
Introduction

A t test is a type of statistical test that is used to compare the 
means of two groups. It is one of the most widely used statisti-
cal hypothesis tests in pain studies [1]. There are two types of 
statistical inference: parametric and nonparametric methods. 
Parametric methods refer to a statistical technique in which one 
defines the probability distribution of probability variables and 
makes inferences about the parameters of the distribution. In 
cases in which the probability distribution cannot be defined, 
nonparametric methods are employed. T tests are a type of para-
metric method; they can be used when the samples satisfy the 

conditions of normality, equal variance, and independence. 
T tests can be divided into two types. There is the inde-

pendent t test, which can be used when the two groups under 
comparison are independent of each other, and the paired t test, 
which can be used when the two groups under comparison are 
dependent on each other. T tests are usually used in cases where 
the experimental subjects are divided into two independent 
groups, with one group treated with A and the other group 
treated with B. Researchers can acquire two types of results for 
each group (i.e., prior to treatment and after the treatment): 
preA and postA, and preB and postB. An independent t test can 
be used for an intergroup comparison of postA and postB or for 
an intergroup comparison of changes in preA to postA (postA-
preA) and changes in preB to postB (postB-preB) (Table 1). 

On the other hand, paired t tests are used in different experi-
mental environments. For example, the experimental subjects 
are not divided into two groups, and all of them are treated ini-
tially with A. The amount of change (postA-preA) is then mea-
sured for all subjects. After all of the effects of A disappear, the 
subjects are treated with B, and the amount of change (postB-
preB) is measured for all of the subjects. A paired t test is used in 
such crossover test designs to compare the amount of change of 
A to that of B for the same subjects (Table 2). 

Statistical Round

In statistic tests, the probability distribution of the statistics is important. When samples are drawn from population 
N (μ, σ2) with a sample size of n, the distribution of the sample mean X− should be a normal distribution N (μ, σ2/n). Un-
der the null hypothesis μ = μ0, the distribution of statistics z = X− – μ0

σ/√n  should be standardized as a normal distribution. 
When the variance of the population is not known, replacement with the sample variance s2 is possible. In this case, the 
statistics X− – μ0

s/√n  follows a t distribution (n-1 degrees of freedom). An independent-group t test can be carried out for a 
comparison of means between two independent groups, with a paired t test for paired data. As the t test is a parametric 
test, samples should meet certain preconditions, such as normality, equal variances and independence.
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Statistic and Probability

Statistics is basically about probabilities. A statistical conclu-
sion of a large or small difference between two groups is not 
based on an absolute standard but is rather an evaluation of the 
probability of an event. For example, a clinical test is performed 
to determine whether or not a patient has a certain disease. If 
the test results are either higher or lower than the standard, cli-
nicians will determine that the patient has the disease despite the 
fact that the patient may or may not actually have the disease. 
This conclusion is based on the statistical concept which holds 
that it is more statistically valid to conclude that the patient has 
the disease than to declare that the patient is a rare case among 
people without the disease because such test results are statisti-
cally rare in normal people. 

The test results and the probability distribution of the results 
must be known in order for the results to be determined as 
statistically rare. The criteria for clinical indicators have been es-
tablished based on data collected from an entire population or at 
least from a large number of people. Here, we examine a case in 
which a clinical indicator exhibits a normal distribution with a 
mean of μ and a variance of σ2. If a patient’s test result is χ, is this 
statistically rare against the criteria (e.g., 5 or 1%)? Probability 
is represented as the surface area in a probability distribution, 
and the z score that represents either 5 or 1%, near the margins 
of the distribution, becomes the reference value. The test result 
χ can be determined to be statistically rare compared to the 
reference probability if it lies in a more marginal area than the z 
score, that is, if the value of χ is located in the marginal ends of 
the distribution (Fig. 1). 

This is done to compare one individual’s clinical indicator 
value. This however raises the question of how we would com-
pare the mean of a sample group (consisting of more than one 

individual) against the population mean. Again, it is meaning-
less to compare each individual separately; we must compare 
the means of the two groups. Thus, do we make a statistical 
inference using only the distribution of the clinical indicators of 
the entire population and the mean of the sample? No. In order 
to infer a statistical possibility, we must know the indicator of 
interest and its probability distribution. In other words, we must 
know the mean of the sample and the distribution of the mean. 
We can then determine how far the sample mean varies from 
the population mean by knowing the sampling distribution of 
the means. 

