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1 Introduction

In [1], the question of constructing a holographic dual to asymptotically linear dilaton

backgrounds was reconsidered in the light of recent studies of solvable irrelevant deforma-

tions of two-dimensional conformal field theory (CFT) [2, 3]. This relates to the vacua

of the so-called little string theory (LST) [4], a non-local, non-gravitational theory which

exhibits Hagedorn spectrum at high energy [5, 6]. From the bulk point of view, this theory

corresponds to a locally flat background configuration with a dilaton that grows linearly

in the weak coupling region. The analysis carried out in [1] addresses the question as to

how to realize this type of theory from the holographic point of view, aiming at achieving

in such a way a microscopic description of the Hagedorn spectrum. The proposal is that

the holographic dual to string theory in asymptotically linear dilaton background is given

by a particular single-trace deformation of the symmetric product CFT that appears in

the holographic description of string theory on AdS3×S3× T 4 space. This deformation is

inspired by the solvable T T̄ -deformation studied in [2, 3] (see also [7, 8]) and shares many

features with it, such as universality and solvability. However, unlike the deformations

considered in [2, 3], the one in [1] rather consists of a single-trace deformation and, as

such, induces a local deformation of the bulk geometry. In fact, the interpretation of the

result of [1] is that it gives a dual theory that interpolates between a standard CFT2 in

the infrared (IR), which is dual to the AdS3 strings, and a non-local theory with Hagedorn
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spectrum in the ultraviolet (UV), which would be dual to the linear dilaton background.

In this sense, this may be regarded as a solvable irrelevant deformation of AdS3/CFT2

correspondence [9].

The starting point of the setup considered in [1] is superstring theory on AdS3×S3×T 4

spacetime with NS-NS fluxes, the background that describes the near-horizon region of the

NS1-NS5 system. The corresponding string σ-model admits an exact description in terms

of the Wess-Zumino-Witten (WZW) model formulated on SL(2,R)×SU(2)×U(1)4, where

the WZW level, k, is given by the number of five-branes that wrap on the T 4×S1 subspace.

There are also fundamental strings, say p of them, which are wrapped on the isolated S1.

In the large p limit, string theory on AdS3 × S3 becomes weakly coupled. Large k regime

corresponds to the limit in which the string length scale
√
α′ is small in comparison with the

radius of the AdS3 (and the S3) space(s). This type of AdS3 solution to string theory has

been extensively studied in the literature [10–15] and it represents one of the few examples

in which holography can be explored beyond the supergravity approximation, allowing to

have access to purely stringy effects. In fact, precision tests of AdS/CFT at finite α′ (i.e.

finite k) have been carried out for this background [16–19]. String theory on AdS3×S3×T 4

is closely related to two-dimensional vacua of LST, in a way that is nicely explained in [5]

and references thereof; see also [1, 9]. This is why this is the natural setup to consider.

In this paper, we consider the setup of references [1, 9]. For this type of solvable

irrelevant deformation of AdS3/CFT2, which we review in sections 2 and 3, we compute

the worldsheet 2-point correlation functions of Virasoro primary operators. This provides

a direct way of determining the spectrum of the deformed CFT by reading the anomalous

dimension of the primary states. We compute these 2-point functions in two different basis

of vertex operators, and resorting both to path integral techniques and to perturbation

theory. We do this in sections 4 and 5, respectively; and in section 6 we comment on the pole

structure of the 2-point function. In section 7, we compare the spectrum obtained from the

correlation functions with the coset description of it proposed in [9], showing the agreement.

In section 8, we comment on the 3-point function and how the same techniques lead to write

higher-point functions of the deformed theory in terms of correlation functions of Liouville

field theory. In section 9, we briefly discuss how the correlators can also be efficiently

computed by thinking of the worldsheet theory as a σ-model on (SL(2,R)/U(1)) × U(1).

Section 10 contains some final remarks.

2 T T̄ type deformation

The deformation proposed in [1], which interpolates between the IR CFT2 and the UV

non-local theory, is given by an irrelevant operator built out of the holomorphic and anti-

holomorphic components of the boundary CFT2 stress tensor written down in [11]. The

holomorphic (resp. anti-holomorphic) component of such stress tensor is given by a second

order differential operator of the SL(2,R) isospin variable acting on a bilinear arrange of

the SL(2,R)×SL(2,R) currents of the WZW model multiplied by a normalizable operator

of weight 1, Φh=1 (see [1, 11] for details). After integrating over the isospin variable, x,
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and treating the boundary terms adequately, the deformation operator takes the form

D =
λ0

π

∫
d2zJ−J̄− (2.1)

where J− and J̄− are the local currents corresponding to the lower triangular generators

of the ŝl(2)k ⊕ ŝl(2)k affine algebra. Variables z, z̄ are worldsheet variables. In order to

understand what operator (2.1) means from the dual theory point of view, recall that the

zero mode of the local current J− (and J̄−) corresponds in the boundary IR CFT to the

SL(2,R) generator L−1 (resp. L̄−1). In turn, while (2.1) represents a marginal operator

in the worldsheet CFT2, as demanded by consistency of string theory,1 it represents an

irrelevant dimension-(2, 2) deformation of the boundary CFT2. The coupling constant λ0 of

this deformation emerges from the integration of the normalizable operator Φh=1 over the

isospin variable x, variable that is usually introduced to label the SL(2,R) representations

and is connected to the usual eigenvalue m of the SL(2,R) Cartan generator J3 by a Mellin

transform [11]. More precisely, if one organizes the SL(2,R) local currents J3,± (and J̄3,±)

in the polynomial form J = 2xJ3 − J+ − x2J− (resp. J̄ = 2x̄J̄3 − J̄+ − x̄2J̄−), the

holomorphic and anti-holomorphic components of the stress-tensor of the boundary CFT2

can be written as [11]

