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1 Introduction

The irrelevant TT deformation of two-dimensional Lorentz invariant models introduced
in [1] has many interesting properties. In particular, if a seed model is integrable then the
TT deformed model is also integrable at least at the classical level [2, 3]. Assuming the
TT operator is well-defined at the quantum level, the factorisation of two-point correlation
functions at large separation and a CFT limit at short distances, one can show that the
spectrum of a TT deformed model is governed by an inhomogeneous inviscid Burgers
equation. If the spectrum depends regularly on the deformation parameter then it is
completely fixed by the spectrum of the seed model [1]. The Burgers equation can be used
to derive the CDD factor which relates the S-matrices of the deformed and seed models [2].
The same CDD factor appears in the world-sheet S-matrix of the light-cone gauge-fixed
AdS5 × S5 string sigma model [4] and in the study of effective bosonic string theory in
flat space [5]. It also describes the world-sheet scattering of light-cone strings on AdS3
backgrounds without RR fields [6–8]. Its relation to the TT deformation was pointed out
in [9]. For many other aspects of TT deformed models see the lecture notes [10].
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There are various connections of TT deformed relativistic models to two-dimensional
gravity. A TT deformed S-matrix and the partition function can be obtained by coupling a
seed model to the flat space Jackiw-Teitelboim (JT) gravity and its generalisations [11–13].
This leads to the interpretation of the TT deformation as a nonlocal field dependent change
of space-time coordinates of the seed model [14]. The partition function of a deformed
model can also be derived by coupling a seed model to a random geometry [15]. The action
of a TT deformed model can be obtained by interpreting it [16, 17] as the action of a non-
critical string sigma model in a parameter dependent uniform light-cone gauge introduced
in [18]. Most of the TT deformed Lorentz invariant actions [3, 16, 19–28] derived by using
other methods are particular cases of the TT deformed action for a very general system of
any number of bosons and fermions with an arbitrary potential which was derived in [17]
by using the light-cone gauge approach. In fact, for TT deformations with the canonical
stress-energy tensor this action is universal and can be applied to any model.

The TT deformation of non-Lorentz invariant models is also very interesting to study
even at the classical level. Many non-relativistic models, for example the nonlinear
Schrödinger (NLS) equation, the Landau-Lifshitz (LL) equation and the Gardner equation
which is a combination of the Korteweg-deVries (KdV) and the modified KdV (mKdV)
equation, play important roles in describing various phenomena in nonlinear optics, hy-
drodynamics, plasma physics and condensed matter physics. Some aspects of non-Lorentz
invariant TT deformed models have been studied in [29–34].

The light-cone gauge approach to TT deformed models works equally well for rela-
tivistic and non-relativistic models. In particular, as was mentioned in [17], it could be
used to derive the TT deformed action for the chiral SYK model and the matrix nonlinear
Schrödinger model.

In this paper we derive the TT deformed actions for the matrix NLS equation, the LL
equation and the Gardner equation by using the light-cone gauge approach. The resulting
actions are written in the first-order form and depend on auxiliary fields. For the deformed
matrix NLS and LL models, the auxiliary fields satisfy algebraic equations of motion and
can be eliminated leading to Nambu-Goto type actions. The TT deformed Gardner model is
more involved because the auxiliary fields appear in the deformed action together with their
space derivatives, and it is unlikely that there exists a local deformed action depending only
on the physical field. Moreover, the Gardner field which appears in the Gardner equation
is not the physical field of the Gardner model action but one of the auxiliary fields.

We then find one-soliton solutions of the deformed NLS and KdV models. The de-
formed NLS soliton clearly exhibits the general phenomenon of widening/narrowing the
width of particles under the TT deformation recently discussed in [30]. However, in the
nonrelativistic case whether the soliton’s size is increasing or decreasing depends not only
on the sign of the deformation parameter but also on soliton and potential parameters. As
to the TT deformed KdV soliton, we find a one-parameter family of solutions where the
extra parameter is related to the time dependence of the physical field at space infinities.
If one fixes the dependence, then the extra parameter can be interpreted as the parameter
of the deformation by the time component of the conserved current due to the invariance of
the TT deformed Gardner model under constant shifts of its physical field. The parameter
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modifies the properties of the soliton, in particular, it appears in the dispersion relation.
All these solutions reduce to the usual KdV soliton once one takes the TT deformation
parameter to 0.

The TT deformed action for the (non-matrix) NLS model has been also found in [32–34]
by using different and substantially more complicated methods than the light-cone gauge
one, and some deformed soliton solutions have been analysed in [33].

The paper is organised as follows. In section 2 we first review the universal TT de-
formed action derived in [17] and introduce our notations. Then in section 2.1, as a warm-
up, we obtain the well-known TT deformed Lagrangian of a sigma-model of scalar fields
with arbitrary potential and B-field. In section 2.2–2.4 we get the TT deformed actions
for the matrix NLS, the LL and the Gardner models. In section 2.3 we also show how the
deformed NLS and sine-Gordon models can be obtained from the deformed LL model by
taking appropriate limits generalising the well-known results for the seed models [35]. In
section 3.1 we discuss a one-soliton solution of the TT deformed NLS equation with the
potential which in addition to the usual quartic term also includes the density of particles.
This term is unimportant for the undeformed NLS model because it can be removed by a
time dependent U(1) transformation of the fields. The TT deformed model and its solu-
tions however depend on it in a nontrivial way. In section 3.2 we consider a one-parameter
family of one-soliton solutions of the TT deformed KdV equation which is the simplest case
of the Gardner equation. In Conclusions we summarise the results obtained and discuss
numerous open problems. Technical details can be found in several appendices.

2 Lagrangians of T T deformed models

All models we are going to discuss in this paper are TT deformations of a seed model
described by the following action

S0 =
∫

dxdtL0 , L0 = P ta(Ψ)∂tΨa + P xa (Ψ)∂xΨa −V(Ψ) . (2.1)

Here Ψa , a = 1, . . . , n are bosonic and fermionic fields which can be real or complex. If
a field is complex then the set (Ψa) also includes its complex conjugate field. P ta, P xa and
V are chosen so that the action (2.1) is real and Grassmann even but otherwise they are
arbitrary functions of the fields Ψa. The seed action is written in the first-order formalism
with respect to both time and space, and as a result many of the fields are non-dynamical.
If each Ψa belongs to a Lorentz group representation and P ta, P xa belong to the conjugate
representation, and V is a Lorentz scalar then the seed model is Lorentz invariant.

The light-cone gauge approach to TT deformed models developed in [17] then leads to
the following deformed Lagrangian

L = Kt
t + Kx

x −V + α(Kt
tKx

x −Kt
xKx

t )
1 + αV =

L0 − α
2 ε
γρεµνKµ

γKν
ρ

1 + αV , (2.2)

where
Kt
γ ≡ P ta∂γΨa , Kx

γ ≡ P xa ∂γΨa , γ = t, x , (2.3)
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and the skew-symmetric Levi-Civita symbol is defined by ε01 = εtx = 1 = εxt = ε10. To
get (2.2) from the Lagrangian (3.53) in [17] one should make the following replacements in
(3.53): Ψ± → Ψ, ΨaK+

ab → −i P tb , ΨaK−ab → −i P xb , ∂+ → ∂t, ∂− → ∂x.
The canonical stress-energy tensor of the deformed model can be easily calculated

Tµν = ∂L
∂∂µΨa

∂νΨa − δµνL (2.4)

T tt = −Kx
x + V

1 + αV , T xt = Kx
t

1 + αV , T tx = Kt
x

1 + αV , T xx = −Kt
t + V

1 + αV , (2.5)

and used to check that the deformed Lagrangian (2.2) satisfies the flow equation

∂L
∂α

= T ttT
x
x − T txT xt (2.6)

Since any seed model can be written in the form (2.1), the TT deformed Lagrangian (2.2)
is universal. However, in a non-relativistic case the seed Lagrangian (2.1) may also include
total derivative terms which do not change the equations of motion of the seed model but
they do change the canonical stress-energy tensor and as a result the Lagrangian and the
equations of motion of the deformed model may depend on the total derivative terms. This
dependence does not seem to be spurious, and we do not think that it can be undone by
a field redefinition.

2.1 T T deformed sigma model

As a warm-up, in this subsection we discuss the well-known deformation of a sigma-model
of n scalar fields described by the Lagrangian

L0 = 1
2η

αβ∂αX
i∂βX

j Gij(X) + 1
2ε

αβ∂αX
i∂βX

j Bij(X)− U(X) , (2.7)

where ηαβ = diag(1,−1), ε01 = εtx = 1 = εxt, and U is an arbitrary potential.
To bring the Lagrangian to the form (2.1), we introduce the momentum vectors

Pαi = ∂L0
∂∂αXi

=
(
ηαβ Gij + εαβ Bij

)
∂βX

j . (2.8)

The component P ti is the momentum conjugate to Xi.
Solving these equations for ∂αXi, one finds

∂αX
i =

(
ηαβ G̃

ij + εαβ B̃
ij)P βj , (2.9)

where G̃ij and B̃ij satisfy

GijG̃
jk +BijB̃

jk = δki , GijB̃
jk +BijG̃

jk = 0 , (2.10)

which can be solved as

G̃ij
(
Gjk −BjlGlmBmk

)
= δik , B̃ij = −G̃ikBklGlj = −GikBklG̃lj . (2.11)

Note that G̃ is symmetric and B̃ is anti-symmetric.
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It is then straightforward to rewrite L0 in the first-order formalism

L0 = P γi ∂γX
i − 1

2
(
ηγρ G̃

ij + εγρ B̃ij
)
P γi P

ρ
j − U . (2.12)

It is the form of L0 we need. The set (Ψa) consists of Xi, and P γi , and

Kt
t = P ti ∂tX

i , Kx
x = P xi ∂xX

i , Kt
x = P ti ∂xX

i , Kx
t = P xi ∂tX

i ,

V = 1
2
(
ηγρ G̃

ij + εγρ B̃ij
)
P γi P

ρ
j + U .

