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         T10c12 conjugated linoleic acid (t10c12 CLA) causes the reduction of triglyceride 

contents in adipocytes. T10c12 CLA’s delipidation effect is associated with decreased 

nutrient uptake, adipogenesis, lipogenesis, and increased energy expenditure, lipolysis, 

fatty acid oxidation in adipocytes. However, the molecular mechanisms of CLA’s 

delipidation effects are still unknown. AMP-activated protein kinase (AMPK), a central 

regulator of cellular energy levels, is activated by an increase in the cellular AMP:ATP 

ratio or various cellular stresses. We demonstrated that t10c12 CLA activated AMPK in 

3T3-L1 adipocytes, leading to inhibition of anabolic biosynthesis and increase of energy 

expenditure. Strong activation of AMPK can induce an inflammatory response, which is 

required for effective delipidation in t10c12 CLA-treated adipocytes. Sirtuin 1 (SIRT1), a 

NAD+-dependent histone/protein deacetylase that regulates energy homeostasis, is 

functionally required for robust TG reduction in response to t10c12 CLA in adipocytes. 

SIRT1 activated by t10c12 CLA is able to activate AMPK, and functions coordinately with 

AMPK to enhance TG loss. Activated SIRT1 is also capable of repressing peroxisome 

proliferator-activated receptor γ (PPARγ) activity to increase delipidation in t10c12 CLA-

treated adipocytes. However, the activation of PPARγ by its agonists, essential for 

adipogenesis and maintenance of adipocytes, strongly reduced AMPK activity and 

attenuated TG loss in t10c12 CLA-treated adipocytes. T10c12 CLA also activated PPARδ, 



 

a nuclear receptor that regulates fatty acid oxidation, and PPARδ agonists and antagonists 

increased or decreased AMPK activity, respectively. Activated PPARδ competed more 

effectively for RXR, an obligate partner for many nuclear receptors, and reduced the 

amount of PPARγ/RXR protein complex present. Our studies define the 

Sirt1/AMPK/PPARγ axis as the key regulatory point for determining whether adipocytes 

increase or decrease TG levels, with activated SIRT1 and AMPK promoting TG loss and 

PPARγ opposing this loss.   
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Introduction 

 

         Obesity has become a global epidemic disease, with more than 1 billion adults overweight 

and more than 300 million of them clinically obese. Recently, at least 155 million children 

worldwide are overweight or obese, causing concerns about the increasing incidence of child 

obesity [1]. Even in many developing countries, the rising rate of overweight and obesity is a 

growing concern, with a faster increase than in the developed world [2]. Obesity is associated 

with many diseases, particularly heart disease, type 2 diabetes, breathing difficulties during sleep, 

certain types of cancer, and osteoarthritis [1,2]. Currently, obesity and type 2 diabetes are the 

leading metabolic diseases. There is a great need for the prevention and therapeutic strategies 

against these health diseases. For the obesity therapeutics, many current strategies are based on 

inhibiting satiety and doing exercise, but none of the current treatments are effective for 

controlling body weight or reducing obesity.  

             It has been clearly demonstrated that conjugated linoleic acid (CLA) is able to 

significantly reduce body fat, particularly abdominal fat, decrease the level of serum lipids, 

decrease glucose uptake, and increase lipid oxidation [3]. CLA [18:2(n-6)] refers to a family of 

polyunsaturated fatty acids (PUFAs) that exist as conjugated stereoisomers of linoleic acids [4]. 

Early in 1979, Pariza et al. found that tumorigenesis in a mouse model was inhibited by certain 

components from grilled beef [5]. In 1987, they identified CLA as the active component to 

provide beneficial effects [6]. CLA has at least 13 isomers, which are found primarily in the meat 

and dairy products of ruminants [4]. CLA can be synthesized by anaerobic bacteria through 

biohydrogenation in the ruminant animals [7].  CLA has very broad beneficial effects such as 

anticarcinogenic, antioxidant, antiatherosclerosis, antiatherogenic, and antidiabetogenic 

properties [8-10]. The promising application of CLA as a therapeutic strategy to these diseases 
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has received great attention. Whereas, some differences appear in CLA effects between species 

[11]. Two main CLA isomers, c9t11 and t10c12, have some different biological effects. 

Compared to the c9t11 isomer, t10c12 CLA has much stronger delipidation effects both in vitro 

and in vivo [12-15]. 

CLA induces delipidation  

            As early as 1997, the delipidation effect of CLA was reported by Park et al. Consumption 

of feed including 0.5% mixed CLA for 4-5 weeks (1:1 ratio of c9t11 and t10c12)  in ICR 

(Institute for Cancer Research) male and female mice decreased body fat mass by 60% [16]. In 

this study, the delipidation mechanism proposed that t10c12 CLA increased lipolysis and fatty 

acid oxidation, but reduced fatty acid uptake in adipocytes. In another study of atherogenic diet-

fed hamsters, diet containing 0.5% t10c12 CLA for 6 weeks caused a significant reduction of fat 

mass [17]. For Zucker diabetic fatty rats, 1.5% mixed CLA was able to decrease fat mass 

significantly [10]. For the delipidation effect of CLA, most of the experiments showed that 

t10c12 isomer, not the c9t11 isomer, plays the primary role in the reduction of fat mass. The data 

from our lab demonstrated that mice fed 0.5% t10c12 CLA for 2 weeks lost more than 75% of 

white adipose tissue (WAT) mass in the retroperitoneal (RP) and epididymal (EPi) fat tissues 

[12]. Interestingly, more fat loss is induced by CLA in RP than EPi. This suggests that the 

response sensitivity to CLA is dependent on the type of fat tissue. T10c12 CLA was also 

reported to induce significant delipidation in other animals, including chickens [18], rabbits [19] 

and porcine [20]. Interestingly, when eliminating CLA from the diet, the accumulation of TG is 

recovered in the fat tissues. This suggests that the fat loss is reversible when CLA is removed, 

indicating CLA doesn’t destroy adipocytes. 
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             CLA’s delipidation effect on animals is associated with exercise. It has been recently 

reported that high-fat diet-fed BALB/C male mice treated with the mixture of 0.4% CLA (50:50 

c9t11+t10c12) and moderate treadmill exercise for 14 weeks showed reduced body fat mass, 

decreased serum leptin levels, as well as increased oxygen consumption and energy expenditure 

[21].  

              In vitro, the delipidation effect was shown in the CLA-treated 3T3-L1 cell line and 

human primary cells. Park et al. reported that 20-200 µM of t10c12 CLA was able to cause the 

decrease of TG content in 3T3-L1 adipocytes [22]. Studies in our lab also showed 100 µM of 

t10c12 CLA caused the robust loss of TG content by 50% in the mature 3T3-L1 adipocytes, as 

compared to control treatment [23]. McIntosh group showed that 3-30 µM t10c12 CLA was able 

to inhibit the preadipocyte differentiation and decrease TG content in primary human stromal 

vascular (SV) cultures [24]. Although the robust delipidation effect of t10c12 CLA was reported, 

the isomer-specific delipidation mechanism of CLA is still not clearly known. 

           T10c12 CLA has been demonstrated to induce dramatic fat loss in human SV adipocyte 

cultures [24]. However, most of the human studies have not shown the significant delipidation 

effect observed in animal and cell line studies. There are few positive delipidation effects of 

t10c12 CLA reported in some short- and long-term studies in human trials, showing the 

beneficial effects of t10c12 CLA in reducing fat mass [25-27]. The reason for the limited 

delipidation effects of t10c12 CLA in human trials may be because t10c12 CLA dosage used in 

human studies is much lower than used in animal studies [28]. In these human studies, a dosage 

of 3.4 g per day has been used , while the dosage used in mice is at least 10 times this amount per 

kg bodyweight [29]. To increase effective delipidation in humans, our goal is to combine t10c12 

CLA with other nutritional supplements to attain the synergistic effects to induce respectable fat 
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loss at a lower CLA dose than used in mice. This has great potential for inducing adiposity in 

human trials. 

Adipocyte 

 

           Adipocytes are the main target of the CLA delipidation effect. The majority of dietary 

CLA enters into adipocytes. Improving our understanding of adipocyte biology is the key to 

determining the mechanism of CLA’s delipidation effects. Mesenchymal stem cells (MSC) can 

generate a common early preadipocyte, which can be further differentiated to committed white 

adipocyte under certain stimuli. The number of preadipocytes in adipose tissue is limited [30]. 

During adulthood, the number of fat cells remains consistent in lean and obese humans, even 

after marked weight loss. About 10% of adipocytes renew every year [31]. 

           Peroxisome proliferator activated receptor-γ (PPARγ) and CCAAT/Enhancer Binding 

Protein α (C/EBPα) are two important transcriptional factors in the differentiation of 

preadipocytes to adipocytes. As the master regulator of adipogenesis, PPARγ is both necessary 

and sufficient to enable the preadipocytes to differentiate into adipocytes [32]. PPARγ is a 

nuclear hormone receptor and has two different isoforms produced by alternative splicing of the 

PPARγ mRNA. PPARγ1 is ubiquitously expressed, but PPARγ2 is mainly expressed in adipose 

tissue [33]. Some synthetic PPARγ ligands, such as thiazolidinediones (TZDs), can activate 

PPARγ. PPARγ forms a heterodimer with retinoid acid receptor (RXR). The heterodimer is able 

to activate the transcription of adipogenic target genes by binding to peroxisome proliferator 

response elements (PPREs) in their promoters [34]. Adipocyte differentiation was promoted by 

overexpression of PPARγ2 in fibroblasts [35]. In contrast, adipocytes can not be formed without 

PPARγ2 [36]. In a conditional knockout to create a PPAR γ2-deficient mouse model, the 

amounts of adipose tissue were decreased compared to wild type mice [37]. 
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         C/EBPα is a transcription factor that also plays an important role in adipogenesis by 

interacting with PPARγ. C/EBPα can activate the transcription of adipogenesis genes such as 

PPARγ and aP2 by binding to their promoters [33]. C/EBPα is sufficient to enhance preadipocyte 

differentiation. In 3T3-L1 preadipocytes, C/EBPα knockdown prevents adipocyte differentiation 

[38]. In vivo, with C/EBPα-deficient mice, the number of adipocytes was reduced in the adipose 

tissue, compared to wild-type mice [36]. 

          Interestingly, PPARγ and C/EBPα promote adipogenesis in a coordinated manner: PPARγ 

and C/EBPα positively increase the expression each other. Whereas in the absence of C/EBPα, 

reduced levels of PPARγ still can stimulate adipogenic differentiation but weakly. However, 

reduced levels of C/EBPα can’t induce adipogenesis in the absence of PPARγ [36]. This suggests 

that PPARγ is essential in the differentiation of adipocytes. 

          Preadipocyte factor-1 (Pref-1) is a transmembrane protein containing epidermal growth 

factor-like domains. Pref-1 has very high expression in 3T3-L1 preadipocytes, while it is highly 

suppressed during adipocyte differentiation, becoming undetectable in mature adipocytes. Pref-1 

prevents adipogenesis by inhibiting PPARγ and C/EBPα expression [39]. Suppression of Pref-1 

is required for adipocyte differentiation. In 3T3-L1 preadipocytes, decreasing Pref-1 levels by 

siRNA knockdown promotes adipogenesis [40]. In vivo, in Pref-1 deficient mice, the body 

weight and fat depots were increased more rapidly, compared to wild-type mice [39]. 

Conditional transgenic mice overexpressing Pref-1 in adipose tissue, using the aP2 promoter, 

showed decreased adipose tissue mass, compared to wild-type mice [41, 42]. This indicates that 

overexpression of a preadipocyte specific gene in differentiating adipocytes can inhibit further 

differentiation. 
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         There are two types of adipose tissue in mammals. White adipose tissue (WAT) stores 

energy as triglycerides. When energy shortage such as fasting happens, release of fatty acids 

from triglyceride in white adipocyte into the plasma by lipolysis is used to supply the energy to 

the body. Although brown adipose tissue (BAT) shares many features with white adipocytes, 

BAT plays a physiological function in fatty acid oxidation and thermogenesis, which is opposite 

to that of white adipocyte. The brown adipocyte contains lots of smaller droplets and numerous 

mitochondria which contain iron which make the tissue brown. In contrast, the white adipocyte 

contains a single and large lipid droplet and fewer mitochondria [43]. 

          White adipose tissue has a low intrinsic oxidative capacity. Current research showed that 

the limited fatty acid oxidation in white adipocytes comes from the low protein level of 

uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor coactivator-1α and fatty 

acid re-esterification involved enzymes [44]. The expression of uncoupling protein 1 (UCP1) in 

numerous mitochondria is essential for fatty acid oxidation and heat generation in brown 

adipocytes. UCP1 uncouples ATP synthesis and oxygen consumption to enhance energy 

dissipation as heat. The detailed mechanism is that UCP1 diverts energy from ATP synthesis to 

thermogenesis in the mitochondria by leaking protons out of the mitochondria [45]. Transgenic 

C57BL6/J mice expressing UCP1 from the adipocyte lipid-binding protein (aP2) promoter are 

capable of reducing genetic and diet-induced obesity [46]. However, in human intraperitoneal 

adipose tissue, it was estimated that 0.5-1% of adipocytes express UCP1 [47, 48]. Interestingly, 

the microarray data in our studies showed that UCP1 mRNA levels dramatically increased by 26 

fold in RP tissues, as compared to the control group, when the mice were fed 0.5% CLA for 2 

weeks [12].  
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The mechanism of t10c12 CLA-induced delipidation 

T10c12 CLA causes little change in feed intake 

           Generally, food intake is a starting point to study t10c12 CLA’s delipidation effect. Most 

studies, including our recent studies [12], in mice, rats and pigs showed that t10c12 CLA has no 

effect on feed intake. However, a few studies showed that t10c12 CLA caused a little loss of 

appetite in animals [49]. Further studies indicated a slight reduction in feed intake does not 

completely account for a significant reduction in fat mass [50]. 

T10c12 CLA inhibits adipogenesis 

          Adipogenesis is a differentiation process in which preadipocytes become adipocytes. 

T10c12 CLA can inhibit differentiation in a dose-dependent
 
manner via the inhibition of  the key 

transcription factors of adipogenesis, including PPARγ, C/EBPα, PPARγ co-activators and fatty 

acid binding
 
proteins [23]. Our studies based on 3T3-L1 cells and mouse models also showed 

t10c12 CLA can decrease the protein level of adipogenesis associated genes, and increase the 

expression of preadipocyte factor-1 (Pref-1) , which is an inhibitor of adipogenesis [12].  

T10c12 CLA inhibits lipogenesis 

 

          Lipogenesis is a process by which fatty acids are synthesized and esterified to glycerol. 

Sterol regulatory element-binding proteins (SREBPs) are one class of important transcription 

factors to regulate the process of lipogenesis. SREBPs function by binding to the sterol 

regulatory element DNA sequence. Inactive SREBPs attach to the membranes of the nuclear 

envelope and endoplasmic reticulum. Low sterol levels is enough to trigger the cleavage of 

SREBPs to a water soluble N-terminal domain, which is able to translocate into the nucleus and 

enhance the sterol synthesis. The cleavage of SREBPs is then inhibited by increased sterol level 

through a negative feedback regulation. SREBP-1c is responsible for regulation of fatty acid 
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synthesis [51]. It was reported that t10c12 CLA’s delipidation effect was associated with the 

inhibition of SREBPs [23]. T10c12 CLA may down-regulate SREBP-1c and LXR-α, then inhibit 

the transcription of genes involved in fatty acid synthesis and fatty acid elongation, including 

acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), 

glycerol phosphate acyltransferase and acylglycerol phosphate acyltransferase [12]. Other down-

regulated pathways involved in sterol biosynthesis are associated with leucine degradation, 

ubiquinone biosynthesis, and amino acid metabolism. Our microarray data also showed that the 

mRNA levels of lipid biosynthetic genes decrease, including ATP citrate lyase and acetyl Co-A 

carboxylase alpha and beta, in t10c12 CLA-treated 3T3-L1 adipocytes and WAT [12]. Other 

genes involved in the inhibition of lipogenesis include acylation-stimulating protein, caveolin I, 

and lipin 1, which had decreased mRNA level in t10c12 CLA treatment. 

T10c12 CLA increases energy expenditure 

         T10c12 CLA was reported to increase energy expenditure [52]. As a mitochondrial enzyme, 

carnitine palmitoyltransferase 1 (CPT1) is a rate-limiting enzyme for fatty acid beta-oxidation. 

CPT1 helps transport fatty acids across the membrane via carnitine, and enhance fatty acid beta-

oxidation in the mitochondria. This enzyme can be inhibited by malonyl CoA, which is produced 

by acetyl-CoA carboxylase (ACC). ACC is able to convert acetyl-CoA to malonyl-CoA and 

supply the malonyl-CoA substrate for fatty acid synthesis. Therefore, the reduction of malonyl-

CoA increases the activity of CPT-1, increases the transport of fatty acids into mitochondria, and 

consequently, increases fatty acid oxidation rate [53]. The work from Park et al. showed that 

t10c12 CLA increased the activity of CPT1 in mitochondria [22]. In their further studies, they 

concluded that fatty acid oxidation is an important factor to decrease body fat in the treatment of 

t10c12 CLA. It was also reported that CPT1 mRNA increased in t10c12 CLA-fed mice [12]. 
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Other studies showed most of the energy expenditure was derived from increased metabolic heat 

output in t10c12 CLA-fed mice [52]. Our recent studies also demonstrated that transcriptional 

levels of key genes involved in fatty acid oxidation such as UCP1, UCP2 and CPT1 increased in 

the fat tissues when the mice were fed with the diet contained 0.5% CLA for 2 weeks [12]. The 

levels of the induced mRNAs of UCP1 and UCP2 genes are very abundant, accounting for 95% 

and 90% of the most abundant mRNAs in WAT, respectively [12]. 

T10c12 CLA increases lipolysis 

            The form of energy stored in white adipose tissue is triglyceride. Lipolysis is the 

breakdown of triglycerides into free fatty acids, which are then released into the blood. Lipolysis 

is a main means to export energy with free fatty acids and glycerols from adipocytes [54]. 

Perilipin proteins coat oil droplets in adipocytes, acting as a protective coating from breakdown 

by lipases into glycerol and free fatty acids [55]. Perilipin A is most abundant in mature 

adipocytes. Adipocyte differentiation-related protein (ADRP) is a major constituent of the 

globule surface of oil droplets in adipocytes [56]. Compared to perilipin, ADRP has high mRNA 

level in the early stage of adipocyte differentiation, but low at the large lipid droplet stage in 

mature adipocytes. This suggests ADRP inhibits the formation of oil droplets and tends to 

decrease TG accumulation in adipocytes. Chung et al. reported that t10c12 CLA increased 

lipolysis in human SV adipocyte cultures [57]. The mechanism was t10c12 CLA increased 

ADRP protein expression, which eliminates the perilipin A proteins. The decreased perilipin A 

protein coating enhanced fat acid release via lipolysis. Further studies indicated that 

phosphorylation of perilipin (active form) was regulated by the cAMP-PKA axis in t10c12 CLA 

treatment. The recent microarray data from our lab supported the increased lipolysis in CLA 

treated mice [12]. The highly expressed genes involved in lipolysis include monoglyceride lipase, 
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hormone sensitive lipase and lipase A. Interestingly, the products glycerol and FFA from 

lipolysis can be re-utilized to synthesize TG, and ATP consumption is required [58]. In this 

process, called a futile cycle, the increased lipolysis enhances energy expenditure. In this case, 

t10c12 CLA might utilize a novel mechanism to increase energy expenditure, which is beneficial 

for obesity and diabetes therapeutics. 

T10c12 CLA inhibits nutrient uptake 

         Glucose and fatty acids are two major sources for triglycerol synthesis in adipocytes. 

Brown et al. reported t10c12 CLA inhibited the uptake of glucose into primary human 

adipocytes by decreasing glucose transporter 4 (GLUT4) gene expression [59]. In this study, 

t10c12 CLA also inhibited the uptake of oleic acids. In the study of 3T3-L1 adipocytes and 

mouse models, including our recent studies, t10c12 CLA significantly reduced the activity of 

lipoprotein lipase (LPL), which is an enzyme involved in the uptake of fatty acids by adipocytes 

[12]. The inhibition of glucose and fatty acid uptake resulted in the reduction of synthesis of 

triglycerides. In our studies, another gene involved in the inhibition of glucose and fatty acid 

uptake is the facilitated glucose/fructose transporter member SLC2A5, which had decreased 

mRNA levels in the t10c12 CLA treatment.  

T10c12 CLA induces inflammation response 

          Inflammation response is induced in the t10c12 CLA-treated adipocyte cultures and WAT 

[12]. The studies from the McIntosh group showed that t10c12 CLA imparted its effects to 

activate ERK1/2 and NFκB [60]. NFκB p65/p50 was activated by phosphorylation of ERK when 

the NFκB subunit complex translocated to the nucleus of SV cells. Activated NFκB enhanced the 

expression of some cytokines like TNF-α, IL-6 and IL-8. Subsequently, these secreted cytokines 

bind to their receptors on the adipocyte surface, leading to enhanced inflammation response in a 
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positive feedback. As a consequence, the inflammation response results in the suppression of 

PPARγ, C/EBPα, aP2, sterol-CoA desaturase (SCD), LPL, FAS, Glut4 and PLIN. The 

inflammation response causes a reduction in glucose and fatty acid uptake, and inhibition of 

Adipogenesis and lipogenesis, but increase of lipolysis, consequently contributing to delipidation 

in adipocytes. Histologically, our recent studies in mouse model showed the density of 

macrophages was increased in t10c12 CLA-treated RP fat tissue, about 2 times as many as in the 

control [12]. The microarray data showed that the first several days of dietary CLA induced an 

inflammatory response, including IL-1, 6, 10, 15 and 17, their receptors and CXC or CC ligand 

family members [12]. Interestingly, this initial inflammatory response was transient and the 

expression levels of many of these genes returned to normal levels after the first week of CLA 

treatment. Most of these genes express less at later times than in the initial response. Some 

pathways involved in the CLA-induced inflammation response include Jak/Stat, ERK/MAPK, 

PI3K/AKT signaling.  

