide the short proof of this limit due to Gasper [76, 77]. First of all

we notice ∞∏

n=1

(
1− qn+1

1− qn

)x

=
1

(1− q)x
. (C.6)
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Using this identity we can rewrite the limit of Γq(x+ 1) in the following form:

lim
q→1−

Γq(x+ 1) = lim
q→1−

∞∏

n=1

(1− qn)(1− qn+1)x

(1− qn+x)(1− qn)x

=
∞∏

n=1

(
1 +

x

n

)−1
(
1 +

1

n

)x

= xΓ(x) = Γ(x+ 1), (C.7)

which completes the proof of (C.4).

Let us discuss the fate of the integration contours in the q → 1 limit of the T [SU(2)]

mirror pair.19 We restore theta functions for the FI parameters as shown in eq. (2.10). We

focus on the mirror dual pair, but a similar analysis can be repeated for the spectral dual

pair. Our starting point is the mirror duality for the blocks:

BD2×S1

T [SU(2)] =
1

(t; q)∞

∮
dx
2πix

θ(x−1τ)
θ(x−1)θ(τ)

(qx;q)∞
( q
t x;q

)

∞

(qµx;q)∞
( q
t µx;q

)

∞

=
1( q

t ; q
)
∞

∮
dx
2πix

θ(x−1µ q
t )

θ(x−1)θ(µ q
t )

(qx;q)∞
(tx;q)∞

(qτx;q)∞
(tτx;q)∞

= B̌D2×S1

T [U(2)] . (C.8)

We call the first theory in eq. (C.8) electric and the second one magnetic.

Let us take the limit q → 1 on both sides of eq. (C.8):

• In the electric T [SU(2)] theory we take the Higgs limit by scaling the parameters as

µ = qf , t = qβ , x = qw and obtain:

lim
q→1

BD2×S1

T [U(2)] = ~
KΓ(β)

∫ i∞

−i∞
dw
2πi

(−τ)w

sinπw
Γ(1−β+w)Γ(1−β−f+w)

Γ(1+w)Γ(1−f+w) . (C.9)

In eq. (C.9) we recognise the Barnes representation of the 2F1 hypergeometric func-

tion. As sketched in figure 9 we evaluate the original electric 3d integral in eq. (C.8)

on the contour wrapping the cylinder and separating the half-lines of poles coming

from two fundamental chirals and from the theta function (one half-line of poles from

the theta-function cancels with a chiral). We can also view the 3d integral on the

plane with multiple copies of the lines of poles. Taking the ~ → 0 limit corresponds to

sending the length of periodicity along imaginary axis to infinity and focusing on the

integral in the complex plane with only three half-lines of poles. The original contour

in this limit becomes the contour on the imaginary axis, as written in eq. (C.9).

• On the magnetic (mirror) T [SU(2)]∨ side, following the map of parameters we are

taking the Coulomb limit where µ = qf , t = qβ , and x is fixed and obtain:

lim
q→1

B̌D2×S1

T [U(2)] = ~
KΓ(1− β)

∮

C
dx (−x)1+f−β

sinπ(1+f−β)(1− x)β−1(1− τx)β−1

= ~
KΓ(1− β)

∫ 1

0
dx x1+f−β(1− x)β−1(1− τx)β−1 (C.10)

19We thank F. Aprile and M. Sacchi for discussions on this point.
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ℜ[w ]

ℑ[w]

1

ℏ

−1

ℏ

ℏ→0

ℜ[w ]

ℑ[w]

ℏ→0

ℜ[s]

ℑ[s ]

1

Euler
Barnes

Electric
Magnetic

Figure 9. Reduction of the integration contours in the mirror pair of T [SU(2)] theories in the

~ → 0 limit.

In this case it is useful to regard the cylinder as a cone as in figure 9. In the ~ → 0 limit

the lines of poles becomes a cut, one end of the cylinder is mapped to the origin and the

other to the point at infinity. We are left with an integral over the contour C encircling

the cut between (0, 1). It can be further shown that this contour can be related to the line

integral between 0 and 1.

The statement of mirror symmetry thus reduces to the equivalence between Barnes

and Euler integral representations of the 2F1 hypergeometric function.