(2.13)

Thus, the TT deformed Lagrangian of the sigma model is

L =
P γi ∂γX

i − 1
2
(
ηγρ G̃

ij + εγρ B̃ij
)
P γi P

ρ
j − U − α

2 ε
γρεµνP

µ
i ∂γX

iP νj ∂ρX
j

1 + α
2
(
ηγρ G̃ij + εγρ B̃ij

)
P γi P

ρ
j + αU

. (2.14)

One can get rid of the auxiliary fields P γi by using their equations of motion and, choosing
a proper solution of the resulting quadratic equation on L, one gets the well-known answer1

Lph =− 1
α

+ 1
2α̃+ 1

2α̃

√
1+2α̃(Ẋ2−X ′2)−4α̃2(Ẋ2X ′2−(ẊX ′)2)+ẊiX ′jBij , (2.15)

where

Ẋ2 ≡ GijẊiẊj , X ′2 ≡ GijX ′iX ′j , ẊX ′ ≡ GijẊiX ′j , α̃ = α(1 + αU) . (2.16)

It is worth stressing that the Lagrangian (2.14) describes both the perturbative and non-
perturbative in α solutions of the quadratic equation on L.

2.2 T T deformed matrix nonlinear Schrödinger model

The Lagrangian of the matrix nonlinear Schrödinger model is

L0 = i

2(ψ̄ψ̇ − ˙̄ψψ)− ψ̄′ψ′ − U , U = κ ψ̄ψψ̄ψ − µ ψ̄ψ . (2.17)

Here
ψ = (ψai) , ψ̄ = ψ† = (ψ∗ia) , a = 1, . . . , n , i = 1, . . . ,m (2.18)

are complex n×m and m×n matrices hermitian conjugate to each other. Then, the trace
is implied in (2.17), i.e.

ψ̄ψ̇ ≡ ψ∗iaψ̇ai , ψ̄ψψ̄ψ ≡ ψ∗iaψajψ∗jbψbi . (2.19)

To bring the Lagrangian into the desired form we introduce two auxiliary matrices hermi-
tian conjugate to each other

A = (Aai) , Ā = A† = (A∗ia) , a = 1, . . . , n , i = 1, . . . ,m , (2.20)
1To find Lph which depends only on the physical fields Xi it is not necessary to solve the equations of

motion for Pα
i . Since L depends just on Kγ

ρ and V it is sufficient to know only them to find Lph. This
can be done by expressing V in terms of L and Kγ

ρ , and substituting it into the equations of motion for
Pα
i . This leads to simple linear equations for Kγ

ρ which can be easily solved. The consistency condition
of the solution with the expression for V in terms of L and Kγ

ρ leads to a quadratic equation for L with
coefficients which depend only on the physical fields.
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and rewrite (2.17) as

L0 = i

2(ψ̄ψ̇ − ˙̄ψψ)− Āψ′ − ψ̄′A+ ĀA− U (2.21)

Thus, the set (Ψa) consists of ψ, ψ̄, A, Ā, and

Kt
t = i

2(ψ̄ψ̇ − ˙̄ψψ) , Kx
x = −Āψ′ − ψ̄′A ,

Kt
x = i

2(ψ̄ψ′ − ψ̄′ψ) , Kx
t = −Āψ̇ − ˙̄ψA , V = U − ĀA ,

(2.22)

where the trace is implied.
The TT deformed Lagrangian of the matrix nonlinear Schrödinger model, therefore, is

L =
Kt
t − Āψ′ − ψ̄′A+ ĀA− U − α

(
Kt
t (Āψ′ + ψ̄′A)−Kt

x(Āψ̇ + ˙̄ψA)
)

1− α(ĀA− U)
. (2.23)

Eliminating the auxiliary fields A, Ā by using their equations of motion and, choosing the
regular in α solution of the resulting quadratic equation on L, one gets

Lph = − 1
α

+ 1 + αKt
t +
√

Λ
2α̃ , α̃ = α(1 + αU) ,

Λ = (1 + αKt
t )2(1− 4α̃ψ̄′ψ′) + 4αα̃(1 + αKt

t )Kt
x( ˙̄ψψ′ + ψ̄′ψ̇)− 4α2 α̃ (Kt

x)2 ˙̄ψψ̇
(2.24)

where in the expression for Λ the trace is implied.
It is clear that the deformation drastically modifies the Poisson structure of the model,

and developing a Hamiltonian formulation requires dealing with an intricate system of
second-class constraints. The same seems to be valid for any non-relativistic model.

2.3 T T deformed Landau-Lifshitz model

We mostly follow the notations in [35].
The Landau-Lifshitz equation is

∂Si
∂t

= 1
R2 εijk Sj

∂2Sk
∂x2 + εijk SjJkSk , (2.25)

where S2
i = R2, and we sum over repeated indices even if there are 3 of them.

The fields Si have the Poisson structure

{Si(x), Sj(y)} = −η εijk Sk(x)δ(x− y) , (2.26)

and the LL equation follows from the Hamiltonian

H =
∫
dx

1
2η

(
1
R2

(
∂Sk
∂x

)2
− JkS2

k + J3R
2
)
, (2.27)

where the constant J3R
2 guaranties the vanishing of the Hamiltonian density in the rapidly

decreasing case where we impose the conditions Sk(±∞) = δk3R. By rescaling Sk and x, y
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one can set R = 1 and η = 1. We prefer to keep these two parameters to simplify taking
the limits to the NLS and sine-Gordon models.

To find the TT deformed LL model we need its Lagrangian description. To this end
we multiply (2.25) by εlmiSm, and, changing the indices, get

εijkSj
∂Sk
∂t

= −
(
δij −

1
R2SiSj

)(
∂2Sj
∂x2 +R2JjSj

)
, S2

i = R2 . (2.28)

These equations can be derived from the following Lagrangian

L0 =
∫
dx

∫ ∞
0

dr
1
ηR2 εijkSi

∂Sj
∂r

∂Sk
∂t

+
∫
dx

1
2η

(
− 1
R2

(
∂Sk
∂x

)2
+JkS2

k−J3R
2
)
, (2.29)

where Sk are subject to the sphere constraint S2
k = R2. In the first term Sk depend

on an extra radial coordinate r, and satisfy the conditions Sk(x, t, r)|r=0 = Sk(x, t),
Sk(x, t, r)|r=∞ = δk3R. This is a WZNW type term, and its variation is

δ

∫
dx

∫ ∞
0

dr
1
ηR2 εijkSi

∂Sj
∂r

∂Sk
∂t

= −
∫
dx

εijk
ηR2SiδSj

∂Sk
∂t

, (2.30)

where the variation δSk is tangent to the sphere, i.e. it obeys the constraint δSkSk = 0.
Because of this, any products VkδSk have to be replaced with Vk(δkm − SkSm

R2 )δSk. It
produces all the terms on the r.h.s. of the equations of motion (2.28). Introducing any
coordinates φa, a = 1, 2 on the sphere S2

k = R2, one can bring the WZNW term to the
total derivative form

1
ηR2 εijkSi

∂Sj
∂r

∂Sk
∂t

= − ∂

∂r

(
Pa
∂φa
∂t

)
+ ∂

∂t

(
Pa
∂φa
∂r

)
, (2.31)

where Pa satisfies the condition Pa(x, t,∞) = 0 to ensure the absence of the contribution
from the first term at r =∞. We will always drop the total time derivative term, integrate
the remaining term over r and, as a result, use the following Lagrangian (density) for the
TT deformation

L0 = PkṠk −
1

2ηR2

(
∂Sk
∂x

)2
+ 1

2η (JkS2
k − J3R

2)− Uadd(Sk) , (2.32)

where Pk are such that PkṠk = Paφ̇
a, and Uadd is an additional potential term which can

be an arbitrary function of Sk. We will choose it later so that the TT deformed NLS model
could be obtained as a special limit of the TT deformed LL model.

In particular, in spherical coordinates

S1 = cosφ sin θ , S2 = sinφ sin θ , S3 = cos θ , (2.33)

the WZNW term takes the form

PkṠk = 1
ηR2 (cos θ − 1)φ̇ = − 2

ηR2 sin2 θ

2 φ̇ . (2.34)
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Now, introducing an auxiliary vector Ai, the LL model Lagrangian can be written as

L0 = PkṠk +AkS
′
k + ηR2

2 A2
k + 1

2η (JkS2
k − J3R

2)− Uadd (2.35)

We see that the set (Ψa) consists of Sk, Ak, and

Kt
t = PkṠk , Kt

x = PkS
′
k , Kx

x = AkS
′
k , Kx

t = AkṠk ,

V = −ηR
2

2 A2
k + U , U = − 1

2η (JkS2
k − J3R

2) + Uadd .
(2.36)

Thus, the TT deformed Lagrangian of the LL model is

L =
PkṠk +AkS

′
k + ηR2

2 A2
k + 1

2η (JkS2
k − J3R

2)− Uadd + αPkAl(ṠkS′l − S′kṠl)

1− αηR2

2 A2
k −

α
2η (JkS2

k − J3R2) + αUadd
. (2.37)

One can get rid of the auxiliary fields Ak by using their equations of motion and, choosing
a proper solution of the resulting quadratic equation on L, one gets

Lph = − 1
α

+ 1 + αKt
t +
√

Λ
2α̃ , α̃ = α(1 + αU) ,

Λ = (1 + αKt
t )2
(

1− 2α̃
ηR2S

′2
k

)
+ 4α
ηR2 α̃(1 + αKt

t )Kt
xS
′
kṠk −

2α2α̃

ηR2 (Kt
x)2 Ṡ2

k .

