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T2 heterogeneity: a novel marker of
microstructural integrity associated with
cognitive decline in people with mild
cognitive impairment
Alfie R. Wearn1,2* , Volkan Nurdal1, Esther Saunders-Jennings1, Michael J. Knight3, Hanna K. Isotalus1,

Serena Dillon1, Demitra Tsivos1, Risto A. Kauppinen3 and Elizabeth J. Coulthard1,2

Abstract

Background: Early Alzheimer’s disease (AD) diagnosis is vital for development of disease-modifying therapies. Prior

to significant brain tissue atrophy, several microstructural changes take place as a result of Alzheimer’s pathology. These

include deposition of amyloid, tau and iron, as well as altered water homeostasis in tissue and some cell death. T2

relaxation time, a quantitative MRI measure, is sensitive to these changes and may be a useful non-invasive, early

marker of tissue integrity which could predict conversion to dementia. We propose that different microstructural

changes affect T2 in opposing ways, such that average ‘midpoint’ measures of T2 are less sensitive than measuring

distribution width (heterogeneity). T2 heterogeneity in the brain may present a sensitive early marker of AD pathology.

Methods: In this cohort study, we tested 97 healthy older controls, 49 people with mild cognitive impairment (MCI)

and 10 with a clinical diagnosis of AD. All participants underwent structural MRI including a multi-echo sequence for

quantitative T2 assessment. Cognitive change over 1 year was assessed in 20 participants with MCI. T2 distributions

were modelled in the hippocampus and thalamus using log-logistic distribution giving measures of log-median value

(midpoint; T2μ) and distribution width (heterogeneity; T2σ).

Results: We show an increase in T2 heterogeneity (T2σ; p < .0001) in MCI compared to healthy controls, which was not

seen with midpoint (T2μ; p = .149) in the hippocampus and thalamus. Hippocampal T2 heterogeneity predicted

cognitive decline over 1 year in MCI participants (p = .018), but midpoint (p = .132) and volume (p = .315) did not. Age

affects T2, but the effects described here are significant even after correcting for age.

Conclusions: We show that T2 heterogeneity can identify subtle changes in microstructural integrity of brain tissue in

MCI and predict cognitive decline over a year. We describe a new model that considers the competing effects of factors

that both increase and decrease T2. These two opposing forces suggest that previous conclusions based on T2 midpoint

may have obscured the true potential of T2 as a marker of subtle neuropathology. We propose that T2 heterogeneity

reflects microstructural integrity with potential to be a widely used early biomarker of conditions such as AD.
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Introduction
Alzheimer’s disease treatments and therapies that stop

or slow down neuropathology will be most effective if

administered as early as possible; before significant neu-

rodegeneration has occurred. Accurate early Alzheimer’s

disease diagnosis is vital to identify appropriate clinical

trial study groups of ‘at-risk’ individuals to expedite

development of new compounds [1, 2] and to target

disease-modifying treatments when available.

Structural and quantitative MRI show promise in their

ability to identify changes in the brain that indicate early

Alzheimer’s pathology. Measuring the volume of the

hippocampus and entorhinal cortex has been shown to

predict progression of mild cognitive impairment (MCI)

to Alzheimer’s disease [3–10]. Detectable change in vol-

ume is indicative of significant tissue loss, which is likely

to be irreversible. As treatment with disease-modifying

therapies would be optimal before such significant

macrostructural change, we ask whether MRI could be

used to identify microstructural changes that occur earl-

ier in the disease-course, before significant volume loss.

Prior to significant loss of tissue volume, several micro-

structural changes take place as a result of Alzheimer’s dis-

ease pathology—(i) oligomers and plaques of β-amyloid

(Aβ) and neurofibrillary tangles (NFTs) build up around

the medial temporal lobe (MTL) and the thalamus [11–14],

(ii) iron is elevated in the brains of people with MCI and

Alzheimer’s disease [15] and (iii) even small amounts of ne-

crosis leading to breakdown of cell membranes and oedema

will increase the motility of water within a given region.

Increase in water motility is not necessarily specific

to Alzheimer’s disease and can occur in healthy age-

ing [16–18]. Accurately measuring such microstruc-

tural changes may allow identification of tissue that is

at risk of degradation or has reduced functionality

compared to a previous state.

T2 relaxometry is an MRI approach that may be able

to report microstructural tissue integrity. Relaxation

time is a measure, detectable by MRI, that describes the

time taken for protons to return to a state of equilibrium

following electromagnetic excitation. Specifically, T2 re-

laxation describes the transverse component of magnet-

isation. T2 relaxation time of biological tissue varies

depending on its physical properties and its surrounding

environment. It is primarily driven by water content and

mobility and the presence of macromolecular structures

and paramagnetic materials, e.g. iron [19–23]. For example,

pure water will have a very long relaxation time, whereas in

fatty substances, T2 will decay much quicker. T2 is there-

fore sensitive to microscopic and physico-chemical tissue

properties that can change as a result of pathology. Previous

research has shown that T2 relaxometry is independent of,

and can provide distinct microstructural information to,

diffusion tensor imaging metrics [24, 25].

Given that quantitative T2 can be easily measured on

routine MRI scans, adding just a couple of minutes to

standard T2-weighted structural scanning times, it has been

previously explored as an early marker of Alzheimer’s dis-

ease pathology. However, previous studies on the effect of

Alzheimer’s pathology on T2 in the human brain have

yielded varied and sometimes contradictory results. Most

studies describe a prolonged T2 in the hippocampus of

those with Alzheimer’s disease [26–30], whereas others find

the opposite [31, 32] or no change at all [33] (see

Tang et al. [34] for a comprehensive review). In two

studies [26, 28], change in thalamic T2 was not asso-

ciated with Alzheimer’s pathology or cognitive impair-

ment, but T2 increased with age [28]. In another

study, Dawe et al. [30] found that Alzheimer’s path-

ology was associated with decreased T2 within the

thalamus.

These inconsistencies in human literature are not fully

reflected in studies of transgenic rodent models of

Alzheimer’s disease, which consistently show a decrease

in hippocampal T2 [34]. Inconsistencies within the hu-

man literature and between human and animal studies

could be a consequence of the multiple pathological pro-

cesses occurring in the human brain that have opposing

effects, either shortening or lengthening T2. In contrast,

mouse models are usually dominated by a single patho-

logical process such as amyloid deposition.

Increased water content, such as that caused by in-

creased cerebrospinal fluid (CSF), oedema or cell mem-

brane damage, will prolong T2 [28]. Conversely, increase

in iron [22] or in macromolecule-to-water ratio due to

accumulation of high density protein aggregates, such as

Aβ, shorten T2 [35]. Even in early stages of the patho-

logical progression of Alzheimer’s disease within the

brain, factors which cause T2 to either increase or de-

crease are both occurring in early-affected regions such

as the hippocampus and the thalamus [11, 14, 36, 37].

Either effect may be more or less dominant in clusters

throughout these regions. Averaging across the entire re-

gion could therefore yield, on average, a net change in

T2 of zero. A change in the average value of T2 would

only come about if T2-shortening factors dominate over

T2-prolonging factors or vice-versa, which may not be

the case in the earliest stages of the disease. Rather, an

increased width of the distribution of T2 (T2 heterogen-

eity) may better reflect subtle changes in microstructural

integrity such as those present in the early stages of

Alzheimer’s disease.

T2 heterogeneity as a marker of tissue integrity is a

novel measure with only two known previous studies of

its utility. One demonstrates that T2 heterogeneity is a

useful measure in accurately determining stroke onset

time in an animal model [38]. The other presented pilot

data from our group, concluding that T2 heterogeneity
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can improve accuracy in distinguishing between healthy

controls, those with MCI and Alzheimer’s disease pa-

tients, and was a more promising measure than volume-

try or diffusion tensor imaging [25].