The contours reduce as pictured in figure 9.

D RS Hamiltonians and T [SU(N)] holomorphic blocks

In this appendix we prove that T [SU(N)] holomorphic block BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) is an

eigenfunction of the first RS Hamiltonian and its p-q dual. In other words, we prove

eq. (2.22) and eq. (2.25) for r = 1.

The integral representation of the holomorphic block (2.1) has the form20

BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) = e

TN
∑N

i=1 Mi
~

+(1−β)
∑N

i=1(
1
2
−i)Ti

∫

Γα

N−1∏

a=1

a∏

i=1

(
dx

(a)
i

x
(a)
i

(x
(a)
i )

Ta−Ta+1
~

−β

)

× ∆(q,t)(~x(2)) · · ·∆(q,t)(~x(N−1))

∆̄(q,t)(~x(1), ~x(2)) · · · ∆̄(q,t)(~x(N−2), ~x(N−1))∆̄(q,t)(~x(N−1), ~µ)

(D.1)

20Here we write the prefactor F (q, t, ~τ) in a form, which is equivalent if one uses the conditions (2.8) on

the sum of masses and FI parameters. We also omit the overall constant independent of Ti and Mi.
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where

∆(q,t)(~x(a)) =
1

(t; q)a∞

a∏

i 6=j

(
x
(a)
i

x
(a)
j

; q

)

∞(
t
x
(a)
i

x
(a)
j

; q

)

∞

, ∆̄(q,t)(~x(a), ~x(a+1)) =
a+1∏

i=1

a∏

j=1

(
x
(a+1)
i

x
(a)
j

; q

)

∞(
t
x
(a+1)
i

x
(a)
j

; q

)

∞
(D.2)

D.1 Hamiltonian in ~µ variables

The Hamiltonian is given by

H1(µi, q
µi∂µi , q, t) =

N∑

i=1

N∏

j 6=i

tµi − µj

µi − µj
qµi∂µi . (D.3)

When the Hamiltonian acts on BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) it acts on the last factor

∆̄(q,t)(~x(N−1), ~µ). The result is

H1(µi, q
µi∂µi , q, t)

1

∆̄(q,t)(~x(N−1), ~µ)
=

1

∆̄(q,t)(~x(N−1), ~µ)

N∑

i=1

N∏

j 6=i

tµi − µj

µi − µj

N−1∏

l=1

x
(N−1)
l − µi

x
(N−1)
l − tµi

(D.4)

Next we use we write the r.h.s. of eq. (D.4) as a contour integral in auxiliary variable z:

N∑

i=1

N∏

j 6=i

tµi − µj

µi − µj

N−1∏

l=1

x
(N−1)
l − µi

x
(N−1)
l − tµi

=
1

t− 1

∮

Cµ

dz

z

N∏

j=1

tz − µj

z − µj

N−1∏

l=1

x
(N−1)
l − z

x
(N−1)
l − tz

(D.5)

where Cµ encircles all the points µi. We can now deform the contour Cµ so that it encircles

all the other poles of the integral. Those are located at

1. z = 0:

− 1

t− 1

∮

C0

dz

z

N∏

j=1

tz − µj

z − µj

N−1∏

l=1

x
(N−1)
l − z

x
(N−1)
l − tz

= − 1

t− 1
(D.6)

2. z = ∞:

− 1

t− 1

∮

C∞

dz

z

N∏

j=1

tz − µj

z − µj

N−1∏

l=1

x
(N−1)
l − z

x
(N−1)
l − tz

= − t

t− 1
(D.7)

3. z =
x
(N−1)
l

t for l = 1, . . . N − 1:

− 1

t− 1

∮

Cx
t

dz

z

N∏

j=1

tz − µj

z − µj

N−1∏

l=1

x
(N−1)
l − z

x
(N−1)
l − tz

= t
N∑

i=1

N−1∏

j 6=i

x
(N−1)
i − tx

(N−1)
j

x
(N−1)
i − x

(N−1)
j

N∏

p=1

x
(N−1)
i − µp

x
(N−1)
i − tµp

(D.8)
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Summing the residues we get an identity:

N∑

i=1

N∏

j 6=i

tµi − µj

µi − µj

N−1∏

j=1

x
(N−1)
j − µi

x
(N−1)
j − tµi

= 1 + t
N−1∑

i=1

N−1∏

j 6=i

x
(N−1)
i − tx

(N−1)
j

x
(N−1)
i − x

(N−1)
j

N∏

p=1

x
(N−1)
i − µp

x
(N−1)
i − tµp

.