T (x) =
π

2k

∫
d2z(∂xJ∂x+2∂2

xJ)Φh=1J̄ , T̄ (x̄) =
π

2k

∫
d2z(∂x̄J̄∂x̄+2∂2

x̄J̄)Φh=1J, (2.2)

where each component turns out to be given by an integral over the worldsheet. Φh=1

is a normalizable dimension-zero operator in the worldsheet, which corresponds in the

boundary to an operator of dimension h = 1. Complex variables x, x̄ can be thought of as

the coordinates of the boundary where the dual CFT2 lives. The deformation (2.1) rather

corresponds to a single-trace version of (2.2), in the sense that it consists in a similar

operator but with the holomorphic and anti-holomorphic pieces integrated together over

the worldsheet variable; namely

D =
π

2k

∫
d2x

∫
d2z (∂xJ∂x + 2∂2

xJ)(∂x̄J̄∂x̄ + 2∂2
x̄J̄)Φh=1. (2.3)

After integration in x, this yields the local operator in (2.1) with the coupling constant

λ0 ∼
∫
d2x Φh=1; see [1]. As we will see, λ0 appears in the anomalous dimension of the

vertex operators. It has a clear geometrical interpretation from the bulk point of view

as it sets the scale where the geometric transition between AdS3 and the linear dilaton

background takes place.2

The index h, which labels the SL(2,R) representations, corresponds in the boundary

to the scaling dimension of the dual operators, Ôh, of the IR CFT. We are interested in

computing the 2-point correlation function of two such operators, 〈Ôh(p)Ôh(−p)〉, in the

boundary theory. However, given the correspondence [16–19] with the 2-point correlation

1The marginal deformation (2.1) has been previously studied in [20].
2The specific scale λ0 is actually meaningless as its value can be changed using symmetry (3.4) below.

What is meaningful are the behaviors the theory exhibits in the two limits φ→ ±∞.
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numbers in the bulk, 〈Ôh(p)Ôh(−p)〉 =
∫
d2z1d

2z2Vol−1
PSL(2,C)〈Φh(p|z1)Φh(−p|z2)〉, we will

instead perform the computation on the worldsheet theory, taking profit form the fact that,

remarkably, the worldsheet theory in presence of the deformation is still exactly solvable.

The basis of primary operators Φh(p|z) we will consider first is the one proposed in [9],

which satisfy the operator product expansion (OPE)

J−(z)Φh(p|zi) '
ip

(z − zi)
Φh(p|zi) + . . . (2.4)

where the ellipses stand for regular terms. Since these operators create eigenstates of the

currents J−, J̄−, one could naively expect the correlation function of two such operators

to satisfy the equation

d

dλ0
〈Φh(p|z1)Φh(−p|z2)〉 ∼ −|p|

2

π
〈Φh(p|z1)Φh(−p|z2)〉 (2.5)

and thus to behave like

〈Φh(p|z1)Φh(−p|z2)〉 ∼ e−
λ|p|2
π

|z1 − z2|4∆
, (2.6)

with ∆ being the worldsheet conformal dimension, which a priori depends on h and p. λ

is the coupling λ0 dressed by a factor. However, this argument is unjustifiably fast, as the

insertion of the operator D in the 2-point function produces a logarithmic singularity and

leads to the renormalization of the vertex operators, which acquire an anomalous dimension.

In other words, the dressing factor of the coupling constant (namely the ratio λ/λ0) results

infinite due to a logarithmically divergent integral (see (4.8) below). Therefore, in order to

derive an expression for the 2-point function one has to be more cautious and undertake the

computation of the expectation values explicitly. We will do this below in two different basis

and by two different methods. From the expressions obtained, we will read the anomalous

dimension of the operators. This will provide us with a direct method to compute the

spectrum of the theory. We will compare the result with the coset construction of [9]

showing the consistency. Finally, we will explain how the method used here to compute the

2-point correlation function can be applied to compute higher-point correlation functions

in the deformed CFT.

3 The worldsheet theory and its deformation

To represent the AdS3 sector, whose worldsheet theory is described by the SL(2,R) WZW

model, we consider, as in [1, 9], the Wakimoto representation [21]. This amounts to write

the WZW action, perturbed by the operator D, as follows

S =
1

2π

∫
d2z
(
∂φ∂̄φ−

√
2/kRφ− β∂̄γ − β̄∂γ̄ − 2M0ββ̄e

−
√

2/kφ − 2λ0ββ̄
)
, (3.1)

which includes quantum corrections. This action describes a perturbation of a free CFT

with a non-compact boson φ ∈ R≥0 with background charge
√
k/2, and a (1,0) β-γ commu-

tative ghost system. The non-trivial correlators in the free CFT are 〈φ(z)φ(0)〉 = −2 log |z|,
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〈β(z)γ(0)〉 = 1/z. For computational reasons, it might be convenient to bosonize the β-γ

system by defining β = −i∂veiv−u, γ = eu−iv with 〈u(z)u(0)〉 = 〈v(z)v(0)〉 = −2 log |z|.
In terms of the fields u, v the combinatorial game when Wick contracting fields inside the

correlation functions gets notably simplified.