T10c12 CLA induces apoptosis  

          Apoptosis is a form of programmed cell death (PCD) in multicellular organisms. T10c12 

CLA was reported to reduce adipose tissue mass by initiating apoptosis [12]. This study showed 

that CLA induced apoptosis through p53-dependent and/or independent pathways, depending on 

the cell type [61]. In an in vitro study in the estrogen-unresponsive MDA-MB-231 breast cell 

line, CLA triggered apoptosis through the reduction of the anti-apoptotic protein Bcl-x and up-

regulation of the pro-apoptotic protein Bak [62, 63]. Further studies showed that t10c12 CLA 

induced caspase-dependent apoptosis, due to decreased bcl-2 and increased p21 (WAF/Cip1) 

expression [64]. This suggests that t10c12 CLA mediates its effects partially via the modulation 

of apoptosis and cell cycle control [65]. Previous studies in our lab using a polygenic obese line 
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of mice (M16) by Miner et al. also showed that apoptosis in MI-CLA fed mouse retroperitoneal 

fat pads was 4 fold higher than the control mice [66]. Our recent studies in the mouse model 

showed the number of adipocytes in fat tissues was reduced by 15% [12]. Interestingly, 

adipocyte cell size became smaller, with about a 90% reduction in cell volume. Our microarray 

analysis in CLA-treated 3T3-L1 adipocytes and WAT demonstrated the induction of numerous 

genes involved in apoptotic signaling, including a number of death receptors and their ligands, 

TNF ligands, and TNF responsive genes, MdM-2, APAF1, BAX, PMAIP1, MCL1 and DNA 

repair involved such as PCNA and GADD45B, and cell cycle arrest-associated gene CDKNA1 

(pRB), proinflammatory initiator caspases 1 and 4 [12]. 

T10c12 CLA induces integrated stress response 

        The inflammation response and apoptosis contribute to t10c12 CLA-induced delipidation. 

In our recent studies, integrated stress response (ISR) appears early and is able to trigger an 

inflammation response and apoptosis [67]. Integrated stress response (ISR) is triggered by 

phosphorylation of eukaryotic initiation factor 2α (eIF2 α) under certain stress stimuli such as 

endoplasmic reticulum (ER) stress in response to an accumulation of unfolded or misfolded 

proteins in the lumen of ER. We found ISR to be the earliest transcriptional response to t10c12 

CLA treatment in 3T3-L1 adipocytes or in WAT in mice [12]. The ISR might be a key 

regulatory point in the delipidation response to CLA. By examining gene expression between 4 

and 24 hrs after t10c12 CLA treatment for both mice and 3T3-L1 adipocyte cell line, our study 

suggested that the release of proinflammatory cytokines by ISR played an important role in the 

induction of the later inflammatory response. The release of proinflammatory cytokines may 

explain how ISR causes lipid loss in mature adipocytes. We further studied the potential t10c12 

CLA effect-mediated pathways associated with the increase of phosphorylation of eIF2, which 
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reduces the rate of protein translation initiation. Phosphorylation of eIF2 induces ATF4, 

activating ISR/UPR genes including ATF3, CHOP and TRB3, which are involved in cell stress 

survival and apoptosis, and NFκB, which initiates an inflammatory response. ISR can induce the 

dephosphorylation of GSK3β by excluding AKT2 from nucleus, and subsequently causes the 

inhibition of SREBP1c [68].  

Conclusion 

         T10c12 CLA is able to cause dramatic delipidation in cell culture and animal models. The 

mechanism is associated with inhibited nutrient uptake, Adipogenesis and lipogenesis, but 

increased energy expenditure, lipolysis, fatty acid oxidation, inflammation, apoptosis and ISR. 

Despite numerous studies to describe the responses to t10c12 CLA, its molecular mechanism are 

still unknown. My thesis attempted to discover additional mechanisms by which delipidation is 

induced by t10c12 CLA at the molecular level. We were particularly interested in the early 

events in an effort to eventually discover the mechanism initially responding to the presence of 

CLA. My results explain much of the mechanisms leading to the delipidation response to CLA. 

The initial “receptors” are waiting for further investigation .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

15

 

 

 

 

 

 

 

 

 

Chapter II. Conjugated linoleic acid activates AMP-activated protein kinase and reduces 

adiposity more effectively when used with metformin in mice 
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Introduction 

           Conjugated linoleic acid (CLA) isomers of linoleic acid (LA) are found in dairy products 

and cause reduced adiposity in mice [69]. The trans-10, cis-12 CLA (t10c12 CLA) isomer of 

CLA causes rapid fat loss when fed to mice or in human adipocytes cultured in its presence [16, 

60, 69]. T10c12 CLA increases fatty acid oxidation [70], apoptosis [71], lipid export [57] and an 

inflammatory response [72] in differentiating or mature adipocytes.  It also reduces glucose and 

fatty acid uptake [73] as well as reducing lipogenesis [71, 73, 74]. These cumulative 

physiological changes account for the fairly rapid and dramatic loss of lipids in t10c12 CLA-

treated adipocytes [24, 75].  

The molecular responses accompanying these physiological changes are remarkably 

diverse [24] and include the integrated stress response [ISR; [67]] or the unfolded protein 

response [UPR; [76]], a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

mediated inflammatory response [60], and mitogen-activated protein kinase (MAPK) cascades 

[57].  The ISR induces activating transcription factor 3 (ATF3) and activating transcription factor 

4 (ATF4) proteins as well as possibly activating NF-κB and an inflammatory response [60, 67]. 

The occurrence of the UPR, which includes the ISR and inflammation, is an emerging theme in 

chronic metabolic diseases such as type 2 diabetes [77, 78]. The ability of t10c12 CLA to 

selectively activate only the ISR component of the UPR [67] may account for its ability to cause 

selective reduction of the white adipose tissue (WAT) mass [79]. The transcripts and/or protein 

activities of key adipocyte transcription factors such as CCAAT enhancer binding protein α 

(C/EBPα), peroxisome proliferator-activated receptor γ (PPARγ), sterol regulated element 

binding protein 1c (SREBP1c), carbohydrate-response-element-binding protein (ChREBP), and 
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important lipogenic enzymes including acetyl-CoA carboxylase (ACC) and fatty acid synthase 

(FAS) are reduced when adipocytes are exposed to t10c12 CLA [12, 24, 50, 67].   

AMP-activated protein kinase (AMPK) is a central regulator of cellular energy levels.  

Increases in the cellular AMP/ATP ratio or various cellular stresses result in the activation of 

AMPK [80, 81].  AMPK is a heterotrimeric protein and the activity of the AMPKα catalytic 

subunit is controlled by the AMPKβ and AMPKγ regulatory subunits as well as phosphorylation 

at a conserved threonine (Thr-172).  AMPK substrates include a number of biosynthetic enzymes 

such as ACC, FAS, glycerol-3-phosphate acyltransferase (GPAT), and 3-hydroxy-3-

methylglutaryl-CoA reductase (HMGR).  Phosphorylation of these proteins reduces their activity 

and leads to decreased energy consumption in their respective biosynthetic pathways as well as 

increased fatty acid oxidation to increase energy production [80, 82].  The activity of AMPK can 

be modulated by several known chemical inhibitors and activators.  Compound C is a potent 

inhibitor of AMPK while drugs such as 5-aminoimidazole-4-carboxamide ribonucleoside 

(AICAR), metformin, and thiazolidinediones activate AMPK [80].    

In the present study, we analyzed the participation of AMPK in the t10c12 CLA-

mediated lowering of triglycerides (TG) in 3T3-L1 adipocytes.  Our objectives were to determine 

whether t10c12 CLA activated AMPK, AMPK activators or an inhibitor affected the 

biochemical and transcriptional responses, an inflammatory response was required, and whether 

metformin enhanced the reduction in adiposity in mice given a low dose of t10c12 CLA.   

Methods 

Reagents. Insulin, isobutyl-1-methylxanthine, dexamethasone, bovine serum albumin (BSA, > 

99% fat free), AICAR and metformin were from Sigma (St. Louis, MO). Bay11-7082 and 

AMPK inhibitor compound C were purchased from Calbiochem (San Diego, CA). Antibodies to 
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ATF3, ATF4, NF-κB p65, Lamin B, PPARγ, SREBP-1c, and C/EBPα were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA), while those to p-AMPK, AMPK, p-ACC, and ACC 

were from Cell Signaling (Beverly, MA).  The antibodies to p-ACC and ACC recognize both 

ACC1 and ACC2.  

Animals. Forty-two metabolism-low (ML) and forty-two metabolism-control [MC; [83] ] 12-wk 

old male mice were used. Mice were housed individually at 22 °C with 12 h light and 12 h dark. 

All mice were fed AIN-93G diet ([84]; Dyets, Inc., Bethlehem, PA) for 5 d before beginning the 

treatments. Mice were blocked by initial body weight (ML 33.8 ±  2.2 g; MC 35.7 ±  1.9 g; 

within genotype) and assigned to one of the seven treatment diets.  Specific diets contained either 

70 g/kg soy oil without t10c12 CLA or 67.5 g/kg soy oil with 2.5 g/kg t10c12 CLA. Mice were 

allowed to eat ad libitum. Metformin, when present, was dissolved in distilled drinking water to 

provide 2 or 20 mmol/L, and these solutions were changed every 3 days.  After 14 d of these 

treatments, mice were killed in the fed state between 09:00 and 13:00 h by carbon dioxide 

asphyxia.  Retroperitoneal and epididymal fat pads were harvested, weighed, flash frozen in 

liquid nitrogen, and stored at −80 °C. All procedures were approved by the University of 

Nebraska Institutional Animal Care and Use Committee. 

3T3-L1 cell culture and differentiation. 3T3-L1 fibroblasts [85] were cultured in Dulbecco's 

modified Eagle's medium (DMEM; Invitrogen, Carlsbad, CA) containing 10% bovine calf serum 

(Fisher, Pittsburgh, PA) and differentiated as described [86]. In brief, two days after growing to 

confluence, the cells were induced to differentiate by DMEM containing 10% fetal bovine serum 

(FBS; Fisher, Pittsburgh, PA), 0.17 µmol/L insulin, 0.5 mmol/L isobutyl-1-methylxanthine, and 

1 µmol/L dexamethasone for 3 days. The medium was then changed to 10% FBS/DMEM with 

0.17 µmol/L insulin for another 2 days, at which time the cells were usually differentiated to at 
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least 90% adipocytes, followed by basal 10% FBS/DMEM medium before initiating fatty acid 

treatments. All media contained 100,000 U/L penicillin and 172 µmol/L streptomycin 

(Invitrogen, Carlsbad, CA). When present, Bay11-7082 was used at 2 µmol/L and compound C 

was used at 10 µmol/L, and were added 1 h before adding fatty acids.  

Fatty acid treatments. Fatty acids (>99%, Nu-chek Prep, Elysian, MN), either linoleic acid or 

trans-10, cis-12 CLA, were complexed to fatty acid free BSA (>99%) in a 1:1 ratio (2 mmol/L 

BSA: 2 mmol/L fatty acid), pH adjusted to 7.4, and added to the cultures containing 5 d post-

differentiated 3T3-L1 adipocytes.  

Western blots. Nuclear and cytosolic extracts were isolated based on the manufacturer's 

protocol (Active Motif, Carlsbad, CA). Equal amounts of proteins were separated by SDS-PAGE, 

transferred to Immun-blot PVDF membrane (Bio-Rad Laboratories, Hercules, CA) and probed 

with the indicated antibodies. Enhanced chemiluminescence (Pierce, Rockford, IL) was used for 

detection. Band intensities were determined from digital images from exposures in the linear 

range using software (Quantity One, Biorad, Hercules, CA). All western blot analyses were 

repeated at least three times. 

Quantification of TG content. Cells were collected in phosphate buffer saline, aggregates 

dispersed by pipetting several times, and aliquots were used to obtain cell counts using a 

hemacytometer (Hausser Scientific, Horsham, PA), and used to calculate the original density of 

the cells. Preparation of extracts and TG measurements were performed according to the 

manufacturer using TG reagent (T2449; Sigma, St. Louis, MO) and free glycerol reagent (F6428; 

Sigma, St. Louis, MO). TG data are expressed as nmol of TG per 10
6
 cells.  
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Measurement of MCP-1 mRNA. Total RNA was extracted by TRIzol (Invitrogen) following 

the manufacturer’s protocol. Total RNA (2 µg) was used for cDNA synthesis. Real-time PCR 

was performed by a Bio-Rad iCycler using iQ SYBR Green Supermix reagent (Bio-Rad, 

Hercules, CA). The primer sequences for MCP-1 and Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) were taken from [87]. MCP-1 mRNA expression was normalized to 

GAPDH, which showed no significant variation in microarrays between linoleic acid and t10c12 

CLA treatments. Experiments were repeated three times, and each sample was analyzed using 

one RNA control and two replicates of each cDNA pool, and the relative amounts of MCP-1 and 

GAPDH were calculated using the comparative CT method [according to the manufacturer’s 

software (Bio-Rad, Hercules, CA) and [88]]. Cycle numbers were used to calculate gene 

expression levels in the linear amplification range, and qRT-PCR efficiency was close to 100%. 

Microarray data analysis. RNA isolation and labeling of the 3T3-L1 adipocytes was done 

according to [12]. Results of the four treatments (linoleic acid, t10c12 CLA, linoleic acid + 2 

mmol/L metformin, t10c12 CLA + 2 mmol/L metformin) of each three biological replicates were 

collected from Affymetrix® GeneChip Mouse Genome 430 2.0 arrays via the Affymetrix 

GeneChip Operating Software (GCOS; Affymetrix, Santa Clara, CA). The raw data for 

microarray results were normalized using the methods described by Wu et al [89]. To identify 

differentially expressed genes between the control (linoleic acid) and other treatments, the linear 

models for microarrays [Limma; [90]] package in R/Bioconductor were used, with Benjamini-

Hochberg [91] adjusted P-values. Those genes with an absolute log2 ratio of 2 or more (four-fold 

up- or down-regulated) and an adjusted P-value ≤  0.1 were deemed to be significant and taken 

for further analysis. Calculation of correlation coefficients used a Spearman correlation (two-
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tailed test, α = 0.05). The gene expression data were deposited at the NCBI Gene Expression 

Omnibus with series number GSE14888.  

Statistical Analysis. Two-way ANOVA was used to analyze the data as follows. For Figures 1A, 

and 2A-E, the main effects of CLA (LA or CLA) and Compound C (- or +), and their interaction 

(CLA x Compound C) were analyzed. For Figures 1B, and 1C, the main effects of CLA (LA or 

CLA) and time (0.5, 1, 8, and 12 h), and their interaction (CLA x time) were determined. For 

Figures 3A-C, the main effects of CLA (LA or CLA) and Bay11-7082 (Bay11, - or +), and their 

interaction (CLA x Bay11) were determined. For Figures 4A-C, the main effects of CLA (LA or 

CLA) and AICAR (- or +) or Met (- or +), and their interaction (CLA x AICAR or Met) were 

determined. Data were analyzed as a 2 x 2 x 3 factorial ANOVA in the ML and MC mouse 

experiment. The model included the main effects of mouse line, CLA, and metformin, all two-

way interactions, and the three-way interaction, and used α = 0.1. Initial body weight was 

included as a covariate. Pairwise comparisons were calculated using Tukey’s test (criterion for 

significance, α ≤ 0.05, unless otherwise noted). All analyses were performed using SAS software 

(SAS, Cary, NC). 

Results 

3T3-L1 adipocytes treated with compound C, or t10c12 CLA and compound C, had TG levels 

similar to samples treated with the control linoleic acid (LA). Adipocytes treated with t10c12 

CLA alone produced a 50% reduction in TG levels (Fig. 1A). This result suggested active 

AMPK was involved in the response to t10c12 CLA.  This suggestion was confirmed as t10c12 

CLA-treated adipocytes had increased levels of both phosphorylated AMPK and phosphorylated 

ACC as early as 30 min after exposure and this enhanced phosphorylation level increased during 

the 12 h duration of the experiment (Fig. 1B and 1C).  The total amounts of AMPK and ACC 
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remained constant during the experiment (Fig. 1B and 1C), and the amounts of the isoforms of 

ACC were expected to be similar to their relative mRNA abundance in 3T3-L1 adipocytes, 

which was 4:1 for ACC1:ACC2 in a microarray analysis (data not shown). 

Compound C attenuated the ability of t10c12 CLA  to increase the phosphorylation of 

AMPK and ACC (Fig. 2A), to increase in the ISR-induced transcription factors ATF4 and ATF3, 

after 2 or 8 h of treatment, respectively (Fig. 2B and 2C), and to increase the amount of NF-κB in 

the nucleus (Fig. 2C). Compound C also attenuated the ability of t10c12 CLA to reduce the 

amounts of the key adipogenic transcription factors C/EBPα, SREBP1c, and PPARγ (Fig. 2D) 

and to increase the transcript levels of monocyte chemotactic protein-1 (MCP-1; Fig. 2E).    

NF-κB inhibitor Bay 11-7082 attenuated the t10c12 CLA-mediated reduction in 3T3-L1 

adipocyte TG levels (Fig. 3A), and inhibited the increased nuclear localization of the p65 subunit 

of NF-κB (Fig. 3B).  Bay 11-7082 also reduced the amount of MCP-1 mRNA produced in the 

presence of t10c12 CLA (Fig. 3C).   

3T3-L1 adipocytes treated with t10c12 CLA, metformin, or AICAR showed TG 

reductions of 14 to 20% when compared to the control LA treatments (Table 1). Adipocytes 

treated with a combination of either metformin or AICAR and t10c12 CLA had reductions in TG 

levels of almost 50% (Table 1). 

3T3-L1 adipocytes treated with metformin, AICAR, or t10c12 CLA, alone or in 

combination, had increased phosphorylation of AMPK and ACC after 2 or 8 h (Fig. 4 and Table 

1). The combination of t10c12 CLA with metformin produced significantly higher levels of 

phosphorylated AMPK at each time. The combination of metformin or AICAR and t10c12 CLA 

reduced the levels of MCP-1 mRNA relative to t10c12 CLA alone (Table 1).  Neither metformin 

nor AICAR alone produced a significant induction of MCP-1 mRNA.   
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The transcriptional responses to t10c12 CLA, metformin, or the combination treatment 

were further analyzed using microarrays. The hypothesis was that if similar pathways were being 

activated by the two treatments the microarray results should show a high degree of similarity. 

The gene expression changes for 3T3-L1 adipocytes treated with either metformin or t10c12 

CLA or the combination of the two produced very similar responses (Table 2 and Supplemental 

Tables 1-6). The correlation coefficients for genes with significant changes in transcript levels 

were 0.75 or better for pairwise analysis of these treatments (Table 2).  We also compared the 

expression changes for these treatments using specific lists of genes in the ISR (Supplemental 

Table 4) and lipogenesis (Supplemental Table 5) pathways that were  determined in prior 

experiments with t10c12 CLA or the UPR-inducing chemical tunicamycin [67].  The correlation 

coefficients for these specific gene lists for the above treatments were 0.91 or better, and 

indicated all three treatments had a strong ISR (Table 2 and Supplemental Table 4).  One 

apparent difference was that the inflammatory response was weaker in the metformin treatment. 

Metformin treatment produced lower levels of mRNA induction for the CD14 antigen (CD14), 

cardiotrophin-like cytokine factor 1 (Clcf1), cyclo-oxygenase 2 (Cox2), colony stimulating factor 

1 (Csf1), MCP-1, oncostatin M receptor (Osmr), plasminogen activator inhibitor type 1 (PAI or 

Serpine1) and suppressor of cytokine signaling 3 (Socs3) genes that respond more strongly with 

t10c12 CLA treatment  (Supplemental Table 6). 

Metformin’s ability to enhance the effectiveness of a low dose of t10c12 CLA was then 

evaluated in ML and MC mice. The three-way interaction of mouse line x t10c12 CLA x 

metformin was significant for epididymal (EPI) WAT (P = 0.08) and approached significance for 

retroperitoneal (RP; P = 0.22). Within the ML mice fed t10c12 CLA, those without metformin 

had only a 3% reduction in fat pad weights and had significantly greater weights for the pair of 
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RP or EPI fat pads than mice that also received the high dose of metformin (Supplemental Fig.1 

and Table 3). The MC mice fed t10c12 CLA had a 58% reduction in WAT mass, making an 

interaction with metformin difficult to evaluate (Table 3).  

Discussion 

        T10c12 CLA causes isomer specific reductions in lipids in adipocytes and here we 

demonstrated that t10c12 CLA activated AMPK, although it is not clear if this was a direct 

activation of AMPK or an indirect activation via upstream regulatory proteins [80, 82]. The cis-9, 

trans-11 isomer  of CLA (c9t11 CLA) generally does not cause lipid loss [24], but has been 

recently reported to stimulate AMPK activity in myotubes [92]. In those studies c9t11 CLA 

alleviated the palmitate-mediated suppression of AMPK activity [92]. However, those 

investigators observed the highest levels of AMPK activity in the untreated control samples, and 

they did not present data indicating c9t11 CLA independently activated AMPK, leaving this 

issue unresolved. We used LA (cis-9, cis-12 linoleic acid) as a control fatty acid because it is an 

isomer that differs from t10c12 CLA only in the 9-cis position of the double bond. In our 

experiments, the isomer specific ability of t10c12 CLA to strongly activate AMPK in adipocytes 

correlated with its isomer-specific lipid lowering properties in adipocytes.   

AMPK’s central role in reducing anabolic biosynthesis and increasing catabolic processes 

helps explain the dramatic fat loss and variety of physiological and molecular responses 

observed in WAT in mice fed t10c12 CLA [12, 24, 50, 67]. Key metabolic or regulatory proteins 

known to be inhibited by AMPK phosphorylation include ACC, SREBP1c, C/EBPα, FAS, 

HMGR, and glycogen synthase [82, 93]. We found compound C attenuated the reduction in the 

levels of the SREBP1c, C/EBPα and PPARγ proteins and the increase in the phosphorylation of 

ACC typically caused by t10c12 CLA. Activated AMPK is also expected to phosphorylate 
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transcription co-activator p300 which should reduce its interaction with transcription factors 

PPARγ and retinoid X receptor, inhibiting their ability to induce lipogenesis [94]. The DNA 

binding activity of the transcription factor ChREBP, which regulates genes involved in 

glycolysis and lipogenesis, is also known to be inhibited when phosphorylated by AMPK [95]. 

