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1 Introduction

One of the fundamental concepts in any quantum field theory (QFT) is the implication of
the renormalization group approach that helps us to better understand the space of QFTs.
About two decades ago, it has been proposed by Zamolodchikov [1] that one can construct
this space by starting from a fixed point of the renormalization group and perturbing the
free or exactly solvable action of a 2D QFT by an integrated local operator. In this regard,
using a relevant operator, the renormalization group flows to some IR fixed points while
for an irrelevant operator, the UV properties of the theory will change.

In ref. [2], Smirnov and Zamolodchikov discovered a general class of exactly solvable
irrelevant deformations of 2D conformal field theories (CFT) known as the T T̄ deformation
(see also [3]). Even though the T T̄ deformations provide laboratories for investigating
various aspects of field theories [4–10], but most of the attempts have an interpretation
from the AdS/CFT correspondence point of view. It was conjectured in refs. [11, 12] that
the T T̄ deformed CFT can be interpreted as the holographic dual of a finite patch (a finite
radial cutoff) of asymptotically AdS spacetime. This result is equivalent to the statement
that the holographic dual at finite radius should be interpreted as a deformed CFT [13].
Other related interesting developments can be found in refs. [14–19].

It has been shown in ref. [11] that many interesting physical observables can be com-
puted explicitly from such non-local UV theory. Taking into account a T T̄ operator (an
irrelevant operator given by the product of T = Tzz and T̄ = Tz̄z̄ components of the energy-
momentum (EM) tensor), we have a Lorentz invariant deformation as SQFT = SCFT +Sλ,
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where Sλ = λ
∫
d2xT T̄ . In this respect, some theories emerge by dSQFT /dλ =

∫
d2x (T T̄ )λ

for finite λ.
In 2D, the T T̄ operator is well-defined quantum mechanically by examining the energy

spectrum (it is free of short distance singularities) [11]. In definition of the T T̄ deforma-
tion proposed by Zamolodchikov that the variation of the Lagrangian with respect to the
deformation parameter equals the determinant of the deformed EM tensor, all objects are
quantum renormalized and UV finite. Nevertheless, one can treat the resulting Lagrangian
as a classical one, giving rise to classical fields which is in accordance with some features
of the corresponding models.

The generalization to higher dimensions from the field theory point of view has also
been proposed in refs. [7, 9]. However, in general dimensions the operator does not share
all the special properties uncovered by Zamolodchikov in two dimensions. In fact, the T T̄
deformation at higher than two dimensions is not unique. It was proposed in [7] to use
(det T )1/α with α=D − 2 and in [9] it was further generalized to different values of α, or
even additional deformations are required if one includes bulk scalars and gauge fields.

Considering the approach in [12], a generalized T T̄ deformation in D dimensions was
proposed in ref. [20] in the context of holographic realization of AdSD+1 spacetime. As
the main purpose of this paper, we recast the T T̄ operator given in ref. [2] for general
dimension D as follows

O
[r]
T 2 = TµνT

µν − rTµµTνν , (1.1)

where r = 1/(D − 1) from holographic calculations [20].
According to the AdS/CFT conjecture [21], the type IIB superstring theory on AdS5×

S5 is dual to N = 4 supersymmetric Yang-Mills theory in four dimensions. Indeed, the
latter is a non-abelian SU(N) guage theory with large N which lives on N coincident D3-
branes in string theory. However, the effective action of a single brane is described by an
abelian theory which specially in D= 4 is a Born-Infeld (BI) theory and its gravity dual
is not necessarily an AdS theory. In this respect, the T T̄ operator in (1.1) which has been
found by using the Lax pair operator in ref. [22] for BI theory of Maxwell field in D= 4,
resembles a higher dimensional generalization of T T̄ operator except for the factor r = 1/2
instead of r = 1/(D − 1) = 1/3. This incompatibility motivates us strongly to investigate
the T T̄ -like flows in higher dimensional gauge theories.

Though the gravity duals of field theories which are not necessarily CFT are not
clear, but recently there are attempts to generalize the T T̄ operator for these QFTs in
D = 4. For example, the extension of this operator for N = 1 supersymmetric BI theory
in [23], the emergent gravity from hidden QFT coupled to the standard model via T T̄

deformation in [24], the T T̄ -like deformation of the Skyrme action as generalizations of the
Heisenberg model for nucleon-nucleon scattering in [25] and the T T̄ deformation of non-
Lorentz invariant models, such as the nonlinear Schrödinger equation, the Landau-Lifshitz
equation and the Gardner equation in [26].

In particular, we study a class of QFTs which are described by non-linear electrody-
namic BI type Lagrangian in D= 2n= 2(p + 1) dimensions (for even n) and constructed
from p-form field Aµ1...µp with strength Fµ1...µn = n∂[µ1Aµ2...µn]. The dynamics of this field
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is described by a Lorentz invariant local Lagrangian L(F ) which entails the field equations

∂µ1
∂L(F )
∂Fµ1...µn

= 0. (1.2)

The proposed T T̄ operator deserves the results obtained in refs. [2, 22] for 2D QFTs and
generalized 4D BI models [22], respectively.

In general, the EM tensor of any QFT can be obtained as the variational derivative of
the Lagrangian with respect to the gravitational field (i.e. the spacetime metric). However,
it has been found in refs. [27, 28] that for a given Lagrangian in D=2n dimensions which
depends only on the self-interacting, completely antisymmetric field strength, such as non-
linear electrodynamic theories, the EM tensor can be written as

Tµν = gµνL(F ) + 1
(n− 1)!(GµFν), (1.3)

where (GµFν) = Gµα1...αn−1 Fν
α1...αn−1 and the field G is defined by differentiation of the

Lorentz invariant Lagrangian with respect to the field strength as

Gµ1...µn = −n! ∂L(F )
∂Fµ1...µn

. (1.4)

Henceforth, we employ the following T T̄ operator to deform the D= 2n dimensional
electrodynamic theory1

O
[r=1/n]
T 2 = TµνT

µν − 1
n
Tµ

µTν
ν , (1.5)

which is consistent with deformations in D = 2 and D = 4 dimensions given by (1.1) for
n = 1 and n = 2, respectively. This paper is an attempt to construct the deformed action
from a free Lagrangian with a simple integration technique, perturbatively. In fact, Lfree
denotes the Lagrangian for the local fields and the coupling constant, denoted by λ, that
controls the strength of interaction among the fields as well as with local sources.

As starting point for our discussion, we compute the EM (1.3) for a Lfree and then
construct the T T̄ operator OT 2 = O0 at the order of λ0. According to the relation OT 2 =
8∂Lλ∂λ in ref. [23], the integration of this operator yields the deformed Lagrangian to the
first order of λ

L′λ = Lfree + L1 = Lfree + 1
8

∫
O0 dλ. (1.6)

Using L′λ and (1.5), one can obtain the Lagrangian of order λ2 as

L′′λ = Lfree + L1 + L2 = Lfree + 1
8

∫
O0 dλ+ 1

8

∫
O1 dλ, (1.7)

where OT 2 = O0 +O1. By iterating this method, we will deform the free theory to higher
orders of λ. When the trace of the EM tensor for Lfree is zero, the contribution of the second
term in (1.5) would be of order λ2, so it deforms the Lagrangian from the third order of
λ. For instance, in deforming the non-linear electrodynamic theory by T T̄ operator, the
contribution of the second term will appear at the order O(F 8) in the action.