(2.38)

The similarity of this Lagrangian with (2.24) for the NLS model is obvious, and not
accidental. It is well-known that the NLS model can be obtained from the LL model [35].
Since the NLS model has a U(1) symmetry we need to set J1 = J2 = J . Then, the LL
model also has the symmetry and S3 is proportional to the density of the U(1) current,
and it can be added to the LL Lagrangian while preserving the integrability of the model.
Thus, the potential U we are going to use is

U = 1
2η (J3 − J)(R2 − S2

3) + ν(R− S3) , (2.39)

where ν is any constant.
Next, we use the spherical coordinates (2.33), and get

Kt
t = PkṠk = − 2

ηR2 sin2 θ

2 φ̇ , Kt
x = PkS

′
k = − 2

ηR2 sin2 θ

2 φ
′ ,

1
ηR2S

′2
k = 1

ηR2 (θ′2 + sin2 θφ′2) , 1
ηR2 Ṡ

2
k = 1

ηR2 (θ̇2 + sin2 θφ̇2) ,

1
ηR2S

′
kṠk = 1

ηR2 (θθ̇ + sin2 θφ′φ̇) , U = 1
2η (J3 − J) sin2 θ + ν(1− cos θ) .

(2.40)

Now, we set R = 1, and rescale the angle θ as

θ =
√

2η ρ . (2.41)
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We want to take the limit η → 0 and get a finite Lagrangian. We first obtain

Kt
t → −ρ2φ̇ , Kt

x → −ρ2φ′ ,
1
ηR2S

′2
k → 2(ρ′2 + ρ2φ′2) ,

1
ηR2 Ṡ

2
k → 2(ρ̇2 + ρ2φ̇2) , 1

ηR2S
′
kṠk → 2(ρ′ρ̇+ ρ2φ′φ̇) .

(2.42)

To make contact with the NLS model, we introduce ψ, ψ̄ as

ψ = ρ eiφ , ψ̄ = ρ e−iφ , (2.43)

and find

−ρ2φ̇= i

2(ψ̄ψ̇− ˙̄ψψ) , −ρ2φ′= i

2(ψ̄ψ′−ψ̄′ψ) ,

2(ρ′2+ρ2φ′2) = 2ψ̄′ψ′ , 2(ρ̇2+ρ2φ̇2) = 2 ˙̄ψψ̇ , 2(ρ′ρ̇+ρ2φ′φ̇) = ψ̄′ψ̇+ ˙̄ψψ′ .
(2.44)

This is exactly what we have in (2.24), and the only question remaining is what happens
with the potential U in the limit. Expanding the potential in powers of ρ, one gets

U = (J3 − J + ην)ρ2 − 1
6η(η ν − 4J + 4J3)ρ4 +O(ρ6) . (2.45)

Now, to reproduce the NLS model potential we impose the conditions

J3 − J + ην = −µ , −1
6η(η ν − 4J + 4J3) = κ , (2.46)

and get
J3 = J + µ

3 −
2κ
η
, ν = 2κ

η2 −
4µ
3η . (2.47)

It is then easy to check that in the limit η → 0

U → κρ4 − µρ2 = κ (ψ̄ψ)2 − µ ψ̄ψ , (2.48)

which is indeed the NLS model potential.
The sine-Gordon model is also a limiting case of the LL model. To get the SG model

we set Uadd = 0, and parametrise Sk as [35]

S1 = −βπ2 , S2 =

√
R2 − β2π2

4 sin βφ2 , S3 =

√
R2 − β2π2

4 cos βφ2 , (2.49)

where β is a new constant, and π and φ are the fields parametrising Sk. We then get

Kt
t =PkṠk = β2

4ηπφ̇ , Kt
x =PkS

′
k = β2

4ηπφ
′ ,

1
ηR2S

′2
k = 1

ηR2

β2
(
φ′2
(
β2π2−4R2)2+16R2π′2

)
64R2−16β2π2 ,

1
ηR2 Ṡ

2
k = 1

ηR2

β2
(
φ̇2 (β2π2−4R2)2+16R2π̇2

)
64R2−16β2π2 ,

1
ηR2S

′
kṠk = 1

ηR2

β2
(
φ′φ̇

(
β2π2−4R2)2+16R2π′π̇

)
64R2−16β2π2 ,

U =−β
2π2 (J2(cos(βφ)−1)−J3(cos(βφ)+1)+2J1)+4(J3−J2)R2(cos(βφ)−1)

16η .

(2.50)
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Now, we choose η = β2

4 , take the limit R→∞, and get

Kt
t → πφ̇ , Kt

x → π φ′ ,
1
ηR2S

′2
k → φ′2 ,

1
ηR2 Ṡ

2
k → φ̇2 ,

1
ηR2S

′
kṠk → φ′φ̇ . (2.51)

Finally, we choose Jk as [35]

J2 = J1 + 1 , J3 = J1 + 1 + m2

R2 , (2.52)

and in the limit R→∞ get U

U = 1
2π

2 + m2

β2 (1− cosβφ) . (2.53)

Thus, in this limit we get the TT deformation of a model with the seed Lagrangian

L0 = πφ̇− 1
2φ
′2 − 1

2π
2 − m2

β2 (1− cosβφ) , (2.54)

which is indeed the SG model Lagrangian.

2.4 T T deformed Gardner equation

The Gardner equation is a combined KdV-mKdV equation

u̇+ µu′ + 6 g uu′ − 6hu2u′ + u′′′ = 0 , (2.55)

where g, h and µ are constants. If u satisfies periodic boundary conditions then µ can be
removed by a constant shift of u

u→ u− c , hc2 + gc− µ

6 = 0 , (2.56)

which also changes g. For decreasing boundary conditions such a shift is obviously forbid-
den. The Gardner equation is the continuity equation for the current

J t = u , Jx = µu+ 3 g u2 − 2hu3 + u′′ , (2.57)

and if the charge Q =
∫
dxu exists then it is conserved. In what follows we only consider

the case where Q exists.
The Gardner equation can be derived from the action

S0 =
∫

dxdtL0 , L0 = κ (−φ̇φ′ − µφ′2 − 2gφ′3 + hφ′4 + φ′′2 ) , (2.58)

where the field φ satisfies the boundary conditions

φ(t,∞)− φ(t,−∞) = Qφ = const , (2.59)

κ is any constant, and u is related to φ as

u = φ′ . (2.60)
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Obviously, in the undeformed case Qφ = Q. The equation of motion for φ is invariant under
a shift of φ by any function of time. By using this invariance one may require φ(t,±∞) to
be constant. However, as we will see, in the deformed case this invariance is broken, and
different time dependence of φ(t,∞) leads to different solutions.

To write the Lagrangian (2.58) in the form (2.1), we first introduce an auxiliary field
A satisfying the equation of motion A = φ′′, and cast L0 into the form

L0 = κ
(
−φ̇φ′ − µφ′2 − 2gφ′3 + hφ′4 + 2Aφ′′ −A2

)
. (2.61)

Then, we introduce auxiliary fields for φ′ and φ̇

u = −1
κ

∂L0

∂φ̇
= φ′ , B = −1

κ

∂L0
∂φ′

= φ̇+ 2µφ′ + 6gφ′2 − 4hφ′3 + 2A′ , (2.62)

and get the desired form of the Lagrangian

L0 = κ
(
−u φ̇−Bφ′ + 2A u′ + uB − µ u2 − 2g u3 + h u4 −A2

)
. (2.63)

Clearly, the auxiliary field u is the Gardner field u, and the existence of the conserved
current (2.57) is the consequence of the invariance of L0 under constant shifts of φ.

We see that the set (Ψa) consists of φ, u, B,A, and

Kt
t = −κ u φ̇ , Kx

x = −κBφ′ + 2κA u′ , Kt
x = −κ uφ′ , Kx

t = −κBφ̇+ 2κA u̇ ,

V = −κ (uB − µ u2 − 2g u3 + h u4 −A2) .
(2.64)

Therefore, the TT deformed Lagrangian of the Gardner model is

L = κ
−u φ̇−Bφ′ + 2A u′ + uB − µ u2 − 2g u3 + h u4 −A2 − 2ακA u (u′φ̇− u̇φ′)

1− ακ (uB − µ u2 − 2g u3 + h u4 −A2) , (2.65)

where the field φ satisfies the same boundary conditions (2.59) as in the undeformed case.
The undeformed Lagrangian (2.63) changes under the transformation

φ→ φ+ f(t) , B → B + df

dt
, (2.66)

by a derivative term
L0 → L0 − κ

∂

∂x

(
df

dt
φ

)
. (2.67)

The TT deformed Lagrangian (2.65), however, transforms in a nontrivial way, and therefore
the time dependence of φ at x = ±∞ changes physical properties of the TT deformed
Gardner model.

In the undeformed model the auxiliary field u coincides with the Gardner field u. It is
therefore reasonable to use the same identification in the TT deformed Lagrangian (2.63).
One might try to use the fact that the Gardner equation is the continuity equation, and to
identify φ′ or J t = − 1

κ
∂L
∂φ̇

with u. Both φ′ and J t are time components of conserved cur-
rents and coincide with u in the undeformed case. Our analysis of the one-soliton solution
of the TT deformed KdV equation indicates that the auxiliary field u is a better choice.

It is impossible to get rid of all the auxiliary fields and get a local Lagrangian because
the Lagrangian depends on derivatives of u. In what follows without loss of generality we
set κ = 1.
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2.5 Comments

Here we discuss similarities and differences of the TT deformed Lagrangians for relativistic
and non-relativistic models obtained in this section, and comment on possible approaches
to quantising the models.

All the Lagrangians depend on auxiliary fields which are introduced in a seed model
to bring it to the first-order form (2.1). If the physical fields of a seed model do not
depend on second- or higher-order derivatives then auxiliary fields enter a TT deformed
Lagrangian algebraically, and can be eliminated leading in the cases considered to Nambu-
Goto type actions. More complicated seed models (even relativistic invariant) may lead to
TT deformed Lagrangians which are solutions to high degree polynomial equations.