The undeformed AdS3 σ-model corresponds to λ0 = 0 in (3.1). In these variables, the

metric of the Poincaré patch of AdS3 takes the form

ds2 = R2(dφ2 + e2φdγdγ̄) =
R2

r2
(dr2 + dX2 − dT 2) (3.2)

where R2 = kα′, r = e−φ, γ = X − T , γ̄ = X + T . The near boundary region of the space

corresponds to large φ, i.e. r ∼ 0.

The last term in (3.1) is the deformation (2.1), as in the Wakimoto representation the

local current J− is simply given by the field β, and analogously for the anti-holomorphic

sector. β and β̄ are auxiliary fields, and so they can be integrated out. If doing so, the

action takes the form

S =
1

2π

∫
d2z

(
∂φ∂̄φ−

√
2/kRφ+

e
√

2/kφ

2 + 2λ0e
√

2/kφ
∂γ̄∂̄γ

)
, (3.3)

where, in addition, we have shifted the zero-mode of the dilaton as φ→ φ+
√
k/2 logM0

in order to absorb the value of M0. To be more precise, the dilaton configuration, while

behaving linearly at large φ, also receives corrections for finite λ0. This can be seen

as follows: in the bosonic theory with λ0 = 0, quantum corrections produce the lin-

ear dilaton term after integrating on the β-γ fields [22]. The original Gaussian func-

tional measure of the WZW σ-model actually corresponds to DφD(eφγ)D(eφγ̄)e−SWZW

with SWZW = (k/π)
∫
d2z(∂φ∂̄φ+ 2e2φ∂γ̄∂̄γ) being the classical WZW action. Then, in

the process of transforming this measure into DφD2γe−Seff a Jacobian J = eSWZW−Seff ap-

pears. The logarithm of this Jacobian takes the form log J = (2/π)
∫
d2z(∂φ∂̄φ−(1/2)Rφ).

By rescaling φ→ φ/
√

2(k − 2) one eventually finds the effective action (3.3) with a shifted

level k−2 instead of k, with λ0 = 0 and M0 = 2k. In the supersymmetric theory, the shift-

ing of the level does not occur. In the case λ0 6= 0, the coupling between γ, γ̄, and φ fields

is more involved, and the effective action acquires a dilaton configuration that goes linearly

only at large φ (see [1] for the discussion about the corresponding supergravity solution).

The σ-model (3.3) describes a string propagating in a space that interpolates between

a linear dilaton background in the region λ0 � e−
√

2/kφ, say in the limit φ→∞, and AdS3

background in the opposite limit, φ → −∞. That is to say, the UV behavior in the dual

theory is governed by the linear dilaton theory, while AdS3 emerges in the IR. In the former

case, action (3.3) takes the form S = 1/(2π)
∫
d2z(∂φ∂̄φ −

√
2/kRφ + ∂X∂̄X − ∂T ∂̄T ),

where we have rescaled coordinates X and T by a factor
√

2λ0. This describes the flat

dilatonic background [4, 5]. In the latter case, the model becomes the standard AdS3

σ-model [10–15].

It is worth noticing that action (3.1) is symmetric under the transformations

β → eσβ, γ → e−σγ, φ→ φ+
√

2kσ, λ0 → e−2σλ0, (3.4)
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with σ being a real constant. It is also symmetric under

φ→ φ+
√

2kσ, M0 → e2σM0. (3.5)

These symmetries can be used to set the values of the coupling constants by shifting the

dilaton zero-mode, namely φ0. Direction φ, which is semi-infinite, is in fact the direction

along which the dilaton grows linearly. The spectrum has the characteristic gap in the

momentum along that direction. The momentum (in string units) along φ is parameterized

by h, with Φh(p|z) ∼ e
√
k/2(h−1)φ and

h =
1

2
+
i

2

√
kpφ (3.6)

with pφ ∈ R. These values oh h correspond to the continuous series of the SL(2,R)

representations.

The bosonic part of the vertex operators in the AdS3 subspace is given by

Φh(p|z) = eipγ(z)+ip̄γ(z̄)e
√

2/k(h−1)φ(z) (3.7)

This basis is similar to the µ-basis introduced in reference [23]; see also [24]. This also

appears in the description of string theory on the three-dimensional black hole [25].

4 Correlation functions: path integral computation

We consider the correlation functions〈
Φh(p1|z1)Φh(p2|z2)

〉
=

∫
D2βD2γDφ e−SΦh(p1|z1)Φh(p2|z2) (4.1)

These functions can be computed using the techniques developed in [24]. Those tech-

niques allow to reduce the calculation of any correlation functions in the SL(2,R) WZW

model to a computation in Liouville theory, which is simpler. The trick goes as follows:

integrating by part the kinetic term of the β-γ system, using the fact that Φh(p|z) ∼ eipγ ,

the functional integral over γ and γ̄ can be explicitly performed because each of these fields

only appears once in each term of the Lagrangian. This yields a δ-function resulting in the

following equations

∂̄β(z) = 2πi
(
p1δ

(2)(z − z1) + p2δ
(2)(z − z2)

)
, (4.2)

and analogously for ∂β̄ with p1,2 ↔ p̄1,2. Here, δ(2)(z) = δ(z)δ(z̄). Taking into account

that ∂̄(1/z) = 2πδ2(z), one finds the following solution for β

β(z) =
ip1

(z − z1)
+

ip2

(z − z2)
(4.3)

and analogously for β̄. Since β and β̄ are assumed not to have additional singularities

at 0 6= z 6= 1 on the whole Riemann sphere C ∪ {∞}, the solution to (4.3) only exists if

– 6 –
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p1 + p2 = 0. That is, since β is a meromorphic 1-differential on CP1 the general solution

finally takes the form

β(z) =
ip1(z1 − z2)