1In our convention the T T̄ operator is equal to 1
8 OT2 which corresponds to the definition in ref. [23].
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Since the T T̄ operator given in (1.5) is proportional to quadratic power of EM tensor,
it is expected that the symmetries of Tµν of the non-linear electrodynamic BI theory be
inherited to OT 2 . In particular, the EM tensor is invariant under electromagnetic duality
(S-duality) in D=4. Moreover, as shown in ref. [27], this duality can be generalized to an
SL(2,R) symmetry, that is, Tµν is invariant under SL(2,R) transformation. An SL(2,R)
invariant form for Tµν of non-linear electrodynamic theories is given in ref. [29]. This fact
is the second motivation that encourages us to investigate this symmetry for OT 2 , i.e., we
search for an SL(2,R) invariant form of T T̄ operator.

It has been shown in refs. [30, 31] that for each non-linear electrodynamic action, as a
function of some Lorentz invariant variables, the variation of the action with respect to an
SL(2,R) invariant parameter is also invariant under this transformation, i.e.,

∂S

∂λ
= − 1

λ

(
S + 1

4

∫
d4xGF

)
= − 1

λ
Sinv, (1.8)

where λ is a dimensionful parameter typically presents in a non-linear theory and all
indices in the product GF are contracted. Here, Sinv is the invariant action under SL(2,R)
symmetry [32]. Thus from OT 2 = 8∂Lλ∂λ we have

OT 2 =
∫
d4xOT 2 = − 8

λ
Sinv, (1.9)

which implies the T T̄ operator inherits SL(2,R) symmetry from the EM tensor. We show
that eq. (1.9) works for non-linear electrodynamic theories at any order of coupling expan-
sion in D=4 and also for D=2n with r = 1/n in eq. (1.1).

The non-linear electrodynamic theories emerge as the generalization of Maxwell theory
that depend only on fields F not their derivatives. In fact, it was demonstrated that the
Maxwell Lagrangian is the leading-order term in the expansion in F of nonlinear electro-
dynamic theories. These actions satisfy the Noether-Gaillard-Zumino (NGZ) identity [32],
however they are not invariant under the S-duality transformation while the equations of
motion and EM tensor are [33]. In four dimensions, we consider the S-duality transforma-
tions in extended version of the Maxwell theory in the presence of background fields, and
then find the corresponding T T̄ operators in different orders of coupling constant. Also we
reconstruct the T T̄ operator in a manifestly SL(2,R) invariant form.

It has been shown in refs. [29, 33] that the EM tensor of a non-linear theory in which
dilaton and axion fields are added to BI theory, is invariant under the SL(2,R) transfor-
mation (S-duality relevant to string theory) at any order in α′. It was shown that the EM
tensor of such theories is constructed from SL(2,R) structures at any order in α′ [29].

The other motivation about the implication of T T̄ deformation that could be over-
looked is how it affects a supersymmetric theory. Although several attempts have been
made in refs. [34–36] for T T̄ deformation in 2D supersymmetric theories, but it would be
of interest to investigate this concept in higher dimensions. Specially, this proposal has
been discussed in refs. [23, 37] for non-linear BI supersymmetric theories, N = (2, 2) mod-
els in D=2 as well as N = 1 models in D=4 dimensions. In this paper we will study the
T T̄ operator of N = 2 supersymmetric theory with U(1)-type duality in D = 4 that has
been discussed in refs. [38, 39].
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The structure of this paper is organized as follows: in section 2, we review the structure
of T T̄ operator for a chiral boson in D= 2 and show that the deformation of free theory
yields a BI-type expression which exactly agrees with the solution of flow equation obtained
in different texts. In section 3, we investigate the T T̄ deformation for a general non-linear
BI theory of electrodynamics in arbitrary dimension D = 2n for even n. We show that
the deformed Lagrangian constructed from T T̄ operator in D= 4 is compatible with the
expansion of non-linear BI theories while it is inconsistent with related theory for D ≥ 8.
In section 4, we investigate the T T̄ deformation for non-linear extensions of BI theory in a
non-supersymmetric model as well as N = 2 supersymmetric theory. In fact, we will find
T T̄ operators which are invariant under SL(2,R) duality symmetry. Finally, the section 5
is devoted to giving a brief summary of results and concluding with some outlook.

2 T T̄ deformation in D = 2

At the forefront of current research we shall consider the structure of T T̄ deformation for a
2D scalar field theory and show that how our proposal, described by the relations (1.5)–(1.7)
with n = 1, works in D = 2. The results agree with the expression obtained in refs. [2, 3, 9]
which gives some confidence that the deformed theory is well defined. Suppose that Φ(x)
is a dynamical 0-form scalar field (or a chiral boson) whose field strength is the vector field
Fµ = ∂µΦ(x). Henceforth, for convenience we express function Φ(x) as the abbreviated
form without functionality of x. The initial Lagrangian in undeformed theory is given by
the free Lagrangian Lfree = −1

2∂αΦ ∂αΦ, such that we expect the deformed Lagrangian to
depend on the fields only through ∂αΦ ∂βΦ.

On the other hand, because of diffeomorphism invariance we also expect that the
deformed Lagrangian is only a function of two scalar variables λ and ∂αΦ ∂αΦ, i.e. L(λ, P1)
where for later convenience we have defined P1 = 1

2∂αΦ ∂αΦ. Using the T T̄ operator in
eq. (1.5) with n = 1 and the free Lagrangian, we can deform this theory to first order of λ
and so on. In this respect, from eqs. (1.4) and (1.3) one finds that Gµ(λ0) = ∂µΦ and the
EM tensor is

Tµν(λ0) = −1
2gµν∂αΦ ∂αΦ + ∂µΦ ∂νΦ, (2.1)

which can be easily verified that it is traceless and therefore, from (1.5) we obtain

OT 2(λ0) = O0 = 1
2(∂αΦ ∂αΦ)2. (2.2)

Substituting this operator in (1.6), the deformed Lagrangian of 2D QFT up to order λ is

L′λ = −1
2∂αΦ ∂αΦ + 1

16λ (∂αΦ ∂αΦ)2. (2.3)

Now, following a similar prescription we deform the Lagrangian to the next order of
λ, that is again by starting from Lagrangian (2.3), the G tensor simply is

Gµ(λ) =
(

1− 1
4λ ∂αΦ ∂αΦ

)
∂µΦ, (2.4)
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and explicitly the EM tensor in this order becomes

Tµν(λ) =
(
−1

2∂αΦ ∂αΦ + 1
16λ(∂αΦ ∂αΦ)2

)
gµν +

(
1− 1

4λ ∂αΦ ∂αΦ
)
∂µΦ ∂νΦ . (2.5)