In this study, we aimed to assess the use of the width

of the distribution of T2 as a marker of within-

individual tissue heterogeneity and microstructural in-

tegrity. We measure T2 heterogeneity in a group of

people with MCI. Studies report a variable annual con-

version rate of MCI to AD (mostly ranging from 10 to

15% for studies in clinical settings [39, 40]). We

hypothesised that MCI patients with the greatest T2 het-

erogeneity would have the greatest risk of incipient de-

mentia and therefore experience the greatest cognitive

decline over a year [39, 40]. To be clear, we expect the

distribution width to increase on a patient-by-patient

basis. We are not discussing heterogeneity across the

MCI group, which would be explained by the variety of

MCI aetiologies between individuals.

We expand previous work by describing a model of

T2 dynamics through the course of Alzheimer’s disease,

in comparison to healthy ageing, with a view to creating

a practical biomarker which may identify neuropathol-

ogy prior to significant tissue atrophy. We also report

volumetry data, as this is the current standard for asses-

sing structural change in MCI and AD.

Methods
The analyses in this paper combine data from two pro-

spective longitudinal studies similar in cohort demo-

graphics and study design. No participants took part in

both studies. Both studies are detailed in the following

section. Where data collected are not identical between

cohorts, we have normalised equivalent metrics within

cohort and combined data after normalisation.

Participants

Participants fulfilling the Petersen criteria [41] for diag-

nosis of MCI were recruited to both studies (study 1:

n = 30; study 2: n = 29). Healthy older people (HC) with

no history of memory problems or significant neuro-

logical disorders were recruited as controls to each study

(study 1: n = 61; study 2: n = 56). All healthy controls

had Montreal Cognitive Assessment (MoCA) > 26 (study

1) or Addenbrookes Cognitive Examination 3 (ACE-III)

> 88 (study 2). Seven participants originally recruited as

healthy controls in study 1 were found to have MoCA

scores of < 26, so they were reclassified as MCI (given

the high sensitivity and specificity of the MoCA for de-

tecting MCI at this threshold; 90% and 100%, respect-

ively [42]). Study 1 also included 10 patients with

diagnoses of Alzheimer’s disease (AD) who retained cap-

acity to consent. AD diagnoses were made according to

standard clinical criteria [43]. These sample sizes are in-

line with similar studies on brain structure abnormalities

in MCI and Alzheimer’s disease and are sufficient to ob-

serve significant differences in hippocampal volume. All

participants underwent a battery of neuropsychological

tests specific to each study, the details of which are de-

scribed in supplementary information.

Subjects for both studies were recruited from local GP

surgeries and memory clinics in the Bristol area (having

received MCI diagnoses or reported memory problems),

Join Dementia Research, Avon and Wiltshire Mental

Health Partnership’s Everyone Included system, an in-

house database of volunteers, replies to poster adverts or

through word of mouth. All patients provided informed

written consent prior to testing as according to the

Declaration of Helsinki. Ethical approval was given by

Frenchay NHS Research Ethics Committee.

The current analyses included all participants who had

volumetry and T2 relaxometry data for both hippocam-

pal subfields and thalamus, study 1 n = 90 (50 HC, 30

MCI, 10 AD), study 2 n = 66 (47 HC, 19 MCI). See

Table 1 for demographic details (Supplementary Tables 1

and 2 show demographic, neuropsychology and MRI

data for each study cohort separately).

A total of 20 MCI participants were followed-up after

1 year (10 from each study). Cognitive function was

tested at baseline and follow-up using the MoCA in

study 1 and the ACE-III in study 2. We assessed cogni-

tive decline as an overall change in this cognitive test

score over the year follow-up period. Although some

MCI patients may have converted to dementia over the

year, conversion to dementia was never a formal out-

come of this study. The reason for this is that we re-

cruited from a range of sites with highly variable clinical

follow-up periods for MCI patients—indeed, some sites

discharge MCI patients without a planned follow-up.

This led to our decision to use our own measure of cog-

nitive change as the outcome of interest in this study.

Imaging parameters

Scans for both studies were acquired at CRICBristol,

University of Bristol, UK, on the same Siemens Magne-

tom Skyra 3T system equipped with a parallel transmit

body coil and a 32-channel head receiver array coil. The

two studies used similar, but slightly different scanning

protocols.

Study 1

This protocol has been previously described by Knight

et al. [25]. The imaging protocol included a 3D T1-

weighted whole-brain magnetization prepared rapid ac-

quisition gradient-echo (MPRAGE) and 2D multi-

contrast multi-spin-echo (CPMG).

MPRAGE: Coronal, whole-brain, repetition time (TR)

2200 ms, echo time (TE) 2.42 ms, inversion time (TI)
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900 ms, flip angle 9°, acquired resolution 0.68 × 0.68 ×

1.60 mm, acquired matrix size 152 × 320 × 144, recon-

structed resolution 0.34 × 0.34 × 1.60 mm (after twofold

interpolation in-plane by zero-filling in k-space), recon-

structed matrix size 540 × 640 × 144, GRAPPA factor 2.

Acquisition time: 5:25 min.

CPMG: Coronal, TR 4500 ms, TE 12ms, number of

echoes 10, echo spacing 12 ms, acquired resolution

0.68 × 0.68 × 1.7 mm inclusive of 15% slice gap, acquired

matrix size 152 × 320, 34 slices, interleaved slice order,

reconstructed resolution 0.34 × 0.34 × 1.7 mm (after two-

fold interpolation in-plane by zero-filling in k-space, and

inclusive of 15% slice gap), reconstructed matrix size

540 × 640, 34 slices, GRAPPA factor 2. Acquisition time:

11:07 min.

Study 2

The imaging protocol included a 3D T1-weighted

whole-brain MPRAGE and 2D multi-contrast turbo

spin-echo (TSE).

MPRAGE: Sagittal, whole-brain, TR 2200ms, TE 2.28

ms, TI 900 ms, flip angle 9°, FOV 220 × 220 × 179 mm,

acquired resolution 0.86 × 0.86 × 0.86 mm, acquired

matrix size 256 × 256 × 208. Acquisition time: 5:07 min.

Multi-contrast TSE: Coronal, TR 7500ms, number of

echoes: 3, TE 9.1, 72 and 136 ms, acquired resolution

0.69 × 0.69 × 1.5 mm, reconstructed resolution 0.34 ×

0.34 × 1.5 mm (after 2-fold interpolation in-plane by

zero-filling in k-space, and inclusive of 15% slice gap),

GRAPPA factor 2, FOV 220 × 220 × 34, acquired matrix

size 270 × 320 × 58. Acquisition time: 5:09 min.

CPMG and TSE scans were not ‘whole-brain’, their

coverage only extending approx. 1 cm beyond anterior

and posterior ends of the hippocampus. These scans

were tilted such that the hippocampal body lay perpen-

dicular to the slice acquisition plane. These scans also

included the entirety of thalamus.

The two distinct methods of measuring T2 (CPMG vs

TSE) will give inherently different values for T2 midpoint

and heterogeneity between studies (see supplementary

information). Relationships to variables such as age and

cognitive score should be similar, given they are sensitive

to the same tissue properties.

Imaging analyses

All analyses were performed at CRICBristol in a Linux

cluster environment. All analyses were carried out in

single-subject native space.

CPMG and TSE scans were brain-extracted using

FSL’s bet2 on the first echo in the series [44]. All ex-

tracted images were visually inspected for quality and re-

run with different fractional intensity thresholds or

gradient parameters where necessary. Fractional inten-

sity threshold was typically set between 0.2–0.3.