(z − z1)(z − z2)
. (4.4)

Plugging this back in the action produces the following two terms in the effective

potential

2|p1|2|z1 − z2|2
∫
d2z |z − z1|−2|z − z2|−2

(
M0 e

−
√

2/kφ + λ0

)
. (4.5)

Then, by redefining the field φ as follows

φ(z)→ φ(z)−
√

2k
(

log |z − z1|+ log |z − z2| − log |p1| − log |z1 − z2|
)
, (4.6)

one can absorb the z- and zi-dependence in the first term of (4.5), and this suffices to turn

such term into a Liouville wall operator

2M0

∫
d2z e

√
2bφ (4.7)

with b = −1/
√
k. (This also shifts the background charge and the momenta of the vertex

operators in a certain way [24]). The issue is with the second term of (4.5), in which the

zi-dependent factors remain in the integrand and actually produce a divergence. In fact,

integral

I0 = |z1 − z2|2
∫
C
d2z |z − z1|−2|z − z2|−2 (4.8)

is logarithmically divergent, as power counting obviously indicates. In order to see this

explicitly, one can first introduce a regulator ε and write

Iε = |z1 − z2|2
∫
C
d2z |z − z1|2ε−2|z − z2|2ε−2 = |z1 − z2|4ε

∫
C
d2x |x|2ε−2|x− 1|2ε−2 (4.9)

which permits to keep control of the divergence. We have limε→0 Iε = I0. In the second

equality in (4.9), we used x = (z−z1)/(z2−z1). The integral over x is the Shapiro-Virasoro

integral ∫
C
d2x |x|2a1−2|x− 1|2a2−2 = 2π

Γ(a1)Γ(a2)Γ(1− a1 − a2)

Γ(1− a1)Γ(1− a2)Γ(a1 + a2)
(4.10)

for parameters a1 = a2 = ε. This formula clearly diverges in the limit ε→ 0 since, in that

limit Γ(ε) ∼ (1/ε) + const+O(ε), and then∫
C
d2x |x|2ε−2|x− 1|2ε−2 ' 4π

ε
+ const. (4.11)

up to terms that vanishes at ε = 0. Therefore, expanding expression (4.9) in powers of ε,

one finds

Iε =
(

1 + 4ε log |z1 − z2|+O(ε2)
)(4π

ε
+O(ε0)

)
(4.12)

and one sees the finite part of I0 yielding the logarithmic piece ∼ 8π log |z1−z2|, as expected.
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Plugging this back in the action, one finds that the second term in (4.5) gives a con-

tribution

e−
λ0
π
|p1|2I0 ∼ e−16λ0|p1|2 log |z1−z2| = |z1 − z2|−16λ0|p1|2 , (4.13)

where the symbol ∼ here means that the term in Iε that diverges when ε tends to zero is

being omitted, as it can be absorbed in the wave function renormalization of the vertex

operators (which need to be rescaled by a factor e2(λ0/ε)|pi|2). What (4.13) implies is that

there is an anomalous dimension contribution coming from the presence of the deformation

operator in the action. In other words, the operators get renormalized and the conformal

dimension ∆0 of these operators receives an anomalous correction3

∆0 → ∆ = ∆0 + 4λ0|p|2 with ∆0 =
h(1− h)

k
. (4.14)

This is similar to what happens, for example, in the Thirring model, where the con-

formal dimension of the composite operator (ψ̄ψ) receives an anomalous correction due to

the quartic fermionic interaction. Such correction actually comes from a logarithmically

divergent integral like I0 when correcting the 2-point function.

Then, one finds that the presence of operator (4.7) in the action reduces the problem of

computing (4.1) to that of evaluating a Liouville CFT 2-point function in presence of (4.7)

for the appropriate value of the Liouville momenta α = b(1−h+ b−2/2) and central charge

c = 1 + 6(b + 1/b)2 (see [24] for the details, in particular for the explanation on how the

background charge suffers a shift in 1/b when performing (4.6)). The final result reads

〈
Φh(p|z1)Φh(−p|z2)

〉
= |z1−z2|−4∆0−16λ0|p|2 |p|

4h−2

π

(
M0Γ( 1

k )

Γ(1− 1
k )

)2h−1
Γ(1−2h)Γ(1− 2h−1

k )

Γ(2h−1)Γ(2h−1
k )

(4.15)

where the vertex operators Φ̂h have to be understood as the renormalized ones.

It is worthwhile emphasizing that, despite we are using Wakimoto variables, no ap-

proximation has been done in deriving (4.15). This is an exact path integral calculation.

5 Alternative derivation: perturbation theory

The salient features in the derivation of the 2-point function (4.15) are two: first, the

fact that these observables can be explicitly integrated out in presence of the deformation.