The presence of activated AMPK in these cells and its known ability to cause reductions in the 

activity or amounts of these key biosynthetic and regulatory proteins helps explain the reduction 

in lipogenesis [71, 73, 74] and the reduced transcript levels of many lipogenic genes in t10c12 

CLA-treated adipocytes.   

An ISR is initiated by t10c12 CLA in WAT in mice and 3T3-L1 adipocytes [67].  

Increased AMPK activity was sufficient to initiate an ISR when the AMPK activator AICAR 

was added to F442a adipocytes [96]. Our microarray analysis indicated an ISR occurred in 3T3-

L1 adipocytes treated with AMPK activator metformin, whose chemical structure is unrelated to 

AICAR’s.  We also found that compound C inhibited the ability of t10c12 CLA to induce an ISR. 

Together, these results strongly suggest that activation of AMPK by t10c12 CLA is responsible 

for the ISR observed. Activation of the ISR has been observed to cause reductions in WAT of 

mice fed a leucine deficient diet [79].  This latter observation supports a functional role for an 

ISR in lipid loss in adipocytes.  

An inflammatory response occurs during the response to t10c12 CLA in vitro and in vivo 

[12, 60, 72]. Inhibition of NF-κB reduces the inflammatory response in t10c12 CLA-treated 

human adipocytes and attenuates the reduction in glucose transporter GLUT-4 and PPARγ 

protein levels [60].  We found that inhibition of NF-κB, and its associated inflammation response, 

attenuated TG reduction in t10c12 CLA-treated 3T3-L1 adipocytes.  Metformin activated AMPK, 

induced an ISR that did not induce MCP-1, and produced a weaker TG loss in 3T3-L1 
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adipocytes or in WAT in mice.  AICAR seems to repress inflammatory responses as AICAR 

reduced the production of MCP-1 from stimulated adipocytes [97]. An ISR might be sufficient to 

cause an inflammatory response through activation of NF-κB [98], but this inflammatory 

response was partially suppressed when metformin or AICAR was used in combination with 

t10c12 CLA, possibly by AMPK independent mechanisms [99]. Taken together, these results 

indicate that although some level of an inflammatory response appears to be needed for robust 

TG loss, higher levels of inflammation are not required.   

Many physiological responses are known to participate in mediating the lipid loss in 

t10c12 CLA treated adipocytes [12, 24, 50, 67] and activated AMPK may play a role in many of 

these processes [80, 82]. In particular, activated AMPK might facilitate the increased rates of 

fatty acid oxidation that occur in t10c12 CLA-treated 3T3-L1 adipocytes [70]. AMPK 

phosphorylation of ACC is expected to reduce the amount of malonyl-CoA that ACC produces. 

In addition to its role in fatty acid biosynthesis, malonyl-CoA is a key regulatory molecule that 

inhibits the activity of carnitine palmitoyltransferase-1 (CPT-1) [100]. A more active CPT-1 will 

increase the rate of fatty acid transport into mitochondria and produce an increased fatty acid 

oxidation rate [93]. Previous microarray studies of WAT of mice fed t10c12 CLA for 1 to 14 or 

17 days showed increased transcript levels of both CPT-1 and uncoupling protein 1 (UCP-1) 

after several days [12, 50]. The combination of reduced amounts of malonyl-CoA, increased 

amounts of CPT-1 fatty acid transporter activity, and higher levels of UCP-1 would support an 

increased rate of fatty acid oxidation in vivo, which is consistent with the increased rates of 

metabolism that have been observed in some experiments with t10c12 CLA-fed mice [52]. The 

much higher levels of UCP-1 mRNA observed in t10c12 CLA fed mice [12, 50] might provide a 

longer term mechanism of reducing adiposity as transgenic mice overexpressing UCP-1 in WAT 
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were found to have elevated AMPK activity levels and to be resistant to diet-induced obesity 

[101].   

The question remains as to whether activation of AMPK by t10c12 CLA is necessary to 

mediate the majority of the lipid reduction effects observed in treated adipocytes. Either AICAR 

or metformin activated AMPK in adipocytes, but produced only limited reductions in lipid levels 

relative to the reductions observed with t10c12 CLA treatments. This difference might be 

explained by our finding that t10c12 CLA more strongly activated AMPK over longer times, 

thereby increasing its effects. The ability of either AMPK activator to allow a lower 

concentration of t10c12 CLA to cause a more robust lipid loss in adipocytes further supports the 

involvement of AMPK activity with the amount of lipid lost. The complete inhibition of t10c12 

CLA-mediated TG reduction we observed on addition of compound C indicates AMPK is 

probably a key component of this response. The reduced phosphorylation of AMPK and ACC 

that occurred when treated with compound C, provided confirmation that compound C is 

inhibiting AMPK in our experiments. However, compound C could potentially inhibit other 

protein kinases that might also affect the response. This possibility of another pathway playing a 

major role in the response is not supported by our finding of very similar transcriptional 

responses to metformin, t10c12 CLA, or the combination of the two.  Altogether, these results 

are consistent with a hypothesis that activated AMPK is a necessary component of the 

mechanisms utilized by t10c12 CLA to mediate lipid loss in adipocytes.  

In tests of t10c12 CLA and metformin in mice, metformin’s enhancement of the effects 

of t10c12 CLA in ML mice was consistent with our results in 3T3-L1 adipocytes while the 

results from the MC mice were inconclusive. This is probably because the 58% loss of WAT 

mass caused by t10c12 CLA alone made further reductions in lipid amounts in the WAT more 
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difficult to achieve in MC mice.  Additionally, the MC and ML mice are not inbred lines and 

were bred to have substantial genetic variability within each line [102], possibly contributing to 

the variation in the responses observed, which reduced the statistical significance of the results. 

Our interpretation of these results is that metformin is probably more effective when combined 

with t10c12 CLA at a marginal low dose than with a higher dose of t10c12 CLA that is sufficient 

to cause robust lipid loss.  

The AMPK activators, metformin and members of the thiazolidinediones class (e.g., 

rosiglitazone and pioglitazone), are widely used in the treatment of insulin resistance and type 2 

diabetes [80, 103, 104].  These drugs activate AMPK indirectly, and partially reverse the 

decreased AMPK activity and increased malonyl-CoA levels associated with metabolic 

syndrome [105-107]. AMPK also affects the organism’s energy perception through its regulation 

by adipokines such as leptin and adiponectin [107]. Our results suggest that t10c12 CLA should 

be added to this list of chemicals used in humans that elicit mechanisms that activate AMPK. 

These results may have relevance to human trials by suggesting that t10c12 CLA’s limited 

effectiveness for reducing adiposity in humans [108] might be increased in combination with 

metformin or other dietary or medicinal chemicals that activate AMPK. However, AMPK 

activators that are also potent PPARγ agonists, such as the thiazolidinediones, are not likely to be 

as useful as they antagonize the effects of t10c12 CLA [109].  
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Tables and figures 

 

Table 1.  Levels of TG, relative levels of AMPK and ACC phosphorylation, or MCP-1 mRNA 

in 3T3-L1 adipocytes treated with AMPK activators alone or in combination with t10c12 

CLA
1

 

1
Differentiated adipocytes were treated with LA (-CLA) or t10c12 CLA (+CLA), 2 mmol/L 

AICAR, or 2 mmol/L metformin alone, or in combination. Data are presented as the mean ±  
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SEM, n=3 independent experiments. Means in a row not sharing a common letter differ, P ≤  

0.05. 

2
TG levels were measured 24 h after treatment with 50 µmol/L of either fatty acid.  

3
Immunoblots were analyzed as described in Figure 4.  

4
Cells were treated with 100 µmol/L of either fatty acid for 12 h and the amounts of MCP-1 and 

GAPDH mRNA determined.
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Table 2.  Spearman correlation coefficients for gene expression changes in 3T3-L1 adipocytes 

treated with t10c12 CLA, metformin or the combination
1
 

____________________________________________________________________________     

                                                      ___           Treatment compared                             _                                             

Gene list compared
2
 Metformin  T10c12 CLA + Metformin_________                                   

 All significant genes
3
                                                                                                                        

t10c12 CLA 0.75 (n = 246)  0.86 (n = 410) 

t10c12 CLA + Metformin 0.92 (n = 408) 

 

ISR
4
 genes (n = 63) 

t10c12 CLA 0.91   0.96  

t10c12 CLA + Metformin 0.97   

 

Lipogenesis
4
 (n = 69) 

t10c12 CLA 0.95    0.97  

t10c12 CLA + Metformin 0.98  

___________________________________________________________________________ 

1
 Data for each treatment were derived from 3 microarrays and analyzed for the Spearman 

correlation coefficient for the comparisons indicated, and had P-values ≤ 1 x 10
-10

.  
 

2
The number of genes being compared in each gene list is represented by n.  

3
The ‘all significant genes’ list is derived from the union of genes in either treatment that show a 

four fold change in expression and a Benjamini-Hochberg-adjusted P-value ≤  0.1 in at least one 

of the treatments being compared.   
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4
The ISR and lipogenesis gene lists were derived from a list of genes previously found to be 

responsive to t10c12 CLA or tunicamycin in 3T3-L1 adipocytes [67].  
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Table 3.   The effect of combining metformin and t10c12 CLA on lipid loss in ML and MC mice
1
 

 

1
Data are presented as mean ± SEM, n = 6. Means in a row not sharing a common superscript differ, 

P< 0.1.  

2
The change in body weight (BW) or the final weight of the epididymal (EPI) or retroperitoneal (RP) 

was measured after 14 d of treatments. 
 

3
Mice were fed diets supplemented with soy oil (-CLA), or t10c12 CLA (+CLA), and given drinking 

water lacking (Met0) or containing metformin at 2 (Met2) or 20 mmol/L (Met20) for 14 d.  
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Figure 1.  TG (A) and phosphorylated AMPK (B) and ACC (C) levels in 3T3-L1 adipocytes 

treated with t10c12 CLA, in combination with compound C (A), or alone (B, C). Differentiated 

3T3-L1 adipocytes were incubated with 100 µmol/L LA or t10c12 CLA, with or without 

compound C (Comp.C) for 24 h or the indicated times. Representative western blots indicate the 

proteins detected with antibodies to p-AMPK (p-Thr 172), total AMPK, p-ACC (p-Ser 79), or 

total ACC. Each bar represents the mean + SEM, n=3 independent experiments. Means not 

sharing a common letter differ, P ≤  0.05.  
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Figure 2.  Compound C attenuates t10c12 CLA effects on phosphorylated AMPK and ACC (A); 

ATF4 (B); ATF3 and NF-κB (C); C/EBPα, SREBP1c, and PPARγ (D); or MCP-1 mRNA levels 

(E) in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were treated with 100 µmol/L LA (-) 

or t10c12 CLA (+), with or without compound C (Comp.C) as indicated and the cytoplasmic or 
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nuclear fractions harvested at the following times for analysis of the indicated proteins: A) 1 h 

cytoplasmic: p-AMPK, AMPK, p-ACC, ACC; B) 2 h nuclear: ATF4; C) 8 h nuclear: ATF3, NF-

κB p65; D) 12 h nuclear: C/EBPα, SREBP1c, PPARγ.   Representative western blots are shown 

for the cytoplasmic or nuclear extracts analyzed with the antibodies to the proteins indicated. 

Lamin B (Lam B) was used as a control for the amount of nuclear protein loaded for each blot in 

B, C and D, and is only shown once in each panel.  E)  The indicated treatments were for 12 h. 

MCP-1 levels and GAPDH were quantitated by real time PCR of cDNA. Each bar represents the 

mean + SEM, n=3 independent experiments. Means not sharing a common letter differ, P ≤  0.05. 
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Figure 3.  Bay 11-7082 inhibits t10c12 CLA’s ability to reduce TG levels (A), translocate NF-

kB to the nucleus (B), or induce MCP-1 mRNA levels in 3T3-L1 adipocytes (C). Differentiated 

3T3-L1 adipocytes were treated with 100 µmol/L LA (-) or t10c12 CLA (+) for 24 (A) or 12 h 

(B, C), with or without 2 µmol/L Bay11-7082 (Bay11). Representative western blots are shown 

for nuclear extracts analyzed with antibodies specific for the p65 subunit of NF-kB  or lamin B 

(Lam B).  The mRNA levels of MCP-1 and GAPDH were quantitated by real time PCR of 

cDNA.  Each bar represents the mean + SEM, n=3 independent experiments. Means not sharing 

a common letter differ, P ≤  0.05. 
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Figure 4.  AMPK activators affect the ability of t10c12 CLA to increase AMPK and ACC 

phosphorylation  in 3T3-L1 adipocytes. Differentiated adipocytes were treated with LA (-) or 

t10c12 CLA (+ or CLA), 2 mmol/L AICAR, or 2 mmol/L metformin (Met) alone, or in 

combination. Representative immunoblots are shown of proteins extracts from cells treated with 

100 µmol/L of either fatty acid for 2 or 8 h, and analyzed with antibodies to p-AMPK (p-Thr 

172), total AMPK, p-ACC (p-Ser 79), or total ACC.  Immunoblots analyses were repeated three 

times for each antibody. The data from the quantitative analysis of the immunoblots is presented 

in Table 1.  

 

 

 

 
 

Figure 5.  Metformin increases the lipid loss response to t10c12 CLA in retroperitoneal fat pads 

of ML mice. ML were fed diets supplemented with 2.5 g/kg soy oil (Control), or t10c12 CLA 

(CLA) at either 2.5 or 5 g/kg, and given drinking water lacking or containing metformin (20 

mmol/L) for 14 d. One retroperitoneal fat pad is shown for each of the 6 mice for each of the 

treatments indicated.

 Control 

2.5 g/kg CLA 

     Metformin 

5 g/kg CLA 

    2.5 g/kg CLA + Metformin 
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Chapter III. Activated AMPK and prostaglandins are involved in the response to 

conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes 
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INTRODUCTION 

        Dietary conjugated linoleic acid (CLA) causes dramatic reductions in adiposity in 

mice and in human adipocyte cultures [16, 24, 60, 69]. An active isomer for reductions in 

white adipose tissue (WAT) is the trans-10, cis-12 isomer (t10c12 CLA; [24]). The 

molecular responses to t10c12 CLA  are remarkably diverse and include the integrated 

stress response (ISR; [67, 110]) or the unfolded protein response (UPR; [76]), a nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated inflammatory 

response [60], mitogen-activated protein kinase (MAPK) cascades [57], and AMP-

activated protein kinase (AMPK) [111, 112].  

        AMPK is a central regulator of cellular energy levels that is activated by increases in 

the cellular AMP/ATP ratio, cellular processes [80, 81], and t10c12 CLA in adipocytes 

[111] or mixed isomers of CLA in mice [112].  AMPK is a heterotrimeric protein and 

activated AMPK requires phosphorylation at AMPKα threonine 172 [80, 81]. Activated 

AMPK phosphorylates acetyl-CoA carboxylase (ACC) to inhibit fatty acid biosynthesis, 

and the amount of phosphorylated ACC provides a measurement of AMPK activity in 

vivo [113]. Drugs such as 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), 

metformin, and phenformin directly or indirectly activate AMPK [80, 93], while 

compound C is a potent inhibitor of AMPK. Either AICAR or metformin is sufficient to 

initiate an ISR in adipocytes [96, 111], supporting a role for activated AMPK in this 

response. An ISR can activate NF-κB [98], and compound C blocks the ISR, activation of 

NF-κB, and NF-κB-dependent inflammatory response [60] that are induced in t10c12 

CLA treated adipocytes [111], indicating these responses are AMPK dependent. Whether 
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activation of AMPK is sufficient to explain the TG loss response caused by t10c12 CLA 

remains unresolved.  

         The inflammatory response has been proposed as a critical component of the 

triglyceride (TG) reduction that occurs in adipocytes exposed to t10c12 CLA [12, 24, 50, 

60, 67, 72]. NF-κB is required for the inflammatory response, and inhibition of NF-κB 

attenuates IL6 induction, the repression of GLUT4 and Peroxisome Proliferator-

Activated Receptor γ (PPARγ) protein activity, and the reduced glucose transport that 

otherwise occur in t10c12 CLA treated human adipocytes [60]. Inhibition of NF-κB also 

attenuates the reduction in TG levels in t10c12 CLA treated 3T3-L1 mouse adipocytes 

[111]. A key difference in the weak TG reduction that occurs in the presence of AMPK 

activator metformin, and the more robust lipid loss mediated by t10c12 CLA is the 

stronger inflammatory response that occurs with t10c12 CLA [67, 111]. The 

proinflammatory cytokine tumor necrosis factor α (TNF-α) is sufficient for lipid loss in 

adipocytes [114], and is moderately induced by t10c12 CLA in human adipocytes [60], 

but not in 3T3-L1 adipocytes [67]. PPARγ is a master regulator of adipogenesis and a key 

regulatory point for controlling inflammation in adipocytes [115].  PPARγ and NF-κB are 

mutually antagonistic, as PPARγ inhibits NF-κB transcriptional activity through 

transrepression [115], and NF-κB activity indirectly reduces PPARγ protein levels in the 

t10c12 CLA response [60].  

        T10c12 CLA increases prostaglandin (PG) biosynthesis in human adipocytes [110] 

and in mouse WAT [116]. PG biosynthesis is controlled in part by the rate-limiting 

release of arachidonic acid (AA) from the cell membrane by phospholipase A2 (PLA2). 

AA is then converted into PGH2, the precursor to the prostanoids, including the 
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prostaglandins, by either cyclo-oxygenase (COX)-1 or by the inflammation-inducible 

COX2 [117]. PG production is increased in t10c12 CLA-treated adipocytes through 

increased activation of PLA2 [110], as measured by its increased phosphorylation, and 

increased levels of COX2 mRNA [67, 110]. At least one member of the PG family, 

PGF2α, negatively affects adipocyte differentiation [118], but the functional role of 

increased PG biosynthesis in t10c12 CLA treated adipocytes has not been established.  

          The interplay between AMPK activation and the inflammatory response, 

particularly its PG component, in causing the reduction of TG levels that occurs in t10c12 

CLA treated adipocytes, is not currently well defined. The goal of this study was to test 

the following hypotheses: 1) A moderate activation of AMPK and an inflammatory 

response are sufficient to reduce triglycerides, and 2) Strong activation of AMPK is also 

sufficient. Our experimental approach was to establish the possible involvement of 

specific pathways through chemical inhibitors, confirm that these pathways are activated 

by t10c12 CLA, and then attempt to activate these pathways independently of t10c12 

CLA to functionally assay their ability to reduce TG levels in adipocytes. Our rationale 

was that independent activation of the critical pathways should produce responses similar 

to those caused by t10c12 CLA, and thereby provide additional support for the functional 

roles these pathways play.  A potent activator of AMPK was analyzed for its similarity to 

t10c12 CLA in its ability to lower TG levels, in its whole genome transcriptional 

response, and in its cell-type dependent induction of the ISR.  The results of these studies 

support our hypotheses and provide new insights into the mechanisms utilized by t10c12 

CLA to reduce TG levels in adipocytes.  
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METHODS AND MATERIALS 

Reagents.  Arachidonic acid, bovine serum albumin (BSA, > 99% fat free), CP-24879, 

dexamethasone, Ibuprofen, insulin, isobutyl-1-methylxanthine, metformin, Naproxen, 

PGE2, phenformin and TNF-α were from Sigma (St. Louis, MO). AMPK inhibitor 

compound C was purchased from Calbiochem (San Diego, CA). Antibodies to p-AMPK 

(α1 and α2), AMPK (α1 and α2), p-ACC (ACC1 and ACC2), ACC (ACC1 and ACC2), 

p-PLA2, and PLA2 were from Cell Signaling (Beverly, MA). PGF2α, PGH2, SP600125, 

and U0126 were from Fisher (Pittsburgh, PA).  

3T3-L1 cell culture and differentiation. 3T3-L1 fibroblasts [85] were cultured in 

Dulbecco's modified Eagle's medium (DMEM; Invitrogen, Carlsbad, CA) containing 

25mM glucose and 10% bovine calf serum (Fisher, Pittsburgh, PA) and differentiated as 

described [86]. In brief, two days after growing to confluence, the cells were induced to 

differentiate in DMEM containing 25mM glucose and 10% fetal bovine serum (FBS; 

Fisher, Pittsburgh, PA), 0.17 µmol/L insulin, 0.5 mmol/L isobutyl-1-methylxanthine, and 

1 µmol/L dexamethasone for 3 days. The medium was then changed to 10% FBS/DMEM 

containing 25mM glucose and with 0.17 µmol/L insulin for another 2 days, at which time 

the cells were usually differentiated to at least 90% adipocyte, followed by basal 10% 

FBS/DMEM medium containing 25mM glucose before initiating fatty acid treatments. 

All media contained 100,000 U/L penicillin and 172 µmol/L streptomycin (Invitrogen, 

Carlsbad, CA).  

Fatty acid treatments. Fatty acids (>99%, Nu-check Prep, Elysian, MN), either linoleic 

acid or trans-10, cis-12 CLA, were dissolved in 0.1 M KOH, diluted into fatty acid free 

(>99%) bovine serum albumin (BSA) in phosphate buffered saline at a 1:1 ratio (2 
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mmol/L BSA: 2 mmol/L fatty acid), pH adjusted to 7.4, and added to the cultures 

containing 5.5 to 6 d post-differentiated 3T3-L1 adipocytes.  

Western blots. Nuclear and cytosolic extracts were isolated based on the manufacturer's 

protocol (Active Motif, Carlsbad, CA). Equal amounts of proteins were separated by 

SDS-PAGE, transferred to Immun-blot PVDF membrane (Bio-Rad Laboratories, 

Hercules, CA) and probed with the indicated antibodies. Enhanced chemiluminescence 

(Pierce, Rockford, IL) was used for detection. Band intensities were determined from 

digital images from exposures in the linear range using imaging software (Quantity One, 

Biorad, Hercules, CA). All western blot analyses were repeated at least three times. 