MPRAGE images were brain-extracted using vbm8bet

(in-house script) and bias-field-corrected using FSL

FAST [45]. T2 maps were created in MATLAB from

multi-echo sequences by fitting logarithmic-space

mono-exponential decay functions to each voxel series

(overall summary of T2 calculation is shown in Knight

et al. [25]). The first echo of CPMG was always ex-

cluded. A sum-of-echoes image was created in order to

have one structural image representing the entire multi-

echo sequence. This image was used for segmentation.

Hippocampus was automatically masked using the

Automatic Segmentation of Hippocampal Subfields

(ASHS) software package [46] (version: rev103, dated 12

June 2014; UPENN memory centre atlas dated 16 April

2014). CA1, CA2, CA3, dentate gyrus, subiculum and

miscellaneous were combined to form a total hippocam-

pus mask. This was overlaid onto T2 maps, giving a

value of T2 for each voxel of hippocampus.

Whole thalamus masks were created using Freesurfer

v6.0, using MPRAGE scans as input images [47]. After

extraction from the Freesurfer segmentation image and

registration to T2-space (TSE or CPMG) using FSL’s

FLIRT, thalamus masks were then overlaid onto T2

maps, and descriptive statistics were calculated, similarly

to hippocampus. These automated masking programmes

have demonstrated high accuracy whilst minimising sub-

jective rater bias, without the need for group blinding.

Modelling T2 heterogeneity

Distribution histograms were capped at 30 ms and 200

ms, as values outside these regions are unphysiological

in brain tissue at 3T. The free-to-download MATLAB

function ‘fitmethis’ [48] was used to fit 18 different

Table 1 Participant demographics

Group

HC MCI AD Total

N (male to female) 97 (46:51) 49 (27:22) 10 (2:8) 156 (75:81)

Age (years) 69.3 ± 8.58 72.2 ± 9.03 77.9 ± 9.94 70.7 ± 9.05

YOE 15.8 ± 3.16 14.2 ± 2.81 13.1 ± 2.60 15.1 ± 3.13

Cognitive score (normalised to HC) 0.00 ± 1.00 − 4.08 ± 2.09 − 8.50 ± 3.15 − 1.83 ± 3.02

Data show mean ± standard deviation, combined for studies 1 and 2. Cognitive score is calculated as a Z score relative to the healthy control group of each study,

separately, as different cognitive tests were used (study 1: MoCA; study 2: ACE-III). For this reason, the HC group by definition has a mean ± SD of 0 ± 1. HC healthy

control, MCI mild cognitive impairment, AD Alzheimer’s disease, YOE years of education
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distribution functions (see supplementary information)

to left and right hemisphere ROIs individually, using

maximum likelihood estimation. Akaike Information

Criteria (AIC) was calculated for each distribution type.

The best fitting model was determined by the lowest

AIC. The most frequent best-fitting model was recorded

for the hippocampus and thalamus, and subsequent sta-

tistics calculated therefrom.

Statistical analysis

ICV-corrected volumes, T2 metrics and cognitive scores

were converted into Z scores for each study separately

and pooled, with healthy controls of each study as a ref-

erence population. MANCOVA results comparing the

two cohorts before and after this normalisation can be

found in Supplementary Tables 3 and 4. Model parame-

ters of T2 distributions were compared between groups

using ANCOVA, with age as a covariate. Years of educa-

tion and study (1 or 2) were included as the covariates

in all models but did not significantly contribute to the

model in any case. We also ran models using gender as

a covariate, the results of which are shown in supple-

mentary information (Supplementary Table 5), but the

overall pattern of results was unchanged. Reported

models correct for age but not years of education, study,

or gender. Homogeneity of variances was tested using

Levene’s test, which was not significant for any test.

Graphs show estimated marginal means from this ana-

lysis. Post-hoc pairwise comparisons were carried out

using sidak correction for multiple comparisons (cor-

rected p values are shown as ‘psidak’). Ability of volume

and T2 to predict cognitive decline was assessed using

linear regression, with follow-up cognition as the

dependent variable and baseline cognition and age as

covariates:

Follow − up Cognition ¼ βintercept þ βage Ageð Þ

þ βBLCog BaselineCognitionð Þ

þ βVolume=T2 Volume=T2ð Þ

þ error

Gender and study were also explored as covariates in

these linear regression models; however, in no model

were they significant predictors. Z scores for the latter

analysis were calculated relative to each study’s MCI

population only.

Linear regressions were used to assess the strength of

the relationship between age and T2 statistics in healthy

controls. All reported p values are two-tailed. Balance

tests were not carried out on demographic for reasons

detailed by Mutz et al. [49].

Data handling and storage was carried out using

MathWorks MATLAB 2015a (with statistics and ma-

chine learning toolbox) and Microsoft Excel 2016.

Statistical analysis was performed in IBM SPSS Statistics

24. Graphs were produced using GraphPad Prism v7.

Results
Demographic details for the entire cohort can be found

in Table 1. Separated demographic information for study

1 and study 2 can be found in Supplementary Tables 1

and 2, respectively, including specific cognitive test

scores for each group.

Model fitting to describe T2 distribution characteristics

T2 distributions in the hippocampus and thalamus (Fig.

1) were best described in the majority of cases by a log-

logistic distribution function (as determined by the low-

est AIC). Log-logistic distribution is defined as:

f xjμ; σð Þ ¼
1

σ

1

x

exp zð Þ

1þ exp zð Þ½ �2
;where z ¼

log xð Þ − μ

σ

where μ and σ denote the log-median value (midpoint)

and distribution shape (heterogeneity), respectively.

Values for hippocampus and thalamus volume and T2

model parameters can be found in Supplementary Ta-

bles 3 and 4.

T2 heterogeneity, but not midpoint, differentiates healthy

older adults from those with MCI

T2 midpoint (μ)

There was no significant difference between HC, MCI

and AD groups (F(2, 152) = 1.61, p = .204; Fig. 2a) on T2

midpoint in the hippocampus. Although T2 midpoint

was higher in the AD group than other groups, this ef-

fect was not statistically significant compared to either

healthy controls (pSidak = .283) or the MCI group (pSi-

dak = .211). There was no significant difference between

healthy control and MCI groups (pSidak = .971).

We found a significant effect of group on T2 midpoint

in the thalamus (F(2, 152) = 3.10, p = .048; Fig. 2a). Post

hoc analyses revealed that this was driven by an increase

in T2 in the AD group (HC vs AD: pSidak = .042; MCI vs

AD: pSidak = .073). As in the hippocampus, there was no

significant difference between healthy controls and the

MCI group (pSidak = .989).

T2 heterogeneity (σ)

There was a significant effect of group on hippocampal

T2 heterogeneity (F(2, 152) = 9.76, p = .0001; Fig. 2b).

Pairwise comparisons revealed a significantly wider dis-

tribution in the MCI group compared to healthy con-

trols (pSidak < .0001). There was no significant further

change from MCI to AD (pSidak = .913), nor was there a

significant difference between healthy controls and the

AD group (pSidak = .273).
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There was a significant difference in thalamic T2σ be-

tween groups (F(2, 152) = 5.90, p = .003; Fig. 2b). Post

hoc pairwise comparisons revealed a significantly in-

creased T2σ in the MCI group compared to HCs (pSi-

dak = .002). In line with findings in the hippocampus, we

observed no significant difference between MCI and AD

groups (pSidak = .813) or between healthy controls and

the AD group (pSidak = .710).

Volume

We found a significant effect of group on volume (F(2,

152) = 14.8, p < .0001; Fig. 2c). Pairwise comparisons re-

vealed a significantly smaller volume in the MCI group

compared to healthy controls (pSidak < .0001), as well as a

significant difference between HC and AD groups (pSidak =

.014). There was no significant further increase from MCI

to AD (pSidak = .994).

There was a significant difference in thalamic volume

between groups (F(2, 152) = 3.41, p = .036; Fig. 2c).