Second, the anomalous p-dependent correction to the conformal dimension. In order to

further analyze the origin of this renormalization effect, let us now give an alternative

derivation of the 2-point function and see how (4.8) arises in that case. To do so, let us

consider a different basis for the vertex operators. Consider [27]

Φ̂h,`,¯̀(z) = γh−1−`γ̄h−1−¯̀
e
√

2/k(h−1)φ (5.1)

3In a paper [26] that appeared today in arXiv, the authors also derive the formula (4.14) for the anoma-

lous dimension and they discuss the spectrum of the deformed theory in relation to its non-local properties.
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which relates to the exponential basis (3.7) as follows

Φh(p|z) =

∞∑
n=0

∞∑
m=0

cnc̄m Φ̂h,h−n−1,h−m−1 , (5.2)

with

cn =
(ip)n

Γ(n+ 1)
, c̄n =

(ip̄)n

Γ(n+ 1)
. (5.3)

The OPE between the current J− and the operators (5.1) is

J−(z)Φ̂h,`,¯̀(zi) '
(h− 1− `)

(z − zi)
Φ̂h,`+1,¯̀(zi) + . . . (5.4)

After integrating over the zero modes of the fields and performing the Wick contrac-

tions, the 2-point correlation function of two operators (5.1) is found to be〈
Φ̂h,`1,¯̀1

(0)Φ̂h,`2,¯̀2
(1)
〉

=
Γ(−s)M s

0

πs

∞∑
t=0

[
Γ(h−`1)Γ(h−`2)

Γ(1−h+¯̀
1)Γ(1−h+¯̀

2)
Is−1(h,k)

×δ(t+`1+`2)

Γ(t+1)

(λ0

π

∫
d2z|z|−2|z−1|−2

)t]
(5.5)

where s = 2h− 1 and

Is(h, k) =

∫
Cs

s∏
r=1

d2wr|wr|
4(h−1)
k
−2|wr − 1|

4(h−1)
k
−2

s∏
r=1

r−1∏
t=1

|wr − wt|−
4
k . (5.6)

In the expression above, the factor Γ(−s) arises through the integration over the zero-

mode φ0 in the path integral, which sets the precise amount, s = 2h − 1, of screening

operators
∫
ββ̄e−

√
k/2φ to be inserted; see [14, 27] for details. This integration also produces

the factor (M0/π)s. Notice that the expression above makes sense in principle only for

2h ∈ Z>1, for which the amount of integrals to be performed in (5.6) turns out to be a

positive integer. However, the resulting expression admits a well-known analytic extension

to other values of s and the result is valid for general values of h. In the expression

above, we have also invoked PSL(2,C) invariance to fix the vertex operators at z1 = 0 and

z2 = 1. In order to fully stabilize the projective symmetry and cancel out the volume of the

Killing conformal group in the path integral, we have also fixed the sth interaction operator

ws = ∞; this is why Is−1(h, k) appearing in (5.5) turns out to be an integral over s − 1

and not over s variables. The sum over the index t stands for different values of `1 + `2.

Because of the presence of the deformation operator (2.1), which does not commute with

the U(1) Cartan element of SL(2,R), the quantity t = −`1− `2 is not necessarily conserved

and one has to sum over its possible values; this explains the sum over t as well as the

factor (λ0/π)t/t!. The factorial follows from the different ways of ordering the insertions

of Dt operator when treating (2.1) as a perturbation.

Remarkably, integral (5.6) can be explicitly solved to produce a relatively simple for-

mula in terms of Γ-functions [28]. Integral

I1(h = 1) =

∫
C
d2z |z|−2|z − 1|−2, (5.7)
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is, in contrast, divergent. In fact, this is exactly the integral we have found before, in (4.8),

which here appears in all terms of the series conveniently accompanied with the same power

of λ0. In this basis, integral I0 = I1(h = 1) has its origin in the contraction of the β fields

of operators D with the γ fields of the vertex operators Φh,`,¯̀. More precisely, in the limit

h = 1 + kε/2 → 1 (ε → 0) the integral I1(h, k) goes like ∼ 4π/ε. Therefore, we find

exactly the same renormalization as before, with the logarithmic divergence leading to the

anomalous dimension (4.14). After integrating over wr and considering the renormalization

of λ0, we find

〈
Φ̂h,`1,`1(0)Φ̂h,`2,`2(1)

〉
=

1

π

(
M0

Γ
(

1
k

)
Γ
(
1− 1

k

))2h−1
Γ (1− 2h) Γ

(
1− 2h−1

k

)
Γ (2h− 1) Γ

(
2h−1
k

)
×
∞∑
t=0

λt0I
t
0

πtt!

δ (t+ `1 + `2) Γ (h− `1) Γ (h− `2)

Γ (1− h+ `1) Γ (1− h+ `2)
, (5.8)

which is the result for the 2-point function in the basis (5.1). Notice that the first step

in the sum (t = 0) correctly reproduces the 2-point function of the undeformed SL(2,R)

WZW theory, which corresponds to λ0 = 0. In other words, correlator (5.8) generalizes

the result for the reflection coefficient of strings in AdS3. On the other hand, the 2-point

function (4.15), which corresponds to operators of the basis (3.7), in the case λ0 = 0

can be relevant to describe string interactions on the massless Bañados-Teitelboim-Zanelli

geometry [25]. Using (5.2)–(5.3) and properties of the Γ-functions, such as Γ(n− z)Γ(1 +

z − n) = (−1)nΓ(1 + z)Γ(−z), one can easily recover (4.15) from (5.8). In fact, it is easy

to verify that, due to the presence of the function δ(t + `1 + `2) in each term of the sum

over t, (5.8) before renormalization reproduces the behavior

〈
Φh(p|0)Φh(−p|1)

〉
∼ e−

λ0I0|p|
2

π
|p|4h−2

π

(
M0

Γ
(

1
k

)
Γ
(
1− 1

k

))2h−1
Γ(1−2h)Γ

(
1− 2h−1

k

)
Γ(2h−1)Γ

(
2h−1
k

) , (5.9)

consistently with (4.15). Anomalous dimension follows from (4.13) after reintroducing the

dependence on z1,2.