Quantification of TG content. Cell isolation and TG measurements were performed 

according to the manufacturer using TG reagent (T2449; Sigma, St. Louis, MO) and free 

glycerol reagent (F6428; Sigma, St. Louis, MO). Protein concentrations were measured 

using Bradford dye (Biorad, Hercules, California) to obtain results as µg of TG per mg of 

protein.  

Measurement of PGF2α. Cell culture concentrations of PGF2α were determined using 

culture media samples obtained immediately prior to cell harvest for TG analysis. PGF2α 

levels were measured by enzyme immunoassay (EIA) using the Correlate-EIA PGF2α 

Kit (Assay Designs, Ann Arbor, MI) according to the manufacturer's instructions. A 

standard curve was plotted using dilutions of a known concentration of the PGF2α 

standard, and sample concentrations were determined based on this standard curve. Data 

were derived from three independent experiments, with two replicates in each experiment. 
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Real time PCR analysis of cDNA from mRNA. Total RNA was extracted by TRIzol 

(Invitrogen) following the manufacturer’s protocol. Total RNA (2 µg) was used for 

cDNA synthesis. Real-time PCR was performed by a Bio-Rad iCycler using iQ SYBR 

Green Supermix reagent (Bio-Rad, Hercules, CA). The primer sequences for MCP-1 and 

GAPDH were taken from [87], and all other primer sequences of genes analyzed by real 

time PCR are shown in Supplementary Table 5. The cDNA levels were normalized to 

GAPDH, which showed no significant variation in microarrays between LA and t10c12 

CLA treatments. Experiments were repeated three times, and each sample was analyzed 

using one RNA control and two replicates of each cDNA pool, and the relative amounts 

of each target cDNA and GAPDH were calculated using the comparative CT method 

[according to the manufacturer’s software (Bio-Rad, Hercules, CA) and [88]]. Cycle 

numbers were used to calculate gene expression levels in the linear amplification range, 

and qRT-PCR efficiency was close to 100%. 

Microarray data analysis. RNA isolation and labeling of the 3T3-L1 adipocytes was 

performed as previously reported [67]. Results of the treatments of each of the three 

biological replicates were collected from Affymetrix® GeneChip Mouse Genome 430 2.0 

arrays via the Affymetrix GeneChip Operating Software (GCOS; Affymetrix, Santa Clara, 

CA). The raw data for microarray results were normalized using the methods described 

by Wu et al [89]. To identify differentially expressed genes between the control (linoleic 

acid) and other treatments, the linear models for microarrays [Limma; [90]] package in 

R/Bioconductor was used, with Benjamini-Hochberg [119] adjusted P-values. Those 

genes with an absolute log2 ratio of 2 or more (four-fold up- or down-regulated) and a 

Benjamini-Hochberg adjusted P-value≤ .05 were deemed to be significant and analyzed 
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further. The gene expression data has been deposited at the NCBI Gene Expression 

Omnibus with series number GSEXXXXX (access activated upon publication). 

Statistical Analysis.  

Experiments represented in Figures 1 through 6 were subjected to analysis of variance 

using fixed effect statistical models.  F-statistics, least-squares means, and standard errors 

were calculated using software of SAS (Cary, NC). The main effects or interactions were 

considered significant if P≤ .05, unless otherwise noted. For Fig. 1A, the main effects of 

TNF-α (0, 0.1, 0.3 or 0.6 nmol/L) and Met (- or +), and their interaction (TNF-α x Met) 

were analyzed. For Fig. 1B, the main effects of TNF-α (- or +) and compound C (- or +), 

and their interaction (TNF-α x Comp.C) were determined. The data presented in each 

panel of Fig. 2 were analyzed using a statistical model that included a single main effect.  

For Fig. 3, the main effects of CLA (- or +) and Ibuprofen (- or +), Naproxen (- or +) or 

CP-24879 (- or +), and their interaction (CLA x Ibuprofen, Naproxen or CP-24879) were 

separately determined for both the TG and PGF2α experiments. For Fig. 4, the main 

effects of Met (- or +) and PGE2 (- or +), PGF2α (- or +), PGH2 (- or +), or AA (- or +) 

and their interaction (Met x PGE2, PGF2α, PGH2 or AA) were separately determined. 

For Fig. 5A, the main effects of CLA (- or +) and time (2, 4, 8, and 12 h), and their 

interaction (CLA x time) were determined. For Fig. 5B and 5C, the main effects of CLA 

(- or +) and SP600125 (- or +) or U0126 (- or +), and their interaction (CLA x SP or 

U0126) were determined. For Fig. 6, the large range of the response values of ATF3 

required both a log10 transformation and separating the data into a first group (panel A) 

and second group (panel B). The main effects of CLA (- or +), phenformin (- or +), and 

day (-2, 0, 1-5 d), and their interaction (CLA or Phen x d) were determined. Individual 
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pairwise comparisons of least-squares means were calculated by Least Significant 

Difference Test. Data are presented as least-squares means + SEM. Means not sharing a 

common superscript differ significantly (P≤ .05), unless otherwise noted.  

RESULTS 

          Our hypothesis, based on prior use of chemical inhibitors, was that moderate 

activation of AMPK and an inflammatory response are sufficient to reduce TG levels in 

adipocytes. This was tested independently of t10c12 CLA as follows. Metformin was 

used to activate AMPK, as it was found previously to moderately activate AMPK without 

initiating a strong inflammatory response [111]. TNF-α, an inflammatory cytokine 

capable of causing reductions in TG levels in adipocytes [114], was used at several 

concentrations as the inflammatory stimulus. As a control, the biological activity of the 

TNF-α sample was separately verified in adipocytes by its induction of MCP-1 and 

CXCL1 mRNAs (Supplemental Fig.1), which were induced to levels similar to those 

caused by treatments with t10c12 CLA (data not shown). Either metformin or 0.6 nmol/L 

TNF-α caused reductions in TG levels of 14 ± 2% or 19 ± 4%, respectively (Fig. 1A).  

The reduction in TG levels was 40 ± 4% when both metformin and 0.6 nmol/L TNF-α 

were used in combination (Fig. 1A).  

         This result appeared to support our hypothesis, and to further strengthen this 

analysis, we checked whether the response to TNF-α was dependent on activated AMPK. 

Surprisingly, when the AMPK inhibitor compound C was tested for its ability to inhibit 

the TG loss caused by TNF-α alone, the majority of the TNF-α mediated reduction in TG 

was attenuated (Fig. 1B). This latter result indicated the above experiments had more 

relevance for our second hypothesis that higher levels of activated AMPK were sufficient 



 

  

48

to cause robust TG loss. This hypothesis was separately tested by using phenformin, a 

more potent AMPK activator that is structurally related to metformin. Phenformin was 

used at increasing concentrations, which resulted in progressively lower TG levels (Fig. 

2A). 100 µmol/L phenformin was able to reduce TG levels by 45 ± 5%, nearly the same 

reduction as achieved by 100 µmol/L t10c12 CLA (50 ± 2%; Fig. 2A).   

         To gain further insight into the association of the amount of activated AMPK with 

reduced TG levels and inflammation, the ability of TNF-α, phenformin, metformin, or 

t10c12 CLA to activate AMPK, reduce TG levels, and induce COX2 mRNA was 

measured.  Each of these chemicals increased phosphorylation of AMPK, as well as of 

ACC, a known in vivo substrate of AMPK (Fig. 2B).  Phenformin and t10c12 CLA 

produced more phosphorylated AMPK and ACC than TNF-α or metformin at the 

concentrations used for each compound (Fig. 2B). The effects of these compounds on 

concurrent changes in TG levels and inflammation, using COX2 mRNA as an indicator 

of inflammation, was also measured (Fig. 2C). The effects of these treatments suggested 

the amounts of activated AMPK and COX2 mRNA both affected TG levels.  T10c12 

CLA or phenformin caused higher activation of AMPK and more TG loss than 

metformin or TNF-α.  Within the t10c12 CLA and phenformin treatments, t10c12 CLA 

induced higher levels of COX2 mRNA and lost more TG despite its lower amount of 

activated AMPK.  Within the metformin and TNF-α treatments, TNF-α induced higher 

levels of COX2 mRNA and lost more TG than metformin despite its lower amount of 

activated AMPK. Taken together, this data showed a trend of more highly activated 

AMPK causing more TG loss. For treatments with somewhat similar AMPK activation 

levels, higher COX2 mRNA levels seemed to be associated with more TG loss.  
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         This latter observation supported a hypothesis that PGs might be a critical 

component of the inflammatory response to t10c12 CLA. The functional role of PGs was 

then investigated by using chemicals that inhibit PG production. Treatment of 3T3-L1 

adipocytes with Naproxen, Ibuprofen, or CP-24879 (an inhibitor of AA biosynthesis) 

inhibited the ability of t10c12 CLA to cause TG reductions (Fig 3A).  The effectiveness 

of these chemicals in reducing PG levels, using PGF2α levels as an indicator of PG 

production, was then determined (Fig 3B).  The modest reductions of PGF2α levels by 

Naproxen or Ibuprofen treatments were not significant, while CP-24879 caused a 

significant reduction in PGF2α in t10c12 CLA treated adipocytes (Fig 3B).  The 

effectiveness of these inhibitors at reducing PGF2α levels was in agreement with their 

effectiveness at attenuating the TG loss caused by t10c12 CLA (Fig 3A).  

          The functional importance of PG in the TG reductions in t10c12 CLA treated 

adipocytes generated an alternative to TNFα for providing an inflammatory stimulus to 

test our first hypothesis (a moderate activation of AMPK and an inflammatory response 

are sufficient to reduce TG levels in adipocytes) independently of t10c12 CLA. This 

hypothesis was tested by adding a combination of metformin and a PG or AA, a 

precursor to PG biosynthesis, to 3T3-L1 adipocytes. Metformin alone produced a 15 ± 

4% reduction in TG levels (Fig. 4), while t10c12 CLA reduced TG levels by 47 ± 5% 

(data not shown). PGE2 alone had no effect, while the combination of PGE2 and 

metformin increased the amount of TG (Fig. 4). PGF2α alone reduced TG levels by 6 ± 

2%, while PGF2α and metformin caused a 32 ± 7% TG loss (Fig. 4). PGH2 alone had no 

effect on TG levels, while the combination of PGH2 and metformin reduced TG levels by 

41 ± 2% (Fig. 4). Similarly, AA alone had no effect, while AA and metformin reduced 
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TG levels by 45 ± 7% (Fig. 4). Metformin combined with PGH2 or AA was nearly as 

effective as t10c12 CLA in causing reductions of TG levels in these experiments, 

providing support for our first hypothesis, where the inflammatory component is supplied 

by exogenous PGH2 or AA.  

          The mechanism by which PG production is regulated in t10c12 CLA treated 

adipocytes was then investigated. PLA2 releases AA by hydrolysis from the glycerol 

backbone of membrane lipids. PLA2 activity is activated by phosphorylation, and its 

phosphorylation has been reported to be increased by t10c12 CLA in human adipocytes, 

with the possible involvement of ERK and JNK [110]. The involvement of the ERK and 

JNK signaling pathways in the activation of PLA2 by phosphorylation was therefore 

examined.  Increasing amounts of phosphorylated PLA2 were observed during longer 

times of exposure to t10c12 CLA (Fig. 5A).  The phosphorylation of PLA2 was found to 

be reduced in the presence of JNK inhibitor SP600125 or MEK inhibitor U0126 (Fig. 5B), 

both of which also inhibited t10c12 CLA’s ability to reduce TG levels (Fig. 5C).    

         The abilities of t10c12 CLA and phenformin to strongly activate AMPK and to 

cause robust reductions in TG levels suggested phenformin might initiate cellular 

responses very similar to those caused by t10c12 CLA. Our hypothesis was that if similar 

signaling pathways were being utilized by the two chemicals, the microarray results 

should show a high degree of similarity when analyzed for their correlation coefficients. 

Microarray analysis generated a list of genes with changes in transcript levels of at least 

4-fold in either t10c12 CLA- or phenformin-treated adipocytes (Supplementary Table 1).  

Previous lists of genes that responded to t10c12 CLA in the ISR, lipid metabolism, or 

inflammatory pathways [67] were also used to compare the changes in the two treatments 
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(Supplementary Tables 2-4). These lists were separately analyzed for the Spearman 

correlation coefficients and each comparison indicated a strong similarity between the 

transcriptional responses of 3T3-L1 adipocytes treated with phenformin or t10c12 CLA 

(Table 1). The changes in expression of selected functionally relevant genes were 

checked by real time PCR and were in good agreement with the microarray results (Table 

2).  

         Our earlier report indicated that differentiated adipocytes responded more robustly 

than their non-differentiated fibroblast precursors to t10c12 CLA, as measured by ATF3 

mRNA, an indicator of the ISR [67]. The ISR is an early component of the response to 

t10c12 CLA and can occur in both cell types [67], unlike the TG accumulation that is 

specific for maturing or mature adipocytes. This differential response in differentiated 

adipocytes provided an additional method to compare the similarities in the responses 

caused by phenformin or t10c12 CLA. Additionally, phenformin is a highly polar, water-

soluble small molecule, while t10c12 CLA is a hydrophobic fatty acid, providing an 

additional test as to whether the hydrophobic or hydrophilic nature of the chemical 

affected the response of cells at different differentiated states. The competence of  a 

developmental series consisting of 3T3-L1 fibroblasts, differentiating adipocytes, and 

mature adipocytes to respond to phenformin or t10c12 CLA was measured by the 

induction of ATF3 mRNA as an indicator of the ISR. The abilities of phenformin or 

t10c12 CLA to induce ATF3 were similar and increased dramatically at about 3 d after 

differentiation, with the highest levels induced at 4 and 5 d after differentiation when 

young and maturing adipocytes were present (Fig. 6). The developmental competence to 
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respond to both chemicals appeared to be the same, strengthening the premise that both 

chemicals activated the same developmentally-regulated pathways.  

DISCUSSION 

          We examined the contributions the AMPK and inflammatory pathways, 

particularly PGs, make towards reducing TG levels in t10c12 CLA treated adipocytes. A 

key part of our approach was to activate these pathways independently of t10c12 CLA to 

assess their contributions away from the complex response initiated by t10c12 CLA [12, 

24, 67]. However, the interpretation of these “chemical mimicry” studies also relies on 

the fact that these pathways are activated by, and their inhibition attenuates the response 

to, t10c12 CLA. These chemical mimicry studies benefited from metformin’s ability to 

moderately activate AMPK without producing a strong inflammatory response in 

adipocytes [111], and phenformin’s ability to strongly activate AMPK and an 

inflammatory response as demonstrated here. TNF-α, a pro-inflammatory cytokine, was 

initially used to increase the inflammatory response in adipocytes treated with metformin. 

TNF-α negatively regulates AMPK activity in muscle cells [120], and the extent to which 

TNF-α relied on AMPK activation to mediate TG reductions in adipocytes was 

previously unclear [114, 121]. Our data indicated TNF-α’s major contribution to reducing 

TGs appeared to be through activated AMPK as TNF-α treated adipocytes had increased 

AMPK activity, and the majority of TNF-α’s ability to reduce TG levels was inhibited by 

compound C. TNF-α’s activation of AMPK confounded the interpretation of its 

contribution to the inflammatory response, but proved useful as one of several treatments 

we used to establish a correlation of AMPK activity levels with TG reductions.  
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          In addition to the level of activated AMPK, the amount of TG reduction also 

appeared to be influenced by the level of induction of COX2 mRNA, which supported a 

role for PGs in facilitating TG reductions. PG levels increase in t10c12 CLA treated 

human adipocytes [110], mice [116], and 3T3-L1 adipocytes as demonstrated here. Much 

of the mechanism of the increased production of PGs can be explained by the activation 

of PLA2 [110] to increase AA production, the substrate for COX2, and the induction of 

COX2 mRNA levels [67, 110]. Inhibitors of MEK or JNK interfered with t10c12 CLA’s 

ability to reduce TG levels, and reduced phosphorylation of PLA2, indicating the MEK 

and JNK pathways are involved in regulating PLA2. This is in agreement with earlier 

findings of the involvement of the MEK and JNK pathways in the t10c12 CLA response 

in human adipocytes [57, 110]. Other inhibitors that interfered with either AA or PG 

biosynthesis also inhibited the t10c12 CLA-mediated reduction in TGs in adipocytes. 

These results provided support for a functional role for PGs in lowering TG levels in 

t10c12 CLA treated adipocytes.  

          The functional role of the PGs was verified independently of t10c12 CLA by 

testing them in the presence of metformin. We found metformin combined with either 

PGH2 or AA was nearly as effective as t10c12 CLA at reducing TG levels. Importantly, 

PGH2 and AA did not significantly reduce TG levels when used alone, which suggested 

activated AMPK was necessary for them to enhance the TG reduction response. If we 

make the assumption that AMPK and PGs have similar biological activity in the t10c12 

CLA-treated and alternatively-treated adipocytes, then these two components account for 

most of the TG reduction that occurs. These results support our hypothesis that a 

moderate activation of AMPK and an inflammatory response are sufficient to reduce 
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triglycerides, where most of the requirement for an inflammatory component can be 

provided by increased levels of PGs.  

          The similar effectiveness of PGH2, the precursor to the prostanoid family, and AA, 

the precursor to the entire eicosanoid pathway, suggests prostanoids play the major role 

in the response, without ruling out minor contributions from the leukotriene component 

of the eicosanoid pathway. The combination of PGF2α and metformin was not quite as 

effective.  This could be due to the participation of other eicosanoids or prostanoids 

derived from AA or PGH2, respectively, or possibly a more rapid metabolic degradation 

of exogenous PGF2α [122]. PGE2 in combination with metformin resulted in increased 

TG levels. PGE2 can be a precursor to PGF2α, but this conversion might not be efficient 

with exogenously added PGE2. Consistent with these effects, PGF2α indirectly 

suppresses PPARγ activity [118], while PGE2 can also be a precursor to 15-keto-PGE2, 

an agonist of PPARγ [123], which would be expected to oppose the effects of t10c12 

CLA [109].  

           Phenformin was sufficient to cause a robust reduction in TG levels comparable to 

the reduction caused by t10c12 CLA, supporting our second hypothesis that strong 

activation of AMPK is sufficient for TG loss. This hypothesis is consistent with the first 

hypothesis that moderate AMPK activation and an inflammatory response are sufficient 

for robust TG loss, as stronger activation of AMPK is accompanied by a stronger 

inflammatory response as described here. We previously reported the transcriptional 

responses to metformin or t10c12 CLA were also very similar, but metformin caused a 

weaker inflammatory response than t10c12 CLA [111]. The inability of metformin to 

cause the robust reductions in TG levels that result from t10c12 CLA treatments, left 
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open the question of whether t10c12 CLA activated other critical pathways or whether its 

stronger activation of AMPK was sufficient to explain the response to t10c12 CLA. The 

results with phenformin, a more potent activator of AMPK, indicate highly activated 

AMPK is sufficient to cause a larger inflammatory response than metformin, although 

still less than that caused by t10c12 CLA, that in combination with its ability to strongly 

activate AMPK, can result in a robust TG reduction.  

         A detailed microarray analysis of the transcriptional response of the individual 

genes and pathways in 3T3-L1 cells and mice WAT treated with t10c12 CLA was done 

previously [12, 50, 67].  These analyses identified increases in uncoupling protein (UCP)-

1 and carnitine palmitoyltransferase-1 (CPT1) transcripts, suggesting increased fatty acid 

oxidation could be occurring as has been observed in CLA-fed mice mice [52].  Fatty 

acid oxidation would be expected to be further enhanced by AMPK’s phosphorylation of 

ACC, reducing the malonyl CoA pool, which typically inhibits CPT1 transport of fatty 

acids into mitochrondria [124]. Microarray analyses also identified a large increase in 

many inflammatory cytokines, and moderate reductions in key adipogenic transcription 

factors including PPARγ, CCAAT/Enhancer Binding Protein α (C/EBPα), and Sterol 

regulatory element binding protein (SREBP)-1c, suggesting reduced rates of lipid and 

cholesterol biosynthesis would result. Activated AMPK should further reduce 

biosynthesis by reducing the activity of key enzymes involved in the biosynthesis of fatty 

acids, cholesterol, glycogen, and proteins [124]. Our comparison of the transcriptome 

response of adipocytes treated with t10c12 CLA or phenformin found the changes in 

overall gene expression were very similar to those changes observed previously, 
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particularly induction of the ISR, reduction in mRNAs of genes encoding regulatory and 

enzymes in the lipid biosynthesis, and induction of inflammatory pathways.   

          Within this overall strong similarity of the transcriptional responses, the most 

apparent differences were t10c12 CLA’s stronger induction of the immediate early genes 

and of some of the inflammatory response genes. The immediate early genes are a group 

of genes that are predominantly transcription factors and other signaling molecules that 

are induced by a large variety of cellular stresses [125]. Their higher induction in t10c12 

CLA treated adipocytes indicates that t10c12 CLA either causes a more general cell 

stress than phenformin or alternatively, specifically activates this pathway by an 

unknown mechanism.  In the inflammatory response, the genes induced to higher levels 

in response to t10c12 CLA included COX2, suppressor of cytokine signaling 3 (SOCS3), 

cardiotrophin-like cytokine factor 1 (CLCF1) in the IL6 cytokine family, tumor necrosis 

factor receptor superfamily member 12a (TNFRSF12a), and oncostatin M receptor 

(OSMR). The highly induced COX2 plays an important functional role in reducing TG 

levels through producing PGs as demonstrated here. SOCS3 mediates local insulin 

resistance through inhibition of insulin receptor substrate (IRS)-1 and IRS2 [126], and 

can be induced by cardiotrophin [127], and therefore, possibly by CLCF1. TNFRSF12a 

and OSMR are receptors for members of the TNFα or IL6 family of cytokines.  Although 

the levels of TNF-α and IL6 mRNAs are low in 3T3-L1 adipocytes, other family 

members of these cytokines may signal through these receptors. Despite the overall 

strong similarity of the transcriptional responses to phenformin and t10c12 CLA, they 

were not identical, and this could be due to differences between phenformin’s ability to 
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indirectly activate AMPK by inhibition of complex 1 of the mitochondrial respiratory 

chain [128, 129], and the still unknown pathways used by t10c12 CLA to activate AMPK. 