Post hoc pairwise comparisons revealed a significantly

smaller volume in the MCI group compared to HCs

(pSidak = .032).

T2 heterogeneity predicts cognitive decline in mild

cognitive impairment

Hippocampal T2 heterogeneity significantly predicted

follow-up cognitive score, after accounting for baseline

cognitive score and age (R2 = .387, F(3, 16)=3.37, p =

.045; Fig. 3b). T2 heterogeneity was the sole significant

individual predictor in this model (βT2σ = −.601, pT2σ =

Fig. 1 Hippocampal T2 relaxation time histograms for example participants. Left: Healthy control, 69-year-old female (μ = 4.68, σ = .112). Right:

MCI, 87-year-old male (μ = 4.71; σ = .135). Left hippocampus is shown in both examples. Red lines on each graph represent log-logistic

distribution curves fitted to each participant’s data

Fig. 2 Group comparisons for structural measures in hippocampus and thalamus. Comparisons are shown for a T2 midpoint (μ), b T2

heterogeneity (σ) and c ICV-corrected volume. Values shown are estimated marginal means after correcting for the effect of age. Error bars show

marginal means ± standard error. Asterisks represent Sidak pairwise comparisons p values (*p < .05; **p < .01; ****p < .0001)

Wearn et al. Alzheimer's Research & Therapy          (2020) 12:105 Page 6 of 14



.018). Cognitive change over time was not predicted by

this method by either hippocampal T2μ (R2 = .241, F(3,

16)=1.69, p = .209; βT2μ = −.377, pT2μ = .132; Fig. 3a) or

hippocampal volume (R2 = .177, F(3, 16)=1.15, p = .361;

βvol = .263, pvol = .315; Fig. 3c).

Effects of age on T2 relaxometry and volume in

individuals with normal cognition

T2 midpoint (μ)

There was no statistically significant relationship be-

tween age and hippocampal T2 midpoint (T2μ, R2 =

.012, p = .289, n = 97; Fig. 4a) in cognitively normal indi-

viduals. In the thalamus, age was a strong positive pre-

dictor of T2μ (R2 = .320, p < .0001, n = 97; Fig. 4b).

T2 heterogeneity (σ)

Age was a significant positive predictor of T2 heterogen-

eity in the hippocampus (T2σ, R2 = .122, p = .0004;

Fig. 4c) and thalamus (R2 = .127, p = .0003; Fig. 4d) in

cognitively normal individuals.

Volume

Age was a significant positive predictor of volume in the

hippocampus (R2 = .106, p = .001; Fig. 4e) and thalamus

(R2 = .134, p = .0002; Fig. 4e) in cognitively normal

individuals.

Discussion
We show that the width of the distribution of T2 in the

hippocampus and the thalamus differentiates healthy

older adults from those with mild cognitive impairment,

while the T2 midpoint does not. Heterogeneity of T2

may therefore be a marker of structural integrity, which

has potential detect early signs of Alzheimer’s disease

pathology. Although ageing affects T2, even after con-

trolling for age, T2 heterogeneity predicted decline

whereas hippocampal volume and T2 midpoint did not.

Based on the presented T2 relaxometry data, we

propose the following model in Fig. 5 where healthy age-

ing is characterised by a relative dominance of factors that

increase T2 over factors that decrease T2, particularly in

the thalamus. Incipient Alzheimer’s disease may be char-

acterised by additional factors that decrease T2, balancing

out the effects of T2-increasing factors on T2 midpoint to

some extent. This leads to an increasing width of the dis-

tribution of T2 without necessarily changing the midpoint

in prodromal AD. We see this in our MCI cohort, who

are at increased risk of a later diagnosis of AD [39, 40, 50].

In later stages of disease, after a diagnosis of Alzheimer’s

disease, factors that increase T2 may predominate. This

model explains these data and ties together previous

seemingly conflicting literature such as the discrepancy

between human and animal literature of T2 changes due

to Alzheimer’s disease (see supplementary information for

full discussion on this point).

T2-prolonging factors are dominant in healthy ageing

and later stage Alzheimer’s disease

The primary causes of variability in T2 are content and

mobility of water. T2 increases as water mobility increases

[51]. The amount of free water in a region can be partially

attributed to the inverse of the compartmentalisation of

the water, as is caused by cell membrane disruption. As

cells die, whether due to normal ageing processes [16, 17]

or pathology, cell membranes become damaged, thereby

increasing the amount of free water within a tissue [52].

Fig. 3 The ability of hippocampal metrics to predict cognitive change over 1 year. Data shown are partial residual (PR) plots for hippocampal

structural measures predicting follow-up cognitive score, correcting for age and baseline cognition. Y-axes show standardised residuals from

linear regression of age and baseline cognitive score predicting follow-up cognitive score. X-axes also show standardised residuals with the same

predictors, predicting hippocampal T2 midpoint (a), T2 heterogeneity (b) or ICV-corrected volume (c). Solid black lines represent linear regression

slopes with p < .05. Dotted lines represent those with p > .05. Regression lines are shown with ± 95% confidence intervals
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The breakdown of myelinated structures also causes T2 to

increase in white matter and can be caused by both ageing

and Alzheimer’s disease [24, 53–57], as well as other con-

ditions including vascular dementia [58]. This leads to an

increase in T2 both in healthy ageing and in Alzheimer’s

disease, even in early stages, as a result of microstructural

damage. In support of this, this study shows a significantly

longer T2 in the thalamus of Alzheimer’s disease patients

compared to healthy controls, as well as in cognitively

normal older people.

Additionally, we show that T2 heterogeneity is pre-

dicted by age in both the thalamus and hippocampus, an

effect that would be expected from uneven increases in

T2 across the region. However, T2 does not appear to

increase significantly in the hippocampus either with age

or disease progression, except perhaps at later stages of

the disease course, after a diagnosis of Alzheimer’s dis-

ease. One explanation is that the increase in T2 is bal-

anced out in the hippocampus by T2-shortening factors

that are present even prior to MCI diagnosis. This is dis-

cussed further in the following sections.

T2-shortening factors may indicate pathology beyond the

effects of ageing

Dense protein structures (e.g. Aβ, NFTs) and paramag-

netic materials (e.g. iron) cause T2 to decrease due to an

increased macromolecule-to-water ratio and the restric-

tion of water motility in the extracellular space. Neuro-

pathology defined by overexpression of such factors might

therefore be expected to decrease T2 in localised regions

of deposition. In the case of Alzheimer’s pathology, this

would occur in the hippocampus and thalamus, balancing

out the T2-prolonging factors discussed previously. In

support of this, this study shows a substantial increase in

distribution width of T2 in both hippocampus and thal-

amus, after correcting for age, in people with MCI com-

pared to healthy controls. Furthermore, the study also

shows no increase of T2 midpoint in MCI compared to

controls, a result to be expected given counteracting fac-

tors increasing and decreasing T2.

The described model is further supported by a previ-

ous study by Su et al. [59]. The cross-sectional results of

their study revealed that Alzheimer’s disease patients

Fig. 4 Linear regressions for age predicting T2 model descriptive parameters in hippocampus and thalamus. Regressions shown are between age

and hippocampal T2μ (a), thalamic T2μ (b), hippocampal T2σ (c), thalamic T2σ (d), hippocampal volume (e) and thalamic volume (f). All volumes

were normalised to ICV. Solid black lines represent linear regression slopes with p < .05. Dashed lines represent those with p > .05. Regression lines

are shown with ± 95% confidence intervals
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had significantly reduced T2 compared to healthy con-

trols. However, longitudinally, T2 in Alzheimer’s disease

patients was seen to increase. The currently presented

model explains these results in terms of a shift in the

dominance of factors that increase or decrease T2

throughout the progression of Alzheimer’s disease.