(D.9)

On the next step we express the last product in the r.h.s. of eq. (D.9) as the action of

difference operator in x
(N−1)
i on ∆̄(q,t)(~x(N−1), ~µ):

N∏

p=1

x
(N−1)
i − µp

x
(N−1)
i − tµp

1

∆̄(q,t)(~x(N−1), ~µ)
= q

−x
(N−1)
i ∂

x
(N−1)
i

1

∆̄(q,t)(~x(N−1), ~µ)
(D.10)

We can now shift the integration variable x
(N−1)
i by q under the integral (provided that

the new contour qΓα contains the same poles as Γα). The shift can be understood as

integration by parts:
∮

Γ

dx

x
f(x)q−x∂xg(x) =

∮

qΓ

dx

x

(
qx∂xf(x)

)
g(x). (D.11)

The shift operator q
x
(N−1)
i ∂

x
(N−1)
i thus acts on all the x

(N−1)
i -dependent parts of the inte-

grand except ∆̄(q,t)(~x(N−1), ~µ):

1. The FI parameters:

q
x
(N−1)
i ∂

x
(N−1)
i (x

(N−1)
i )

TN−1−TN
~

−β =
τN−1

tτN
(x

(N−1)
i )

TN−1−TN
~

−β (D.12)

2. The remaining terms in the Hamiltonian:

q
x
(N−1)
i ∂

x
(N−1)
i

N−1∏

j 6=i

x
(N−1)
i − tx

(N−1)
j

x
(N−1)
i − x

(N−1)
j

=

N−1∏

j 6=i

qx
(N−1)
i − tx

(N−1)
j

qx
(N−1)
i − x

(N−1)
j

(D.13)

3. The q-Vandermond determinant ∆(q,t)(~xN−1):

q
x
(N−1)
i ∂

x
(N−1)
i ∆(q,t)(~xN−1)=

N−1∏

j 6=i

(qx
(N−1)
i − x

(N−1)
j )(tx

(N−1)
i − x

(N−1)
j )

(x
(N−1)
i − x

(N−1)
j )(qx

(N−1)
i − tx

(N−1)
j )

∆(q,t)(~xN−1)

(D.14)

4. The interaction term between x
(N−1)
i and x

(N−2)
i ∆̄(q,t)(~x(N−2), ~x(N−1)). We will leave

this unevaluated for a moment.

Notice that there is a cancellation between the contributions (D.13) and (D.14). Finally

we get:

H1(µi, q
µi∂µi , q, t)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t)

= F (q, t, ~τ)

∫

Γα

N−1∏

a=1

a∏

i=1

(
dx

(a)
i

x
(a)
i

(x
(a)
i )

Ta−Ta+1
~

−β

)
∆(q,t)(~x(N−1))

∆̄(q,t)(~x(N−1), ~µ)
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×


τN + τN−1

N−1∑

i=1

N−1∏

j 6=i

tx
(N−1)
i − x

(N−1)
j

x
(N−1)
i − x

(N−1)
j

q
x
(N−1)
i ∂

x
(N−1)
i




× ∆(q,t)(~x(2)) · · ·∆(q,t)(~x(N−2))

∆̄(q,t)(~x(1), ~x(2)) · · · ∆̄(q,t)(~x(N−2), ~x(N−1))

= F (q, t, ~τ)

∫

Γα

N−1∏

a=1

a∏

i=1

(
dx

(a)
i

x
(a)
i

(x
(a)
i )

Ta−Ta+1
~

−β

)
∆(q,t)(~x(N−1))

∆̄(q,t)(~x(N−1), ~µ)

×
(
τN + τN−1H1

(
x
(N−1)
i , q

x
(N−1)
i ∂

x
(N−1)
i , q, t

))

× ∆(q,t)(~x(2)) · · ·∆(q,t)(~x(N−2))