Sampling Distribution (Sample Mean 
Distribution)

The sample mean we can get from a study is one of means of 

Table 1. Example of an Independent T test

Treatment A Treatment B

ID preA postA ΔA ID preB postB ΔB

1 63 77 14 11 81 101 20
2 69 88 19 12 87 103 16
3 76 90 14 13 77 107 30
4 78 95 17 14 80 114 34
5 80 96 16 15 76 116 40
6 89 96 7 16 86 116 30
7 90 102 12 17 98 116 18
8 92 104 12 18 87 120 33
9 103 110 7 19 105 120 15

10 112 115 3 20 69 127 58

ID: individual identification, preA, preB: before the treatment A or B, 
postA, postB: after the treatment A or B, ΔA, ΔB: difference between 
before and after the treatment A or B.

Table 2. Example of a Paired T test

Treatment A Treatment B

ID preA postA ΔA ID preB postB ΔB

1 63 77 14 1 73 103 30
2 69 88 19 2 74 104 30
3 76 90 14 3 76 107 31
4 78 95 17 4 84 108 24
5 80 96 16 wash out 5 84 110 26
6 89 96 7 6 86 110 24
7 90 102 12 7 92 113 21
8 92 104 12 8 95 114 19
9 103 110 7 9 103 118 15

10 112 115 3 10 115 120 5

ID: individual identification, preA, preB: before the treatment A or B, 
postA, postB: after the treatment A or B, ΔA, ΔB: difference between 
before and after the treatment A or B.

Fig. 1. The determination of whether the laboratory finding is abnormal 
is done according to the probability that the laboratory finding occurs 
in the distribution of the population.
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all possible samples which could be drawn from a population. 
This sample mean from a study was already acquired from a 
real experiment, however, how could we know the distribution 
of the means of all possible samples including studied sample? 
Do we need to experiment it over and over again? The simula-
tion in which samples are drawn repeatedly from a population 
is shown in Fig. 2. If samples are drawn with sample size n from 
population of normal distribution (μ, σ2), the sampling distribu-
tion shows normal distribution with mean of μ and variance of 
σ2/n. The number of samples affects the shape of the sampling 
distribution. That is, the shape of the distribution curve becomes 
a narrower bell curve with a smaller variance as the number of 
samples increases, because the variance of sampling distribu-
tion is σ2/n. The formation of a sampling distribution is well 
explained in Lee et al. [2] in a form of a figure.

T Distribution

Now that the sampling distribution of the means is known, 
we can locate the position of the mean of a specific sample 
against the distribution data. However, one problem remains. 
As we noted earlier, the sampling distribution exhibits a normal 
distribution with a variance of σ2/n, but in reality we do not 
know σ2, the variance of the population. Therefore, we use the 
sample variance instead of the population variance to determine 
the sampling distribution of the mean. The sample variance is 
defined as follows:

In such cases in which the sample variance is used, the sam-
pling distribution follows a t distribution that depends on the 

0degree of freedom of each sample rather than a normal distri-
bution (Fig. 3).

Independent T test 

A t test is also known as Student’s t test. It is a statistical 
analysis technique that was developed by William Sealy Gosset 
in 1908 as a means to control the quality of dark beers. A t test 
used to test whether there is a difference between two indepen-
dent sample means is not different from a t test used when there 
is only one sample (as mentioned earlier). However, if there is 
no difference in the two sample means, the difference will be 
close to zero. Therefore, in such cases, an additional statistical 
test should be performed to verify whether the difference could 
be said to be equal to zero. 

Let’s extract two independent samples from a population 
that displays a normal distribution and compute the difference 
between the means of the two samples. The difference between 
the sample means will not always be zero, even if the samples are 
extracted from the same population, because the sampling pro-
cess is randomized, which results in a sample with a variety of 
combinations of subjects. We extracted two samples with a size 
of 6 from a population N (150, 52) and found the difference in 
the means. If this process is repeated 1,000 times, the sampling 
distribution exhibits the shape illustrated in Fig. 4. When the 
distribution is displayed in terms of a histogram and a density 
line, it is almost identical to the theoretical sampling distribu-
tion: N(0, 2 × 52/6) (Fig. 4).

However, it is difficult to define the distribution of the differ-
ence in the two sample means because the variance of the popu-
lation is unknown. If we use the variance of the sample instead, 

Fig. 2. Simulation of sampling distribution. (A) A histogram of the sample mean distribution which results from 1,000 samples from population 
N (150, 52) with a sample size of 10. The simulated density line shows a distribution similar to the theoretical sampling distribution N(150, 52/10).  
(B) Comparison of the shapes between the population and the sampling distribution.
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the distribution of the difference of the samples means would 
follow a t distribution. It should be noted, however, that the two 
samples display a normal distribution and have an equal vari-
ance because they were independently extracted from an identi-
cal population that has a normal distribution. 