Macromolecular pathological hallmarks cause T2 to de-

crease in the first instance, which later causes physical

damage to the structure, causing T2 to increase as the

disease progresses (Fig. 6), as is seen in the majority of

studies on T2 in Alzheimer’s disease [26–30].

There is, of course, considerable debate as to the role

of plaques in Alzheimer’s disease pathology (for a review

see [60]) and some question as to the disease-specificity

of iron accumulation [36, 61]. Indeed, plaques have been

found in the brains of many people without any other

sign of Alzheimer’s disease, particularly in the hippo-

campus [62, 63]. Oligomeric Aβ, however, could still

have T2-shortening effects in the brains of people with

early Alzheimer’s disease. The presence of some T2-

shortening factors even in those with no Alzheimer’s

disease-specific pathology could explain the lack of cor-

relation between hippocampal T2 midpoint and age in

healthy control participants. In further support of this,

we do see a strong correlation between T2 midpoint and

age in the thalamus, a region which is less likely to

display pathology in a healthy control cohort [14, 63].

This is discussed further in supplementary information.

T2-shortening could also be caused by iron in microglia

which are recruited in response to inflammation. Al-

though inflammation is a factor in Alzheimer’s disease,

Fig. 5 Schematic diagram of T2 distribution profiles in ageing and Alzheimer’s disease. Midpoint values for each hypothetical distribution are

represented by orange bars and ‘μ’ markers on each x-axis. Green and red arrows represent factors that increase or decrease T2, respectively. The

number of arrows represents the relative dominance of each effect. In summary, the model suggests that factors that increase T2 are present in

both healthy ageing and Alzheimer’s pathology; however, factors that decrease T2 are more dominant in Alzheimer’s disease. Early Alzheimer’s

disease pathology is characterised by an increase the distribution without an increase in the midpoint

Fig. 6 Theoretical model of T2 dynamics in a single voxel in the

brain throughout the course of Alzheimer’s disease. A given region

in the brain of someone with incipient Alzheimer’s disease would

consist of many voxels at different stages of this curve, depending

on the degree of Alzheimer’s pathology in a given location. This

heterogeneity is what will cause the average or midpoint T2 to

remain relatively static, and the distribution width to increase, until

very late stages when all voxels reach the ‘high T2’ state
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it could also be present in response to comorbidities like

cardiovascular disease [64]. Conversely, cardiovascular

disease could also reduce blood flow to the brain, poten-

tially reducing the iron and causing T2 to increase. Un-

fortunately, amyloid and iron status of the current

studies’ participants were not available, so the higher

number of voxels with low T2 cannot be directly attrib-

uted to either factor. Future work could aim to coloca-

lise areas of low T2 with Aβ, for example with positron

emission tomography (PET), and brain iron levels by

measuring field dependent relaxation rate increase

(FDRI) as was conducted by Raven et al. [65].

Despite some presence of Aβ and iron in healthy age-

ing, various studies suggest that the two factors combine

in Alzheimer’s pathology, leading to the much greater

T2-shortening effects seen in Alzheimer’s disease. A

study by El Tannir El Tayara et al. [23] showed that T2

in the hippocampus (specifically in the subiculum) was

decreased in a mouse model of Alzheimer’s disease that

produced amyloid deposits (APP/PS1), compared to an-

other model that does not form such deposits (PS1).

The authors attribute this, at least in part, to the coloca-

lization of amyloid and iron. Such histological colocali-

zation has also been reported by Falangola et al. [66].

Excess iron can not only contribute to oxidative stress in

and of itself, but can also contribute to Aβ and NFT

misfolding [67], thereby exacerbating Alzheimer’s path-

ology. Numerous studies are supportive of the idea that

a combination of iron and Aβ cause significant T2 short-

ening [23, 35, 66, 68–73]. This also has implications for

Lewy body diseases such as Parkinson’s disease, which is

also characterised by increased iron deposition [36].

Potential clinical utility of T2 relaxometry

Understanding T2 dynamics in preclinical Alzheimer’s

disease and healthy ageing offers the potential for great

clinical benefit. If Alzheimer’s pathology can be detected

using MRI prior to the onset of hippocampal atrophy,

significant change in cognition, or loss of daily inde-

pendence, patients may receive treatment much earl-

ier—at a stage where neurodegenerative damage is

preventable or even reversible. Additionally, as our pilot

data show [25], T2 heterogeneity outperforms more

traditional measures of microstructural integrity in the

identifying pathology.

In this study, we show that T2 heterogeneity can pre-

dict cognitive decline in the MCI group where volume

and T2 midpoint cannot. This effect was significant after

regressing out the effect of age suggesting that it does

relate to pathology or other age-independent brain

changes. Furthermore, any test-retest variability in the

cognitive tests used would likely only introduce noise ra-

ther than systematic bias. We therefore believe this re-

sult to be robust.

Hippocampal volume is the one of the most widely

studied and effective predictors of cognitive decline (for

a review, see de Flores et al. [74]). However, rather than

measuring pathology itself, volumetry measures tissue

atrophy, a consequence of pathology. T2 increases also

measure consequences of pathology, in the form of in-

creased regional CSF, oedema or cell membrane break-

down; however, it is a more sensitive measure and may

indicate subtle damage before macroscopic atrophy is

detectable. Furthermore, T2 decreases may measure key

features of Alzheimer’s pathology itself, such as iron, Aβ

and NFT deposition that can occur before hippocampal

shrinkage [75]. Measuring T2 heterogeneity allows these

opposing factors to be considered, as they may indicate

slightly damaged tissue that has the potential for thera-

peutic rescue. Measuring T2 distribution width com-

pared to age-corrected normative data may be indicative

of physical damage beyond what should be expected for

a given age. Given systematic differences in T2 between

pulse sequences (as seen in Supplementary Tables 1–4),

exact normative data would have to be standardised for

a given sequence. However, as we see consistent results

across two cohorts with two different pulse sequences,

we expect these results to be highly generalisable across

sequences. These markers may compliment or even sur-

pass volumetry in predicting future cognitive decline. As

neuroimaging, often MRI, is part of routine clinical

screening processes for neurological disease, this method

is highly practical and easily translatable.

It is important to highlight that even though our re-

sults are largely discussed in the context of AD, an in-

crease in the distribution of T2 is likely not specific to

AD per se, but rather may be a highly versatile novel

measure of microstructural integrity that can be applied

to the diagnosis of many diseases. It is likely to be par-

ticularly useful in any disease characterised by factors

which both increase and decrease T2, in which changes

in T2 midpoint would be masked. This may include

many neurodegenerative disorders, particularly those

where age is a risk factor, such as dementia with Lewy

bodies, Parkinson’s disease or vascular dementia. MCI is

also a risk factor for these disorders [76, 77], and path-

ology for these conditions is likely present within our

MCI population. As with any structural measure, it will

be the spatial and temporal patterns of microstructural

changes throughout the brain which may be specific to a

given disease. This study focused on the MTL and thal-

amus in groups with high risk of AD pathology, thus dis-

cussion centres mostly around AD. However, non-AD

disease pathology may also be present in our MCI co-

hort also causing increased T2 heterogeneity in the

hippocampus and/or thalamus.

With further research to characterise the pattern of

microstructural changes in T2 distribution and volume
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within the brain, perhaps by looking in closer detail at

subfields of the MTL, T2 heterogeneity may be used to

develop more specific diagnostic criteria early on in the

disease process. If this is the case, MRI may become a

non-invasive alternative to CSF biomarker analysis and a

cheaper option than amyloid or tau PET scanning, both

of which can detect very early AD pathology [78, 79].

Furthermore, although CSF biomarkers provide a good

overview of the presence of pathology, T2 heterogeneity

allows direct quantification of tissue which, although

damaged, may stand a chance of therapeutic rescue, and

may therefore predict treatment efficacy on a patient by

patient basis. The combined value of T2 heterogeneity

and CSF biomarkers is, of course, an exciting avenue for

future research.