Thus, the contribution of (2.3) to T T̄ operator in the form OT 2(λ) = O0 +O1 is as follows

OT 2(λ) = 1
2(∂αΦ ∂αΦ)2 − 1

4λ (∂αΦ ∂αΦ)3, (2.6)

where according to relation (1.7) this operator provides for us the Lagrangian of order λ2

L′′λ = −1
2∂αΦ ∂αΦ + 1

16λ(∂αΦ ∂αΦ)2 − 1
64λ

2(∂αΦ ∂αΦ)3. (2.7)

Iterating these steps respectively, the EM tensor to the order λ2 is given by

Tµν(λ2) =
(
−1

2∂αΦ∂αΦ + 1
16λ(∂αΦ ∂αΦ)2 − 1

64λ
2(∂αΦ ∂αΦ)3

)
gµν

+
(

1− 1
4λ ∂αΦ ∂αΦ + 3

32λ
2(∂αΦ ∂αΦ)2

)
∂µΦ ∂νΦ, (2.8)

which is not traceless and have a contribution in the second term of T T̄ operator in (1.5).
The operator to order λ2, i.e. OT 2(λ2) = O0 +O1 +O2, is given by

OT 2(λ2) = 1
2(∂αΦ ∂αΦ)2 − 1

4λ(∂αΦ ∂αΦ)3 + 1
256

(
34− 4

n

)
λ2(∂αΦ ∂αΦ)4. (2.9)

Thus, if we set n = 1, the deformed Lagrangian to order λ3 is given by L′′′λ = Lfree +
1/8

∫
O0 dλ+ 1/8

∫
O1 dλ+ 1/8

∫
O2 dλ as

L′′′λ = −1
2∂αΦ ∂αΦ + 1

16λ(∂αΦ ∂αΦ)2 − 1
64λ

2(∂αΦ ∂αΦ)3 + 5
1024λ

3(∂αΦ ∂αΦ)4. (2.10)

Nonetheless, after not so hard calculations we found that the resultant deformed La-
grangian to all orders is equivalent to the expansion of a BI type Lagrangian

LBI = 2
λ

(
1−

√
1 + 1

2λ ∂αΦ ∂αΦ
)
. (2.11)

This Lagrangian is exactly equal to the solution of flow equation described by the defor-
mation operator calculated in refs. [3, 9] but with the deformation constant t = λ/4 and
overall minus sign, because their 2D free theory is described by Lfree = 1

2∂αΦ ∂αΦ. Here,
the difference in the minus sign refers to our convention for electrodynamic theories.

Due to this fact, we expect that there is a similar shift in the levels of energy in the
spectrum. According to the perturbative method in (1.5), we can determine the energy
spectrum for different orders of 2D action. It has been shown in ref. [40] that the T T̄ defor-
mation of 2D QFT on AdS2 background is well-defined and solvable at the quantum level.

The flow equations of the energy spectrum for a free scalar field has been derived
perturbatively in ref. [40], in analogy with the flat space case [41]. The result of our
calculation is given by

Em = −4πa
λ

1−

√
1 + λE

(0)
m

2πa

 , (2.12)
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where a is a parameter of length dimension and E(0)
m is the ground state energy. Note that

our notation is different with convention in ref. [40] by a factor 1
4 in defining the parameter

λ. In the following, we obtain an expansion for the energy spectrum given in eq. (2.12) in
the limit λ = 0

Em =
∑
p

λpE(p)
m = E(0)

m − λ
(E(0)

m )2

8πa + λ2 (E(0)
m )3

32π2a2 + . . . . (2.13)

The deformation of energy obtained from eq. (1.5) with n = 1 gives some confidence that
the deformed theory from our proposal is well-defined and that the contribution of term
with coefficient 1

n starts from the order λ3.

3 T T̄ operator in arbitrary D = 2n

As the main purpose of this paper, in this section we attempt to study the structure of T T̄
operator in general D = 2n dimensional BI theory of self-interacting form fields when n is
even. For notational convenience, we introduce two Lorentz invariant variables as

P1 = 1
2Fµ1µ2...µnF

µ1µ2...µn , P2 = 1
16
(
Fµ1µ2...µnF̃

µ1µ2...µn
)2
, (3.1)

where Fµ1µ2...µn is the totally antisymmetric field strength denoted in section 1 and its
Hodge dual field is defined in a standard manner by

F̃µ1µ2...µn = 1
n!ε

µ1...µnν1...νnFν1...νn , (3.2)

which satisfies the following duality rotation

˜̃Fµ1...µn = −Fµ1...µn . (3.3)

The invariance under this rotation can be extended to the electromagnetic fields inter-
acting with the gravitational field, that does not transform under duality in the Einstein
frame. One can write any non-linear electrodynamic Lagrangian as a function of these lo-
cal Lorentz invariants [42]. For example, the 4D BI theory of electrodynamics is described
by the Lagrangian LBI = 1 −

√
−det(ηµν + Fµν) where ηµν is the Minkowski metric. At

the lowest order of the expansion of LBI we have the free Maxwell theory denoted by
Lfree = −1

4FµνF
µν = −1

2P1. The generalization of this Lagrangian in D= 2n dimensions
is also represented by [28, 42]

LBI = 2
λn!

(
1−

√
1 + λP1 − λ2P2

)
, (3.4)

where λ is a coupling constant or an expansion parameter such that Lfree = − 1
n!P1 is at

the order of λ0.2
2We obtained a similar BI-type theory in section 2 for 2D QFT with P1 = 1

2∂αΦ ∂αΦ and P2 =
1

16 ∂µΦ εµα ∂αΦ ∂νΦ ενβ ∂βΦ, where εµν is the antisymmetric Levi-Civita symbol. Therefore, due to the
symmetry of partial derivatives P2 = 0 and the BI Lagrangian is LBI = 2

λ

(
1−
√

1 + λP1
)
for n = 1 which

is compatible with (2.11).
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It has been shown in ref. [23] that the flow equation for the deformed Lagrangian is
proportional to T T̄ operator in two dimensions. In order to investigate this possibility in
higher dimensional non-linear BI theory, we use the definition of EM tensor given in (1.3).
Thus, we obtain

TµνT
µν = DL2 + 2

(n− 1)! (FµGµ)L+ 1
[(n− 1)!]2 (FµGν)(FµGν). (3.5)

According to (3.4) the Lagrangian can be defined as a function of variables P1 and P2, and
the coupling constant λ, i.e. LBI(P1, P2, λ), such that its expansion in the zero coupling
limit becomes

LBI = 1
n!