Under the assumption that the two samples display a normal 
distribution and have an equal variance, the t statistic is as fol-
lows:

population mean difference (μ1 - μ2) was assumed to be 0; 
thus:

Fig. 3. Comparison between a normal distribution and a t distribution. (A) The point t (-2.25, df = 9) corresponding to a probability of 0.025 for 
a t distribution is located more toward the tail than that of z for a normal distribution. (B–D) As the degree of freedom of the t distribution increase, 
the t distribution becomes closer to a normal distribution.
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Fig. 4. Simulation of the difference between the sample means. A 
histogram of the difference in the sample means as sampled from 
population N(μ, σ2) with a sample size of 6 in each case. The density 
line of the simulation is becoming close to the theoretical normal 
distribution.
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The population variance was unknown and so a pooled vari-
ance of the two samples was used:

However, if the population variance is not equal, the t statistic 
of the t test would be 

and the degree of freedom is calculated based on the Welch 
Satterthwaite equation.

It is apparent that if n1 and n2 are sufficiently large, the t sta-
tistic resembles a normal distribution (Fig. 3). 

A statistical test is performed to verify the position of the dif-
ference in the sample means in the sampling distribution of the 
mean (Fig. 4). It is statistically very rare for the difference in two 
sample means to lie on the margins of the distribution. There-
fore, if the difference does lie on the margins, it is statistically 
significant to conclude that the samples were extracted from two 
different populations, even if they were actually extracted from 
the same population. 

Paired T test

Paired t tests are can be categorized as a type of t test for 
a single sample because they test the difference between two 
paired results. If there is no difference between the two treat-
ments, the difference in the results would be close to zero; hence, 
the difference in the sample means used for a paired t test would 
be 0. 

Let’s go back to the sampling distribution that was used in the 
independent t test discussed earlier. The variance of the differ-
ence between two independent sample means was represented 
as the sum of each variance. If the samples were not indepen-
dent, the variance of the difference of two variables A and B, Var 
(A-B), can be shown as follows, 

,

where σ1
2 is the variance of variable A, σ2

2 is the variance of 
variable B, and ρ is the correlation coefficient for the two vari-
ables. In an independent t test, the correlation coefficient is 0 be-
cause the two groups are independent. Thus, it is logical to show 
the variance of the difference between the two variables simply 
as the sum of the two variances. However, for paired variables, 
the correlation coefficient may not equal 0. Thus, the t statistic 
for two dependent samples must be different, meaning the fol-
lowing t statistic,

 ,

must be changed. First, the number of samples are paired; 
thus, n1 = n2 = n, and their variance can be represented as  
s1

2 + s2
2 - 2ρs1s2 considering the correlation coefficient. There-

fore, the t statistic for a paired t test is as follows:

In this equation, the t statistic is increased if the correlation 
coefficient is greater than 0 because the denominator becomes 
smaller, which increases the statistical power of the paired t test 
compared to that of an independent t test. On the other hand, if 
the correlation coefficient is less than 0, the statistical power is 
decreased and becomes lower than that of an independent t test. 
It is important to note that if one misunderstands this character-
istic and uses an independent t test when the correlation coef-
ficient is less than 0, the generated results would be incorrect, as 
the process ignores the paired experimental design. 

Assumptions

As previously explained, if samples are extracted from a pop-
ulation that displays a normal distribution but the population 
variance is unknown, we can use the sample variance to exam-
ine the sampling distribution of the mean, which will resemble 
a t distribution. Therefore, in order to reach a statistical conclu-
sion about a sample mean with a t distribution, certain condi-
tions must be satisfied: the two samples for comparison must be 
independently sampled from the same population, satisfying the 
conditions of normality, equal variance, and independence. 

Shapiro’s test or the Kolmogorov–Smirnov test can be per-
formed to verify the assumption of normality. If the condition 
of normality is not met, the Wilcoxon rank sum test (Mann-
Whitney U test) is used for independent samples, and the Wil-
coxon sign rank test is used for paired samples for an additional 
nonparametric test. 

The condition of equal variance is verified using Levene’s test 
or Bartlett’s test. If the condition of equal variance is not met, 
nonparametric test can be performed or the following statistic 
which follows a t distribution can is used.