A Nambu-Goto type Lagrangian obtained by eliminating auxiliary fields has a square
root sign ambiguity. If a model is considered on a line then the requirement of finiteness of
the energy singles out the perturbative in α branch of the deformed Lagrangian depending
only on the physical fields. However, if the model is on a circle then one has to find
additional requirements to single out the perturbative branch. For example if one considers
the TT deformed free massless scalars and chooses the negative sign in front of the square
root in the TT deformed Lagrangian (2.15) then for α < 0 the energy is not bounded from
below. In quantum theory it would clearly be unsatisfactory. On the other hand if α > 0
then the energy of any solution is bounded from below,2 and diverges in the limit α → 0.
Thus, if one calculates, for example, the partition function of the TT deformed model
then there seems to be no reason not to include the contribution from the nonperturbative
branch to the path integral over physical and auxiliary fields. It would imply that for α > 0
the spectrum of TT deformed relativistic models previously discussed is incomplete and
must be supplemented by a nonperturbative part.

The physical fields of the Gardner model depend on second-order derivatives. As a
result the TT deformed equations of motion for the auxiliary fields are not algebraic, and
depend on space derivatives of the auxiliary fields. Eliminating the auxiliary fields (which
we have not managed to do) would lead to an action non-local in space. The TT deformed
Gardner model is, therefore, expected to have properties noticeably different from the seed
model already at the classical level. Indeed in the next section we will see that solutions
of the TT deformed KdV equation are very sensitive to the behaviour of the field φ at
space infinities.

We have seen that the deformation drastically modifies the Poisson structure of all the
non-relativistic models we considered, and developing a Hamiltonian formulation requires
dealing with an intricate system of second-class constraints. This actually makes TT
deformed non-relativistic models more complicated than the relativistic ones where the
Hamiltonian formulation is straightforward.

One may wonder whether the TT non-relativistic deformed models exist as quan-
tum theories. We do not expect any principal difficulties in perturbative quantisation of
the TT deformed NLS and LL models. For example, the expansion of the deformed La-

2Note that if there is no potential and B-field then the equations of motion do not depend on the branch
of the square root.
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grangian (2.24) of the NLS model in powers of α is straightforward, and the standard tech-
nique can be used to compute the scattering matrix. It is expected that the TT deformed
S-matrix would be different from the undeformed one only by the TT CDD factor. It might
be necessary to tune properly counterterms but the relation between the S-matrices is very
general and should be considered as a part of the definition of a quantised TT deformed
model. For integrable models the relation follows from the interpretation, discussed at
length in [17], of the homogeneous inviscid Burgers equation as the condition of the gauge
invariance of the target space-time energy and momentum of the string theory which pro-
duces a TT deformed model in α-dependent light-cone gauge. The UV behaviour of the
TT deformed NLS model should be milder than for relativistic ones because of the absence
of virtual particles production.

The spectrum of the TT deformed NLS (and LL) model on a circle can be also studied
perturbatively. At each order in α one can remove all interaction terms with time deriva-
tives of ψ by a field redefinition producing new terms with higher space derivatives. The
resulting model has the undeformed Poisson structure and can be easily quantised. The
spectrum of the Hamiltonian can then be found as an expansion in powers of α.

For finite α another, more pragmatic, approach to the TT deformed spectrum is to
postulate that it is governed by the usual Bethe equations with the TT deformed S-matrix.
It was done in [31] for the deformed NLS model in the repulsive regime, and it was found
that the properties of the model were similar to the properties of TT deformed CFT’s. In
particular, for α < 0 the spectrum is well-defined but there exists an upper bound for the
temperature while for α > 0 there exists a critical value αc which depends on the number
of particles and the radius such that for α > αc the spectrum becomes complex. However,
there is no argumentation why the Bethe equations would not be replaced by a more
complicated system of TBA-like equations. It would be interesting to compute the spectrum
as an expansion in powers of α, and compared it with the Bethe ansatz predictions.

To conclude this subsection let us mention that we do not think that the approaches
discussed above can be applied to quantum TT deformed Gardner model. In the simplest
KdV case the spectrum of quantum KdV theory is described by massless TBA equa-
tions [36] which are derived by quantising the second Hamiltonian structure of the KdV
equation and diagonalising the infinite-dimensional abelian subalgebra of the Virasoro al-
gebra which gives commuting integrals of motion of quantum KdV model. It is unclear how
these deep relations are modified under the TT deformation, and we suspect that quantum
(and even classical) TT deformed KdV model may hide many surprises.

3 Deformed one-soliton solutions

In this section we derive one-soliton solutions of the deformed NLS and KdV models in
order to see whether they exhibits the general phenomenon of widening/narrowing the
width of particles under the TT deformation recently discussed in [30].

3.1 T T deformed NLS soliton

In this subsection we discuss a one-soliton solution of the TT deformed NLS model. Let
us first recall some properties of the seed model. Its Lagrangian is given by (2.21) where
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ψ, ψ̄ (and A, Ā) are complex fields conjugate to each other. The Lagrangian is invariant
under the Galilean transformations

x→ x− v t , t→ t , ψ → e
i
4v

2t− i
2v xψ , A→ e

i
4v

2t− i
2v x

(
A− i

2v ψ
)

(3.1)

which implies the usual nonrelativistic dispersion relation for a one-soliton solution, and
allows one to recover a full solution from a soliton at rest. It is also invariant under the
U(1) transformations ψ → eiζψ , A→ eiζA, and the finite density term µψ̄ψ is proportional
to the time component of the conserved U(1) current. It can therefore be removed by the
following time-dependent U(1) transformation

ψ → e−iµ tψ , A→ e−iµ tA . (3.2)

Thus, in the rapidly decreasing case the finite density term plays no essential role in the
undeformed NLS model.

The one-soliton solution we are going to deform exists for κ < 0, and to simplify the
formulae below we introduce a new coupling constant g > 0 related to κ as

κ = −g
2

4 . (3.3)

Then, the one-soliton solution is given by

ψ = u

g

1
cosh

(
u
2 (x− vt)

)eiφ , φ = v

2(x− vt) + t

4
(
u2 + v2 + 4µ

)
, A = ψ′ , (3.4)

where v is the velocity of the soliton, and u > 0 can be chosen to be positive without loss
of generality.

The U(1) charge Q, the momentum P and the energy E of the soliton are

Q =
∫ ∞
−∞

dx ψ̄ψ = 4u
g2 ,

P = −
∫ ∞
−∞

dxT tx = 2u v
g2 = mv , m = 2u

g2 = Q

2 ,

E =
∫ ∞
−∞

dxT tt = uv2

g2 −
u3

3g2 −
4uµ
g2 = P 2

2m −
1
24g

4m3 − µQ ,

(3.5)

and up to a constant the dispersion relation is indeed nonrelativistic, and the U(1) charge
is twice the mass of the soliton.

To find a TT deformation of the soliton (3.4), we begin with the TT deformed La-
grangian (2.23) which for the NLS model simplifies to

L =
i
2(ψ̄ψ̇ − ˙̄ψψ)− Āψ′ − ψ̄′A+ ĀA− U + α i

2(Āψ + ψ̄A)( ˙̄ψψ′ − ψ̄′ψ̇)
1− α(ĀA− U)

, (3.6)

U = −g
2

4 (ψ̄ψ)2 − µψ̄ψ . (3.7)

It is clear from the Lagrangian (3.6) that the U(1) transformation (3.2) does not remove
the µ-dependent terms, and therefore, TT deformed soliton properties depend on it.
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It is convenient to introduce the polar coordinates for ψ and redefine the auxiliary
fields as follows3

ψ = ρ eiφ, ψ̄ = ρ e−iφ, A = ρAe
iφ , Ā = ρ̄Ae

−iφ , (3.8)

because the U(1) symmetry is realised just by shifts of φ, and the Lagrangian depends only
on the derivatives of φ. Clearly, ρ is the amplitude and φ is the phase of the soliton. In
terms of the fields the Lagrangian (3.6) takes the form

L=
−ρ2φ̇−(ρA+ ρ̄A)ρ′+ i(ρA− ρ̄A)ρφ′+ ρ̄AρA+ g2

4 ρ
4 +µρ2−αρ2(ρA+ ρ̄A)(ρ̇φ′−ρ′φ̇)

1−α(ρ̄AρA+ g2

4 ρ
4 +µρ2)

,

(3.9)
where ρA and ρ̄A are complex conjugate to each other.

The deformed one-soliton solution can be derived by explicitly solving the equations
of motion by using the following ansatz

ρ(t, x) = ρ(x− vt) , ρA(t, x) = ρA(x− vt) , ρ(±∞) = 0 ,

φ = ω t+ ϕ(x− vt) , ω = u2 + v2

4 + µ .
(3.10)

The phase φ of the soliton is at most the sum of a linear function of x, t which we can choose
without loss of generality to be the same as in the undeformed case, and of a function of
x− vt due to the restricted dependence of the other fields.

The derivation is sketched in appendix A, and the solution can be expressed in terms
of ρ as follows

ρ′ = ± 2ρ
√
u2 − g2ρ2

4 + αρ2 (−2g2ρ2 + u2 − v2 − 4µ) , ρA = 1
2ρ
(
iv ±

√
u2 − g2ρ2

)
,

x− vt = x0 ±
2 coth−1

(
u√

u2−g2ρ2

)
u

∓ α
√
u2 − g2ρ2 (u2 + 3v2 + 12µ+ 2g2ρ2)

6g2 ,

φ = 1
2v(x− vt) + 1

4 t
(
u2 + v2 + 4µ

)
± αv

(
u2 − g2ρ2)3/2

6g2 .