6 Pole structure

Then, we have computed the 2-point function in the presence of the deformation parameter

for operators in two different basis and by means of two different methods. The results

are (4.15) and (5.8). In both basis, the 2-point function exhibits singularities at

h =
n

2
, n ∈ Z>0 (6.1)

and at

h =
1

2
+
n

2
k , n ∈ Z>0. (6.2)

On general grounds, one expects the N -point correlation function to develop singular-

ities at
∑N

i=1 hi = n+N − 1 and at
∑N

i=1 hi = nk+N − 1, with n ∈ Z>0, along with other
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infinite poles. These pole conditions are of course also present in the undeformed case,

λ0 = 0. However, one has to be reminded of the fact that the index h, as a function of

the dimension ∆0, also depends on the quantity λ0|p|2 through equation (4.14). In other

words, the dependence on h in the analytic expression of the 2-point function (4.15) is

ultimately p-dependent, in virtue of the mass-shell condition (see (7.7)–(7.8) below).

The poles (6.1) have their origin in the factor Γ(−s) in (5.5), which diverges at s ∈ Z≥0.

For kinematic configurations such that s =
∑N

i=1 hi+1−N > 0, the N -point correlators are

dominated by the region in which the exponential self-interaction (the Liouville-type wall)

is negligible. This is because that is the region where the integration over the zero-mode

φ0 principally contributes. On the contrary, when s =
∑N

i=1 hi+1−N < 0, the correlators

receive the principal contributions from the vicinities of the wall. This is similar to what

happens in other 2-dimensional string theory examples [29], and the interpretation has to

be similar too: from the bulk geometry point of view, poles (6.1) have to be understood as

resonances in the scattering of states with the microscopic constituents of the wall.

The interpretation of poles (6.2) is more subtle. As pointed out in [30], the factor

responsible for such poles exhibits at high energy a peculiar functional form, a functional

form that differs from the semi-classical result for a reflection coefficient along the semi-

infinite direction φ. Indeed, using Stirling approximation one finds the following result in

the large pφ/
√
k limit

Γ(1− 2h−1
k )

Γ(2h−1
k )

∼ ipφ e
−

2ipφ√
k

(log pφ−1− 1
2

log k)
, (6.3)

recall 2h − 1 = i
√
kpφ. In the case in which the gauged SL(2,R)/U(1) WZW model is

considered to describe 2-dimensional string theory on the Euclidean black hole geometry,

the prefactor (6.3) in the 2-point function was interpreted as an anomalous phase-shift

that captures finite α′ effects in the near horizon geometry [30]. We see here this factor

appearing as well, as it is characteristic of the SL(2,R) component of the CFT2. Then,

one could feel tempted to give to it an interpretation in terms of how the high-momentum

states experience the φ→ −∞ zone of the linear dilaton direction in the deformed theory.

However, whatever interpretation for the large momentum behavior of this factor is to be

proposed, this should also be applicable to the undeformed case λ0 = 0.

There is also interesting physics associated to the factor ∼ |p|4h−2 to which the 2-point

function of operators (3.7) results proportional. This is discussed in detail in [26].

7 Relation to the coset construction and spectrum

Now, let us discuss the spectrum of the theory. Following [9], one can describe the bulk

theory proposed in [1] as a coset, starting with the background

R× S1 ×AdS3 × S3 × T 4 (7.1)

and gauging the current J− of SL(2,R). The bulk geometry obtained through this gauging

procedure is the geometry of strings and five-branes discussed in [5]. To implement the
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gauging one introduces two free fields, T and X, representing the R and the S1 directions

of (7.1), respectively; the first of these fields, T , represents a timelike direction, namely

〈X(z)X(0)〉 = −〈T (z)T (0)〉 = −2 log |z|.
After dressing operators (3.7) with the T , X auxiliary fields that are employed to

realize the coset, and including the internal space, one gets

Ôh(p) =

∫
d2z e−ϕ−ϕ̄Φh(p|z)e

−i
√

2
k

(wT (z)+pxX(z))O(z) (7.2)

where ϕ, ϕ̄ are the superconformal ghosts, which we will ignore hereafter. O corresponds

to the primary operator of dimension ∆O in the CFT2 defined on the S3×T 4 sub-manifold.

Notice that here we are focusing only on the bosonic components of the AdS3 piece of the

geometry, although the fact that we are considering the supersymmetric theory is reflected,

for example, in the fact that k does not suffer any shifting in the expressions for the vertex

operators and their conformal dimensions.

The coset is realized by gauging the null current, which we parameterize by the im-

proved current

Ĵ−(z) =

√
k

2
(∂X − ∂T ) + iε∂v eiv−u (7.3)

where ε is related to the crossover scale λ0. In fact, one can verify easily that the following

OPE holds

Ĵ−(z)Φh(p|zi)e
−i

√
2
k

(wT (zi)+pxX(zi))' i

(z−zi)
(w+px−εp)Φh(p|zi)e

−i
√

2
k

(wT (zi)+pxX(zi))+. . .

which becomes regular provided the constraint w + px − εp = 0 is obeyed; analogously,

w − px − εp̄ = 0.

Similarly, the stress-tensor T is defined by adding to the one derived from (3.1) the T ,

X contribution + 1
2(∂T )2 − 1

2(∂X)2. Then, the following OPE is easily be obtained

T (z) Φh(p|zi)e
−i

√
2
k

(wT (zi)+pxX(zi)) ' ∆

(z − zi)2
Φh(p|zi)e

−i
√

2
k

(wT (zi)+pxX(zi))

+
1

(z − zi)
∂ Φh(p|zi)e

−i
√

2
k

(wT (zi)+pxX(zi)) + . . .

with

∆ = −h(h− 1)

k
+
α′

4
(p2
x − w2) = −h(h− 1)

k
+ 4λ0|p|2, (7.4)

for the appropriate identification ε = 2
√
kλ0 [9]. This reproduces (4.14).