         The role of PGs in vivo may be less important as COX2 mRNA levels increased 

only 2 to 3 fold in 24 h in WAT of mice fed t10c12 CLA [12, 67]. COX2 mRNA levels 

then decreased to about control levels on subsequent days [12]. This is considerably less 

than the 8-fold or 12- to100-fold observed in human [110] and mouse adipocytes [67], 

respectively.  PGE2 levels were previously found to be increased about 3.4 fold in WAT 

of mice fed t10c12 CLA for two weeks. In that study, inhibition of PG production with 

aspirin prevented this increase in PG levels without reducing the effect of t10c12 CLA on 

WAT [116]. This suggests the role of PG in WAT might be less important in vivo than in 

adipocyte cultures. The initial and subsequent inflammatory response to t10c12 CLA 

treatment is much more robust and diverse in WAT than in adipocytes in culture [67], in 

part due to the multiple types of cells in WAT, as well as the increased infiltration of 

macrophages [72]. The relative contributions of these diverse inflammatory pathways to 

reducing WAT in vivo are unclear and require additional investigation.  

         Despite the effectiveness of t10c12 CLA, phenformin, and even metformin to a 

lesser extent, in reducing TG levels in mouse adipocytes, and t10c12 CLA’s effectiveness 

in mice [24] and primary human adipocytes [60], these chemicals have limited abilities to 

reduce adiposity in humans. The limited effectiveness of t10c12 CLA in humans remains 

unexplained [108], despite t10c12 CLA’s preferential accumulation in adipose tissue 

[130]. Phenformin is no longer used to treat type 2 diabetes due to a higher frequency of 

lactic acidosis than occurs with metformin [131, 132], and it did not reduce weight in 

non-diabetic patients [133]. Metformin is important in the treatment of type 2 diabetes, 
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but it has a limited ability to either reduce weight or inhibit weight gain in patients 

without type 2 diabetes [134]. Our finding of a correlation of the amount of activated 

AMPK with the amount of TG reduction in 3T3-L1 adipocytes, supports a hypothesis 

that higher levels of activated AMPK are needed in adipocytes for effective reduction of 

adiposity in humans. It is unclear how to best accomplish this, although direct AMPK 

activators are promising [135], and our demonstration of the differential sensitivity of 

adipocytes to AMPK activators increases the potential for cell selectivity in this approach. 

We recently demonstrated metformin increases the ability of a moderate dose of t10c12 

CLA to reduce WAT in mice [111], suggesting combinations of chemicals that activate 

AMPK are another possible approach. Adding a compound that leads to higher 

prostanoid levels in adipocytes might also be possible, but the complex biological 

responses to members of the prostanoid pathway [122, 136] indicate considerable 

research will be required to determine if this is possible in mice, and whether it can be 

accomplished in a therapeutically acceptable manner.  
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Tables and figures 

 

Table 1. Spearman correlation coefficients for gene expression changes in treatments 

containing t10c12 CLA or phenformin  

______________________________________________________________________  

Correlation coefficient 

All significant genes (n = 541)                    0.83  

ISR genes (n = 63)                                       0.87  

Lipid metabolism (n = 69)                           0.95  

Inflammation (n = 49)                                  0.85  

______________________________________________________________________  

 

Each treatment contained three replicates. The number of genes being compared is 

represented by n. For the ‘all significant genes’ the gene list is derived from the union of 

genes in either treatment that show a four fold change in expression and a Benjamini-

Hochberg-adjusted P-value ≤.05 in at least one of the treatments being compared. The 

ISR, lipogenesis, and inflammation gene lists were derived from a list of genes 

previously found to be responsive to t10c12 CLA or tunicamycin in 3T3-L1 adipocytes. 

The Spearman correlation was used with associated P-values ≈ 0. 
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Table 2. Quantitative real time PCR verification of selected genes 
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Figure 1. TNFα increases the ability of metformin to reduce TG levels in adipocytes.  

A) 3T3-L1 adipocytes were untreated or treated with either 2 mmol/L metformin (Met), 

the indicated amounts of TNF-α, or combinations of these compounds, and TG levels 

were measured after 24 h. The effects of metformin and TNF-α were statistically 

significant, but their interaction was not. B) 3T3-L1 adipocytes were either untreated or 

treated with 0.6 nmol/L TNF-α, 10 µmol/L compound C (Comp.C), or the combination, 

and TG levels were measured after 24 h. Their interaction was significant. Each bar 

represents the mean + SEM (n=3) of three independent experiments.  
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Figure 2. Phenformin causes robust delipidation and highly activates AMPK.  

A) 3T3-L1 adipocytes were treated with the indicated concentrations of phenformin, and 

TG levels were measured after 24 h. For comparison, the TG levels for adipocytes treated 

with either 100 µmol/L LA or t10c12 CLA are also shown. B) 3T3-L1 adipocytes were 

treated with 100 µmol/L LA, 0.6 nmol/L TNF-α, 2 mmol/L metformin (Met), 100 

µmol/L phenformin (Phen), or 100 µmol/L t10c12 CLA for 12 h.  Cellular extracts were 

immunoblotted and the amounts of AMPK (α1 and α2), p-AMPK (α1 and α2), ACC 

(ACC1 and ACC2), and p-ACC (ACC1 and ACC2) were determined with specific 

antibodies. The immunoblots shown were representative of three independent 

experiments. The ratios of the phosphorylated form (p-AMPK or p-ACC) to the total 

amount of each respective protein (AMPK or ACC) were determined and are shown in 

the bar charts above the immunoblots. C) The same treatments were used to determine 

their effects on TG levels after 24 h. Both the p-AMPK/AMPK ratio from B and the fold 
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induction of Cox2 mRNA at 12 h, as measured by quantitative PCR, are shown below the 

graph. The mean + SEM (n=3) of three independent experiments is shown for each type 

of measurement.   
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Figure 3. Inhibitors of prostaglandin biosynthesis inhibit the reduction in TG levels 

and increase in PGF2α levels caused by t10c12 CLA.  

A) 3T3-L1 adipocytes were treated with 100 µmol/L LA (-) or 100 µmol/L t10c12 CLA 

(+), with or without either 50 µmol/L Ibuprofen (Ibu), 200 µmol/L Naproxen (Naprox), 

or 50 µmol/L CP-24879, and TG levels were measured after 24 h. The interactions of 

t10c12 CLA with Naproxen, or CP-24879 were significant, while the interaction with 

Ibuprofen approached significance (P ≤ .08). B) Media from treatments of A were 

analyzed for PGF2α concentrations. The interaction of t10c12 CLA with Ibuprofen or 

Naproxen was not significant, but was significant for CP-24879. Each bar represents the 

mean + SEM (n=6) of three independent experiments.  
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Figure 4. Prostaglandins affect metformin’s ability to reduce TG levels. 3T3-L1 

adipocytes were treated with or without 2 mmol/L metformin (Met), and with or without 

a prostaglandin (25 µmol/L PGE2, 25 µmol/L PGF2α, or 1 µmol/L PGH2) or arachidonic 

acid (150 µmol/L AA). TG levels were measured after 24 h. The interaction of metformin 

with PGE2, PGH2, or AA was significant, but was not significant for PGF2α. Each bar 

represents the mean + SEM (n=3) of three independent experiments.  
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Figure 5. T10c12 CLA induces PLA2 phosphorylation through the JNK and ERK 

pathways.  

A) PLA2 phosphorylation was measured at various times during exposure to t10c12 CLA 

in 3T3-L1 adipoctyes. The amount of phosphorylated PLA2 (p-PLA2) and total PLA2 

was determined by immunoblots with specific antibodies. The ratio of p-PLA2 to the 

total PLA2 was determined and is shown in the bar chart above the immunoblots. The 

effects of t10c12 CLA and time were significant, but their interaction was not significant. 

B) 3T3-L1 adipocytes were either not treated or pretreated for 1 h with 20 µmol/L of 

JNK inhibitor SP-600125 (SP) or 20 µmol/L of MEK inhibitor U0126.  Either 100 

µmol/L LA or 100 µmol/L t10c12 CLA was then added for 12 h. Cellular extracts from 

these treatments were analyzed by immunoblot as in A. The ratio of p-PLA2 to the total 

PLA2 was determined and is shown in the bar charts above the immunoblots. Both SP-

600125 and U0126 had a significant inhibitory interaction with t10c12 CLA. C) 

Adipocytes were treated as in B and TG levels were measured after 24 h. Both SP-

600125 and U0126 had a significant inhibitory interaction with t10c12 CLA. The 
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immunoblots shown in A and B are representative of three independent experiments, and 

each bar represents the mean + SEM (n=3) of three independent experiments.  
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Figure 6. The ability of phenformin or t10c12 CLA to induce the ISR is dependent 

on the stage of differentiation. 3T3-L1 cells at various developmental stages, either 

fibroblasts (two days before confluence; -2), differentiating adipocytes (from confluence 

(0) to five days post-confluence (days 1-5)), were treated with 100 µmol/L LA (-), 100 

µmol/L phenformin (Phen), or 100 µmol/L t10c12 CLA (CLA). RNA was isolated from 

the cells after 12 h of treatment and analyzed for ATF3 and GAPDH mRNA levels by 

reverse transcription and quantitative PCR. The relative amounts of ATF3 mRNA are 

shown as bar graphs.  Note the change in the scale of the log10 y-axis starting at day 2. 

The effects of the treatments and interactions were not significant for A. For B, the main 

effects of t10c12 CLA, phenformin, and day of differentiation and their interaction (CLA 

or Phen x d) were significant. Each bar represents the mean + SEM (n=4) of four 

independent experiments. 
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Chapter IV. Cross regulation of Sirtuin 1, AMPK, and PPARγ in conjugated linoleic 

acid treated adipocytes 
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Introduction 

           Conjugated linoleic acid (CLA) reduces adiposity in human and mouse adipocytes 

[16, 24, 60, 69], and the trans-10, cis-12 CLA (t10c12 CLA) isomer is capable of causing 

this response [137]. The rates of fatty acid oxidation and lipolysis increased in t10c12 

CLA-treated 3T3-L1 adipocytes [70], while t10c12 CLA reduced fatty acid oxidation 

[138], but increased lipolysis in human adipocytes [57]. Molecular responses to t10c12 

CLA include AMP-activated protein kinase (AMPK) [111], integrated stress response 

(ISR; [67, 110]) or unfolded protein response (UPR; [76]), mitogen-activated protein 

kinase (MAPK) cascades [57], a nuclear factor kappa-B (NF-κB)-mediated inflammatory 

response [12, 24, 50, 60, 67, 72] that includes increased prostaglandin biosynthesis in 

human adipocytes [110] and in mouse white adipose tissue [116],  and reduced amounts 

of peroxisome proliferator-activated receptor γ (PPARγ) protein [60]. Despite this 

progress, the understanding of the pathways involved in the initial perception of t10c12 

CLA, and the complex regulation of the subsequent responses, is incomplete.  

          AMPK is a central regulator of cellular energy levels that is activated by increases 

in the cellular AMP/ATP ratio, various cellular stresses [80, 81], or treatment of 

adipocytes [111] or mice [139] with t10c12 or mixed isomers of CLA. AMPK activation 

requires phosphorylation at Thr172 [135], and two of the proteins inhibited by 

phosphorylation by activated AMPK are acetyl CoA carboxylase (ACC), and fatty acid 

synthase, two key enzymes in fatty acid biosynthesis. Through this and other mechanisms 

[80, 81], activated AMPK decreases lipogenesis, increases fatty acid oxidation, and 

increases lipolysis in adipocytes in vitro and in vivo after an initial delay [140]. 

Phenformin and metformin are structurally related chemicals that can be used to activate 
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AMPK [80, 141]. Metformin increases the TG loss, while compound C, a potent inhibitor 

of AMPK, strongly attenuates the TG loss typically caused by t10c12 CLA in adipocytes 

[111].  

          PPARγ is a ligand-activated nuclear receptor that regulates lipogenesis and is a key 

regulatory point for controlling inflammation in adipocytes [115]. PPARγ forms a 

complex with nuclear receptor corepressors 1 or 2 (NCoR1 or 2) in the absence of its 

bound ligand. PPARγ transactivation activity is also reduced by phosphorylation at 

Ser112 of PPARγ2 by extracellular signal-regulated kinase (ERK), c-Jun N-terminal 

Kinase (JNK), or p38 MAPKs, and a phosphorylation-dependent sumoylation at K107 

[142]. In addition, a non-genomic role for PPARγ is emerging, as a number of PPARγ-

dependent processes are too rapid to involve transcriptional responses [143, 144]. The 

critical role of PPARγ in the response to t10c12 CLA is demonstrated by the attenuated 

responses that occur on addition of PPARγ agonists [109, 110].  

         SIRT1 is a NAD
+
-dependent histone/protein deacetylase that is involved in 

regulating cell energy metabolism, cell stress, and cell fate [145]. SIRT1 directly binds to 

NCoR1 and directly or indirectly to PPARγ to repress PPARγ transactivation activity, 

inhibit adipogenesis, and increase fat loss in adipocytes [146]. SIRT1 deacetylates liver 

kinase B1 (LKB1), facilitating the ability of LKB1 to phosphorylate AMPK, defining a 

SIRT1/LKB1/AMPK signaling pathway that provides one of the connections between 

SIRT1 and AMPK for regulating energy metabolism [147, 148]. SIRT1 also has an anti-

inflammatory effect due to its removal of acetyl groups from NF-κB, thereby inhibiting 

NF-κB transactivation activity [149]. SIRT1 activity can be influenced by exogenous 

chemicals. Sirtinol and nicotinamide inhibit SIRT1 and 2, and possibly other sirtuin 
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proteins [150]. Etomoxir inhibits fatty acid transport into mitochondria which prevents a 

rise in NAD
+
 levels that would facilitate SIRT1 activity [151], while SRT1720 

preferentially activates SIRT1 [152].  

        In this study, we analyzed the functional role of SIRT1 in the TG reduction that 

occurs in t10c12 CLA-treated 3T3-L1 adipocytes. Our objectives were to test whether 

SIRT1 was functionally required for robust triglyceride reduction, and whether SIRT1, 

AMPK, and PPARγ cross regulated each other in the response. These experiments were 

performed by using activators, inhibitors, or siRNA that affected these pathways and 

analyzing their effects on TG levels, fatty acid metabolism, and post-translational 

modifications or activity levels of SIRT1, AMPK, and PPARγ proteins. 

Experimental Procedures 

Reagents 

          Compound C was purchased from Calbiochem (San Diego, CA). Bovine serum 

albumin (BSA, > 99% fat free), dexamethasone, etomoxir, GW9662, insulin, isobutyl-1-

methylxanthine, metformin, nicotinamide, phenformin, and sirtinol were purchased from 

Sigma (St. Louis, MO). Ciglitazone, pioglitazone, rosiglitazone, SP600125, troglitazone, 

and U0126 were from Fisher (Pittsburgh, PA). SRT1720 was from Cayman Chemical 

(Ann Arbor, MI). T10c12 CLA (90%, #UC-61-A) was from Nu-Chek Prep, Inc (Elysian, 

MN). Antibodies to acetyl-NF-κB p65 (acetyl K310), p-PPARγ (phospho S112) and 

negative control siRNA were from Abcam (Austin, TX).  Protein A agarose beads, 

antibodies to β-actin, NCOR1, NF-κB p65, PPARγ, SIRT1, or anti-goat or anti-rabbit 

secondary antibodies coupled to horseradish peroxidase, and Sirt1 siRNA were purchased 
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from Santa Cruz Biotechnology (Santa Cruz, CA), while antibodies to p-AMPK, AMPK, 

p-ACC, and ACC were from Cell Signaling (Beverly, MA).   

3T3-L1 cell culture, differentiation, and chemicals  

          3T3-L1 fibroblasts [85] were cultured in Dulbecco's modified Eagle's medium 

(DMEM; Invitrogen, Carlsbad, CA) containing 10% bovine calf serum (Fisher, 

Pittsburgh, PA) and differentiated as described [111]. When present, chemicals were 

dissolved in DMSO, with the exception that 2 mmol/L metformin and 0.1 mmol/L 

phenformin were dissolved in water, and were added directly to the media at ≤ 0.2% of 

the final volume in the media at the following concentrations: 5 µmol/L ciglitazone, 10 

µmol/L compound C, 10 µmol/L etomoxir, 10 µmol/L GW9662, 10 µmol/L nicotinamide, 

5 µmol/L pioglitazone, 5 µmol/L rosiglitazone, 10 µmol/L sirtinol, 10 µmol/L SP600125, 

8 µmol/L SRT1720, 5 µmol/L troglitazone, or 10 µmol/L U0126, and were added 1 h 

before adding fatty acids. Fatty acids, either linoleic acid or trans-10, cis-12 CLA, were 

dissolved in 0.1 M KOH, diluted into fatty acid free (>99%) bovine serum albumin (BSA) 

in phosphate buffered saline at a 1:1 ratio (2 mmol/L BSA: 2 mmol/L fatty acid), pH 

adjusted to 7.4, and added to the cultures containing 5.5 to 6 d post-differentiated 3T3-L1 

adipocytes [111].  

Fatty acid biosynthesis, oxidation, and lipolysis assays 

           Fatty acid biosynthesis was measured in differentiated adipocytes after 24 h by 

removing the treatment media and incubating the adipocytes in Hanks’ Balanced Salt 

Solution (HBSS; Invitrogen, Carlsbad, CA) containing 37 KBq [
14

C]-acetate [specific 

activity 2.1 GBg/mmol, (PerkinElmer Radioisotopes, Waltham, MA) ] for 30 min 

(incorporation was linear for 60 min). Cells were washed in PBS three times, pelleted, 
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and then resuspended in 100 µl PBS and 0.1% SDS.  Lipids were extracted in 1 ml of 2:1 

chloroform:methanol [153] and measured by scintillation counting. Cells briefly exposed 

to 37 KBq [
14

C]-acetate, followed by immediate washing and extracted as above, were 

used to determine background levels, which were subtracted from sample values. Fatty 

acid oxidation was measured in differentiated adipocytes in 3.5 cm culture plates 12 h 

after starting treatments by adding 37 KBq [
14

C]-oleic acid [specific activity 1.7-2.2 

GBg/mmol, (PerkinElmer Radioisotopes, Waltham, MA) ] to the treatment media for 2 h 

and collecting [
14

C]-CO2 for 1 hr in collection jars as reported [138]. For lipolysis assays, 

the TG pool of differentiated adipocytes was labeled by adding 37 KBq [
14

C]-acetate 

[specific activity 1.5-2.2 GBg/mmol, (PerkinElmer Radioisotopes, Waltham, MA) ] to 

the media for 4 h, after which time the plates were washed four times with PBS, and 

specific experimental media treatments were initiated. Media (0.1 ml) was collected after 

24 h, lipids extracted in 1 ml of 2:1 chloroform:methanol [153] and measured by 

scintillation counting. The use of labeled [
14

C]-acetate and the 2:1 chloroform:methanol 

extraction step considerably reduced non-specific background to 50 DPM, as determined 

by using the above protocol on cells that had been briefly exposed to 37 KBq [
14

C]-

acetate in media.  

siRNA transfection 

         3T3-L1 adipocytes, 5 d post differentiation, were transfected by siQUEST 

transfection reagent (Mirus, Madison, WI), using final concentrations of 2 µl of siQUEST 

reagent per ml of media and siRNA at 40 nmol/L, 24 hours before adding fatty acids .  

Immunoblot analysis 
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           Nuclear and cytosolic extracts were isolated using a nuclear extract kit (Active 

Motif, Carlsbad, CA). Equal amounts of proteins were separated by SDS-PAGE, 

transferred to Immun-blot PVDF membrane (Bio-Rad Laboratories, Hercules, CA), 

probed with the indicated primary antibodies, and detected with secondary antibodies. 

Enhanced chemiluminescence (Pierce, Rockford, IL) was used for detection. Band 

intensities were determined from digital images from exposures in the linear range using 

software (Quantity One, Biorad, Hercules, CA). All western blot analyses were repeated 

at least three times. 

Immunoprecipitation 

           Immunoprecipitations were performed according to the procedure described [146]. 

In brief, the collected 3T3-L1 adipocytes were sonicated, lysates were centrifuged, and 

aliquots of the supernatants were immunoprecipitated overnight with specific antibody or 

control nonspecific IgG serum. Protein A agarose beads were used to bind the specific or 

non-specific antibody complexes, the protein A beads containing bound proteins were 

washed five times, and the bound proteins were eluted in SDS sample buffer for 

immunoblot analysis. 

Quantification of TG content 

           Cell isolation and TG measurements were performed according to the 

manufacturer’ instructions using TG reagent (T2449; Sigma, St. Louis, MO) and free 

glycerol reagent (F6428; Sigma, St. Louis, MO). TG data are expressed as nmol of TG 

per mg of protein.    

Measurement of MCP-1 and COX2 mRNA 
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          Total RNA was extracted by TRIzol (Invitrogen) following the manufacturer’s 

protocol. Total RNA (2 µg) was used for cDNA synthesis. Real-time PCR was performed 

by a Bio-Rad iCycler using iQ SYBR Green Supermix reagent (Bio-Rad, Hercules, CA) 

using PCR primers for MCP-1 or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

[111], and COX2 [111]. MCP-1 and COX2 mRNA levels were normalized to GAPDH, 

which showed no significant variation in microarray analyses between linoleic acid and 

t10c12 CLA treatments. Experiments were repeated three times, and each sample was 

analyzed using one RNA control and two replicates of each cDNA pool, and the relative 

amounts of MCP-1, COX2 and GAPDH were calculated using the comparative CT 

method [88], according to the manufacturer’s software (Bio-Rad, Hercules, CA). Cycle 

numbers were used to calculate gene expression levels in the log linear amplification 

range.  

Statistical Analysis 

          One or two-way ANOVA was used to analyze the data. Pairwise comparisons were 

calculated using Tukey’s test and were considered significant for p≤0.05. All analyses 

were performed using SAS software (SAS, Cary, NC). 