(3.11)

Since the phase φ and the auxiliary field ρA are smooth functions of x and t if the amplitude
ρ is, we discuss only the properties of ρ. Unlike the undeformed soliton, the amplitude has
a nontrivial dependence on the chemical potential µ. However, it enters the amplitude only
through the combination v2 + 4µ. Without loss of generality we can set t = 0 and x0 = 0.
Clearly, the maximum of ρ(x) is equal to u/g, and it is at x = 0. From the equation for
ρ′ we see that ρ is a single-valued function of x only if ρ′ 6=∞ for all x which leads to the
condition

4 + αρ2
(
−2g2ρ2 + u2 − v2 − 4µ

)
6= 0 for 0 ≤ ρ ≤ u

g
. (3.12)

To analyse (3.12) it is convenient to introduce a new parameter

W = u2 − v2 − 4µ . (3.13)
3These variables are also useful for analysing the JT -type deformations [37] of the NLS model.
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Then, the roots of the equation ρ′ =∞ are given by

ρ2
± =

W ±
√

32g2

α +W 2

4g2 , ρ′
∣∣
ρ=ρ±

=∞ . (3.14)

A simple analysis shows that the roots ρ± are outside the interval (0 , u/g) if

I. W ∈ R and − 32g2

W 2 < α ≤ 0 ⇒ complex ρ2
±

II. W = u2 − v2 − 4µ < 0 and α ≤ −32g2

W 2 ⇒ ρ2
− ≤ ρ2

+ < 0

III. W − 4u2 = −3u2 − v2 − 4µ > 0 and
4g2

2u4 − u2W
< α ≤ −32g2

W 2 ⇒ u2

g2 < ρ2
− ≤ ρ2

+

IV. W − 2u2 = −u2 − v2 − 4µ < 0 and

0 < α <
4g2

2u4 − u2W
⇒ ρ2

− < 0 < u2

g2 < ρ2
+

V. W − 2u2 = −u2 − v2 − 4µ > 0 and α > 0 ⇒ ρ2
− < 0 < u2

g2 < ρ2
+

(3.15)

Introducing the following two critical values of α

α− ≡ −
32g2

(u2 − v2 − 4µ)2 < 0 , α+ ≡
4g2

u2(u2 + v2 + 4µ) , (3.16)

we can combine these regions as follows

A. −∞ < u2 − v2 − 4µ < 0 and −∞ < α < α+ , α+ > 0
B. 0 < u2 − v2 − 4µ < 2u2 and α− < α < α+ , α+ > 0
C. 2u2 < u2 − v2 − 4µ < 4u2 and α+ < α− < α <∞
D. 4u2 < u2 − v2 − 4µ <∞ and α+ < α <∞ , α+ < α− < 0

(3.17)

The condition A is satisfied if v2 > u2− 4µ which imposes a lower bound on v2 if u2 > 4µ.
If µ ≥ 0 then the condition B is satisfied for all u , v but C and D are never satisfied.
The condition D is satisfied if v2 < −3u2 − 4µ which imposes an upper bound on v2 if
3u2 < −4µ. If µ < 0 then all the four conditions can occur.

If the parameters of the soliton satisfy one of the conditions (3.17) then ρ(x) is an even
function of x, and the differential equation for ρ allows one to replace the integration of
any expression over x with the integration over ρ. The U(1) charge, energy and momentum
of the soliton are easily found, appear to be unchanged by the deformation, and are given
by (3.5). The shape of the soliton obviously changes, and, in particular, we can define its
size by using the full-width-half-maximum

FWHM = −α
√

3u
(
u2 + 2v2 + 8µ

)
4g2 +

4 log
(
2 +
√

3
)

u
. (3.18)

The soliton clearly exhibits the general phenomenon of widening/narrowing the width
of particles under the TT deformation [30]. However, whether the size is increasing or
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α=0

α=α- /2

α=α-

α=2α-

ρ(x)

α=0

α=α- /2

α=α-

α=2α-

ρ(x)

α=0

α=α- /2

α=α-

α=2α-

ρ(x)

Figure 1. Left: case B, µ = 0, α− = −32, displaying formation of shockwave solution for negative
α. Centre: boundary case of B and C, µ = −1/4, α− = −8, example of competing shockwave and
narrowing behaviours creating a double-loop solution. Right: case C, µ = −0.6, α− = −2.76817,
soliton is becoming singular at α−, after which it forms a loop.

decreasing depends not only on the sign of α but also on the sign of s ≡ u2 + 2v2 + 8µ.
Obviously, it is positive for all values of u and v only if µ ≥ 0. It is also positive if the soliton
parameters satisfy condition A but it is negative for conditions C or D. For parameters
satisfying condition B one can have both positive and negative s if µ is negative. The
visually distinct solutions are demonstrated in figure 1. Further plots for all cases are
shown in figures 6 and 7 in appendix B, which display the same behaviours as in case C.
Since the amplitude depends only on v2 + 4µ we set v = 0 without loss of generality when
plotting solutions. We set g = 1, u = 1, so that the graphs are parametrised by µ. If
the soliton base widens (or remains constant if u2 + 2v2 + 8µ = 0) as the magnitude of
α increases then the peak flattens as in figures 6 and 7. Let us also mention that as one
can see from (3.18) the heavier and speedier the soliton is the wider it is. That is very
different from the undeformed case where the width is independent of speed and decreases
with mass increasing.

Let us now assume that u, v, µ satisfy one of the conditions (3.17) but α is at a bound-
ary of its allowed values, i.e. it takes one of the critical values α±. Then, a shock-wave
singularity develops, and away from the critical values the solution ρ(x) becomes a multi-
valued function of x. In this case at least one of the roots ρ± is inside the interval (0 , u/g).
Regions where only one root exists form loops as in figures 1, 7 and 6, due to x(ρ) (given
explicitly in (3.20)) becoming negative. This happens if u, v, µ satisfy either conditions A
and B with α > α+ > 0 or C and D with α < α+ < 0. Where both roots exists the
solution is either a bell shape or a double loop shape, both shown in figure 1. This happens
if u, v, µ satisfy condition B with α < α− < 0, or condition C with α+ < α < α− < 0. The
conditions for the appearance of these solutions are summarised below

Loop:
{
u2 + v2 + 4µ > 0 , α > α+ > 0 , ρ− < 0 < ρ+ < u

g

u2 + v2 + 4µ < 0 , α < α+ < 0 , 0 < ρ− <
u
g < ρ+

Bell or Double Loop:
{

0 < u2 + v2 + 4µ < 2u2 , α < α− < 0 < α+
−2u2 < u2 + v2 + 4µ < 0 , α+ < α < α− < 0

(3.19)
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ρ(x) ρ(x) ρ(x)

Figure 2. Demonstration of the gluing procedure on the loop (Left), bell (Centre) and double-loop
(Right) soliton solutions, indicating the points where ρ′ becomes singular.

The existence of the forbidden regions of the soliton parameters is disturbing because
the soliton physical quantities such as mass, momentum and energy do not show any sign
of singularity. It is also unclear if it is compatible with the integrability preserving feature
of the TT deformation. We attempt to fix this by redefining the amplitude function as a
piecewise smooth curve by exploiting the translational invariance of x− vt.

We set t = 0, x0 = 0, choose the upper sign in the solution (3.11) corresponding to
the positive branch of the undeformed solution, and introduce the function

x(ρ) =
2 coth−1

(
u√

u2−g2ρ2

)
u

− α
√
u2 − g2ρ2 (u2 + 3v2 + 12µ+ 2g2ρ2)

6g2 , 0 ≤ ρ ≤ u

g
.

(3.20)
In terms of x(ρ) the piece-wise smooth solutions can be written as

Loop:
{
x+
L (ρ) = −x(ρ)θ(ρ− ρ+) +

(
x(ρ)− 2x+

)
θ(ρ+ − ρ)

x−L (ρ) = −x(ρ)θ(ρ− ρ−) +
(
x(ρ)− 2x−

)
θ(ρ− − ρ)

Bell:
Double Loop:

}
xB(ρ) = x(ρ)θ(ρ− ρ+) +

(
2x+ − x(ρ)

)
θ(ρ+ − ρ)θ(ρ− ρ−)

+
(
x(ρ) + 2x+ − 2x−

)
θ(ρ− − ρ)

(3.21)

where θ is the Heaviside function and x± = x(ρ±). Each of these functions is a positive
decreasing function of ρ with a continuous first derivative. The soliton profile ρ(x) is
an even function of x given for x ≥ 0 by the functions inverse to (3.21). The energy,
momentum and charge densities are singular as functions of x but it is an integrable
singularity. Since they depend on ρ′2 and ρ, the energy, momentum and charge are given
by the same expressions (3.5). The three forbidden solution types are reconstructed into
valid amplitudes in figure 2. Note that all these new solutions increase in width as α
increases in magnitude. Whether such a gluing procedure is legitimate remains to be seen
but there are examples of models with singular solitons, see e.g. [38].

Let us finally mention that the inverse function x(ρ) can also be derived through a
dynamical coordinate transformation as described in [14], and used in [33] to find the TT
deformed one-soliton solution for the case µ = 0.
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3.2 T T deformed KdV soliton

In this subsection we discuss a one-soliton solution of the TT deformed KdV equation
which corresponds to the g = 1 , h = 0 case of the Gardner equation

u̇+ µu′ + 6uu′ + u′′′ = 0 . (3.22)

The constant µ is usually set to 0 but we prefer to keep it so that for µ < 0 we could have
left-moving solitons.