In addition to the clinical utility of T2 heterogeneity

described here, T2 heterogeneity also has potential for

use in basic and translational research. Current studies

of the function of human hippocampus and its constitu-

ent subfields, for example, often involve assessing rela-

tionships with volume, despite limitations of the ‘bigger

is better’ hypothesis (see review by Petten [80]). T2 het-

erogeneity may be used to identify tissue that is extant

but dysfunctional, which may otherwise confound volu-

metry, leading to more accurate assessment of the

amount of ‘healthy’ tissue present. This, of course, has

the potential for application to other brain areas and

may contribute to an overall better understanding of

brain-behaviour relationships in health and disease.

Limitations

With the exception of some of those who have actually

received a clinical diagnosis of Alzheimer’s disease in

study 1, the amyloid status of these participants is un-

known. Amyloid (measured either in CSF or using PET)

is one of the most commonly used biomarkers to in-

crease certainty of the presence of Alzheimer’s disease

pathology. Those who present with mild cognitive

impairment often are only classified as MCI based on

presentation of cognitive symptoms. Such cognitive

impairment could be caused by factors other than

Alzheimer’s pathology, including other dementias,

stroke, pharmaceutical side effects and sleep problems to

name a few. Further work is required to understand the

ability of T2 heterogeneity to rule out causes of MCI not

related to dementia.

Secondly, although we present results in a relatively

large sample of healthy older controls and people with

MCI, we are limited by our small sample of Alzheimer’s

disease patients. This is primarily because they were only

recruited as a part of study 1. This limits the statistical

significance of some of the effects that we describe, and

therefore conclusions from this group are slightly tenta-

tive. This is acknowledged throughout interpretation of

these results, which we expect to be reproducible with a

larger sample size. The lack of any observed statistical

difference between MCI and AD groups is also further

discussed in supplementary information.

Thirdly, this study combines two distinct participant

cohorts, the methodology of which differ in two key

ways: (i) the test used to measure general cognitive abil-

ity (study 1: MoCA; study 2: ACE-III) and (ii) the MRI

sequence used to quantitatively assess T2 (study 1: 10-

echo CPMG; study 2: 3-echo TSE). For these data, we

have normalised within-cohort (calculated Z scores) and

combined data after normalisation. Given that the co-

horts are similar in almost every other way, and these

methods are purported to measure the same underlying

principles, the benefits of a larger sample size provide

ample justification for combining cohorts as we have

done.

Finally, the only regions studied here, hippocampus

and thalamus, are both regions known to be affected by

Alzheimer’s pathology at early stages. Future studies

would benefit from exploring T2 dynamics in other

brain regions, including those that are not directly impli-

cated in early Alzheimer’s disease. This is not possible

with existing data for either study 1 or study 2, as the

multi-echo T2 scans acquired do not cover the whole

brain. Future analyses should also focus on subdivisions

in these regions, such as T2 differences between MTL

subfields and across individual thalamic nuclei, which

have different susceptibility to AD pathology.

Conclusions
In this paper, we show that T2 heterogeneity is a good

measure of microstructural integrity of brain tissue. We

propose a model (Fig. 5) that suggests factors that in-

crease T2 are indicative of microstructural damage but

are not necessarily specific signs of Alzheimer’s path-

ology. Rather, factors that decrease T2 are prevalent in

Alzheimer’s pathology and may occur in the earliest

stages of disease (Fig. 6). These two opposing forces act

to balance out the mean in prodromal Alzheimer’s dis-

ease, causing varied results in the human literature. The

model makes specific and testable predictions about the

temporal dynamics of T2 alterations throughout ageing

and prodromal Alzheimer’s disease. It also highlights po-

tential early indicators of Alzheimer’s disease, allowing

Alzheimer’s disease-related cognitive decline to be dis-

tinguished from that seen in healthy ageing. We show

that T2 heterogeneity surpasses midpoint T2 and the

more established measure of volumetry in predicting

cognitive decline in those with MCI.

This study represents one of the first studies of T2

heterogeneity within the brain in MCI and Alzheimer’s

disease, and the first to show its utility in predicting cog-

nitive decline.

Wearn et al. Alzheimer's Research & Therapy          (2020) 12:105 Page 11 of 14



Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s13195-020-00672-9.

Additional file 1: Supplementary information. Supplementary

Table 1. Study 1 cohort information. Supplementary Table 2. Study 2

cohort information. Supplementary Table 3. Multivariate ANOVA results

for testing between-study differences in raw volume and T2 data. Sup-

plementary Table 4. Multivariate ANOVA results for testing between-

study differences in volume and T2 data after being normalised to each

study’s healthy control group. Supplementary Table 5. ANCOVA results

for predicting brain structural measures correcting for age and gender.

Acknowledgements

The authors wish to thank Join Dementia Research and the Avon and

Wiltshire Mental Health Partnership for their assistance with participant

recruitment. We also wish to thank those who have helped collect data for

the projects (Emma Hadley, Ellen Gaaikema, Lucy Adams, Candida Stainer,

Ben Kershaw and Bryony McCann), Aileen Wilson for her help conducting

MRI scans, and all the volunteers who gave up their time to take part in our

studies.

Authors’ contributions

This manuscript was written and cognitive testing protocol designed by A.W.

and E.C. Imaging protocols were set up by R. K and M.K. M.K. also set up

imaging analysis pipelines which were later managed by A.W. Cognitive

testing, scoring and imaging was carried out by A.W., V.N., E.S-J., H.I., S.D. and

D.T. The authors read and approved the final manuscript.

Funding

This study was funded by Alzheimer’s Research UK, BRACE and Wellcome

(109067/Z/15/AI).

Availability of data and materials

The datasets used during the current study are available from the

corresponding author on reasonable request.

Ethics approval and consent to participate

All patients provided informed written consent prior to testing. Ethical

approval was given by Frenchay NHS Research Ethics Committee.

Consent for publication

Not applicable

Competing interests

We declare that none of the authors have competing financial or non-

financial interests.

Author details
1Bristol Medical School, University of Bristol, Bristol, UK. 2Institute of Clinical

Neurosciences, North Bristol NHS Trust, Bristol, UK. 3School of Psychological

Science, University of Bristol, Bristol, UK.

Received: 28 May 2020 Accepted: 25 August 2020

References

1. Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development

pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6(4):37.

2. Alzheimer's Association. 2015 Alzheimer’s disease facts and figures.

Alzheimers Dement. 2015;11(3):332–84.

3. Teipel SJ, Grothe M, Lista S, Toschi N, Garaci FG, Hampel H. Relevance of

magnetic resonance imaging for early detection and diagnosis of Alzheimer

disease. Med Clin North Am. 2013;97(3):399–424.

4. Jack CR, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, Stewart K, et al.

MRI as a biomarker of disease progression in a therapeutic trial of

milameline for AD. Neurology. 2003;60(2):253–60.

5. Jack CR, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, Knopman DS, et al.

Comparison of different MRI brain atrophy rate measures with clinical

disease progression in AD. Neurology. 2004;62(4):591–600.

6. Jack CR, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, et al. Prediction

of AD with MRI-based hippocampal volume in mild cognitive impairment.

Neurology. 1999;52(7):1397–403.

7. Jack CR, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, et al. Rates of

hippocampal atrophy correlate with change in clinical status in aging and

AD. Neurology. 2000;55(4):484–89.

8. Henneman WJP, Sluimer JD, Barnes J, WMvd F, Sluimer IC, Fox NC, et al.

Hippocampal atrophy rates in Alzheimer disease. Neurology. 2009;72(11):

999–1007.

9. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain

atrophy and cognitive decline in AD. Neurology. 1999;52(8):1687–9.