 

Results  

 

         We first determined whether increased SIRT1 activity would lower TG levels in 

t10c12 CLA treated adipocytes. To specifically activate SIRT1, we used SRT1720, as 

this chemical is known to preferentially activate SIRT1 at 8 µM [152]. SRT1720, in 

combination with 50 µM t10c12 CLA, significantly lowered TG to 55% of the linoleic 

acid (LA) control levels, while 50 µM t10c12 CLA alone only lowered TG to 70% (Fig. 

1A; In our experiments, we used 50 µM t10c12 CLA if assaying chemicals that increased 
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TG loss, but otherwise used 100 µM t10c12 CLA in order to obtain large changes in TG 

levels or in the molecular responses of interest). In contrast, addition of 100 µM t10c12 

CLA in combination with a SIRT inhibitor, either sirtinol or nicotinamide, significantly 

increased TG levels to 67% and 68% of the LA control, respectively, relative to the 50% 

TG level caused by 100 µM t10c12 CLA treatment (Fig.1. B). Etomoxir, which inhibits 

SIRT activity indirectly by reducing NAD
+
 levels via inhibition of mitochondrial fatty 

acid transport and oxidation [151], was used in combination with t10c12 CLA, and 

significantly increased TG levels  to 72% of the LA control, relative to the 44% TG level 

in the t10c12 CLA treatment (Fig. 1C). These data indicated SIRT1 activity might be 

participating in the TG loss response caused by t10c12 CLA treatment.  

         SiRNA was used to reduce SIRT1 expression to confirm the functional involvement 

of SIRT1 in the response to t10c12 CLA. As a baseline for this comparison, we 

determined that treatment with t10c12 CLA did not change SIRT1 or β-actin protein 

levels (Fig. 1D). SiRNA treatment reduced SIRT1 protein levels by 53% but not affect β-

actin levels, while a control siRNA did not change SIRT1 or β-actin amounts (Fig. 1E). 

In the presence of LA, the siRNA SIRT1 treatment had TG levels that were not 

significantly different than those in the control siRNA treatment (Fig. 1F).  In contrast, in 

the presence of t10c12 CLA, the siRNA SIRT1 treatment had TG levels that were 72% of 

the LA control, while the control siRNA treatment had TG levels of 47% of the LA 

control (Fig. 1F). Taken together with the above inhibitor studies, these results suggested 

that inhibition of SIRT1 significantly interfered with the TG loss caused by t10c12 CLA.  

          The involvement of SIRT1 in t10c12 CLA-mediated changes in the rates of fatty 

acid biosynthesis, oxidation, and lipolysis as well as in the induction of two key 



 

  

78

inflammatory mRNAs was then measured to gain insights into how SIRT1 affected these 

specific pathways. Adipocytes treated with t10c12 CLA had a 77% reduction in their rate 

of lipogenesis (Fig. 2A). The combination of t10c12 CLA and sirtinol significantly 

changed this to a 47% reduction in the rate of lipogenesis (Fig. 2A). This result indicated 

SIRT1 activity was involved in inhibiting the rate of fatty acid biosynthesis. Adipocytes 

treated with t10c12 CLA exported 61% more radioactively-labeled lipids than LA treated 

cells (Fig. 2B), but this t10c12 CLA-mediated lipolysis was not significantly affected by 

sirtinol (Fig. 2B). The rate of fatty acid oxidation was increased by 272% in t10c12 CLA-

treated adipocytes, but sirtinol did not significantly affect t10c12 CLA’s ability to 

increase this rate (Fig. 2C). The inflammatory MCP1 and COX2 mRNAs were highly 

induced by t10c12 CLA treatment (Fig. 2D-E). The SIRT1 activator SRT1720, in 

combination with t10c12 CLA, modestly attenuated the induction of MCP1 to 79% of 

t10c12 CLA levels, but did not significantly affect COX2 mRNA levels (Fig. 2D-E).  In 

contrast, the SIRT1 inhibitors, sirtinol or nicotinamide, when used in combination with 

t10c12 CLA, attenuated the induction of the mRNA of MCP1, to 65% or 58% of the 

t10c12 CLA control levels, respectively (Fig. 2D). Similarly, sirtinol or nicotinamide, 

when used in combination with t10c12 CLA, attenuated the induction of the mRNA of 

COX2, to 54% or 65% of the t10c12 CLA control levels, respectively (Fig. 2E). Taken 

together, these results indicated SIRT1 was involved with the inhibition of the rate of 

fatty acid biosynthesis and the increased induction of the inflammatory MCP1 and COX2 

mRNAs, but did not significantly affect lipolysis or fatty acid oxidation.   

          We next determined whether SIRT1 affected AMPK regulation during the response 

to t10c12 CLA. AMPK activity was measured by the amount of phosphorylation at 
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AMPK Thr172 (p-AMPK) and by the amount of phosphorylated ACC (p-ACC), one of 

AMPK’s key substrates in vivo. SIRT1 activator SRT1720 or SIRT inhibitors, with or 

without t10c12 CLA, had no significant effect on the amount of p-AMPK or p-ACC 

produced after 2 h of treatment (Fig. 3A).  However, when used in combination with 

t10c12 CLA for 12 h, SRT1720 significantly increased p-AMPK or p-ACC levels by 

37% or 43%, respectively, relative to the amounts present when treated by t10c12 CLA 

(Fig. 3B). Conversely, when used in combination with t10c12 CLA for 12 h, sirtinol or 

nicotinamide significantly attenuated p-AMPK levels to 66% or 83%, respectively, and 

p-ACC levels to 76% or 75%, respectively, relative to the amounts of these proteins in 

adipocytes treated with t10c12 CLA (Fig. 3B). Similarly, when used in combination with 

t10c12 CLA, siRNA targeting of SIRT1 significantly reduced p-AMPK to 54% and p-

ACC to 53% of their respective levels in the control treatment (Fig. 3C). Collectively, 

these results indicated SIRT1 increased AMPK activity levels at 12 h, but not within the 

first 2 h, after exposure to t10c12 CLA.  

         The involvement of PPARγ in the response to t10c12 CLA was then tested through 

addition of a PPARγ antagonist or agonist. The PPARγ antagonist GW9662 significantly 

reduced TG levels to 41%, relative to the LA control level, when used in combination 

with 50 µM t10c12 CLA, while 50 µM t10c12 CLA alone reduced TG levels to 70% (Fig. 

4A). Prior to examining the effects of a PPARγ agonist on the response to t10c12 CLA, 

we first determined the most potent PPARγ agonist amongst a set of four 

thiazolidinedione agonists, as measured by their ability to increase the amount of TG 

produced in differentiating adipocytes. Troglitazone was the most potent of the four 

agonists tested (Fig. 4B). Troglitazone significantly attenuated t10c12 CLA ‘s ability to 
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reduce TG levels, as the combined treatment was not significantly different from the LA 

control (Fig. 4C). These results indicated that in adipocytes treated with t10c12 CLA, a 

PPARγ antagonist facilitates TG loss, while a PPARγ agonist interferes with TG loss.  

         The cross regulation between PPARγ and AMPK was next determined. When used 

in combination with t10c12 CLA for 12 h, PPARγ antagonist GW9662 increased AMPK 

and ACC phosphorylation levels by 33% and 34%, respectively (Fig. 4D). Conversely, 

when used in combination with t10c12 CLA for 12 h, troglitazone reduced AMPK and 

ACC phosphorylation levels by 45% and 39%, respectively (Fig. 4D). However, when 

used in combination with t10c12 CLA for 2 h there was no significant effect of these 

chemicals on AMPK or ACC phosphorylation levels (Fig. 4D). Therefore, although 

AMPK activation occurred at 2 h, cross regulation by PPARγ was not apparent at 2 h. 

Phosphorylation of PPARγ increased by 140% at 12 h, but not by 2 h, after t10c12 CLA 

treatment (Fig. 4E-F). When compound C was used in combination with t10c12 CLA, the 

amount of phosphorylated PPARγ was reduced by 41%, relative to the levels when 

treated by t10c12 CLA. This suggests AMPK activity was directly or indirectly involved 

in the phosphorylation of PPARγ (Fig. 4F). These results indicated AMPK and PPARγ 

cross regulated each other in the response to t10c12 CLA.  

         We next determined whether this cross regulation between AMPK and PPARγ 

occurred in the absence of t10c12 CLA. This was done by using two other chemicals to 

activate AMPK, alone or in combination with a PPARγ agonist or antagonist. Phenformin, 

a strong AMPK activator, reduced TG levels to 60% of those present in the untreated 

control adipocytes (Fig. 5A). When phenformin was used in combination with 

troglitazone, the amount of TG significantly increased to 86% of the amount in the 
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untreated control (Fig. 5A). Metformin, a weaker AMPK activator, only reduced TG 

levels to 87% of the amount present in the untreated control (Fig. 5B). The TG level was 

significantly reduced to 66% of the amount present in the untreated control when 

metformin was used in combination with the PPARγ antagonist GW9662 (Fig. 5B). 

These results demonstrated that the antagonistic cross regulation between AMPK and 

PPARγ that was observed in the response to t10c12 CLA also occurred in phenformin or 

metformin treated adipocytes in the absence of t10c12 CLA.    

        The regulation of SIRT1 activity by AMPK and PPARγ was then assessed. The 

deacetylation of the p65 subunit of NF-κB was used as a measure of SIRT1 activity in 

adipocytes [149]. The acetylation level of the p65 subunit of NF-κB was not significantly 

changed at 2 h (Fig. 6A), but was significantly reduced to 38% of control levels in 

adipocytes treated with t10c12 CLA for 12 h, suggesting SIRT1 deacetylation activity 

was increased. When t10c12 CLA was used in combination with sirtinol or nicotinamide, 

the amount of the acetylated p65 subunit of NF-κB increased to 84% or 60% of LA 

control levels, respectively (Fig. 6 B). These results supported the premise that SIRT1 

activity was involved in the deacetylation of the p65 subunit of NF-κB. The amount of 

the acetylated p65 subunit of NF-κB increased in a treatment using t10c12 CLA in 

combination with compound C to 80% of the LA control, relative to the 48% acetylation 

level produced by t10c12 CLA (Fig. 6C). This result indicated AMPK was directly or 

indirectly involved in regulating SIRT1 activity in the response to t10c12 CLA. 

Troglitazone was used to determine whether PPARγ affected SIRT1 activity levels. 

When used in combination with t10c12 CLA for 12 h, troglitazone-treated adipocytes 

significantly increased the amount of acetylated p65 subunit of NF-κB to 85% of LA 
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control levels (Fig. 6D). Conversely, adipocytes treated with t10c12 CLA and GW9662 

significantly reduced the amounts of acetylated p65 subunit of NF-κB to 40% of LA 

control levels. Collectively, these results indicated that AMPK and PPARγ positively and 

negatively regulated SIRT1 activity, respectively.  

         A possible mechanism for cross regulation of SIRT1 and PPARγ is through a direct 

protein interaction between SIRT1 and PPARγ [146]. Using a co-immunoprecipitation 

method, we observed that t10c12 CLA treatment resulted in a 138% increase in the 

amount of a SIRT1/PPARγ protein complex relative to the amount of this complex in the 

LA control, despite a 46% reduction in PPARγ protein levels in t10c12 CLA treated cells 

(Fig. 7). Again using a co-immunoprecipitation method, we observed that the amount of a 

protein complex containing SIRT1 and NCoR1 increased by 131% in the presence of 

t10c12 CLA (Fig. 7). These results demonstrated that there was increased binding of 

SIRT1 to PPARγ and NCoR1 in t10c12 CLA treated adipocytes.  

Discussion  

          Here we demonstrated that SIRT1 activity was involved in the TG loss response 

that occurred in t10c12 CLA-treated adipocytes. Inhibition of SIRT1 activity or 

abundance with sirtinol, nicotinamide, etomoxir [151], or siRNA attenuated the TG loss, 

while SIRT1 activation by SRT1720 increased the TG loss caused by t10c12 CLA. The 

100% difference in TG levels after 24 h of treatment with LA, relative to TG levels in 

t10c12 CLA-treated adipocytes, was caused by a combination of reduced fatty acid 

biosynthesis, increased lipolysis, and increased fatty acid oxidation in the t10c12 CLA-

treated adipocytes. The reduction in the rate of fatty acid synthesis was consistent with 

AMPK’s increased phosphorylation of ACC, thereby inhibiting its biosynthetic activity. 
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Fatty acid synthesis was also likely reduced by AMPK’s ability to phosphorylate and 

inhibit fatty acid synthase [80, 81]. Our finding that t10c12 CLA-treated adipocytes have 

increased lipolysis and fatty acid oxidation is consistent with a report that activated 

AMPK increases lipolysis after an initial delay [140], and that 3T3-L1 adipocytes treated 

with t10c12 CLA have increased rates of lipolysis and fatty acid oxidation [70]. Our 

studies indicated that SIRT1 activity participated in inhibiting fatty acid biosynthesis, but 

did not significantly affect lipolysis or fatty acid oxidation in the response to t10c12 CLA. 

In light of the cross regulation in the SIRT1/AMPK/ PPARγ axis, a possible explanation 

is that these pathways were coordinately regulated, but each pathway might have a 

different threshold for responding to this regulation.  For example, an increase in lipolysis 

or fatty acid oxidation might require less activation of AMPK, and therefore have less 

dependence on SIRT1 activity, than the inhibition of fatty acid biosynthesis.  

          Our molecular results indicated the response to t10c12 CLA included cross 

regulation between SIRT1, AMPK and PPARγ, as each protein affected the behavior of 

the others. Inhibitors or an activator of SIRT1 decreased or increased AMPK activity in 

t10c12 CLA-treated adipocytes, respectively. This is consistent with a 

SIRT1/LKB1/AMPK axis by which SIRT1 can affect AMPK activity [147, 148]. 

Treatment with t10c12 CLA caused more SIRT1 to bind to PPARγ and NCoRI, which 

reduces PPARγ activity [146], and which is consistent with the reduced transcription of 

lipogenic genes observed in t10c12 CLA treated adipocytes [12, 50, 67]. Inhibition of 

AMPK reduced SIRT1 activity as measured by the deacetylation of NF-κB, possibly by a 

mechanism in which AMPK-mediated changes in fatty acid oxidation affect the 

NAD
+
/NADH ratio that affects SIRT1 activity [151]. AMPK was directly or indirectly 
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responsible for the increased phosphorylated at Ser112 of PPARγ in t10c12 CLA treated 

adipocytes [109], as this effect was attenuated by compound C. Phosphorylation of 

PPARγ at Ser112 facilitates its SUMOylation at K107, and thereby decreasing its 

transactivation activity [142]. Agonists or antagonists of PPARγ caused reductions or 

increases in the activity of AMPK and SIRT1, respectively, demonstrating the repressive 

effect PPARγ has on the activities of these proteins. Importantly, the total amounts of 

AMPK and SIRT1 proteins did not change in the response to t10c12 CLA, suggesting 

that PPARγ did not alter the amounts of these proteins through a transcriptional 

mechanism. As such, our results support an emerging role for PPARγ in regulating non-

genomic processes [143, 144].  

          An inflammatory response has been demonstrated to be an important component of 

the TG reduction in t10c12 CLA treated adipocytes [60, 111]. Deacetylation of NF-κB by 

SIRT1 is expected to reduce NF-κB’s transcriptional induction of pro-inflammatory 

genes [154]. In possible support of this, resveratrol, a SIRT1 activator, inhibits the 

inflammatory and cellular stress response caused by t10c12 CLA treatment [110].  

However, resveratrol is also an agonist of PPARγ, which opposes the molecular 

responses to t10c12 CLA [109], making it more difficult to interpret the effects of 

resveratrol. We found that the functional consequence of inhibiting SIRT1 activity was 

an attenuation of the inflammatory response in t10c12 CLA-treated adipocytes. This 

result is consistent with SIRT1’s ability to activate AMPK, possibly via SIRT1’s ability 

to increase the activity of LKB1, an upstream kinase that phosphorylates AMPK [147, 

148]. AMPK is critical for the t10c12 CLA-mediated inflammatory response in 
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adipocytes as demonstrated by the reduction in this response when AMPK is inhibited by 

compound C [111].   

          Our experiments using AMPK activators other than t10c12 CLA to manipulate 

these pathways gave results consistent with those obtained with t10c12 CLA. Phenformin, 

a potent AMPK activator, caused a TG loss similar to that caused by t10c12 CLA 

treatment. Troglitazone, the most potent PPARγ agonist in our 3T3-L1 adipocyte system, 

attenuated the TG loss caused by phenformin. Troglitazone reduced the amount of 

phosphorylated AMPK and ACC caused by t10c12 CLA treatment, providing a likely 

explanation for how it inhibits the TG loss caused by phenformin. A PPARγ antagonist 

increased the amount of TG loss when used with metformin, a moderate AMPK activator. 

This latter finding supports a hypothesis that both AMPK activation [111] and reduced 

PPARγ activity [60] are important for reducing TG levels in the response to t10c12 CLA. 

We interpret these results to mean that the ability of these proteins to cross regulate each 

other allows this endpoint to be achieved by either strong activation of AMPK (by t10c12 

CLA or phenformin) or by a combination of a moderate AMPK activator (metformin) 

and a PPARγ antagonist.  

          Both AMPK and SIRT1 play major roles in regulating cellular energy homeostasis 

and in response to caloric restriction [155, 156]. The involvement of AMPK and SIRT1 

in the molecular response to t10c12 CLA is consistent with an overall similarity to the 

response to cellular energy restriction. This is supported by the strong similarity of the 

whole genome transcriptional response of adipocytes treated with t10c12 CLA to the 

response to metformin [111], which affects the cellular AMP/ATP ratio [128, 129], and 

by the ability of phenformin to cause TG losses similar to those caused by t10c12 CLA. 
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Our results support a non-genomic role for PPARγ [143, 144] in its cross regulation of 

SIRT1 and AMPK activities. This cross regulation occurred in a later stage of the 

response after the initial activation of AMPK, consistent with the suggestion that AMPK  

activation is a critical early event [111]. The signaling pathways used by t10c12 CLA to 

activate AMPK remain unknown. 
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Figures 

 

 
 

Figure 1.  SIRT activity affects TG levels in t10c12 CLA treated 3T3-L1 adipocytes. a-c 

Triglyceride (TG) levels were measured in differentiated adipocytes after incubation with 

LA (-) or t10c12 CLA (+), with or without SRT1720 (SRT), sirtinol (SOL), nicotinamide 

(NAM), or etomoxir (ETO) for 24 h. d Western blot analysis of the amount of SIRT1 and 

β-actin proteins at 2 or 12 h, or in e, after treatment with siRNA against SIRT1 or with 

control siRNA after 12 h. f Triglyceride (TG) amounts 24 h after treatments as in e. Each 

bar in panels a-f represents the mean + SEM (n=3), and is representative of three 

independent experiments (a-c, and f) or is the mean of three independent experiments (d-

e). Means not sharing a common letter differ, P ≤  0.05.  
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Figure 2. SIRT1 affects fatty acid metabolism and inflammatory mRNA levels. a-c The 

effects of 100 µmol/L of t10c12 CLA, with or without sirtinol (SOL), on fatty acid 

biosynthesis, lipolysis, or fatty acid oxidation were measured by incorporation of  [1-

14
C]-acetate (a) or release of labeled lipids (b) or CO2 (c) derived from  [1-

14
C]-acetate or 

[1-
14

C]-oleate, respectively (disintegrations per minute: dpm). d-e RNA levels were 

analyzed for MCP-1 and COX2 relative to GAPDH by reverse transcription and 

quantitative PCR. The relative amounts of MCP-1 and COX2 mRNA are shown as bar 

graphs.  Each bar in panels a-e represents the mean + SEM (n=3 for a-b or n=2 for c-e), 

and is representative of three independent experiments.  Means not sharing a common 

letter differ, P ≤  0.05. 
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Figure 3.  SIRT1 activity affects ACC and AMPK phosphorylation levels after t10c12 

CLA treatment. Differentiated 3T3-L1 adipocytes were incubated with 100 µmol/L LA (-) 

or t10c12 CLA (+): a with or without SRT1720 (SRT), sirtinol (SOL), or nicotinamide 

(NAM) for 2 or b 12 h; or c with siRNA to SIRT1 (siSIRT1) or control siRNA (siCON). 