However, this statistics has different degree of freedom which 
was calculated by the Welch-Satterthwaite [3,4] equation.
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Conclusion

Owing to user-friendly statistics software programs, the rich 
pool of statistics information on the Internet, and expert advice 
from statistics professionals at every hospital, using and process-
ing statistics data is no longer an intractable task. However, it 
remains the researchers’ responsibility to design experiments to 
fulfill all of the conditions of their  statistic methods of choice 
and to ensure that their statistical assumptions are appropriate. 
In particular, parametric statistical methods confer reasonable 
statistical conclusions only when the statistical assumptions 
are fully met. Some researchers often regard these statistical as-
sumptions inconvenient and neglect them. Even some statisti-
cians argue on the basic assumptions, based on the central limit 
theory, that sampling distributions display a normal distribution 
regardless of the fact that the population distribution may or 

may not follow a normal distribution, and that t tests have suf-
ficient statistical power even if they do not satisfy the condition 
of normality [5]. Moreover, they contend that the condition of 
equal variance is not so strict because even if there is a nine-
fold difference in the variance, the α level merely changes from 
0.5 to 0.6 [6]. However, the arguments regarding the conditions 
of normality and the limit to which the condition of equal vari-
ance may be violated are still bones of contention. Therefore, 
researchers who unquestioningly accept these arguments and 
neglect the basic assumptions of a t test when submitting papers 
will face critical comments from editors. Moreover, it will be 
difficult to persuade the editors to neglect the basic assump-
tions regardless of how solid the evidence in the paper is. Hence, 
researchers should sufficiently test basic statistical assumptions 
and employ methods that are widely accepted so as to draw valid 
statistical conclusions. 
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Appendix

The results of independent and paired t tests of the examples are illustrated in Tables 1 and 2. The tests were conducted using the 
SPSS Statistics Package (IBM® SPSS® Statistics 21, SPSS Inc., Chicago, IL, USA). 

Independent T test (Table 1)

First, we need to examine the degree of normality by confirming the Kolmogorov-Smirnov or Shapiro-Wilk test in the second 
table. We can determine that the samples satisfy the condition of normality because the P value is greater than 0.05. Next, we check the 
results of Levene’s test to examine the equality of variance. The P value is again greater than 0.05; hence, the condition of equal vari-
ance is also met. Finally, we read the significance probability for the “equal variance assumed” line. If the condition of equal variance is 
not met (i.e., if the P value is less than 0.05 for Levene’s test), we reach a conclusion by referring to the significance probability for the 
“equal variance not assumed” line, or we perform a nonparametric test. 

Paired T test (Table 2)

A paired t test is identical to a single-sample t test. Therefore, we test the normality of the difference in the amount of change for 
treatment A and treatment B (∆A-∆B). The normality is verified based on the results of Kolmogorov-Smirnov and Shapiro-Wilk tests, 
as shown in the second table. In conclusion, there is a significant difference between the two treatments (i.e., the P value is less than 
0.001). 

Normality Test

Independent
t test

Kolmogorov-smirnov Shapiro-wilk

Statistic df P Statistic df P

ΔA 0.192 10 0.200* 0.947 10 0.635
ΔB 0.164 10 0.200* 0.900 10 0.218

df: degree of freedom.

Group Statistics

Independent
t test N Mean Standard 

deviation
Standard error  

of the mean

ΔA 10 12.1000   5.04315 1.59478
ΔB 10 29.4000 13.20942 4.17719

Independent Samples Test

Independent t test

Levene’s test for  
equality of variance t test for equality of means

F Sig. t df P (2-tailed)

Between
ΔA and ΔB

Equal variance assumed 4.340 0.052 -3.869 18 0.001
Equal variance not assumed -3.869 11.569 0.002

df: degree of freedom.

Paired t test

Paired t test

Paired differences

t df P (2-tailed)
Mean Standard  

deviation
Standard error  

of the mean
95% confidence interval of the difference

Lower Upper

ΔA-ΔB -10.40000 4.94862 1.56489 -13.94003 -6.85997 -6.646 9 0.000

df: degree of freedom.

Normality Test

Paired t test
Kolmogorov-smirnov Shapiro-wilk

Statistic df P Statistic df P

ΔA-ΔB 0.171 10 0.200* 0.919 10 0.350

df: degree of freedom.

Paired Samples Statistics

Paired t test Mean N Standard 
deviation

Standard error  
of the mean

ΔA 12.1000 10 5.04315 1.59478
ΔB 22.5000 10 8.01734 2.53531
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