[
−P1+λ

4 (P 2
1 +4P2)−λ

2

8 P1(P 2
1 +4P2)+λ3

64(5P 2
1 +4P2)(P 2

1 +4P2)+O(F 10)
]
,

(3.6)
therefore, to disclose the relation between OT 2 and ∂Lλ

∂λ both Tµ
µ and TµνT

µν should be
functions of these parameters. From (1.3), the trace of the EM tensor includes a term
(FµGµ) beside the Lagrangian which is also a function of P1, P2, and λ. So from this
expression one finds that Tµµ satisfies the following equation

1
D
Tµ

µ = −λ∂Lλ
∂λ

. (3.7)

On the other hand, the first term in OT 2 , i.e. TµνTµν , have a term described by a tensor
K2 = (FµGν)(FµGν). The most striking feature which distinguishes our calculation for
lower dimensional studies in T T̄ deformation, is the presence of tensor K2 in this operator.
It can be verified that K2 is written exactly as a function of P1 and P2 in D=2 and D=4
but in higher dimensions D > 4 this does not happen. We postpone this discussion to the
next subsections. In the context of duality invariant formalism in [27, 28], more details
about the most general Lorentz invariant Lagrangian can be found in refs. [42, 43].

In the rest of this section we consider the proposal

OT 2 ≡ TµνTµν −
1
n
Tµ

µTν
ν = 8∂Lλ

∂λ
, (3.8)

in D ≥ 4 spacetime dimensions with more details. We show that the coefficient r in four
dimensions is equal to 1/2, however in D > 4, the tensor K2 precludes this possibility. We
will also obtain a general form of deformed Lagrangian in arbitrary D=2n dimensions at
each order of λ.

3.1 T T̄ deformation in D =4

In 4D where n = 2, we have a 2-form field strength Fµν and the Lorentz invariant
variables are

P1 = 1
2FµνF

µν , P2 = 1
16
(
FµνF̃

µν
)2
. (3.9)

Using the expansion in (3.6) for λ and the definition (1.4), we compute the tensor Gµν as

Gµν = Fµν − λ
(1

8 F̃µνFαβF̃
αβ + 1

2FµνP1

)
+ λ2

( 1
16 F̃µνFαβF̃

αβP1 + 1
8Fµν(3P 2

1 + 4P2)
)

− λ3
( 1

64 F̃µνFαβF̃
αβ(3P 2

1 + 4P2) + 1
16FµνP1(5P 2

1 + 12P2)
)

+ . . . , (3.10)
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then, by substituting this result in eq. (1.3), the EM tensor becomes

Tµν = Fµ
αFνα −

1
2P1gµν − λ

(1
2Fµ

αFναP1 −
1
8P

2
1 gµν

)
+ λ2

(1
8Fµ

αFνα(3P 2
1 + 4P2)− 1

16P
3
1 gµν

)
(3.11)

− λ3
( 1

16Fµ
αFναP1(5P 2

1 + 12P2)−
( 5

128P
4
1 −

1
8P

2
2

)
gµν
)

+ . . . ,

where the elliptic terms in both equations represent higher order powers of λ expansion.
We have also checked that the trace of (3.11) is compatible with (3.7) for D=4.

The tensor K2 in 4D is written in the form

K2 = FµαGνα FµβGν
β , (3.12)

where from the relation (3.10) we can rewrite it as

K2 = K0 − λ(K0P1 + 2P1P2) + λ2(K0(P 2
1 + P2) + P2(2P 2

1 + P2)
)

− λ3
(
K0P1(P 2

1 + 2P2) + P1P2
(
2P 2

1 + 3P2
))

+ . . . , (3.13)

where K0 = FµαF να FµβFν
β . If we attempt to redefine K0 in terms of Lorentz variables P1

and P2 then TµνTµν can be expressed only as a function of P1, P2, and λ. It can be written
in implicit form K0 = 2(P 2

1 + 2P2). From this expression it is clear that we can test our
suggestion (3.8) and determine the coefficient r for each order of λ expansion. The result
of calculations has forcefully stressed that r = 1/2 which is compatible with the results
obtained in ref. [22].

Following the perturbative method mentioned in section 1 by eqs. (1.5) and (1.6), we
can deform the Maxwell action at each order of λ in 4D and give the expansion of Maxwell-
BI theory. This is reminiscent of the fact that we can expect a similar deformation for the
energy spectrum. Thus, one can find a solvable energy spectrum in D=4 according to (3.6).
In other words, applying the T T̄ deformation to the energy spectrum of the Maxwell action
yields the one for BI theory which in spite of Maxwell theory, its energy spectrum is finite
and solvable. It has been shown in ref. [49] that for purely electric configuration in flat
space, the total self-energy of the point charge is finite and integrable. For the Lagrangian

LBI = 1
λ

{
1−

√
1− λE2

}
, (3.14)

there is an upper bound on the electric field strength E

|E| ≤ 1√
λ
. (3.15)

The total self-energy of the point charge with Er = Q√
r4+λQ2

is

E = 1
16π

∫
d3xT00 = 1

16π

∫
d3x

1
λr2

(√
r4 + λQ2 − r2

)
. (3.16)
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Integrating this energy yields

E = 2Q2

12

∫ ∞
0

dr√
r4 + λQ2 = (πQ) 3

2

12
√
λ1/2 Γ

(
3
4

)2 . (3.17)

Therefore, the BI theory of electrodynamics succeeded in its original goal of providing a
model for point charges with finite self-energy. Note that in the limit λ → 0, Maxwell
theory is reproduced and the self-energy diverges.

3.2 T T̄ deformation in D = 8

Following the general strategy used in the previous subsection, we define two Lorentz
invariant parameters P1 and P2 in terms of 4-form field strengths as follows

P1 = 1
2FµνρσF

µνρσ, P2 = 1
16
(
FµνρσF̃

µνρσ
)2
, (3.18)

where from the expansion (3.6) and definition (1.4), the G tensor is given by

Gµνρσ = 1
12Fµνρσ −

1
96λ(4FµνρσP1 + F̃µνρσF

αβεδF̃αβεδ) + . . . . (3.19)

Substituting the above results in eq. (1.3) yields the deformed EM tensor of 8D electrody-
namic theory as

Tµν = 1
6Fµ

αβγFναβγ −
1
24P1gµν

+ λ

( 1
384(4P 2

1 + 16P2)gµν −
1
48
(
4FµαβγFναβγP1 + F ηρσδF̃ηρσδF̃µαβγFν

αβγ
))

+O(λ2). (3.20)

Without a doubt it can be found that the trace of this tensor satisfies the condition (3.7)
inD=8 dimensions. In this case the tensor K2 in the last term of eq. (3.5) can be written as

K2 = 1
36K0 −

1
288λP1(8K0 + 3P 2

1 + 8P2) + . . . , (3.21)

where K0 = FµαβγF ναβγ FµρσδFν
ρσδ. Thus, the quadratic power of EM tensor becomes

TµνT
µν = 1

72(2K0 − P 2
1 )− 1

72λ(2K0P1 − P 3
1 ) + . . . . (3.22)

In order to be able to express the covariant variables TµνTµν and (Tµµ)2 as a function
of Lorentz variables we should write K0 in terms of these parameters, however in spite of
four dimensional theory, it is not possible to do this in D = 8. This possibility has been
considered in refs. [42, 43] and it is shown that K0 recasts as

K0 = 1
4P

2
1 + 1

2P2 + 9
8K3, (3.23)

where K3 = (FµνFαβ) (FµνFαβ) = FµνγηFαβγη FµνεδFαβ
εδ is an independent tensor in

D = 8 [42]. Therefore, we are unable to compare the variation of the Lagrangian (3.4)
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with respect to λ, which only depends on P1 and P2, with OT 2 operator through eq. (3.8).
In this respect, we cannot write the variation of 8D BI action in terms of OT 2 like in (1.9)
(up to O(F 4) and O(F 6)).