The one-soliton solution we are going to deform is given by

u = 2w2

cosh2 (w(x− vt)
) , w = 1

2
√
v − µ > 0 ,

φ = 2w tanh (w(x− vt)) + f(t) ,
(3.23)

where f(t) is any function of t. As was discussed in the previous section, in the undeformed
case the soliton properties are independent of f(t). In particular, the charge Q, momentum
P and energy E of the soliton are

Q =
∫ ∞
−∞

dxu = 4w ,

P =
∫ ∞
−∞

dxu2 = 16
3 w

3 ,

E =
∫ ∞
−∞

dx (µu2 + 2u3 − u′2) = 16
3 µw

3 + 64
5 w

5 = µP + 3
5

(3
2

)2/3
P 5/3 .

(3.24)

A funny property of the soliton is that its momentum is always positive even if the velocity
v is negative which requires µ to be negative too. This is counter-intuitive and for v < 0 it
might be reasonable to change the overall sign of P and E which is equivalent to setting κ =
−1 in the Lagrangian (2.63). This also effectively changes the sign of α in the TT deformed
Lagrangian (2.65). Then, for small P the dispersion relation would be approximately the
one for a massless relativistic particle. In what follows to have a uniform description we
will continue using κ = 1 for all values of v.

The TT deformed soliton solution depends on the function f(t) in a nontrivial way,
and we only consider the simplest case f(t) = b t where b is an arbitrary constant. In fact,
redefining φ as φ→ φ+ bt, we find that the TT deformed Lagrangian (2.65) transforms as
L → L − bJ t, and therefore b can be interpreted as the parameter of the deformation by
the time component of the conserved current due to the invariance of (2.65) under constant
shifts of φ.

In this case all auxiliary fields are only functions of x − vt, and the TT deformed
solution can be found by using the equations of motion and the ansatz

φ = φ(x− v t) + b t , u = u(x− v t) , A = A(x− v t) , B = B(x− v t) . (3.25)

The full derivation is described in appendix C. We find that u rather than φ′ is the natural
field to express our results in terms of. We define w̃2 = v−µ−α b2

4 = w2 − α b2

4 to simplify
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the following expressions. The solution can be written as a set of equations expressing u′,
φ′, A and B in terms of u

u′ = ± u
√

4w̃2 − 2u
1 + αu2 (4u− 8w̃2 − αb2) , φ′ = u− α b u2

1 + αu2 (4u− 8w̃2 − αb2) ,

B =
(
µ+ 4w̃2

)
u + b , A = ±u

√
4w̃2 − 2u , w̃2 = w2 − α b2

4 .

(3.26)

For the solutions to be real, w̃2 > 0, or equivalently, v > µ + α b2. For fixed v, µ, b this
condition imposes an upper bound on allowed values of α: µ−v

b2 > α. Note also that for
α < 0 one may have w2 = v−µ

4 < 0.
The extra parameter b causes the deformed quantities of energy, momentum and the

dispersion relation to be dependent on both α and b.

E = 16
15 w̃

3
(
12w̃2 + 5(µ− αb2)

)
, P = 16

3 w̃
3 ,

E(P ) = P
(
µ− αb2

)
+ 3

5

(3
2

)2/3
P 5/3 .

(3.27)

The appearance of α in the dispersion relation is due to the fact that the TT deformed
KdV model is intrinsically nonlocal and sensitive to the boundary behaviour of φ.

Furthermore, the parameter b causes the previously identical conserved charges of J t

and φ′ to become independent

Q =
∫
dxJ t = 4w̃

(
1 + 4

3 w̃
2αb

)
, Qφ =

∫
dxφ′ = 4w̃

(
1− 4

3 w̃
2αb

)
(3.28)

We also find that b defines a flow equation for a deformation under the current J t

∂L
∂b

= − u(αbu + 1)
1− αu2 (−4u + αb2 + 8w̃2) = −J t . (3.29)

Integrating the equation for u′ in (3.26), we find the inverse expression for u

x− vt = x0 ±
arctanh

(√
4w̃2−2u

2w̃

)
w̃

∓ 1
15
√

2α
√

2w̃2 − u
(
4
(
2w̃2 − u

) (
3u + 4w̃2

)
+ 5αb2

(
u + 4w̃2

))
,

(3.30)

which displays both shockwave and looping solutions as in the NLS case. With t = 0 and
x0 = 0 the maximum of u(x) occurs at x = 0 for u(0) = 2w̃2. The full-width half-maximum
of the soliton is

FWHM =
2arcoth

(√
2
)

w̃
− 2
√

2
15 αw̃3

(
25αb2 + 28w̃2

)
, (3.31)

and for positive α it decreases.
The derivative u′ becomes singular when the denominator in the equation for u′

in (3.26) vanishes

d(u) ≡ αu2
(
4u− 8w̃2 − αb2) + 1 = 0, 0 < u < 2w̃2 . (3.32)
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In much the same way as the NLS case, restricting the roots of this expression to lie inside
the range of u will generate the conditions for the solution to become multi-valued.

A detailed analysis of the equation (3.32) can be found in appendix C where it is
shown that at least one root of the equation d(u) = 0 lies inside the interval (0, 2w̃2) if
4w̃2 = v − µ− αb2 = 4w2 − αb2 > 0 and

Loop:
{
b 6= 0 , α < α− < 0
b 6= 0 , 4w8 > b2 , α

(2)
+ < α < α

(3)
+ < 4w2

b2

Bell or Double Loop:
{
b = 0 , α > 27

128w6

b 6= 0 , 4w8 > b2 , 0 < α
(1)
+ < α < α

(2)
+

(3.33)

Here the critical values of α are given by

α− = −
√

4w4 + 2|b| − 2w2

b2 , α
(2)
+ = 2w2 −

√
4w4 − 2|b|
b2 , α

(3)
+ = 2w2 +

√
4w4 − 2|b|
b2 ,

(3.34)
and α(1)

+ is the positive root smaller than 2w2

b2 of the following equation

1− 128
27 α

(
w2 − αb2

8

)3

= 0 . (3.35)

As one can see from (3.33), the soliton solution is single-valued for

α
(3)
+ < α < αmax = 4w2

b2 ,
4w8

b2 > 1 . (3.36)

It is interesting that this region is nonperturbative in α.
The complex evolution of the solution for α > 0 for which all α(i)

+ are real is shown in
figure 3. For large α the dominating factor is the α dependence in w̃ which enables the
existence of the nonperturbative regular solutions for α > α

(3)
+ . These regular solutions are

shown in figure 4, along with the negative α behaviour. The solution profiles for b = 0 are
shown in figure 8 in appendix C.

Let us also mention that for b = 0 the TT deformed soliton solution can be easily
found by using the dynamical coordinate transformation [14]. We denote the coordinates
of the undeformed soliton (3.23) with f(t) = 0 by τ , σ, and its stress-energy tensor by
T γδ, and computing it on the soliton solution, we get

T τ τ = 4w4sech4 (w(σ−vτ))
(
µ−4w2+8w2 sech2 (w(σ−vτ))

)
, T στ = vT τ τ ,

T τ σ =−4w4sech4 (w(σ−vτ)) , T σσ = vT τ σ .
(3.37)

The dynamical coordinate transformation is given by

dt = (1 + α T σσ) dτ − α T τ σ dσ = dτ − α T τ σ d(σ − vτ) ,
dx = (1 + α T τ τ ) dσ − α T στ dτ = dσ + α T τ τ d(σ − vτ) ,

d(x− vt) =
(
1 + α (T τ τ + v T τ σ)

)
d(σ − vτ) .

(3.38)
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α=0

α=α+
(1)/ 2

α=α+
(1)

u(x)

α=α+
(1)

α=α1

α=α2

α=α+
(2)

u(x)

α=α+
(2)

α=α3

α=α4

α=α+
(3)

u(x)

Figure 3. Evolution of KdV soliton solutions for w = 1, b = 1, α > 0, transitioning between
different types of multi-valued solutions. Left: width is decreasing with increasing α, α(1)

+ ≈
0.23. Centre: formation of double-loop solution for α(1)

+ < α < α
(2)
+ , with a singular solution at

α = α
(2)
+ ≈ 0.59. The intermediate values are equally spaced, α1 = 2α(1)

+ +α(2)
+

3 , α2 = α
(1)
+ +2α(2)

+
3 .

Right: amplitude decreasing, transitioning to singular peak at α = α
(3)
+ ≈ 3.41. α3 = 2α(2)

+ +α(3)
+

3 ,

α4 = α
(2)
+ +2α(3)

+
3 .

α=α+
(3)

α=3.7

α=3.9

u(x)

α=0

α=0.2

α=0.4

u(x)

α=0

α=α- /2

α=α-

α=2α-

u(x)

Figure 4. Left: continuation of evolution from figure 3, displaying single-valued solution for
α > α

(3)
+ ≈ 3.41. The extreme flattening of the solution in the limit α→ 4 is due to w̃ → 0. Centre:

with w = 1, b = 3, the soliton remains regular for all 0 < α < 4/9, after which it ceases to exist
in a similar fashion. Right: w = 1, b = 1, α < 0, α− ≈ −4.4. Solution widens, but with nonzero b
develops into a loop solution.

Integrating this relation we find that the deformed inverse relation is

x− vt = σ − vτ + 32αw3

15 tanh3 (w(σ − τv))
(
3tanh2 (w(σ − τv))− 5

)
,

x− vt = 1
w
arctanh

(
φ

2w

)
+ αφ3

15
(
3φ2 − 20w2

)
.

(3.39)

Note that φ(x − vt) ∈ (−2w, 2w) and so the α-dependent term has a fixed sign for all
values of w. The deformed behaviour of the soliton is fixed by the sign of α. By requiring
the roots of d(x−vt)

dφ to be real and within the range of φ we find that the critical value of
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α=0

α=αc /2

α=αc

α=2αc

ϕ(x)

α=0

α=-0.5

α=-5

ϕ(x)

Figure 5. Plots of the soliton φ(x− vt) with w = 1. Note shock-wave behaviour is only displayed
for α > αc = 27/128.

the deformed parameter is αc = 27
128w6 . For α > αc the soliton becomes multi-valued as it

transitions into a shock-wave solution. For all α < αc the soliton exists and becomes wider
as α → −∞. These behaviours are shown in figure 5, and they are consistent with [30].
It is easy to check that this solution agrees with (3.30) for b = 0. One can also see that φ
exhibits a physical shock wave formation. Since φ′ develops singularities as α approaches
αc, it cannot be identified with the TT deformed KdV field.