Representative western blots indicate the proteins detected with antibodies to p-ACC (p-

Ser 79), or total ACC, p-AMPK (p-Thr 172), or total AMPK. Each bar represents the 

mean + SEM of the ratio of the phosphorylated to total form of each protein 

(phospho/total), n=3 independent experiments. Means for p-AMPK/AMPK (a-e) or p-

ACC/ACC (u-x) not sharing a common letter differ, P ≤  0.05.  
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Figure 4.  PPARγ antagonists and agonists affect TG levels and modulate p-AMPK 

activity levels in t10c12 CLA treated 3T3-L1 adipocytes. a Differentiated adipocytes 

were incubated with 50 µmol/L LA (-) or t10c12 CLA (+) with or without GW9662 

(9662) for 24 h and TG levels were measured.  b Differentiating adipocytes were treated 

with either control media (0), troglitazone (Tro), ciglitazone (C), rosiglitazone (R), or 
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pioglitazone (P) to determine which PPARγ agonist was most effective for increasing TG 

levels. c Differentiated 3T3-L1 adipocytes were incubated with 100 µmol/L LA or t10c12 

CLA, with or without troglitazone (Tro), and TG levels were measured after 24 h. d 

Adipocytes were treated as in a or c for 2 or 12 h using 100 µmol/L LA (-) or t10c12 

CLA (+), and representative western blots indicate the proteins detected with antibodies 

to p-ACC (p-Ser 79), total ACC. p-AMPK (p-Thr 172), or total AMPK. The ratio of the 

phosphorylated to total form of each protein (phospho/total) is shown in the bar graphs. 

e-f The amount of phosphorylated or total PPARγ was measured after 2 or 12 h of 

treatment with 100 µmol/L LA (-) or t10c12 CLA (+), and with or without compound C 

(Comp.C) at 12 h. The ratio of the amount of phosphorylated to total PPARγ is shown in 

the bar graphs. Each bar in panels a-f represents the mean + SEM (n=3), and is 

representative of three independent experiments (a-c) or is the mean of three independent 

experiments (d-f). Means within each data type (a-e or u-x) not sharing a common letter 

differ, P ≤  0.05. 
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Figure 5.  PPARγ agonists or antagonists affect the TG loss caused by AMPK activators.  

a Differentiated 3T3-L1 adipocytes were incubated with or without 0.1 mmol/L 

phenformin (Phen), with or without troglitazone (Tro), and TG levels were measured 

after 24 h. b TG levels were measured in differentiated 3T3-L1 adipocytes in media 

lacking or containing 2 mmol/L metformin (Met), with or without GW9662 (9662) for 24 

h. Each bar represents the mean + SEM (n=3), and is representative of three independent 

experiments. Means not sharing a common letter differ, P ≤  0.05.  
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Figure 6.  SIRT1, AMPK and PPARγ affect the t10c12 CLA-dependent decrease in the 

amount of acetylated NF-κB. The amount of acetylation on the p65 subunit of NF-κB, or 

the total amount of p65, was enriched by immunoprecipitation of p65, and detected by 

immunoblot analysis of the immunoprecipitated proteins with antibodies to detect either 

acetylated p65 or total p65. The ratio of the acetylated to total p65 is shown (Acetyl-

p65/p65). a-c Differentiated 3T3-L1 adipocytes were incubated with 100 µmol/L LA (-) 

or t10c12 CLA (+) a for 2 h, or b for 12 h, with or without sirtinol (SOL) or nicotinamide 

(NAM), or c with or without compound C (Comp.C).  d The effects of troglitazone (Tro) 

or GW9662 (9662), in combination with LA (-) or t10c12 CLA (+), on the acetylation of 

the p65 subunit of NF-κB was measured. Each bar in panels a-d represents the mean + 

SEM (n=3) of three independent experiments.  Means not sharing a common letter differ, 

P ≤  0.05. 
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Figure 7.  Treatment with t10c12 CLA increases the interaction of SIRT1 with PPARγ or 

NCoR1. Differentiated 3T3-L1 adipocytes were incubated with 100 µmol/L LA (-) or 

t10c12 CLA (+) for 12 h, and a portion of the extracts were immunoprecipitated with 

antibody to SIRT1. Representative western blots indicate the proteins detected from the 

crude extracts (5% input) or when the immunoprecipitated (IP) proteins were probed with 

antibodies to SIRT1, PPARγ, or NCoR1. Each bar represents the mean + SEM (n=3) of 

three independent experiments. Means within each data type not sharing a common letter 

differ, P ≤  0.05. 
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Chapter V. PPARδ and AMPK antagonize PPARγ to cause triglyceride loss in 

conjugated linoleic acid treated adipocytes 
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Introduction 

 

          Conjugated linoleic acid (CLA) reduces adiposity in mouse and human adipocytes, 

and trans-10, cis-12 CLA (t10c12 CLA) is an active isomer capable of causing this 

response [16, 24, 60, 69, 137]. Treatment of 3T3-L1 adipocytes with t10c12 CLA 

increases the rates of lipolysis and fatty acid oxidation [70], and reduces the rate of fatty 

acid biosynthesis [157]. The molecular responses to t10c12 CLA  are highly dependent 

on the activity status of AMP-activated protein kinase (AMPK) [158], peroxisome 

proliferator-activated receptor (PPAR)γ protein [60], and an inflammatory response [60, 

158].  

          AMPK is a central regulator of cellular energy levels that is activated by increases 

in the cellular AMP/ATP ratio, various cellular stresses [80, 81], AICAR 

(aminoimidazole carboxamide ribonucleotide), or treatment of adipocytes [158] or mice 

[139] with t10c12 CLA or mixed isomers of CLA. Activated AMPK is required for the 

TG reduction that occurs in t10c12 CLA treated adipocytes [158], and AMPK activation 

requires phosphorylation at Thr172 [135]. Two of the proteins phosphorylated and 

thereby inhibited by activated AMPK are acetyl CoA carboxylase and fatty acid synthase, 

two rate-limiting lipid biosynthetic enzymes. Through this and other mechanisms [80, 81], 

activated AMPK decreases lipogenesis, increases fatty acid oxidation, and increases 

lipolysis in adipocytes in vitro [157] and in vivo after an initial delay [140].  

          PPARγ and PPARδ are nuclear receptor transcription factors that can be activated 

by fatty acids and other ligands in adipocytes. PPARγ regulates lipogenesis and is a key 

regulatory point for controlling inflammation in adipocytes [115]. PPARδ is a 

ubiquitously expressed and regulates fatty acid oxidation, and mitochondrial abundance, 
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primarily in muscles, but a role in WAT is emerging [159-163]. PPARγ plays a critical 

role in the response to t10c12 CLA, as the response is attenuated on addition of PPARγ 

agonists [109, 110, 157], and enhanced TG loss occurs on addition of a PPARγ 

antagonist [157, 164]. PPARγ has increased phosphorylation [109] and reduced protein 

levels in t10c12 CLA treated adipocytes [60, 158]. Reduced levels of PPARδ expression 

caused increased TG accumulation in 3T3-L1 adipocytes, indicating a role for PPARδ in 

opposing lipid accumulation [165]. Retinoid X receptor (RXR) is a heterodimeric partner 

for many nuclear receptors, including PPARγ and PPARδ. Competition between nuclear 

receptors for limiting amounts of RXR is observed in some systems [166]. PPARδ also 

physically interacts with AMPK, and constitutively activated PPARδ results in activated 

AMPK in muscle cells, indicating possible cross regulation occurs between these proteins 

[163]. These aspects of PPARδ biology suggested it could be involved in the TG loss 

response in t10c12 CLA treated adipocytes.  

          Here we used chemical activators, inhibitors, or siRNA to affect PPARδ, and 

measured the effects of these treatments on TG levels, fatty acid biosynthesis, lipolysis, 

and oxidation, as well as on protein interactions in 3T3-L1 adipocytes, and on the ability 

of t10c12 CLA and GW0742 to reduce body and adipose tissue mass in mice. Our 

objectives were to test whether PPARδ was functionally involved in the TG reduction 

response to t10c12 CLA, and whether this response affected the protein interactions of 

PPARγ and PPARδ with RXR, and of PPARδ with AMPK.  
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Methods 

Reagents 

         Bovine serum albumin (BSA, > 99% fat free), dexamethasone, GW0742, GSK0660, 

insulin, and isobutyl-1-methylxanthine, were purchased from Sigma (St. Louis, MO). 

T10c12 CLA (90%, #UC-61-A) was from Nu-Chek Prep, Inc (Elysian, MN). Negative 

control siRNA was from Abcam (Austin, TX).  Protein A agarose beads, antibodies to β-

actin, PPARδ, and PPARγ, anti-rabbit and anti-goat secondary antibodies coupled to 

horseradish peroxidase, and siRNA were purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA), while antibodies to p-AMPK, AMPK were from Cell Signaling 

(Beverly, MA).   

Animals 

         C57Bl/6J male mice were housed individually at 22 °C with 12 h light and 12 h 

dark. All mice were fed AIN-93G diet ([84]; Dyets, Inc., Bethlehem, PA) for 5 d before 

beginning the treatments. Mice were blocked by initial body weight and assigned to one 

of the four treatment diets.  Specific diets contained either 70 g/kg soy oil without t10c12 

CLA or 68 g/kg soy oil with 2 g/kg t10c12 CLA. GW0742, when present, was 

incorporated in the diet at 7 mg/kg. Diet was changed twice each week, and mice were 

allowed to eat ad libitum. After 14 d of these treatments, body weight was measured and 

mice were killed in the fed state between 09:00 and 13:00 h by carbon dioxide asphyxia.  

Retroperitoneal and epididymal fat pads were harvested and weighed. All procedures 

were approved by the University of Nebraska Institutional Animal Care and Use 

Committee. 

3T3-L1 cell culture, differentiation, and chemicals  



 

  

99

          3T3-L1 fibroblasts [85] were cultured in Dulbecco's modified Eagle's medium 

(DMEM; Invitrogen, Carlsbad, CA) containing 10% bovine calf serum (Fisher, 

Pittsburgh, PA) and differentiated as described [158]. When present, chemicals were 

dissolved in DMSO, and were added directly to the media at ≤ 0.2% of the final volume 

in the media at the following concentrations: 9 µmol/L GW0742, or 5 µmol/L GSK0660, 

and were added 1 h before adding fatty acids. Fatty acids, either linoleic acid or t10c12 

CLA, were dissolved in 0.1 M KOH, diluted into fatty acid free (>99%) bovine serum 

albumin (BSA) in phosphate buffered saline at a 1:1 ratio (2 mmol/L BSA: 2 mmol/L 

fatty acid), pH adjusted to 7.4, and added to the cultures containing 5.5 to 6 d post-

differentiated 3T3-L1 adipocytes [158].  

Fatty acid biosynthesis, oxidation, and lipolysis assays  

         Fatty acid biosynthesis was measured in differentiated adipocytes 24 h after starting 

treatments by removing the treatment media and incubating the adipocytes in Hanks’ 

Balanced Salt Solution (HBSS; Invitrogen, Carlsbad, CA) containing 37 KBq [
14

C]-

acetate [specific activity 2.1 GBg/mmol, (PerkinElmer Radioisotopes, Waltham, MA) ] 

for 30 min (incorporation was linear for 60 min, data not shown). Cells were washed in 

PBS three times, pelleted, and then resuspended in 100 µl PBS and 0.1% SDS.  Neutral 

lipids were extracted in 1 ml of 2:1 chloroform:methanol [153] and measured by 

scintillation counting. Cells briefly exposed to 37 KBq [
14

C]-acetate in media, followed 

by immediate washing and extraction as above, were used to determine background 

levels, which were subtracted from sample values.  

          Fatty acid oxidation was measured in differentiated adipocytes in 3.5 cm culture 

plates 12 h after starting treatments by adding 37 KBq [
14

C]-oleic acid [specific activity 
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2.2 GBg/mmol, (PerkinElmer Radioisotopes, Waltham, MA) ] to the treatment media for 

2 h and then collecting [
14

C]-CO2 for 1 hr in collection jars as reported [138].  

         For lipolysis assays, the TG pool of differentiated adipocytes was labeled by adding 

37 KBq [
14

C]-acetate [specific activity 2.1 GBg/mmol, (PerkinElmer Radioisotopes, 

Waltham, MA) ] to the media for 4 h, after which time the plates were washed four times 

with PBS, and specific experimental media treatments were initiated. Media (0.1 ml) was 

collected after 12 h, neutral lipids extracted in 1 ml of 2:1 chloroform:methanol [153] and 

measured by scintillation counting. The use of labeled [
14

C]-acetate and the 2:1 

chloroform:methanol extraction step considerably reduced non-specific background to 50 

dpm, as determined by using the above protocol on cells that had been briefly exposed to 

37 KBq [
14

C]-acetate in media.  

siRNA transfection 

            3T3-L1 adipocytes, 5 d post differentiation, were transfected by siQUEST 

transfection reagent (Mirus, Madison, WI), using final concentrations of 2 µl of siQUEST 

reagent per ml of media and siRNA at 40 nmol/L, 24 hours before adding fatty acids .  

Immunoblot analysis 

           Nuclear and cytosolic extracts were isolated using a nuclear extract kit (Active 

Motif, Carlsbad, CA). Equal amounts of proteins were separated by SDS-PAGE, 

transferred to Immun-blot PVDF membrane (Bio-Rad Laboratories, Hercules, CA), 

probed with the indicated primary antibodies, and detected with secondary antibodies. 

Enhanced chemiluminescence (Pierce, Rockford, IL) was used for detection. Band 

intensities were determined from digital images from exposures in the linear range using 
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software (Quantity One, Biorad, Hercules, CA). All western blot analyses were repeated 

at least three times. 

Immunoprecipitation 

           Immunoprecipitations were performed according to the procedure described [146]. 

In brief, the collected 3T3-L1 adipocytes were sonicated, lysates were centrifuged, and 

aliquots of the supernatants were immunoprecipitated overnight with specific antibody or 

control nonspecific IgG serum. Protein A agarose beads were used to bind the specific or 

non-specific antibody complexes, washed five times, and the bound proteins were eluted 

in SDS sample buffer for immunoblot analysis. 

Quantification of TG content.  

          Cell isolation and TG measurements were performed according to the 

manufacturer’ instructions using TG reagent (T2449; Sigma, St. Louis, MO) and free 

glycerol reagent (F6428; Sigma, St. Louis, MO). TG data are expressed as nmol of TG 

per mg of protein.    

Measurement of mRNA levels.  

         Total RNA was extracted by TRIzol (Invitrogen) following the manufacturer’s 

protocol. Total RNA (2 µg) was used for cDNA synthesis. Real-time PCR was performed 

by a Bio-Rad iCycler using iQ SYBR Green Supermix reagent (Bio-Rad, Hercules, CA) 

using PCR primers for MCP1 or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

[158], ANGPTL4 [167], CPT1a [168], and PDK4 [169]. Target mRNA levels were 

normalized to GAPDH, which showed no significant variation in microarray analyses 

between linoleic acid and t10c12 CLA treatments. Experiments were repeated three times, 

and each sample was analyzed using one RNA control and two replicates of each cDNA 
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pool, and the relative amounts of each target mRNA and GAPDH were calculated using 

the comparative CT method [88], according to the manufacturer’s software (Bio-Rad, 

Hercules, CA). Cycle numbers were used to calculate gene expression levels in the log 

linear amplification range.  

Statistical Analysis 

         Two-way ANOVA was used to analyze the data as follows: for Figures 1, 2b, 3, 4a, 

5 and Table 1, the main effects of CLA (LA or CLA) and GW0742 (- or +) or GSK0660 

(- or +), and their interaction (CLA x GW0742 or CLA x GSK0660) were analyzed. One-

way ANOVA was used to analyze the data in Figures 2a, and 4b. Pairwise comparisons 

were calculated using Tukey’s test (criterion for significance, α ≤ 0.05, except for Table 1 

for which α ≤ 0.1 was used).  All analyses were performed using JMP8 software (SAS, 

Cary, NC). 

Results 

           The possible involvement of PPARδ in the response to t10c12 CLA was first 

tested using an agonist or antagonist of PPARδ. Treatment with GW0742, an agonist, 

produced TG levels that were not significantly different at 86% of the LA control, but the 

combination of GW0742 and 50 µM t10c12 CLA had significantly lower TG levels at 

46% of the LA control (Fig. 1A; We generally used 50 µM t10c12 CLA if assaying 

chemicals that increased TG loss, but otherwise used 100 µM t10c12 CLA to obtain large 

changes in the molecular responses of interest). GSK0660, a PPARδ antagonist, had no 

significant effect on TG levels when used alone (101% of LA control), but significantly 

interfered with the ability of 100 µM t10c12 CLA to reduce TG levels at 72% of LA 

control as compared to a 50% level for 100 µM t10c12 CLA alone (Fig 1B). The effects 
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of the combination treatments of t10c12 CLA with PPARδ siRNA or random siRNA 

were significantly different, with TG levels of 77% or 55%, respectively, relative to the 

control treatment of LA and random siRNA (Fig 1 C). PPARδ protein levels were 

reduced by 47% by the treatment with siRNA against PPARδ relative to samples treated 

with a control random siRNA (Fig 1D). This siRNA-mediated attenuation of TG loss was 

consistent with the PPARδ antagonist result above, and collectively these results 

indicated that PPARδ facilitated TG loss in the response to t10c12 CLA. We next 

determined whether three PPARδ regulated genes [angiopoietin-related protein 4 

(ANGPTL4); carnitine palmitoyltransferase Ia (CPT1a); and pyruvate dehydrogenase 

kinase 4 (PDK4)] had increased mRNA levels, as an indicator of increased PPARδ 

transcriptional activity [170]. Their mRNA levels were significantly increased in t10c12 

CLA treated adipocytes by 108%, 78%, or 111% for ANGPTL4, CPT1a, or PDK4, 

respectively (Fig. 2 A). Taken together, these results indicated PPARδ was activated and 

facilitated TG loss in the response to t10c12 CLA.  

          We next determined the effects of PPARδ on specific pathways involved in the 

response to t10c12 CLA. We measured the effect of GW0742 and GSK0660 on the 

t10c12 CLA-dependent induction of monocyte chemotactic protein-1 (MCP1), an 

inflammatory mRNA induced by t10c12 CLA [158]. Treatment with t10c12 CLA and 

GW0742 did not significantly change MCP1 mRNA levels (Fig. 2B). However, treatment 

with t10c12 CLA and GSK0660 significantly reduced MCP1 mRNA levels to 32% of the 

t10c12 CLA control value (Fig. 2B). The effect of PPARδ on fatty acid biosynthesis, 

lipolysis, or oxidation was determined using t10c12 CLA and GSK0660. Fatty acid 

biosynthesis in adipocytes treated with t10c12 CLA alone was 45% of the LA control, 
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while the combination of t10c12 CLA and GSK0660 was moderately but significantly 

higher at 55% of the LA control value (Fig 3a). Fatty acid lipolysis with t10c12 CLA 

alone or in combination with GSK0660 was 159% and 99% of LA control levels, 

respectively (Fig 3b). Fatty acid oxidation with t10c12 CLA alone or in combination with 

GSK0660 was 311% and 128% of LA control levels, respectively (Fig 3c). These results 

indicated that PPARδ significantly attenuated the inflammatory pathway, as well as fatty 

acid lipolysis and oxidation, but only moderately affected inhibition of fatty acid 

biosynthesis in t10c12 CLA treated adipocytes.  

           Activated AMPK plays an essential role in the response to t10c12 CLA [158]. 

Therefore, the ability of PPARδ to affect AMPK activity was measured with t10c12 CLA 

alone or in combination with GW0742 or GSK0660. The amount of activated AMPK 

increased in the presence of t10c12 CLA, and this amount was further increased by 13% 

in combination with GW0742, or decreased by 46% in combination with GSK0660 (Fig 

4A). A possible mechanism for this effect was via a physical interaction between AMPK 

and PPARδ [163], and we hypothesized this interaction might be affected by t10c12 CLA 

treatment. We measured this interaction using a coimmunoprecipitation assay and 

determined that the amount of AMPK bound to PPARδ increased by 84% in t10c12 CLA 

treated adipocytes (Fig 4B). These results indicated a PPARδ agonist or antagonist 

affected AMPK activity, and that t10c12 CLA treated adipocytes had an increased 

amount of PPARδ bound to AMPK.  

           PPARγ protein levels are reduced in t10c12 CLA treated adipocytes [60, 158], and 

we tested whether activated PPARδ could compete more effectively with PPARγ for 

RXR. Therefore, the amount of PPARδ or PPARγ present in a protein complex with 
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RXR was measured by coimmunoprecipitation with RXR. The amount of PPARγ bound 

to RXR was significantly reduced to 32% of control LA levels in the presence of t10c12 

CLA, and this amount was further reduced to 20% when both t10c12 CLA and GW0742 

were present (Fig 5). The amount of PPARδ bound to RXR significantly increased by 

105% in t10c12 CLA treatments, and this amount increased further by 215% when both 

t10c12 CLA and GW0742 were present (Fig 5). These results indicated PPARδ competed 

more effectively for RXR in the presence of t10c12 CLA.  

           The above results suggested the combination of GW0742 and t10c12 CLA should 

be tested in mice for its ability to reduce body and WAT weight. Mice were fed diet with 

or without t10c12 CLA, and with or without GW0742. After two weeks body weight, 

retroperitoneal, and epididymal fat pads were measured (Table 1). The reductions in body 

weight were significant for t10c12 CLA (p=0.02) and GW0742 (p =0.08). The effects on 

retroperitoneal mass were significant for t10c12 CLA (p <0.01) and approached 

significance for GW0742 (p =0.14). The effects on epididymal mass were significant for 

t10c12 CLA (p <0.01) and GW0742 (p =0.06). None of the interactions between 

GW0742 and t10c12 CLA were significant (Table 1).  

Discussion 

 

         Here we demonstrated PPARδ played a positive role in reducing TG levels in 

t10c12 CLA treated adipocytes. In support of increased PPARδ activity, three PPARδ 

target genes showed increased mRNA levels in the response to t10c12 CLA. Inhibiting 

PPARδ protein activity or amounts with an antagonist or siRNA, respectively, attenuated 

the TG loss response caused by t10c12 CLA, while addition of a PPARδ agonist 

increased the TG loss. Functional analyses of PPARδ in several systems support its 
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involvement in TG loss [160, 163]. Overexpressed PPARδ decreased TG levels, and 

reduced levels of PPARδ increased TG levels, in 3T3-L1 adipocytes [165]. PPARδ was 

required for fatty acid transport and oxidation in human adipocytes [171].  Mice 

expressing constitutively active PPARδ had increased expression of genes involved with 

fatty acid oxidation and uncoupling protein 1 (UCP1), and had reduced adiposity [160]. 

PPARδ and AMPK are both required for efficient fatty acid oxidation in muscle cells 

[171]. Our results were in agreement with these studies, as PPARδ strongly affected 

t10c12 CLA’s ability to increase fatty acid oxidation and lipolysis, but only moderately 

affected the reduced rate of fatty acid biosynthesis in t10c12 CLA treated adipocytes.  

           PPARδ had increased binding to AMPK in t10c12 CLA treated adipocytes, 

consistent with the ability of AMPK to bind to PPARδ in muscle cells [163]. A PPARδ 

agonist or antagonist affected AMPK activity, as treatment with GW0742, an agonist of 

PPARδ, increased the amount of activated AMPK, while treatment with GSK0660, a 

PPARδ antagonist, reduced the amount of activated AMPK. The physical interaction of 

PPARδ and AMPK might be a mechanism by which PPARδ activity increased AMPK 

activity as constitutively-activated PPARδ resulted in activated AMPK in transgenic mice 

[163], and the PPARδ agonist GW501516 activated AMPK in muscle cells [171]. The 

ability of PPARδ to affect AMPK activity might explain observations that fatty acids 

activate AMPK [172, 173], as fatty acids are natural agonists of PPARδ [174].  As a fatty 

acid, t10c12 CLA is a potential ligand for PPARδ, but our data did not resolve whether it 

activated AMPK through direct binding to PPARδ or via an unknown indirect 

mechanism. Although the detailed mechanism by which PPARδ activates AMPK is 

unproven, it is clear that PPARδ’s ability to affect AMPK activity was predominantly 
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mediated by a non-transcriptional mechanism as total AMPK protein levels were not 

significantly changed. Non-genomic regulation of proteins involved in non-

transcriptional processes such as metabolic regulation is an emerging trend for the family 

of PPAR transcription factors, as similar behavior has been observed for PPARγ [143, 

157].   