Here, we apply the prescription explained in section 1 to deform the Lagrangian in
favor of T T̄ operator. Starting from the free Lagrangian in D = 8, i.e. Lfree = − 1

4!P1 =
− 1

2×4!FµναβF
µναβ , and using (3.22), we can deform the free Lagrangian to the first order

in λ with operator OT 2 = O0 = 1
72(2K0 − P 2

1 ) as the following form

L′λ = Lfree + 1
8

∫
O0dλ = − 1

4!P1 + 1
576λ(2K0 − P 2

1 ). (3.24)

Now, one can employ this Lagrangian and define the EM tensor to obtain OT 2(λ) = O0+O1
in which

O1 = λ

72

(
− 1

3(FαF δ)(FαF β)(FβFδ)− (FαF β)(F δF ζ)(FβδFαζ)

+ 1
3(FαFβ)(FαF β)(FF )− 1

48(FF )3
)
, (3.25)

where all pairs are contractions of 4-form field strengths. If we iterate this procedure the
next order in λ is constructed. So from (1.7), the Lagrangian upto O(F 6) deforms as

L′′λ = − 1
48(FF ) + λ

288

(
(FαFβ)(FαF β)− 1

8(FF )2
)
− λ2

1152

(1
3(FαF δ)(FαF β)(FβFδ)

+ (FαF β)(F δF ζ)(FβδFαζ)−
1
3(FαFβ)(FαF β)(FF ) + 1

48(FF )3
)
. (3.26)

Since the Lagrangian L′′λ is derived from OT 2 operator of order λ and the fact that
the second term with 1

n coefficient in T T̄ deformation comes from λ2 order, this term does
not contribute in the Lagrangian (3.26). Thus, we should consider the next order in OT 2

operator to examine the contribution of this term, i.e., OT 2(λ2) = O0 + O1 + O2. Due to
this fact, we obtain

O2 = 1
27648λ

2
(

88
3 (FαFβ)(FαF β)(F εF δ)(FεFδ)−24(FαF δ)(FαF β)(FβFδ)(FF )

+ 46
3 (FαFβ)(FαF β)(FF )2− 5

8(FF )4− 64
3 (FαF β)(FβF ε)(FεF δ)(F γαFγδ) (3.27)

−72(FαF β)(F εF δ)(FβεFαδ)(FF )+144(FαF β)(F εFβ)(F δF γ)(FγαFδε)

+32(FαF β)(F εF δ)(F γF κ)(FβεγFαδκ)+144(FαF β)(F εF δ)(FβγFακ)(FγεFκδ)
)

− 1
n
λ2
(

1
1296(FαFβ)(FαF β)(F εF δ)(FεFδ)−

1
5184(FαFβ)(FαF β)(FF )2+ 1

82944(FF )4
)
.

Finally, using this result we are ready to generate the Lagrangian of order λ3 by taking
n = 4, which leads to

L′′′λ = L′′λ + 1
8

∫
O2 dλ. (3.28)
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It is worth to mention some relevant issues about the T T̄ deformation in diverse di-
mension and holographic interpretation before closing this section;

• The generalization to higher dimensions is analogous to the computations done for
4D and 8D theories. We find a general form of the deformed Lagrangian at each order
of deformation parameter in D=2n-dimensional theory of electrodynamic fields. For
instance, the deformation at the order of λ is given by

Lλ ∼ λ
(

(FαFβ)(FαF β)− 1
D

(FF )2
)
, (3.29)

and in the next order has the form

Lλ ∼ λ2
(
− 2(FαF γ)(FαF β)(FβFγ)− (D − 2)(FαγFβη)(FαF β)(F γF η)

+ 2(FαFβ)(FαF β)(FF )− 1
D

(FF )3
)
, (3.30)

where all the field strengths are n-form fields which their indices are contracted
appropriately and the equality is obtained by a numerical coefficient as a function of
spacetime dimension.

• From the holography point of view, it has been shown [44] that the anomaly of
conformal closed algebra of the CFT is compatible with the A anomaly of the D+1-
dimensional bulk theory under a conformal transformation. For example, in the case
of D = 2 the finite term of the regularized action is given by A = − c

24πR with
c = 3`/2G which agrees with the value of the conformal anomaly c as computed
in [45] by considering the asymptotic symmetry algebra of AdS3 space, or in D= 4
the anomaly A = −N2

π2 (E4 +I4) is compatible with the N = 4 superconformal SU(N)
gauge theory with a = c = 1

4(N2 − 1) in the large-N limit. Similarly in D= 6 the
anomaly is proportional to N3 where N is the number of coincident M5 branes in
(0, 2) superconformal theory [46].

Obviously the field content of QFTs are not the same and there are different matter
fields in each sector. However, the T T̄ operators obtained in this section are only
related to the non-linear BI theories of p-form fields that may live on a single brane
and are not necessary a CFT with a closed conformal algebra of central charges a = c,
so it seems that there is no justification to compare our results to that derived from
AdS/CFT in (1.1).

• Since the duality-symmetric BI theory in D = 4 and its chiral 2-form counterpart
in D = 6 are related by dimensional reduction of the latter, one can conclude that
the T T̄ deformation of the free chiral 2-form theory is the same as in D= 4 for the
BI case. In other words, for the 6D chiral 2-form theories there is exactly the same
number “two” of independent Lorentz-invariants as in D= 4 (e.g. like P1 and P2 in
this paper) which can be used to construct their consistent non-linear generalizations,
which are always related to those in 4D theory [47].
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For the non-chiral 2-form field, the trace of the EM tensor is non-zero, while for the
chiral (self-dual) field it is zero. By the way, this indicates that the free chiral 2-form
theory is conformal [48]. However, if we try to get a non-linear chiral p-form theory
upon deformation, we should give a prescription of how the self-duality condition gets
deformed under T T̄ operator.

On the other hand, chiral theories require auxiliary fields in their actions only to
ensure manifest Lorentz-invariance. Without the use of the auxiliary fields the chiral
theory is still Lorentz-invariant, but not manifestly. For example, in the T T̄ deforma-
tion related to the M5-brane, one should start from a fully-fledged action for the free
chiral 2-form and compare it with the fully-fledged action for the M5-brane. Such
actions have a single scalar auxiliary field to ensure manifest Lorentz-invariance. But
this field can be gauged away directly in the action. Then the resulting action will
be non-manifestly Lorentz invariant but will contain only the physical 2-form field
whose equation of motion produces the self-duality condition for its field strength
and the required traceless EM tensor.