3.3 Comments

Here we summarise the main properties of one-soliton solutions of the TT deformed NLS
and KdV models we have found in this section.

A common property of the solitons is that their width appears to depend on the
deformation parameter according to the general phenomenon of widening/narrowing the
width of particles under the TT deformation [30], see also [31]. However, contrary to the
claim in [30], whether soliton’s size is increasing or decreasing depends not only on the
sign of the deformation parameter but also on the potential and soliton parameters. In the
NLS case this more complicated behaviour is caused by the addition of the time component
(density of particles multiplied by the chemical potential µ) of the conserved U(1) current to
the seed model. After the TT deformation this cannot be undone by a time dependent U(1)
transformation (3.2), and leads to substantial changes in the soliton’s properties. Clearly,
the relativistic case is more restrictive because adding the time component of a conserved
current breaks Lorentz invariance. It is also worth noting that in the absence of the chemical
potential the width (3.18) is increasing for negative α and decreasing for positive α which
is opposite to what was observed in [30] and [31]. This is explained by the fact that the
energy (3.5) of the NLS soliton is given by E = P 2

2m −
1
24g

4m3 − µQ, and for µ = 0 its rest
energy is negative. The existence of the rest energy means that in the non-relativistic case
the TT deformation is effectively a mixture of the TT deformation with a stress-energy
tensor shifted so that the rest energy is zero, and the JP deformation discussed in [30]
and [31]. If the chemical potential is sufficiently negative then the width is widening or

– 23 –



J
H
E
P
0
6
(
2
0
2
1
)
1
0
1

narrowing in accord with [30]. In the KdV case with the parameter b = 0 the width of
the deformed soliton again behaves oppositely to [30] and [31]. Since the rest energy of
the soliton is zero, it is tempting to conclude that the effect of “pure” TT deformation is
in fact opposite to what was observed in [30] and [31] for the JP deformation at least for
models with solitons. In this respect it would be interesting to analyse the Bethe equations
with the TT deformed S-matrix for the deformed NLS model in the attractive regime to
see if the conclusions of [31] where the repulsive case was studied remain unchanged.

Another common property of the deformed solitons is that for any values of the pa-
rameters of the solitons there is at least one critical value αcr at which solitons begin to
exhibit the shock-wave behaviour. We proposed that for values of α beyond αcr a soliton
solution may be constructed by gluing together the two branches of the soliton solution at
the points where the first derivative of the soliton field diverges. Despite the divergency,
the soliton energy and momentum are finite, and the dispersion relation is defined for all
values of α. A natural expectation is that the glued soliton is unstable, and it would be
interesting to check it.

The TT deformed KdV equation admits at least a one-parameter family of one-soliton
solutions. The extra parameter b can be introduced explicitly in the TT deformed La-
grangian by shifting the field φ by bt, and requiring that φ asymptotes to constants at
space infinities. Then, b can be interpreted as the parameter of the deformation by the
time component of the conserved current due to the invariance of the TT deformed Gard-
ner model under constant shifts of φ. Since the parameter b modifies the properties of
the soliton, in particular, it appears in the dispersion relation, such an interpretation is
probably the right one. It is however unclear to us why one has to impose constant space
asymptotes on φ. If b does not vanish then there is an upper bound on α, and approaching
the bound the soliton’s amplitude decreases and finally vanishes. Choosing properly other
parameters of the soliton, one can make the bound negative. Thus, the parameter b allows
one to construct solutions which do not exist in the seed model.

4 Conclusions

In this paper we have explained in detail how the light-cone gauge approach to the TT defor-
mation can be applied to non-Lorentz invariant models, and used it to derive the deformed
Lagrangians of the three prominent non-relativistic models — the nonlinear Schrödinger,
the Landau-Lifshitz and the Gardner. The TT deformed Lagrangians have been then used
to find one-soliton solutions of the deformed NLS and KdV models. The properties of the
Lagrangians and solitons have been discussed in the Comments subsections 2.5, 3.3, and
here we discuss some of the many open questions to be addressed.

We have only considered the deformed models on a line. It would be interesting to put
the models on a circle and look for all possible solutions including those nonperturbative
in α with energy divergent in the limit α → 0. In fact, these solutions may exist even
for Lorentz invariant models, e.g. for the TT deformed sigma model described by the
Lagrangian (2.14), see subsections 2.5 for a detail discussion.
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The seed models we have considered are integrable, and it is believed that their TT
deformations are integrable too. The first step in proving the integrability would be finding
Lax pairs for the deformed models. Lax pairs of several models including the NLS model
were recently found in [39] by using the dynamical coordinate transformation [14]. Their
results agree with the previously known Lax pairs of the sine-Gordon and Liouville mod-
els [21, 40]. It should be possible to apply the method of [39] to the matrix NLS model
and the LL model. It would be interesting to see if their method can be generalised to
include models of the Gardner type where auxiliary fields cannot be eliminated and one
has to deal with them.

As has been mentioned in subsections 2.5, understanding the Poisson structure and
developing a Hamiltonian formulation of the deformed models is important and probably
very hard.

Given a Lax pair (V,U) and a Hamiltonian formulation of the NLS model, one can
calculate the Poisson bracket between U ’s, and see how the r-matrix structure is modified,
and whether it can be quantised.

If a seed model possesses an additional conserved U(1) current J then one can consider
JT deformations [37] which have properties similar to the TT deformation. The NLS
model is one of the simplest nonrelativistic models with the U(1) symmetry, and it would
be interesting to analyse the properties of the model deformed by JT operators. Some
steps in this direction have been made in [32, 33]. The light-cone gauge approach to the
TT deformation of relativistic sigma models can be readily generalised to include the JT
deformations and deformations by operators linear in conserved currents [41]. It should
be possible to consider in the same framework nonrelativistic models. As was pointed out
in [42], since the JT deformations break Lorentz invariance the deformations by operators
linear in conserved currents are necessary to derive flow equations for the spectrum. In
fact, for nonrelativistic models it seems necessary to include the linear deformations even
to derive the flow equations for the TT deformation.

The TT deformation of nonrelativistic models is defined with the help of the Lagrangian
flow ∂αL = −TT . This modifies the Poisson structure of a seed model, and makes it
difficult to derive flow equations for the spectrum. It would be interesting to see whether
one can define the deformation as the Hamiltonian flow ∂αH =TT which preserves the
Poisson structure of a seed model. This can be done for a TT deformed massive Dirac
fermion [19] but for a bosonic model the Hamiltonian might appear to be nonlocal in space.

Finally, there are many questions related to quantum TT deformed models. Some of
them have been discussed in subsections 2.5, 3.3.

A Deformed NLS soliton solution

We start from the Lagrangian expressed in polar coordinates as in equation (3.9) and
derive the equations of motion. Then we apply the ansatz as described in equation (3.10).
Furthermore we decompose ρA into real and imaginary components as ρA = X + iY . In
addition to the equations of motion for (ρ, ρA, ρ̄A) we have the following simplified equations
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from the continuity of the stress tensor and the fact that φ is a cyclic variable

−v∂L
∂φ̇

+ ∂L
∂φ′

= c1 , −vT tt + T xt = c2 , −vT tx + T xx = c3 . (A.1)

Applying the boundary conditions of ρ(±∞) = 0 to each of the equations of motion and
continuity equations yields

X(±∞) = Y (±∞) = 0 = c1 = c2 = c3 . (A.2)

Solving the equations of motion for φ yields a simple relation for Y . Applying this to the
continuity equations yields the relation for X2

Y = 1
2vρ , X2 = −1

4ρ
2
(
g2ρ2 + 4µ+ v2 − 4ω

)
. (A.3)

The two continuity equations for the stress tensor become dependent at this stage. From
the real part of the equations of motion for ρA we find

X = −1
2ρ
′
(
αg2ρ4 + αv2ρ2 + 4αµρ2 − 2αωρ2 − 2

)
. (A.4)

By substituting this into the continuity equation we find the first-order differential equation
in ρ

ρ′ = ± 2ρ
√
u2 − g2ρ2

4− αρ2 (2g2ρ2 + 4µ− u2 + v2) . (A.5)

Where we redefine the arbitrary parameter ω = 1
4
(
4µ+ u2 + v2). Then, if one considers

the imaginary part of the equations of motion for ρA without substituting this new relation,
we can find φ′ in terms of ρ, ρ′

ϕ′ = 1
4v
(
αρ′2

(
αρ2

(
2g2ρ2 + 4µ− u2 + v2

)
− 4

)
+ 2

)
. (A.6)

Recalling that the integration variable is x − vt, one can trivially integrate the constant
term to get ϕ(α = 0) = v/2(x− vt) and use a change of coordinates d(x− vt) = dρ(ρ′)−1.
Then we find the expression for φ in terms of ρ

φ = t

4
(
4µ+ u2 + v2

)
+ v

2(x− vt)± αv
(
u2 − g2ρ2)3/2

6g2 . (A.7)

The auxiliary fields are

ρA = 1
2ρ
(
iv ±

√
u2 − g2ρ2

)
, ρ̄A = 1

2ρ
(
−iv ±

√
u2 − g2ρ2

)
. (A.8)

The stress-energy tensor becomes

T xt = − ρ2 (−2g2ρ2 − 4µ+ u2 + v2)
αρ2 (2g2ρ2 + 4µ− u2 + v2)− 4 = vT tt ,

T xx = 2v2ρ2

αρ2 (2g2ρ2 + 4µ− u2 + v2)− 4 = vT tx .