10. Fleisher AS, Sun S, Taylor C, Ward CP, Gamst AC, Petersen RC, et al.

Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive

impairment. Neurology. 2008;70(3):191–9.

11. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes.

Acta Neuropathol. 1991;82(4):239–59.

12. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary

changes. Neurobiol Aging. 1995;16(3):271–8.

13. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25

years. EMBO Mol Med. 2016;8(6):595–608.

14. Thal DR, Rüb U, Orantes M, Braak H. Phases of A-Beta-deposition in the

human brain and its relevance for the development of AD. Neurology. 2002;

58(12):1791–800.

15. Smith MA, Zhu X, Tabaton M, Liu G, Jr DWM, Cohen ML, et al. Increased

iron and free radical generation in preclinical Alzheimer disease and mild

cognitive impairment. J Alzheimers Dis 2010;19(1):363–372.

16. LAvd P, Hensel A, Barkhof F, Gertz HJ, Scheltens P, WMvd F.

Hippocampal atrophy in Alzheimer disease: age matters. Neurology.

2006;66(2):236–8.

17. Golomb J, MJd L, Kluger A, George AE, Tarshish C, Ferris SH. Hippocampal

atrophy in normal aging: an association with recent memory impairment.

Arch Neurol. 1993;50(9):967–73.

18. Frisoni GB, Ganzola R, Canu E, Rüb U, Pizzini FB, Alessandrini F, et al.

Mapping local hippocampal changes in Alzheimer’s disease and normal

ageing with MRI at 3 Tesla. Brain. 2008;131(12):3266–76.

19. Symms M, Jäger HR, Schmierer K, Yousry TA. A review of structural

magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry. 2004;

75(9):1235–44.

20. Hardy PA, Gash D, Yokel R, Andersen A, Ai Y, Zhang Z. Correlation of R2

with total iron concentration in the brains of rhesus monkeys. J Magn

Reson Imaging. 2005;21(2):118–27.

21. Jara H, Sakai O, Mankal P, Irving RP, Norbash AM. Multispectral quantitative

magnetic resonance imaging of brain iron stores. Top Magn Reson Imaging.

2006;17(1):19–30.

22. Meadowcroft MD, Peters DG, Dewal RP, Connor JR, Yang QX. The effect of

iron in MRI and transverse relaxation of amyloid-beta plaques in Alzheimer’s

disease. NMR Biomed. 2015;28(3):297–305.

23. El Tannir El Tayara N, Delatour B, Cudennec CL, Guégan M, Volk A, Dhenain

M. Age-related evolution of amyloid burden, iron load, and MR relaxation

times in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis.

2006;22(1):199–208.

24. Knight MJ, McCann B, Tsivos D, Dillon S, Coulthard E, Kauppinen RA.

Quantitative T2 mapping of white matter: applications for ageing and

cognitive decline. Phys Med Biol. 2016;61(15):5587–605.

25. Knight MJ, Wearn A, Coulthard E, Kauppinen RA. T2 relaxometry and

diffusion tensor indices of the hippocampus and entorhinal cortex improve

sensitivity and specificity of MRI to detect amnestic mild cognitive

impairment and Alzheimer’s disease dementia. J Magn Reson Imaging.

2019;49(2):445–55.

26. Kirsch SJ, Jacobs RW, Butcher LL, Beatty J. Prolongation of magnetic

resonance T2 time in hippocampus of human patients marks the presence

and severity of Alzheimer’s disease. Neurosci Lett. 1992;134(2):187–90.

27. Wang H, Yuan H, Shu L, Xie J, Zhang D. Prolongation of T2 relaxation times

of hippocampus and amygdala in Alzheimer’s disease. Neurosci Lett. 2004;

363(2):150–3.

28. Laakso MP, Partanen K, Soininen H, Lehtovirta M, Hallikainen M, Hänninen T,

et al. MR T2 relaxometry in Alzheimer’s disease and age-associated memory

impairment. Neurobiol Aging. 1996;17(4):535–40.

29. Pitkänen A, Savander V, LeDoux JE. Organization of intra-amygdaloid

circuitries in the rat: an emerging framework for understanding functions of

the amygdala. Trends Neurosci. 1997;20(11):517–23.

Wearn et al. Alzheimer's Research & Therapy          (2020) 12:105 Page 12 of 14

https://doi.org/10.1186/s13195-020-00672-9
https://doi.org/10.1186/s13195-020-00672-9


30. Dawe RJ, Bennett DA, Schneider JA, Leurgans SE, Kotrotsou A, Boyle PA,

et al. Ex vivo T2 relaxation: associations with age-related neuropathology

and cognition. Neurobiol Aging. 2014;35(7):1549–61.

31. Luo Z, Zhuang X, Kumar D, Wu X, Yue C, Han C, et al. The correlation of

hippocampal T2-mapping with neuropsychology test in patients with

Alzheimer’s disease. PLoS One. 2013;8(9):e76203.

32. House MJ, Pierre STG, Foster JK, Martins RN, Clarnette R. Quantitative MR

imaging R2 relaxometry in elderly participants reporting memory loss. AJNR

Am J Neuroradiol. 2006;27(2):430–9.

33. Campeau NG, Petersen RC, Felmlee JP, O’Brien PC, Jack CR. Hippocampal

transverse relaxation times in patients with Alzheimer disease. Radiology.

1997;205(1):197–201.

34. Tang X, Cai F, Ding D-X, Zhang L-L, Cai X-Y, Fang Q. Magnetic

resonance imaging relaxation time in Alzheimer’s disease. Brain Res Bull.

2018;140:176–89.

35. MJ H, Pierre TGS, McLean C. 1.4T study of proton magnetic relaxation rates,

iron concentrations, and plaque burden in Alzheimer’s disease and control

postmortem brain tissue. Magn Reson Med. 2008;60(1):41–52.

36. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in

brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;

13(10):1045–60.

37. Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J. Pattern of brain

destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm. 1996;

103(4):455–90.

38. Norton TJT, Pereyra M, Knight MJ, McGarry BM, Jokivarsi KT, Gröhn OHJ,

et al. Stroke onset time determination using MRI relaxation times without

non-ischaemic reference in a rat stroke model. Biomed Spectroscopy

Imaging. 2017;6(1–2):25–35.

39. Roberts R, Knopman DS. Classification and epidemiology of MCI. Clin Geriatr

Med. 2013;29(4):753–72.

40. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild

cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447–55.

41. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The

diagnosis of mild cognitive impairment due to Alzheimer’s disease:

recommendations from the National Institute on Aging-Alzheimer’s

Association workgroups on diagnostic guidelines for Alzheimer’s disease.

Alzheimers Dement. 2011;7(3):270–9.

42. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I,

et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for

mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

43. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH,

et al. The diagnosis of dementia due to Alzheimer’s disease:

recommendations from the National Institute on Aging-Alzheimer’s

association workgroups on diagnostic guidelines for Alzheimer’s disease.

Alzheimers Dement. 2011;7(3):263–9.

44. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;

17(3):143–55.

45. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a

hidden Markov random field model and the expectation-maximization

algorithm. IEEE Trans Med Imaging. 2001;20(1):45.

46. Yushkevich PA, Pluta JB, Wang H, Xie L. Automated volumetry and regional

thickness analysis of hippocampal subfields and medial temporal cortical

structures in mild cognitive impairment. Hum Brain Mapp. 2015;36(1):256–87.

47. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A

computational atlas of the hippocampal formation using ex vivo, ultra-high

resolution MRI: application to adaptive segmentation of in vivo MRI.

NeuroImage. 2015;115(Prog Brain Res 163 2007):117–37.

48. de Castro F. fitmethis. MATLAB Central File Exchange; 2020.