4 T T̄ operator in BI type theories and S-duality

As discussed in the previous section, according to theorems in refs. [28, 30], the non-
linear electrodynamic theories satisfying the NGZ identity are called S-dual which are
invariant under electromagnetic transformation at the level of the equations of motion,
the EM tensor and the S-matrix. This S-dual symmetry can be enhanced to invariance
under SL(2,R) transformation. It is shown that this is true for any non-linear theory of
electrodynamics. The BI theories like S-dual electrodynamic theories, are a particular class
of solutions in these theorems which have exact closed forms [49]. In this section we will
consider the T T̄ deformation for non-supersymmetric BI-type theory, as well as N = 2
supersymmetric model.

4.1 Non-supersymmetric model in D =4

The Lagrangian of an electrodynamic BI theory in the presence of a dilatonic field in
Einstein frame is given by the following density

LBI = λ−1
[
1−

√
− det(ηµν + λ

1
2 e−φ0/2Fµν)

]
, (4.1)

where the dilaton function eφ0/2 is regarded as an effective gauge coupling constant. The
expansion of this Lagrangian in the limit λ = 0 becomes3

LBI = e−φ0

4 Tr[F 2] + λ
e−2φ0

8

(
Tr[F 4]− 1

4Tr[F
2]2
)

(4.2)

+ λ2 e
−3φ0

12

(
Tr[F 6]− 3

8Tr[F
2]Tr[F 4] + 1

32Tr[F
2]3
)

+ . . . .

3Our convention here for Tr[F 2] is FµνF νµ and similarly for higher powers of Fµν .
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After computing the antisymmetric tensor G from (1.4), one can find the EM tensor as

Tµν = eΦ0

(1
4gµνTr[F 2]− (F 2)µν

)
+ λe−2φ0

(1
4(F 2)µνTr[F 2]− (F 4)µν −

1
32gµνTr[F 2]

+ 1
8gµνTr[F 4]

)
+ λ2e−3φ0

(1
4(F 4)µνTr[F 2]− 1

32(F 2)µνTr[F 2]2 + 1
8(F 2)µνTr[F 4]

− (F 6)µν + 1
384gµνTr[F 2]3 − 1

32gµνTr[F 2]Tr[F 4] + 1
12gµνTr[F 6]

)
+ . . . . (4.3)

Equipped with this EM tensor, we find the TT operator from eq. (1.1) given by

O
[r]
T 2 = 1

16e
−2φ0

(
[D − 8− r(D − 4)2]Tr[F 2]2 + 16Tr[F 4]

)
+ λ

64e
−3φ0

(
[12−D + r(D2 − 12D + 32)]Tr[F 2]3

+ 4 [D − 20− r(D2 − 12D + 32)]Tr[F 2]Tr[F 4] + 128Tr[F 6]
)

+ λ2

3072e
−4φ0

(
[7D − 688− r(7D2 − 112D + 384)]Tr[F 2]4

− 24 [3D − 160 + r(3D2 − 48D + 160)]Tr[F 2]2 Tr[F 4]
+ 48 [D + 16− r(D − 8)2]Tr[F 4]2

+ 128 [D − 40− r(D2 − 16D + 16)]Tr[F 2]Tr[F 6]
)

+ . . . . (4.4)

The zeroth-order terms, i.e. O(λ0) or O(F 4), is the T T̄ operator of the free Maxwell theory.
This is the same for the BI action given in (4.2) at order O(λ1). It is obvious that the
Maxwell T T̄ operator is independent of r in D = 4. The same behaviour holds for the
second-order terms of O(λ1) in (1.1). In fact, the r dependence of T T̄ operator of BI
theory in D=4 starts at order O(λ2).

On the other hand, due to the action (4.2) and the flow eqs. (1.8) and (1.9), we can
find the above T T̄ operator in D=4 by setting r = 1

2 as follows

O
[1/2]
T 2 = −1

4 e
−2Φ0

(
Tr[F 2]2 − 4Tr[F 4]

)
− 1

8 e
−3Φ0

(
Tr[F 2]3 − 4Tr[F 2]Tr[F 4]

)
− 3

256 e
−4Φ0

(
3Tr[F 2]4 − 8Tr[F 2]2 Tr[F 4]− 16Tr[F 4]2

)
− 1

256 e
−5Φ0

(
Tr[F 2]5 + 8Tr[F 2]3 Tr[F 4]− 48Tr[F 2]Tr[F 4]2

)
+ . . . , (4.5)

where we have set λ = 1 without loss of generality and used the following identity

Tr[F 6]− 3
4 Tr[F

2]Tr[F 4] + 1
8 Tr[F

2]3 = 0. (4.6)
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4.2 SL(2,R) invariant structure of 4D T T̄ operator

In this subsection we review non-linear SL(2,R) transformation of form fields and then
reconstruct the T T̄ operator in an SL(2,R) invariant form. In order to find the SL(2,R)
structure of EM tensor of a non-linear electrodynamic theory in four dimensions, we first
consider the behavior of field strengths Fµν and Gµν under transformation

τ → aτ + b

cτ + d
, (4.7)

where τ is a complex scalar field defined by τ = C0 + ie−φ0 . In general, it is referred to an
axion-dilaton field such that C0 is an axion field and φ0 is a dilaton.

The field strengths transform as a doublet Fµν under the SL(2,R) symmetry group as
following [27]

Fµν → (Λ−1)TFµν , (4.8)

where Λ =
(
a b

c d

)
is an SL(2,R) matrix. One can rewrite the Lagrangian in an SL(2,R)

invariant form by using the matrix

M = eφ0

(
|τ |2 −C0
−C0 1

)
, (4.9)

which under S-duality transforms asM→ ΛMΛT .
Now, from the above consideration we construct an SL(2,R) invariant structure

FTMF . By separating the contribution of the axion coupling in the Lagrangian as
L = L′ + C0z, that yields a decomposition in G as Gµν = G

′
µν − C0F̃µν , one can find

the SL(2,R) invariant structure in the form that the axion field does not appear, i.e.

(FT )µρM0Fνρ = e−φ0 F̃µ
ρ F̃νρ + eφ0 G

′
µ
ρG

′
νρ , (4.10)

where z = 1/4FµνF̃µν is a Lorentz invariant parameter and G′ comes from (1.4) for L′.
Assuming that the axion and dilaton fields are constant and do not fluctuate, henceforth
we useM0 to denote this fact.

We are interested here to study the T T̄ operator of some non-linear BI electrodynamic
theories and N = 2 supersymmetric BI type theory. The equations of motion of these the-
ories enjoy duality symmetries, however, the corresponding Lagrangians are not invariant
under the duality transformations.

According to (1.3), one can find the EM tensor of the Lagrangian L in terms of the field
strengths F and G. Using some identities that hold between some trace structure of F ’s and
by analogy with the SL(2,R) invariant structure (4.10), the EM tensor and consequently
the T T̄ operator could be appeared in terms of this SL(2,R) invariant structure.