(A.9)

– 26 –



J
H
E
P
0
6
(
2
0
2
1
)
1
0
1

B Additional graphs of NLS deformed soliton

α=0

α=α+

α=2α+

ρ(x)

α=0

α=-1

α=-2

ρ(x)

α=0

α=α+

α=2α+

ρ(x)

Figure 6. Left & Centre: case A, µ = 1, α+ = 4/5, displaying loop formation for α > α+ > 0 and
widening for α < 0. Right: case B, µ = 0, α+ = 4, loop solution appears for α > 0, this is the only
case with a finite region of valid α.

α=0

α=10

α=20

ρ(x)

α=0

α=α+ /2

α=α+

α=2α+

ρ(x)

α=0

α=1

α=2

ρ(x)

Figure 7. Left: case C, µ = −0.6, α− = −2.76817, showing regular widening solution for α > 0.
Centre & Right: case D, µ = −10, α+ = −4/39. Loop formation for α < α+ < 0, widening for
α > 0. Note the varying rate of soliton widening between the two cases.

C Deformed KdV soliton solution

The starting deformed Lagrangian is given by

L =
−A

(
A+ 2u′

(
αuφ̇− 1

)
− 2αuu̇φ′

)
+B (u− φ′)− u

(
u(2u + µ) + φ̇

)
αA2 + αu(u(2u + µ)−B) + 1 (C.1)

In addition to the equations of motion for each of the fields, we use the simplified continuity
equations for the stress tensor and the equation of motion for φ

−vJ t + J x = c1 = B − vu
αA2 + αu(u(2u + µ)−B) + 1 ,

T σσ − vT τσ = c2 = A2 + bu−Bu + µu2 + 2u3

αA2 − αBu + αµu2 + 2αu3 + 1 ,
(C.2)

where we have applied the ansatz given by (3.25).
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From the equations of motion for φ, we find an expression for B, which we substitute
into the stress tensor continuity equation to solve for A2

B = αc1
(
A2 + u2(2u + µ)

)
+ vu + c1

1 + αc1u
,

A2 = u(−u(2u(αc2 − 1)− αbc1 + αc2µ− αc2v − µ+ v) + b− c1)− c2
αc2 − 1 .

(C.3)

Removing the A2 in the solution for B, we then apply this to the equation of motion for A.
We can then solve for A and then create another equation by requiring the two solutions
for A be consistent

B = −c1 + u(αbc1 + αc2v − v)
αc2 − 1 ,

A = u′(αu(2u(2u(αc2 − 1)− αbc1 + αc2µ− αc2v − µ+ v)− b+ 2c1) + 2αc2 − 1)
αc2 + αc1φ′ − 1 .

(C.4)

At this stage we aim to fix the constants c1, c2 by evaluating the expressions as x−vt→∞.
Initially we only have that φ′ → 0 in this limit, and the resulting expressions for the
equations of motion for A, B, φ and the consistency equation for the A solutions are
nontrivial. However, the set of solutions for which these equations hold each require u = 0
and hence u′ = 0 at infinity. With the new boundary conditions, we find that c2 = 0.
Applying the solutions and boundary conditions for the equation of motion for u then sets
c1 = b. We find u′ in terms of u, φ′ by solving the consistency equation for the A solutions,
and applying this to the equation of motion for B we then find the last relation for φ′ in
terms of u.

u′ = ± u (αbφ′ − 1)
√

(v − αb2 − µ− 2u)
(αu (2u (2u + αb2 + µ− v)− b) + 1) , φ′ = u− αbu2

αu2 (4u + αb2 + 2µ− 2v) + 1 . (C.5)

Now we have expressed all the fields in terms of u and have a first-order differential equation
for said field. The TT flow equation holds on shell, and the solutions hold in the undeformed
limits α → 0 and b → 0. We can define the variable w̃2 = v − µ + b2α = w2 + b2α to
simplify the expressions, where w2 was used in the undeformed description of the soliton.
We can use a change of variables from dx→ (u′)−1du to perform spatial integration. The
stress tensor on-shell is given by

T σσ = u2 (αb2 + µ+ 4w̃2)
αu2 (−4u + αb2 + 8w̃2)− 1 = vT τσ ,

T στ =
(
µ+ 4w̃2) u2 (−4u− µ+ 4w̃2)+ b2

αu2 (−4u + αb2 + 8w̃2)− 1 = vT ττ − b2 .

(C.6)

And the conserved current from the equations of motion is

J t = u(αbu + 1)
1− αu2 (−4u + αb2 + 8w̃2) . (C.7)

Let us now analyse the equations (3.32) which we repeat here for convenience

d(u) ≡ αu2
(
4u− 8w̃2 − αb2) + 1 = 0, 0 < u < 2w̃2 , (C.8)

and determine the values of the parameters for which the solution becomes multi-valued.
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α=0

α=αcr /2

α=αcr

α=2αcr

u(x)

α=0

α=-1

α=-5

u(x)

α=0

α=-1

α=-5

u(x)

Figure 8. KdV soliton solutions for w = 1, b = 0. Double-loop solution forms only for α > αc =
27/128. For α < 0, solution remains single-valued and increases in width. Rightmost plot examines
peak of α < 0 plot, indicating that the solution remains smooth at x=0.

Calculating the values of d(u) at the boundaries of the allowed values of u, one finds

d(0) = 1 , d(2w̃2) = 1− 4α2b2w̃4 = 1− 1
4α

2b2(4w2 − α b2)2 ≤ 1 . (C.9)

Then, we find the first and second derivatives of d(u), and its extremal points

d′(u) = 2αu
(
6u+αb2−8w2

)
, d′′(u) = 2α

(
12u+αb2−8w2

)
,

uex
1 = 0 , d′′(0) =−2α

(
8w2−αb2

)
, uex

2 = 8w2−αb2

6 , d′′(uex
2 ) = 2α

(
8w2−αb2

)
(C.10)

Let us now fix v, µ, b and find for which values of α the equation (C.8) has solutions in the
interval (0, 2w̃).

We begin with the simplest case b = 0. Then, w̃2 = w2 and

b = 0 : d(0) = d(2w̃2) = 1 , uex
2 = 4w2

3 < 2w̃2 , d′′(uex
2 ) = 16αw2 . (C.11)

Thus, the second extremal point is always inside the interval (0, 2w̃), and if α < 0 then it
is a maximum and all roots of (C.8) are outside the interval (0, 2w̃). If α > 0, then it is a
minimum, and

b = 0 : d(uex
2 ) = 1− 128αw6

27 . (C.12)

It is clear now that for b = 0 (C.8) has two roots the interval (0, 2w̃) for α > αcr = 27
128w6 ,

and the solution is first of a bell shape and then of a double loop shape as on the left
picture of figure 8.

If b 6= 0 there may be critical values of α for both signs.
Let us first consider the α < 0 case. If w2 = v−µ

4 > 0, then 8w2 − αb2 > 4w2 > 0 and
for all α < 0 the first extremal point uex

1 = 0 is a minimum, and the second extremal point
is a maximum. Therefore, one can get a root of (C.8) which is inside the interval (0, 2w̃2)
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only if d(2w̃2) becomes negative. Solving the equation d(2w̃2) = 0 with α < 0, one finds
the negative critical value of α

α− = −
√

4w4 + 2|b| − 2w2

b2 , (C.13)

and for α < α− the solution is of a loop shape, see the right plot of figure 4.
Then, if w2 < 0 then α < 4w2

b2 < 0, and for 8w2

b2 < α < 4w2

b2 the first extremal point
uex

1 = 0 is a maximum, and the second extremal point uex
2 < 0 is a minimum while for

α < 8w2

b2 , uex
1 becomes a minimum, and uex

2 > 0 becomes a maximum. Thus, just as for
the w2 > 0 case one needs d(2w̃2) to be negative which again happens at α = α− given
by (C.13). Depending on values of w2 and b, α− may be greater or less than 8w2/b2.

Let us now consider the α > 0 case. For all α > 0 the first extremal point uex
1 = 0 is a

maximum, and therefore the second extremal point is a minimum, and

b 6= 0 : d(uex
2 ) = 1− 128

27 α
(
w2 − αb2

8

)3

. (C.14)

As for the b = 0 case, critical values are given by roots of the equation d(uex
2 ) = 0. It is

easy to see that d(uex
2 ) as a function of α has the only minimum at

αmin = 2w2

b2 ⇒ d(uex
2 ) = 1− 4w8

b2 . (C.15)

In fact, αmin is also the minimum of d(2w̃2) and uex
2 = 2w̃2 = w2 for α = αmin.

Thus, if 4w8

b2 < 1 then there is no critical value for α > 0, and if 4w8

b2 > 1 then there
are two real roots of the equation d(uex

2 ) = 0, and the critical value α(1)
+ is the positive root

which is smaller than αmin. For values of α slightly greater than α(1)
+ there are two roots

of the equation (C.8) for values of u for which u′ = ∞, and therefore the solution is first
of a bell shape and then of a double loop shape as for b = 0 case. The two roots are inside
the interval (0, 2w̃2) until α becomes equal to

α
(2)
+ = 2w2 −

√
4w4 − 2|b|
b2 . (C.16)

At α = α
(2)
+ one gets d(2w̃2) = 0 and therefore the larger root is equal to 2w̃2. Increasing

α more moves the larger root away from the interval (0, 2w̃2), and the solution is of a loop
shape. Finally, the smaller root leaves the interval (0, 2w̃2) at

α
(3)
+ = 2w2 +

√
4w4 − 2|b|
b2 , (C.17)

because d(2w̃2) is again equal to 0 for α = α
(3)
+ . Thus, for

α
(3)
+ < α < αmax = 4w2

b2 ,
4w8

b2 > 1 , (C.18)

the solution is regular again.
The discussion above is summarised in eq. (3.33).
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