49. Mutz DC, Pemantle R, Pham P. The perils of balance testing in experimental

design: messy analyses of clean data. Am Statistician. 2018;73(1):32–42.

50. Fischer P, Jungwirth S, Zehetmayer S, Weissgram S, Hoenigschnabl S, Gelpi

E, et al. Conversion from subtypes of mild cognitive impairment to

Alzheimer dementia. Neurology. 2007;68(4):288–91.

51. Kamman RL, Go KG, Brouwer W, Berendsen HJC. Nuclear magnetic

resonance relaxation in experimental brain edema: effects of water

concentration, protein concentration, and temperature. Magn Reson Med.

1988;6(3):265–74.

52. Besson JAO, Best PV, Skinner ER. Post-mortem proton magnetic resonance

spectrometric measures of brain regions in patients with a pathological

diagnosis of Alzheimer’s disease and multi-infarct dementia. Br J Psychiatry.

1992;160(2):187–90.

53. Alonso-Ortiz E, Levesque IR, Pike GB. MRI-based myelin water imaging: a

technical review. Magn Reson Med. 2015;73(1):70–81.

54. Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, Cummings JL.

Heterogeneous age-related breakdown of white matter structural integrity:

implications for cortical “disconnection” in aging and Alzheimer’s disease.

Neurobiol Aging. 2004;25(7):843–51.

55. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A. Maturation of

white matter in the human brain: a review of magnetic resonance studies.

Brain Res Bull. 2001;54(3):255–66.

56. Bartzokis G, Lu PH, Geschwind DH, Edwards N, Mintz J, Cummings JL.

Apolipoprotein E genotype and age-related myelin breakdown in healthy

individuals: implications for cognitive decline and dementia. Arch Gen

Psychiatry. 2006;63(1):63–72.

57. Bartzokis G. Alzheimer’s disease as homeostatic responses to age-related

myelin breakdown. Neurobiol Aging. 2011;32(8):1341–71.

58. Bouhrara M, Reiter DA, Bergeron CM, Zukley LM, Ferrucci L, Resnick SM, et al.

Evidence of demyelination in mild cognitive impairment and dementia using

a direct and specific magnetic resonance imaging measure of myelin content.

Alzheimer’s Dementia J Alzheimer’s Assoc. 2018;14(8):998–1004.

59. Su L, Blamire AM, Watson R, He J, Aribisala B, O’Brien JT. Cortical and

subcortical changes in Alzheimer’s disease: a longitudinal and quantitative

MRI study. Curr Alzheimer Res. 2016;13(5):534–44.

60. Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding

the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathologica

Communications. 2014;2(1):135.

61. Castellani RJ, Moreira PI, Perry G, Zhu X. The role of iron as a mediator of

oxidative stress in Alzheimer disease. BioFactors. 2012;38(2):133–8.

62. Davis DG, Schmitt FA, Wekstein DR, Markesbery WR. Alzheimer

neuropathologic alterations in aged cognitively normal subjects. J

Neuropathol Exp Neurol. 1999;58(4):376–88.

63. Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type

pathologic changes in nondemented elderly individuals matches the

pattern in Alzheimer’s disease. Neurology. 1992;42(9):1681.

64. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-

Serrano A. Microglia in Neurological Diseases: A Road Map to Brain-Disease

Dependent-Inflammatory Response. Front Cell Neurosci. 2018;12:488.

65. Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G. Increased iron levels and

decreased tissue integrity in hippocampus of Alzheimer’s disease detected

in vivo with magnetic resonance imaging. J Alzheimers Dis. 2013;37(1):127–36.

66. Falangola MF, Lee S-P, Nixon RA, Duff K, Helpern JA. Histological co-

localization of iron in Aß plaques of PS/APP transgenic mice. Neurochem

Res. 2005;30(2):201–5.

67. Sayre LM, Perry G, Harris PLR, Liu Y, Schubert KA, Smith MA. In situ oxidative

catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease.

J Neurochem. 2000;74(1):270–9.

68. Falangola MF, Dyakin VV, Lee SP, Bogart A, Babb JS, Duff K, et al.

Quantitative MRI reveals aging-associated T2 changes in mouse models of

Alzheimer’s disease. NMR Biomed. 2007;20(3):343–51.

69. Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, et al. In vivo

evaluation of brain iron in Alzheimer’s disease and normal subjects using

MRI. Biol Psychiatry. 1994;35(7):480–7.

70. Helpern JA, Lee SP, Falangola MF, Dyakin VV, Bogart A, Ardekani B, et al. MRI

assessment of neuropathology in a transgenic mouse model of Alzheimer’s

disease. Magn Reson Med. 2004;51(4):794–8.

71. Qin Y, Zhu W, Zhan C, Zhao L, Wang J, Tian Q, et al. Investigation on

positive correlation of increased brain iron deposition with cognitive

impairment in Alzheimer disease by using quantitative MR R2′ mapping. J

Huazhong Univ Sci Technol. 2011;31(4):578.

72. Teipel SJ, Kaza E, Hadlich S, Bauer A, Brüning T, Plath A-S, et al. Automated

detection of amyloid-β-related cortical and subcortical signal changes in a

transgenic model of Alzheimer’s disease using high-field MRI. J Alzheimers

Dis. 2011;23(2):221–37.

73. Savory J, Ghribi O, Herman MM. Is amyloid β-peptide neurotoxic or

neuroprotective and what is its role in the binding of metal ions? Neurobiol

Aging. 2002;23(6):1089–92.

74. de Flores R, La Joie R, Chételat G. Structural imaging of hippocampal subfields

in healthy aging and Alzheimer’s disease. Neuroscience. 2015;309:29–50.

75. Jack CR, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, et al. 11C

PiB and structural MRI provide complementary information in imaging of

Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008;

131(3):665–80.

Wearn et al. Alzheimer's Research & Therapy          (2020) 12:105 Page 13 of 14



76. Stirling Meyer J, Huang J, Chowdhury MH. MRI confirms mild cognitive

impairments prodromal for Alzheimer’s, vascular and Parkinson-Lewy body

dementias. J Neurol Sci. 2007;257(1–2):97–104.

77. Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment

to dementia – meta-analysis of 41 robust inception cohort studies. Acta

Psychiatr Scand. 2009;119(4):252–65.

78. Ben-Shlomo Y, Kuh D. A life course approach to chronic disease

epidemiology: conceptual models, empirical challenges and interdisciplinary

perspectives. Int J Epidemiol. 2002;31(2):285–93.

79. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L.

Association between CSF biomarkers and incipient Alzheimer’s disease in

patients with mild cognitive impairment: a follow-up study. Lancet Neurol.

2006;5(3):228–34.

80. Petten CV. Relationship between hippocampal volume and memory ability

in healthy individuals across the lifespan: review and meta-analysis.

Neuropsychologia. 2004;42(10):1394–413.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Wearn et al. Alzheimer's Research & Therapy          (2020) 12:105 Page 14 of 14


	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Participants
	Imaging parameters
	Study 1
	Study 2

	Imaging analyses
	Modelling T2 heterogeneity
	Statistical analysis

	Results
	Model fitting to describe T2 distribution characteristics
	T2 heterogeneity, but not midpoint, differentiates healthy older adults from those with MCI
	T2 midpoint (μ)
	T2 heterogeneity (σ)
	Volume

	T2 heterogeneity predicts cognitive decline in mild cognitive impairment
	Effects of age on T2 relaxometry and volume in individuals with normal cognition
	T2 midpoint (μ)
	T2 heterogeneity (σ)
	Volume


	Discussion
	T2-prolonging factors are dominant in healthy ageing and later stage Alzheimer’s disease
	T2-shortening factors may indicate pathology beyond the effects of ageing
	Potential clinical utility of T2 relaxometry
	Limitations

	Conclusions
	Supplementary information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