∆̄(q,t)(~x(1), ~x(2)) · · · ∆̄(q,t)(~x(N−2), ~x(N−1))
. (D.15)

We have obtained the same operator H1, but now acting on the variables ~x(N−1)! Thus

the recursion begins. We can move the operator H1 on the variables ~x(N−2) and so on

until we reach x
(1)
1 and get a trivial result. What remains is the eigenvalue and the initial

holomorphic block:

H1(µi, q
µi∂µi , q, t)BD2×S1, (α)

T [SU(N)] (~µ, ~τ , q, t)

= (τN + τN−1 + τN−2 + · · ·+ τ1)BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t)

= e1(~τ)BD2×S1, (α)
T [SU(N)] (~µ, ~τ , q, t) (D.16)

D.2 p-q dual Hamiltonian in ~τ variables for T [U(2)] theory

The Hamiltonian which is p-q dual to eq. (D.4) reads

H1

(
τi, q

τi∂τi , q,
q

t

)
=

N∑

i=1

N∏

j 6=i

q
t τi − τj

τi − τj
qτi∂τi . (D.17)

We limit ourselves to the T [U(2)] holomorphic block:

BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t) = e

T2(M1+M2+(β−1)~)
~

∫

Γα

dx

x
x

T1−T2
~

−β

(
tµ1

x ; q
)
∞
(
tµ2

x ; q
)
∞(µ1

x ; q
)
∞
(µ2

x ; q
)
∞

(D.18)

The Hamiltonian (D.17) acts on the power of x producing the following in integral

H1

(
τi, q

τi∂τi , q,
q

t

)
BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t)

= e
T2(M1+M2+(β−1)~)

~

∫

Γα

dx

x

[ q
t τ1−τ2

τ1−τ2
x+

q
t τ1−τ2

τ1−τ2

tµ1µ2

qx

]
x

T1−T2
~

−β

(
tµ1

x ; q
)
∞
(
tµ2

x ; q
)
∞(µ1

x ; q
)
∞
(µ2

x ; q
)
∞

(D.19)

We need to evaluate the integral with the insertion of the term in the square brackets. To

this end consider the following integral of a particular total difference:

0 =

∫

Γα

dx

x

(
1− qx∂x

){
x
(
1− µ1

x

)(
1− µ2

x

)
x

T1−T2
~

−β

(
tµ1

x ; q
)
∞
(
tµ2

x ; q
)
∞(µ1

x ; q
)
∞
(µ2

x ; q
)
∞

}
. (D.20)
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Acting with the shift operator on every term in the curly brackets one gets the following:

0 =

∫

Γα

dx

x

[
x
(
1− µ1

x

)(
1− µ2

x

)
− qτ1

tτ2
x

(
1− tµ1

qx

)(
1− tµ2

qx

)]

× x
T1−T2

~
−β

(
tµ1

x ; q
)
∞
(
tµ2

x ; q
)
∞(µ1

x ; q
)
∞
(µ2

x ; q
)
∞

=

∫

Γα

dx

x

[
x

(
1− qτ1

tτ2

)
− (µ1 + µ2)

(
1− τ1

τ2

)
+

µ1µ2

x

(
1− tτ1

qτ2

)]

× x
T1−T2

~
−β

(
tµ1

x ; q
)
∞
(
tµ2

x ; q
)
∞(µ1

x ; q
)
∞
(µ2

x ; q
)
∞

. (D.21)

We observe that miraculously the expression in square brackets contains exactly the com-

bination of powers of x appearing in eq. (D.19) with the right coefficients. What remains

is the scalar factor, which gives the eigenvalue. We thus get

H1

(
τi, q

τi∂τi , q,
q

t

)
BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t) = (µ1 + µ2)BD2×S1, (α)

T [U(2)] (~µ, ~τ , q, t). (D.22)

Finally one can notice that

H2

(
τi, q

τi∂τi , q,
q

t

)
BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t) =

q

t
qτ1∂τ1+τ2∂τ2BD2×S1, (α)

T [U(2)] (~µ, ~τ , q, t)

= µ1µ2BD2×S1, (α)
T [U(2)] (~µ, ~τ , q, t). (D.23)
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