In the following, we would like to find the above operator in terms of SL(2,R) invariant
structures. Considering the approach in ref. [29] that was applied to find the SL(2,R)
invariant form of EM tensor for non-linear electrodynamic theories, the above TT operator
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can be found in the form that is manifestly SL(2,R) invariant. We should find the non-
linear SL(2,R) invariant structure (4.10) corresponding to BI theory in terms of the field
strengths F and G. Therefore, the calculation yields

O
[1/2]
T 2 = 1

4(FT )µρM0Fρν(FT )µσM0Fσν −
5
64Tr(F

TM0F)2

− 1
32(FT )µρM0Fρν(FT )µσM0FσνTr(FTM0F) + . . . . (4.11)

As was mentioned earlier, adding the T T̄ deformation to the free Maxwell Lagrangian
in four dimensions matches the F 4 terms of the BI action expansion. On the other hand, it
has been shown [50] that the leading order terms of the scattering amplitude of four gauge
fields are reproduced by the F 4 terms of the BI action. The on-shell BI action is invariant
under the linear S-duality up to F 4 terms [51, 52]. The SL(2,R) invariant structure of this
amplitude agrees with eq. (4.11). It could be uniquely written eq. (4.11) in the following
appropriate trace terms

O
[1/2]
T 2 = 1

2Tr(F
TM0F)− 1

64Tr(F
TM0F)2 + . . . , (4.12)

where we have used the following identity that holds for SL(2,R) invariant structure of
BI theory

(FT )µρM0Fρν(FT )µσM0Fσν = 2Tr(FTM0F) + 1
2Tr(F

TM0F)2
. (4.13)

4.3 S-duality of electrodynamic theories in D =2n

In addition, we are interested in gauge theories of abelian p-form potentials which have
duality invariant structures. Though the Lagrangian of p-form potentials, i.e. L(P ), is not
invariant under duality transformation, one can introduce a new Lagrangian in D = 2n
dimensions (for even n) as being invariant under this transformation. We can find this
kind of Lagrangian by using a Legendre transformation [28, 30, 42] that is not a symmetry
transformation.

Consider a nonlinear theory of p-form potential F with Lagrangian L(P ) where P is
the Lorentz invariant parameter. The equations of motion and the Bianchi identity for F
can be derived from the Lagrangian

LD = L(P ) + 1
D
FMG

M , (4.14)

where FM ≡ Fµ1...µn and GM is the field strength of a Lagrange multiplier S-dual potential
Aµ2...µn . Therefore, the SL(2,R) invariant action is given by

SD =
∫
LD d

Dx =
∫ (

L(P ) + 1
D
FMG

M
)
dDx. (4.15)

Now from the relations (1.6), (1.8) and (1.9) we can determine the flow equation of
the action as

LD = 1
D
Tµ

µ = −λ∂L(P )
∂λ

, (4.16)
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where in 4D we have LD = Linv which means the invariance of the Lagrangian under
SL(2,R) symmetry.

According to the relations (4.10) and (4.12), we have obtained an SL(2,R) form for T T̄
operators computed in section 3 as following. We are interested in a similar structure in
arbitraryD=2n dimensions which is invariant under F̃ → G andG→ −F̃ transformations.
In this respect, we introduce an SL(2,R) invariant tensor as follows

Wµναβ = (F̃µνF̃αβ) + (GµνGαβ). (4.17)

It is worth mentioning that though we set λ = 1 for 4D case in subsection 4.1, the trace of
W starts from λ while W 2 is at the order of λ2. The T T̄ operator in D= 2n dimensions
could be written as

OT 2 = − 1
n!Wµν

µν +O(W 2) + . . . , (4.18)

where the deformed Lagrangian for each dimension is given by

Lλ = Lfree + 1
8

∫ (
− 1
n!Wµν

µν +O(W 2) + . . .

)
dλ. (4.19)

The contribution of the term W in the deformed action starts from order λ2 or O(F 6),
while the term W 2 gives the contribution of order λ3 or O(F 8) to the action. It should
be noted that the relation (4.19) gives the relations in (3.29) and (3.30) in D = 2n with
exactly specified coefficients in each dimension.

4.4 N = 2 supersymmetric model

The N = 2 supersymmetric extensions of the BI theory and their duality properties have
been found in refs. [38, 53–55]. Since the equations of motion in these theories receive
contributions from the deformation terms, the NGZ identity appears in some modified form.
This implies, at the quantum level, that duality transformations receive modifications. At
the quantum level, it has been shown [56] that by considering higher order deformations,
maintaining the action’s duality covariance, a theory can preserve the classical duality
transformations, at the presence of a duality-invariant counterterm.

Here, we would like to find the T T̄ operator of N = 2 supersymmetric theory with
U(1)-type duality in D = 4. It was shown in ref. [23] that the certain N = 2 deformed
theory in D=2 possesses additional non-linearly realized supersymmetries. From this, the
T T̄ operator of N = 1 BI theory was found in four dimensions.

The action of N = 2 supersymmetric extension of BI theory includes explicit spacetime
superfield derivatives as well as spinorial derivatives of the superfields. It is described in
an effective framework that is parameterized by four bosonic (Lorentz vectors) and eight
fermionic (Lorentz Weyl spinors) coordinates ZA. It has been proposed in ref. [38] that a
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BI action which exhibits D3-brane type shift symmetry is described by

SBI = 1
8

(∫
d8ZW2 +

∫
d8Z̄ W̄2

)
+ 1

8

∫
d12Z

{
W2W̄2

[
λ+ λ2

2
(
D4W4 + D̄4 W̄4

)
+ λ3

4
(
(D4W2)2 + (D̄4 W̄2)2 + 3 (D4W2)(D̄4 W̄2)

)]
+ 1

3

[
λ2

3 W
3�W̄3 + λ3

2

(
(W3�W̄3)D̄4 W̄2 + (W̄3�W3)D4W2 + 1

24W
4�2W̄4

)]

+O(W10)
}
, (4.20)

where W(W̄) and D(D̄) are chiral (anti-chiral) superfield strength and super derivative,
respectively. This action is a solution of supersymmetric NGZ condition that is solved
perturbatively in the number of fields. The first line in (4.20) is N = 2 supersymmetric
Maxwell action (Sfree) and the other integral is the interacting action (Sint). The term
at the order of O(λ) produces the known F 4 BI action. From the duality transformation
for N = 2 supersymmetric theories that proposed in the path integral as a Legendre
transform [39], the invariant action of such theories is given by

Sinv = S(W, W̄)− i

8

∫
d8ZWM+ i

8

∫
d8Z̄ W̄ M̄, (4.21)

where M and M̄ (similar to the field strength G in non-supersymmetric case) can be
defined as M = −4i δ

δWS(W, W̄) and M̄ = 4i δ
δW̄S(W, W̄). These superfield strengths

satisfy the Bianchi identities DW = D̄ W̄ and DM = D̄ M̄.
Using these considerations, we find the invariant action (4.21) of a supersymmetric BI

theory in terms of superfield strengths and their derivatives as a power series in the coupling
constant λ. Then, the corresponding T T̄ operator could be found from eq. (1.9) like