Once (7.4) has been obtained, the study of the spectrum follows from the analysis

of [9]. To describe the spectrum on the R×S1 sup-space parameterized by T , X, one splits

the left- and the right-moving components as

e
i
√

2
k
pxX = e

i
√

2
k
pLXL+i

√
2
k
pRXR (7.5)
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where k = R2/α′, having chosen here R = 2 for convention. This permits to describe the

Kaluza-Klein and the winding modes along the compact direction; namely

pL =
n

2
+
kω

2
=
n

R
+
Rω

α′

pR =
n

2
− kω

2
=
n

R
− Rω

α′
. (7.6)

The string theory spectrum then follows from the Virasoro constraint of the supersym-

metric theory, ∆ + ∆̄ = 1; namely

∆ = −h(h− 1)

k
+
α′

4
(p2
L − w2) + ∆O =

1

2
(7.7)

∆̄ = −h(h− 1)

k
+
α′

4
(p2
R − w2) + ∆̄O =

1

2
. (7.8)

This mass-shell condition yields the energy spectrum

w =

√( n
R

)2
+
(ωR
α′

)2
+

1

R2
+
p2
φ

α′
+

2

α′

(
∆O + ∆̄O − 1

)
(7.9)

together with the level matching condition for the internal spin ∆O − ∆̄O = −nω.

Formula (7.9) yields the energy spectrum studied in [9]. This, after choosing the

correct ground states and elaborating a little, leads to an interesting discussion about the

Hagedorn spectrum and the thermodynamics of the deformed theory. We refer to [9] for

the details.

Going back to the formula (4.14) for the anomalous dimension, and considering this

in relation to the mass-shell condition (7.7)–(7.8), one finds

h =
1

2
+

1

2

√
1 + 4k

(
∆O +

1

2

)
+ 16kλ0p2, (7.10)

which manifestly shows the dependence on p. The solution with h′ = 1 − h ≥ 0 is also

possible within the window

0 ≥ 4λ0p
2 + ∆O +

1

2
≥ − 1

4k
. (7.11)

In order to guarantee that h ∈ R, one needs to impose the condition

4λ0p
2 + ∆O +

1

2
≥ − 1

4k
; (7.12)

which corresponds to the values of h that, in the undeformed theory, belong to discrete

representations of the universal covering of SL(2,R). On the other hand, for the range

4λ0p
2 + ∆O +

1

2
< − 1

4k
, (7.13)

the index h takes values corresponding to the continuous series (3.6).
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8 Higher-point correlation functions

To conclude, let us make a few remarks. The first is about the 3-point correlation func-

tion, which can also be integrated explicitly. This corresponds to the deformation by

operator (2.1) of the SL(2,R) WZW 3-point function in the exponential basis (3.7). This

can be done by adapting the results of [24] to the deformed theory. The presence of the

deformation operator in the action actually produces a divergent piece

I0 ∼
∫
d2z |z − y|2

3∏
i=1

|z − zi|−2, (8.1)

with p1 + p2 + p3 = 0. This is similar to the one we found for the 2-point function, except

for the fact that here there is an additional insertion at

y = −p1z2z3 + p2z3z1 + p3z1z2

p1z1 + p2z2 + p3z3
. (8.2)

Integral (8.1) appears because, when a third vertex is inserted in the correlator, the

solution for field β gets modifies as follows

β(z) = i(z − y)

3∑
i=1

pizi

3∏
j=1

(z − zj)−1, (8.3)

and, when evaluated on the term D in the action, it yields (8.1). Conformal integral (8.1)

can be solved by resorting to the following functional identity

∫
C
d2z |z−y|−4−2

∑3
i=1 ai

3∏
i=1

|z−zi|2ai =
Γ(−1−

∑3
i=1ai)

Γ(2+
∑3

i=1ai)

3∏
i=1

Γ(1+ai)

Γ(−ai)

∣∣∣z1−z2

z3−y

∣∣∣2+2a1+2a2

×
∫
C
d2z|z−y|−2−2a3 |z−z1|−2−2a2 |z−z2|−2−2a1 |z−z3|2+2

∑3
i=1 ai (8.4)

considering the particular case a1 = −1 + ε, a2 = −1− ε, a3 = −1 +2ε. Following the steps

above, this yields a closed expression. The result can be conveniently expressed in terms

of a 4-point function in Liouville theory.

N -point correlation functions with N ≥ 3 can also be expressed in terms of Liouville

theory correlators multiplied by the exponential of a conformal integral like (8.1) in which

more products
∏N−2
i=1 |z − yi|2

∏N
j=1 |z − zj |−2 appear in the integrand, with the complex

variables yi, ȳi being functions of zj , z̄j and pj , p̄j . This follows as a corollary of Riemann-

Roch theorem. More precisely, it follows from the fact that β and β̄ are meromorphic

1-differential on a genus-zero surface, so their number of zeroes (of multiplicity one) exceed

in 2 their number of (single) poles, producing such integrand. This means that for N -

point function with arbitrary N the operator D will produce a divergence as the one that

accounts for (4.14) in the 2-point function.
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9 Correlators redux: conjugate representation

It seems convenient to think of the deformation (2.1) in relation to the conjugate represen-

tations that the WZW theory admits when described as a product

SL(2,R)

U(1)
×U(1), (9.1)

as proposed in [14]. This is also related to the duality studied in [32]. In fact, according

to the representation of [14] the operator (3.3) can be associated to the operator