         Activated AMPK results in reduced amounts of PPARγ protein [60, 158] and 

increased PPARγ phosphorylation [157], which reduces its transactivation activity [142]. 

Therefore, PPARδ’s ability to activate AMPK indirectly facilitated reduced amounts of 

PPARγ activity in the response to t10c12 CLA. Reduced amounts of PPARγ activity are 

important for t10c12 CLA-mediated TG loss, as activated PPARγ opposes t10c12 CLA 

effects [110, 157]. In addition to these indirect effects on PPARγ activity via changes in 

AMPK activity, PPARδ also reduced PPARγ activity via direct competition for RXR, the 

required heterodimeric partner for PPARγ and PPARδ [166, 175, 176]. The amount of 

the PPARγ/RXR heterodimeric protein complex decreased, and the amount of 

PPARδ/RXR increased, in the presence of t10c12 CLA. The amount of PPARγ/RXR 

heterodimeric protein complex was reduced further when both t10c12 CLA and GW0742 

were present, providing additional support for the ability of activated PPARδ to compete 

for RXR. Thus, PPARγ activity was reduced by a combination of AMPK-mediated and 

PPARδ-mediated mechanisms. Additionally, t10c12 CLA treatment increases the amount 

of Sirtuin 1 (SIRT1) bound to PPARγ [157], which represses PPARγ transactivation 

activity [146]. The inflammatory response is an important component of the TG loss 

caused by t10c12 CLA [60, 158], and both PPARγ and PPARδ are considered to have 

anti-inflammatory roles in many cell types [177]. However, we observed that inhibition 
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of PPARδ reduced the inflammatory response in t10c12 CLA treated adipocytes. This 

was consistent with PPARδ’s activation of AMPK, as activated AMPK is required for the 

inflammatory response to t10c12 CLA [158]. The combined effects of AMPK, PPARδ, 

and SIRT1 on reducing PPARγ activity facilitates an inflammatory response, as PPARγ 

plays an anti-inflammatory role in adipocytes [115].  

        The effects of t10c12 CLA and GW0742 in mice were promising as this 

combination produced the smallest average fad pads and the most reduction in the 

average body mass.  The effects of t10c12 CLA and GW0742 were significant for 

decreases in body mass and epididymal fat pads, and approached significance for 

retroperitoneal fat pads, but indicated trials with larger numbers of animals are needed to 

obtain more significant data. In support of our results, concurrent administration of the 

AMPK activator AICAR and a PPARδ agonist was more effective than a PPARδ agonist 

alone for increased running endurance in muscle tissue and reduced epididymal tissue 

mass in mice [163]. Our results indicate combinations of t10c12 CLA and a PPARδ 

agonist have potential for reducing adiposity in mammals. 
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Tables and figures 

 

Table 1.  The effect of GW0742 and t10c12 CLA on body weight or adipose tissue 

weight in mice
1
 

 

 
 

1 
Data are presented as mean ± SEM, n = 11 for BW and RP, n=22 for EPI. Means in a 

row not sharing a common superscript differ, P < 0.1.  

2  
C57Bl/6J male mice were fed 0.2% t10c12 CLA with or without GW0742 for two 

weeks. 
 

3 
The changes in body weight (BW) or the final weights of the epididymal (EPI) or 

retroperitoneal (RP) were measured after 14 d of treatments. 
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Figure 1. PPARδ activation, inhibition, or siRNA knockdown affects TG loss in t10c12 

CLA treated adipocytes. A-C) Triglyceride (TG) levels were measured in 3T3-L1 

adipocytes after incubation with LA (-) or t10c12 CLA (+), with or without GW0742, 

GSK0660, or siRNA [control (CON) or specific for PPARδ (siPPARδ)] for 24 h. D) A 

representative western blot of the siRNA knockdown of PPARδ is shown. Each bar 

represents the mean + SEM, n=3, and is representative of three independent experiments 

for A-C, or represents three independent experiments for D. Means not sharing a 

common letter differ, P ≤  0.05. 
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Figure 2. PPARδ regulated genes and MCP1 have increased expression, and MCP1 

expression is affected by a PPARδ agonist or antagonist, in t10c12 CLA treated 

adipocytes. A-B) The mRNA from 3T3-L1 adipocytes treated with LA (-) or t10c12 CLA 

(+) for 12 h [with or without GW0742 (0742) or GSK0660 (0660)], and was then isolated 

and analyzed by real time PCR using primers for the following genes:  MCP1, 

ANGPTL4, CPT1a, and PDK4. Each bar represents the mean + SEM, n=3 independent 

experiments. Means not sharing a common letter differ, P ≤  0.05. 
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Figure 3. Rates of fatty acid biosynthesis, lipolysis, and oxidation are affected by t10c12 

CLA and GSK0660. A) Adipocytes were treated with LA (-) or t10c12 CLA (+), with or 

without GSK0660 (0660), for 24 h and then labeled with [
14

C]-acetate to determine the 

rate of fatty acid biosynthesis. B) As in A except that the amount of lipid released into the 

media at 12 h was measured. C) As in A except cells were labeled with [
14

C]-oleate at 12 

h after treatment and the amount of [
14

C]-CO2 released was measured. Each bar 

represents the mean + SEM, n=3, and is representative of three independent experiments. 

Means not sharing a common letter differ, P ≤  0.05. 
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Figure 4. T10c12 CLA, with or without a PPARδ agonist or antagonist, affects AMPK 

activity and AMPK’s interaction with PPARδ. A) 3T3-L1 adipocytes were treated with 

LA (-) or t10c12 CLA (+) for 12 h, with or without GW0742 (0742) or GSK0660 (0660). 

A representative immunoblot indicates the AMPK protein detected with antibody to 

phosphorylated AMPK (p-AMPK) or total AMPK (AMPK), respectively. The ratio of p-

AMPK to AMPK is indicated in the bar graph, and each bar corresponds to the treatment 

described below the immunoblots. B) Cell extracts from adipocytes treated with LA (-) or 

t10c12 CLA (+) for 12 h were immunoprecipitated with antibody to PPARδ (IP: PPARδ). 

Input (5% Input) or immunoprecipitated proteins were detected by immunoblot analysis 

using antibody to total AMPK or PPARδ (IB: AMPK or PPARδ). The ratios of AMPK to 

PPARδ for the immunoprecipitated samples are shown in the bar graph according to the 

CLA (-) or (+) designation. Each bar represents the mean + SEM, n=3 independent 

experiments.  Means not sharing a common letter differ, P ≤  0.05. 
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Figure 5. PPARγ and PPARδ bind to RXRα in t10c12 CLA treated adipocytes. 

Adipocytes were treated with LA (-) or t10c12 CLA (+), with or without GW0742 (0742) 

and extracts were immunoprecipitated using antibody to RXRα (IP: RXRα). 

Representative immunoblots demonstrate the amounts of protein detected in the input 

(5% Input) and immunoprecipitated samples for PPARγ, PPARδ, and RXRα. The ratios 

of PPARγ or PPARδ to RXRα are shown in the bar graph according to the treatment 

described below the immunoblots. Each bar represents the mean + SEM, n=3 

independent experiments.  Means not sharing a common letter differ, P ≤  0.05. 
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Chapter VI. Implications 
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         Obesity has reached epidemic proportions in the United States and other developed 

countries, and is increasing even in the developing countries. T10c12 CLA causes fat loss 

in several mammalian models, particularly mice, and in human adipocytes. However, 

t10c12 CLA has not been demonstrated to be effective for TG loss in humans. 

Deciphering the mechanisms by which t10c12 CLA reduces fat in mammals might lead 

to therapies to prevent obesity. Currently, the mechanisms utilized by t10c12 CLA to 

cause fat loss are not known. The goal of this research was to discover some of the 

mechanisms utilized by t10c12 CLA to cause TG loss in adipocytes.  

          Here we demonstrated that the strong activation of AMPK induced by t10c12 CLA 

explained much of its isomer-specific delipidation effect in adipocytes. AMPK is an 

evolutionarily conserved protein kinase that regulates energy balance in cells. AMPK is a 

master regulator that  reduces anabolic biosynthesis and increase catabolic processes to 

increase cellular energy levels. The inhibited lipid synthesis and enhanced fatty acid 

oxidation triggered by activated AMPK helps explain the dramatic fat loss and variety of 

physiological and molecular responses observed in t10c12 CLA-treated 3T3-L1 

adipocytes and WAT in mice. The AMPK inhibitor Comp.C was able to attenuate 

changes in several key metabolic or regulatory proteins known to be inhibited by AMPK 

phosphorylation, including ACC, SREBP1c, PPARγ, C/EBPα, FAS, HMGR, ChREBP 

[Figure 1]. This results support our proposed role of AMPK as a master regulatory node 

in the response to t10c12 CLA. Our results showed AMPK was activated within 30 

minutes, which positioned AMPK upstream of the later ISR and inflammatory responses 

in t10c12 CLA treatments [Figure 1]. Comp.C treatment also  eliminated the ISR 

indictors ATF4 and ATF3 proteins and also reduced the amount of NF-κB translocated to 
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the nucleus, and inhibited MCP-1 mRNA levels. In conclusion, AMPK inhibitor comp.C 

inhibits all of the key indicators we tested in the response to t10c12 CLA.  

         We also demonstrated that activated AMPK could mimic many of the responses 

observed in t10c12 CLA treated adipocytes.  We demonstrated this in several ways. 

T10c12 CLA’s delipidation effects were enhanced by metformin in 3T3-L1 adipocytes 

and ML mice. More convincingly, phenformin, a stronger AMPK activator than 

metformin, caused TG losses similar to those caused by t10c12 CLA, and had a very 

similar transcriptome response as measured by microarray analysis. This provides strong 

support for the hypothesis that AMPK activation is sufficient to explain the majority of 

the responses to t10c12 CLA. The inability of phenformin to cause fat loss in humans is 

likely due to the uptake, distribution, and metabolism of the drug in the body. The 

combination of t10c12 CLA and metformin has therapeutic potential in humans and 

needs to be tested in human trials.  

          The inflammatory response was reported to be induced in t10c12 CLA-treated 

adipocytes. To answer the question whether an inflammatory response is required for 

effective delipidation by CLA, we explored which aspects of the inflammatory response 

were required. We found that the inhibition of NFkB attenuated TG loss in CLA treated 

adipocytes [Figure 1]. In support of the role of the inflammatory response, TNFα, a 

strong inflammatory cytokine, enhanced CLA’s ability to cause fat loss [see model in 

Figure 1]. Interestingly, we found TNFα activated AMPK and TNFα’s ability to 

delipidate was blocked by compound C. A comparison of AMPK activation, COX 

induction, and TG loss led to a model that suggested both AMPK and COX induction 
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were required for TG loss, and led us to more specifically investigate the role of 

prostaglandins in the CLA-meidated TG loss.   

          Our inhibitor studies indicated prostaglandins, Cox2, and PLA2 mediate at least 

part of the inflammatory response required for t10c12 CLA-mediated delipidation [Figure 

1]. Specifically, previous studies in the Miner laboratory found treating mice with a delta-

6 desaturase inhibitor (SC-26196) to reduce the production of arachidonic acid, the 

substrate for prostaglandin biosynthesis by Cox1/ 2, weakly inhibited t10c12 CLA-

induced delipidation . In our studies in 3T3-L1 adipocytes, we used an alternative 

inhibitor delta-5, 6-desaturase inhibitor (CP-24879) because SC-26196 was no longer 

available, and found it inhibited t10c12 CLA-mediated delipidation [Figure 1]. Both 

ibuprofen and indomethacin, non-selective Cox1/2 inhibitors with different chemical 

structures, also inhibited t10c12 CLA-mediated delipidation [Figure 1]. Increased 

phosphorylation of PLA2, which regulates PG biosynthesis by cleaving membrane lipids 

to generate arachidonic acid, in t10c12 CLA-treated adipocytes further indicates the 

important role of prostaglandins [Figure 1].  These inhibitor studies suggested 

prostaglandins were required for efficient TG loss. We next used prostaglandin “add-

back” treatments to better define their role.  

 Our hypothesis was that activated AMPK and prostaglandins were sufficient to 

cause TG loss. To test this, we used metformin to activate AMPK without creating a 

strong inflammatory response. We then added individual prostaglandins or arachidonic 

acid to test our hypothesis. Metformin alone causes a modest delipidation because it 

moderately activated AMPK. Individual prostaglandins had little effect when added alone. 

However, we found PGH2 (precursor to the PG family), or PGF2α caused strong 
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delipidation when used in combination with metformin. This supports the idea that a 

major component of the inflammatory response responsible for TG loss in 3T3-L1 

adipocytes are the prostaglandins. However, the prostaglandins are probably less 

important in the animal as COX2 mRNA levels are low and not strongly induced, Most 

likely some other aspect of the inflammatory response plays an equivalent role in WAT 

in animals.  One possible mechanism utilized by PGF2α’s for its delipidation effects is 

that it results in phosphorylation of PPARγ [31] or inhibition of PPARγ expression [32]. 

Our data indicates an alternative to a stronger activator of AMPK in adipocytes might be 

to use an AMPK activator and a second compound that leads to higher prostanoid levels.  

         Phenformin causes an inflammatory response and TG loss, while little inflammation 

and TG loss are observed with metformin. This supports the premise that inflammation is 

needed for TG loss. The microarray analysis of 3T3-L1 adipocytes treated with t10c12 

CLA or phenformin demonstrated similar changes in transcript profiles, suggesting the 

similar abilities of t10c12 CLA and phenformin to strongly activate AMPK and to cause 

similar reductions in TG levels were due to activation of similar pathways. These results 

suggest strong AMPK activation in adipocytes is sufficient for a robust delipidation 

response. This implies t10c12 CLA only needs to activate AMPK in adipocytes to 

account for the majority of its effects. However, phenformin appears to act at muscles in 

humans as it was reported to cause toxic lactic acidosis, which limited its application in 

humans, and explains why it does not cause significant fat loss in animals.  

          Our further studies showed t10c12 CLA is selective in the cellular response. We 

found that t10c12 CLA strongly induced an ISR in 3T3-L1 adipocytes, but fibroblasts did 

not show this response. Our microarray analysis of liver tissues of mice treated with 
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t10c12 CLA showed a weak ISR, and lacked a significant delipidation or inflammatory 

response. Most drugs or nutritional supplements do not show strong tissue specificity and 

generate undesirable side effects in non-target tissues. This provides t10c12 CLA  

potential advantage as an adipocyte specific chemical for obesity therapeutics. To extend 

our knowledge of CLA’s cell-type selectivity, a microarray study of other types of tissues 

in mice responding to t10c12 CLA is worth performing in the future. If the t10c12 CLA 

response is preferentially selective for adipocytes, it provides an excellent platform for 

adding additional less-selective nutritional molecules for reducing adiposity that 

collectively provide a more adipocyte specific effect, and improve CLA’s advantage in 

clinical trials. 

         Our studies demonstrated cross regulation of AMPK and SIRT1 was occurring in 

t10c12 CLA treatment [Figure 1]. Activated AMPK affected the amount of SIRT1-

related deacetylation of NF-κB in the molecular response to t10c12 CLA, possibly via 

changes in the fatty acid oxidation dependent NAD
+
/NADH ratio [151]. SIRT1 affected 

the amount of activated AMPK, as SIRT1 inhibitors attenuated AMPK activation at 12 h. 

SIRT1 inhibitors did not affect AMPK activation in the first 2 h of t10c12 CLA treatment, 

indicating early AMPK activation did not depend on SIRT1 activity. The combined data 

support the hypothesis that both AMPK and SIRT1 positively regulate each other in the 

response to t10c12 CLA-treated adipocytes. To our surprise, SIRT1 utilized mechanisms 

that both promoted and inhibited the inflammatory response in t10c12 CLA treatments. 

Our study showed that SIRT1 had a pro-inflammatory bias in the response to t10c12 

CLA. It could be mediated through facilitating activation of AMPK as phenformin, a 
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strong AMPK activator, can cause an inflammatory and TG reduction response in 

adipocytes. The understanding on the detailed mechanism is still unclear.  

          Our chemical studies suggested that both AMPK activation and reduced PPARγ 

activity are important for reducing TG levels in the response to t10c12 CLA [Figure 1]. 

The key outcome is determined by whether AMPK and PPARγ becomes activated and 

inhibits the activity of the other. In opposition to AMPK activity, PPARγ is required for 

differentiation and maintenance of the adipocytes. Activation of PPARγ by 

thiazolidinediones (TZDs) strongly attenuates t10c12 CLA effects in adipocytes. PPARγ 

is also antagonistic NF-κB in t10c12 CLA-treated adipocytes and is considered anti-

inflammatory. In contrast, PPARγ antagonist GW9662 and t10c12 CLA are synergistic 

for delipidation. This suggests an approach combining t10c12 CLA with nutritional 

supplements that further inhibit PPARγ in adipocytes is promising for reducing adiposity.   

          PPARδ plays a positive role in reducing TG content in t10c12 CLA treated 

adipocytes [Figure 1]. PPARδ facilitates TG loss in CLA treated adipocytes by increasing 

fatty acid oxidation. PPARδ had increased binding to AMPK in CLA treated adipocytes, 

subsequently affected AMPK activity. PPARδ reduces PPARγ activity by a second 

mechanism that appears to depend on the reduced amounts and activity of PPARγ caused 

by AMPK. This second mechanism appears to affect the competition for RXR, the 

required heterodimeric partner for PPARγ, PPARδ, LXR and RAR [175, 176, 178]. This 

suggested the low levels of PPARγ activity, caused by the presence of t10c12 CLA, can 

be further decreased by competition for RXR by other ligand-activated nuclear receptors.  

In conclusion, activated AMPK [112] and, activated PPARδ, inhibit PPARγ activity. This 

provides a promising platform for combinations of t10c12 CLA with less tissue-specific 
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drugs such as metformin [111] or PPARδ agonists to attain more effective reduction of 

adiposity. 

          Currently, CLA is used in much lower dosage in human studies than in animal 

studies [22-23]. Some side effects of CLA were reported in the presence of extreme 

reduction of fat content in fat tissues when CLA was used at high dosage, including 

lipodystrophy, insulin resistance, elevated oxidative stress, hyperinsulinemia and liver 

steatosis in mice. For enhancing the delipidation of CLA in human trials, it is preferable 

to have a lower dose of CLA. Our goal is to accomplish this by looking for mechanism-

based synergistic effects of drugs or nutritional supplements. Therefore, the modest fat 

loss in the fat tissues would be attained at a lower dosage of CLA. Our studies discovered 

several mechanisms which play important roles in CLA effects and provide good targets 

for synergy. This provides us an excellent platform to figure out the important factors 

involved in CLA effects, and subsequently test if their agonists or antagonists are able to 

enhance CLA delipidation when CLA is used at the low dosage in human trials. Our 

studies also help figure out how these side effects occur in CLA treatment. This also 

helps reveal the nutritionally regulated sensors and regulatory networks that can be 

utilized to reduce adiposity.  

One of the most novel aspects of our findings are that PPARγ and PPARδ appear 

to regulate AMPK activity. This finding contrasts with the vast majority of current 

publications that consider PPARγ and PPARδ to act as transcription factors, capable of 

both activation or repression. Very little has been published on the non-genomic effects 

of these two proteins. Our results demonstrate PPARγ and PPARδ can affect AMPK 

activity levels without apparent changes in transcription of this gene, as AMPK protein 
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levels do not change. Our demonstration that CLA affects the PPARγ/SIRT1 interaction 

and the PPARδ/AMPK interaction, together with the known ability of SIRT1 to interact 

LKB1, an upstream kinase of AMPK, provides a remarkably intimate view of this cast of 

metabolic regulators and their ability to cross regulate each other’s behavior.  

         The question of how t10c12 CLA causes these changes in the SIRT1/AMPK/ 

PPARδ/ PPARγ axis remains unknown. AMPK is affected by a large diversity of stimuli, 

as is appropriate for its central role in cell energy homeostasis. This diversity of potential 

stimuli precludes a simple exploration of how AMPK is activated by t10c12 CLA. The 

whole area of how fatty acids signal to key regulatory proteins such as AMPK is poorly 

understood and this lack of knowledge makes deciphering the mechanisms used by 

t10c12 CLA more difficult. T10c12 CLA is known to preferentially accumulate in 

adipocytes in animals and humans. Our results indicate adipocytes are particularly 

sensitive to its effects for unknown reasons. The combination of preferential 

accumulation and increased sensitivity are ideal for a tissue specific effect. The challenge 

is to find other drugs or nutritional molecules that have similar profiles and are capable of 

causing synergistic effects in the key SIRT1/AMPK/ PPARδ/ PPARγ axis.  
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Figure 1. Working model for t10c12 CLA signaling. CLA or phenformin strongly 

activates AMPK to a phosphorylated state (p-AMPK), which initiates an integrated stress 

response (ISR): either step might be cell-type specific for t10c12 CLA. The ISR activates 

the NF-κB, JNK, and ERK axis, which together initiate the inflammatory response and 

delipidation. Metformin with TNFα produces a similar delipidation. AMPK, NF-κB, JNK, 

or ERK directly inhibit PPARγ, which normally inhibits inflammation. RAR, LXR or 

PPARβ/δ compete with PPARγ for RXR. Either activated AMPK or SIRT1 affects the 

other. Phospholipase A2 (PLA2) is activated by phosphorylation (p-PLA2) by either JNK 

or ERK, increasing the amounts of arachidonic acid (AA), the substrate for cyclo-

oxygenase 1 or 2 (Cox1/2), for increased prostaglandins (PG), which are inhibitory to 

lipogenesis. The fatty acid precursors to AA are indicated as LA, γ-LA, and DGLA. 

Inhibitors we have been found to reduce the effects of t10c12 CLA are italicized.  
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