OT 2 =
∫
d12Z

{
W2 W̄2

[
1 + λ

(
D4W2 + D̄4W̄2

)

+ 3λ2

4
(
(D4W2)2 + (D̄4W̄2)2 + 3 (D4W2)(D̄4W̄2)

)]

+ 1
3

[
2λ
3 W

3�W̄3 + 3λ2

2 (W3�W̄3)D̄4W̄2 + (W̄3�W3)D4W2 + 1
24W

4�2W̄4
]

+O(W10)
}
. (4.22)

The N = 2 supersymmetric action could be presented in the general form [39]

SN=2 = Sfree +
∫
d12ZW2W̄2 Y(D4W2, D̄4W̄2) +O(∂µW), (4.23)
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where Y is a BI-type functional. Finding the invariant action up to O(∂µW) from Sinv =
−λ∂S∂λ , we can determine the T T̄ operator in general form using eq. (1.9). Thus, we obtain

OT 2 = 8W2 W̄2 d

dλ
Y (D4W2, D̄4W̄2). (4.24)

It was shown in ref. [57] that the higher derivative terms O(∂µW) in eq. (4.23) reduce
to the BI action at order O(∂F )4 in the non-supersymmetric level that come from the
one-loop amplitude of four gauge fields. These higher derivative terms respect to NGZ
identity and have found in the form that is manifestly SL(2,R) invariant [58]. This implies
that one can find the invariant higher derivative action which corresponds to O(∂µW) and
obtain the corresponding T T̄ operator that contributes to eq. (4.24).

5 Conclusion and outlook

The interest in studying a class of QFTs perturbed by irrelevant T T̄ operators is one of the
most important subjects in recent research arena. Among the infinite number of possible
perturbations of a given QFT, the latter operator displays very special and universal fea-
tures. These perturbations may lead to singular RG flows where the UV fixed point is not
well-defined. Although many studies have been done in the case of 2D QFTs, however a
little attention have been dedicated to investigate this deformation in higher-dimensional
QFTs. It is worth to emphasize that there are no conformal theories at the quantum level
for D > 6, but the generalization of T T̄ operator for non-conformal QFTs may open new
windows on gauge/gravity duality regardless of conformal symmetry. Due to this fact, in
this paper we studied the construction of T T̄ deformation for some non-linear electrody-
namic BI-type theories in general D(= 2n)-dimensional spacetime.

We have proposed a T T̄ operator OT 2 given by (1.5) in 2n dimensions for even n. This
kind of deformation was compatible with the results reported in 2D and 4D QFTs, but was
in conflict with the Taylor’s proposal [20] in general dimensions. With confidence to this
proposal we reproduced the expansion of BI-type theories in (3.6) by deforming the free
Lagrangian by this T T̄ operator in 2 and 4 dimensions. We observed that not only the EM
tensor (1.3) satisfies the flow equation (3.7) for each 2n-dimensional theory, but also helps
us to reconstruct the deformed action through O[1/n]

T 2 in (1.5).
But in higher dimensions D ≥ 8, the compatibility between the BI expansion and the

deformation of free theory is threatened by the existence of a term like K2 which can not be
written only in terms of Lorentz invariant variables P1 and P2 in each dimension. Therefore,
we trusted to our proposal to deform the free action of higher dimensional electrodynamic
theory at any arbitrary order of the deformation parameter. In this deformation we showed
that the contribution of the second term in T T̄ operator, i.e. (Tµµ)2, starts from λ3 in the
deformed Lagrangian. We have also shown that one can find a general form for the deformed
Lagrangian at each order of λ which at the order of λ and λ2 are given respectively by the
relations (3.29) and (3.30).

Following the general strategy suggested in the text, one can also deform the free the-
ory of p-form gauge theories in diverse D = 2n+ 2 dimensions. For instance, we deform a
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6D free theory of 3-form self-interacting field strength, i.e. 1
12FµνρF

µνρ, but the results is
incompatible with the expansion of the 6D duality-invariant non-linear BI theory [48]. It
has been shown in ref. [47] that in 6D there is a unique non-linear conformal modification
of the free chiral 2-form theory which is related to a non-linear modification of 4D Maxwell
electrodynamics by dimensional reduction (see also [59]). It would be of interest to inves-
tigate the T T̄ deformation for a 6D non-linear theory of the so-called chiral 2-forms whose
3-form field strength satisfies a self-duality condition.

According to the Cardy’s proposal in ref. [7], one can define the T T̄ operator as OT 2 ∼
aTµνTµν + bTµ

µTν
ν where the constant coefficients a and b in this proposal depend on the

corresponding theory. For example, we observed that the coefficient b is equal to 1/(D−1)
for gravitational theory in general dimension [20] while from our calculations in this paper,
one finds that it is 1/n for D(= 2n)-dimensional gauge theories. Also, it has been shown
in refs. [60, 61] that the effective action of type II superstring theory, which was obtained
from deformation of type II supergravity theory, starts from order λ3 ∼ α′3 as

Seff = S0 + α′3S3 + . . . . (5.1)

In fact, in the Ramond-Ramond sector of type IIB superstring theory, there is a term
similar to Maxwell theory in D = 10 dimensions which is constructed from 5-forms as
follows

S0 = − 1
2× 5!

∫
d10x FµαγικFµαγικ. (5.2)

From the relation (5.1), the deformation of action (5.2) in the Ramond-Ramond sector
starts from λ3 ∼ α′3. Thus, as shown in section 3, since the contribution of term TµνTµν
starts from λ and (Tµµ)2 from λ3, it would be logical to expect that the deformation of
type IIB superstring theory with T T̄ operator in the Ramond-Ramond sector is consistent
with the assumption a = 0 in OT 2 .

We have also investigated the structure of T T̄ operator for a class of non-linear elec-
trodynamic BI-type theories in 4D. In particular, we considered a gauge theory with a
dilatonic field as gauge coupling and showed that the deformation of free theory made
by (1.5) is also consistent with the expansion (4.2). It was shown that this operator inher-
its the SL(2,R) invariant symmetry of the theory though the action is not. We generalized
this implication to higher dimensional electrodynamic theories investigated in section 3 by
introducing an SL(2,R) invariant tensor and recast the T T̄ operator and deformed La-
grangian in terms of this tensor in eqs. (4.18) and (4.19). As a toy model in the context
of supersymmetry, we constructed the T T̄ operator for N = 2 supersymmetric BI theory
in eq. (4.24) from proposals (1.8) and (1.9) for the functional Y in the space of superfields
and superderivatives.

It would be of interest to study the T T̄ operator in the case of N = 4 supersymmetric
theory in 4D. The N = 4 action has a maximal number of supersymmetries that has been
proposed in ref. [62]. It could be found the corresponding SL(2,R) invariant action and
then, the T T̄ operator using eq. (1.9). We leave the details of this interesting issue for
future study.
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