2λ0

∫
d2z e

i
√

2
k
X+i

√
2
k
T

(9.2)

on the product space (9.1), where X is a space-like free boson that realizes the U(1)

that is being modded out and T is a time-like free boson that realizes the extra U(1)

factor. Field X presents a background charge (QX/π)
∫
d2zRX with Q2

X = k/2, so that

the operator (9.2) has dimension 1. In this conjugate representation, the vertex operators

Φ̂hi,`i,`i result proportional to ei
√

2/k(`i+k/2)X+i
√

2/k`iT , yielding a contribution λ0I0/π with

I0 =

∫
d2z

N∏
i=1

|z − zi|−2 (9.3)

when contracted with operator (9.2), as in (5.5). This type of representation can provide

a simpler way of dealing with the deformed theory. To see how this works explicitly, one

can consider again the 2-point function and write the operators Φ̂h,`,` in the conjugate

representation [14]

Φ̂h,`,` = (ββ̄)h+`−1/2e
−
√

2
k

(1−h+k/2)φ
e
i
√

2
k

(`+k/2)X+i
√

2
k
`T
, (9.4)

which has the advantage of not involving the γ field. As a consequence, the ghosts fields

decouple and the 2-point function 〈Φ̂h,`1,`1(z1)Φ̂h,`2,`2(z2)〉 reduces to that of two expo-

nential operators e
√

2αφ with momenta α = (h − 1 − k/2)/
√
k in Liouville field theory

at central charge c = 1 + 6(b + 1/b)2, with b = −1/
√
k, all multiplied by a factor∑∞

t=0 δ(`1+`2+t)(λ0I0/π)t/t! coming from (9.3). The compensation condition `1+`2+t = 0

is realized because of the presence of the background charge QX . Again, the exponentia-

tion of I0 yields the logarithmic divergence responsible for the anomalous correction to the

conformal dimension. The final result exactly reproduces (4.15).

10 Final remarks

As shown here, for the model deformed by operator (2.1) the correlation functions can

be explicitly computed and this leads to the determination of the spectrum in agreement

with [9]. However, open questions still remain. For instance, it would be interesting to

fully understand the connection between the deformation (2.1) proposed in [1] and the

renormalization group flow triggered by the standard T T̄ -deformation recently considered

in references [2, 3].
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One might also ask whether other solvable variations of the model are possible. In

fact, one can also imagine other deformations of the theory (3.3) that are integrable as

well, in the sense that their correlation functions can be in principle computed explicitly.

For instance, one could consider the family of theories introduced in [31], which are de-

formations of the SL(2,R) WZW that consist in replacing the fifth term in (3.3) by the

operator λ0

∫
d2z(−2ββ̄)1+ηe−

√
2/kφ along with a change in the background charge in the

second term, namely
√

2/k
∫
d2zRφ → (

√
2/k −

√
2kη)

∫
d2zRφ, with η ∈ R. After in-

tegrating the β, β̄ fields, this yields higher-derivative interactions provided η 6= 0. These

theories also have operator (2.1) as a worldsheet marginal deformation and the correlation

functions can also be written explicitly using the techniques discussed here. However, the

geometric interpretation of these theories as string σ-models is unclear precisely because

of the higher-derivative terms.

Another interesting problem would be studying the analytic properties of the 2-point

function (4.15) for operators (3.7) and trying to infer from this some aspects of the theory

related to its non-locality. Interesting results on this have been obtained in the paper [26],

which appeared in arXiv today.

It would also be interesting to understand the theory for negative values of λ0 and

answer the question whether a vacuum exists in that case. The relation to other holographic

realization of T T̄ -deformed theories, such as the one of [33, 34], is also an interesting

problem to investigate.
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[3] A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, T T̄ -deformed 2D Quantum Field

Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

[4] O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS five-branes and

holography, JHEP 10 (1998) 004 [hep-th/9808149] [INSPIRE].

[5] A. Giveon, D. Kutasov and O. Pelc, Holography for noncritical superstrings, JHEP 10

(1999) 035 [hep-th/9907178] [INSPIRE].

– 16 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP07(2017)122
https://arxiv.org/abs/1701.05576
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05576
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://arxiv.org/abs/1608.05499
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05499
https://doi.org/10.1007/JHEP10(2016)112
https://arxiv.org/abs/1608.05534
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05534
https://doi.org/10.1088/1126-6708/1998/10/004
https://arxiv.org/abs/hep-th/9808149
https://inspirehep.net/search?p=find+EPRINT+hep-th/9808149
https://doi.org/10.1088/1126-6708/1999/10/035
https://doi.org/10.1088/1126-6708/1999/10/035
https://arxiv.org/abs/hep-th/9907178
https://inspirehep.net/search?p=find+EPRINT+hep-th/9907178


J
H
E
P
0
2
(
2
0
1
8
)
1
1
4

[6] A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999)

034 [hep-th/9909110] [INSPIRE].

[7] S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity,

JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].

[8] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography

and TT , JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

[9] A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of AdS3/CFT2,

JHEP 12 (2017) 155 [arXiv:1707.05800] [INSPIRE].

[10] A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv. Theor.

Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].

[11] D. Kutasov and N. Seiberg, More comments on string theory on AdS3, JHEP 04 (1999) 008

[hep-th/9903219] [INSPIRE].

[12] A. Giveon and D. Kutasov, Notes on AdS3, Nucl. Phys. B 621 (2002) 303 [hep-th/0106004]

[INSPIRE].

[13] J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2,R) WZW model 1.: The

spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].
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