
Published as a conference paper at ICLR 2020

TABFACT: A LARGE-SCALE DATASET FOR TABLE-

BASED FACT VERIFICATION

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang,
Shiyang Li, Xiyou Zhou, William Yang Wang
University of California, Santa Barbara, CA, USA
Tencent AI Lab, Bellevue, WA, USA
{wenhuchen,hongmin wang,yunkai zhang,hongwang600,william}@ucsb.edu
{shiyangli,xiyou}@cs.ucsb.edu jianshuchen@tencent.com

ABSTRACT

The problem of verifying whether a textual hypothesis holds based on the given
evidence, also known as fact verification, plays an important role in the study of
natural language understanding and semantic representation. However, existing
studies are mainly restricted to dealing with unstructured evidence (e.g., natu-
ral language sentences and documents, news, etc), while verification under struc-
tured evidence, such as tables, graphs, and databases, remains under-explored.
This paper specifically aims to study the fact verification given semi-structured
data as evidence. To this end, we construct a large-scale dataset called TabFact
with 16k Wikipedia tables as the evidence for 118k human-annotated natural lan-
guage statements, which are labeled as either ENTAILED or REFUTED. TabFact
is challenging since it involves both soft linguistic reasoning and hard symbolic
reasoning. To address these reasoning challenges, we design two different mod-
els: Table-BERT and Latent Program Algorithm (LPA). Table-BERT leverages
the state-of-the-art pre-trained language model to encode the linearized tables
and statements into continuous vectors for verification. LPA parses statements
into programs and executes them against the tables to obtain the returned binary
value for verification. Both methods achieve similar accuracy but still lag far be-
hind human performance. We also perform a comprehensive analysis to demon-
strate great future opportunities. The data and code of the dataset are provided in
https://github.com/wenhuchen/Table-Fact-Checking.

1 INTRODUCTION

Verifying whether a textual hypothesis is entailed or refuted by the given evidence is a fundamental
problem in natural language understanding (Katz & Fodor, 1963; Van Benthem et al., 2008). It
can benefit many downstream applications like misinformation detection, fake news detection, etc.
Recently, the first-ever end-to-end fact-checking system has been designed and proposed in Hassan
et al. (2017). The verification problem has been extensively studied under different natural language
tasks such as recognizing textual entailment (RTE) (Dagan et al., 2005), natural language inference
(NLI) (Bowman et al., 2015), claim verification (Popat et al., 2017; Hanselowski et al., 2018; Thorne
et al., 2018) and multimodal language reasoning (NLVR/NLVR2) (Suhr et al., 2017; 2019). RTE
and NLI view a premise sentence as the evidence, claim verification views passage collection like
Wikipedia1 as the evidence, NLVR/NLVR2 views images as the evidence. These problems have
been previously addressed using a variety of techniques including logic rules, knowledge bases, and
neural networks. Recently large-scale pre-trained language models (Devlin et al., 2019; Peters et al.,
2018; Yang et al., 2019; Liu et al., 2019) have surged to dominate the other algorithms to approach
human performance on several textual entailment tasks (Wang et al., 2018; 2019).

However, existing studies are restricted to dealing with unstructured text as the evidence, which
would not generalize to the cases where the evidence has a highly structured format. Since such
structured evidence (graphs, tables, or databases) are also ubiquitous in real-world applications like

1https://www.wikipedia.org/

1

https://github.com/wenhuchen/Table-Fact-Checking
https://www.wikipedia.org/

Published as a conference paper at ICLR 2020

District Incumbent Party Result Candidates

California 3 John E. Moss democratic re-elected John E. Moss (d) 69.9% John Rakus (r) 30.1%

California 5 Phillip Burton democratic re-elected Phillip Burton (d) 81.8% Edlo E. Powell (r) 18.2%

California 8 George Paul Miller democratic lost renomination democratic hold Pete Stark (d) 52.9% Lew M. Warden , Jr. (r) 47.1%

California 14 Jerome R. Waldie republican re-elected Jerome R. Waldie (d) 77.6% Floyd E. Sims (r) 22.4%

California 15 John J. Mcfall republican re-elected John J. Mcfall (d) unopposed

1. John E. Moss and Phillip Burton are both re-elected in the

house of representative election.

2. John J. Mcfall is unopposed during the re-election.

3. There are three different incumbents from democratic.

1. John E. Moss and George Paul Miller are both re-elected in the house

of representative election.

2. John J. Mcfall failed to be re-elected though being unopposed.

3. There are five candidates in total, two of them are democrats and

three of them are republicans.

United States House of Representatives Elections, 1972

Entailed Statement Refuted Statement

Figure 1: Examples from the TABFACT dataset. The top table contains the semi-structured knowl-
edge facts with caption ”United...”. The left and right boxes below provide several entailed and
refuted statements. The error parts are highlighted with red font.

database systems, dialog systems, commercial management systems, social networks, etc, we argue
that the fact verification under structured evidence forms is an equivalently important yet under-
explored problem. Therefore, in this paper, we are specifically interested in studying fact verification
with semi-structured Wikipedia tables (Bhagavatula et al., 2013)2 as evidence owing to its structured
and ubiquitous nature (Jauhar et al., 2016; Zhong et al., 2017; Pasupat & Liang, 2015). To this end,
we introduce a large-scale dataset called TABFACT, which consists of 118K manually annotated
statements with regard to 16K Wikipedia tables, their relations are classified as ENTAILED and
REFUTED3. The entailed and refuted statements are both annotated by human workers. With some
examples in Figure 1, we can clearly observe that unlike the previous verification related problems,
TABFACT combines two different forms of reasoning in the statements, (i) Linguistic Reasoning:
the verification requires semantic-level understanding. For example, “John J. Mcfall failed to be
re-elected though being unopposed.” requires understanding over the phrase “lost renomination ...”
in the table to correctly classify the entailment relation. Unlike the existing QA datasets (Zhong
et al., 2017; Pasupat & Liang, 2015), where the linguistic reasoning is dominated by paraphrasing,
TABFACT requires more linguistic inference or common sense. (ii) Symbolic Reasoning: the verifi-
cation requires symbolic execution on the table structure. For example, the phrase “There are three
Democrats incumbents” requires both condition operation (where condition) and arithmetic oper-
ation (count). Unlike question answering, a statement could contain compound facts, all of these
facts need to be verified to predict the verdict. For example, the ”There are ...” in Figure 1 requires
verifying three QA pairs (total count=5, democratic count=2, republic count=3). The two forms of
reasoning are interleaved across the statements making it challenging for existing models.

In this paper, we particularly propose two approaches to deal with such mixed-reasoning challenge:
(i) Table-BERT, this model views the verification task completely as an NLI problem by linearizing a
table as a premise sentence p, and applies state-of-the-art language understanding pre-trained model
to encode both the table and statements h into distributed representation for classification. This
model excels at linguistic reasoning like paraphrasing and inference but lacks symbolic reasoning
skills. (ii) Latent Program Algorithm, this model applies lexical matching to find linked entities and
triggers to filter pre-defined APIs (e.g. argmax, argmin, count, etc). We adopt bread-first-search
with memorization to construct the potential program candidates, a discriminator is further utilized
to select the most “consistent” latent programs. This model excels at the symbolic reasoning aspects
by executing database queries, which also provides better interpretability by laying out the decision
rationale. We perform extensive experiments to investigate their performances: the best-achieved
accuracy of both models are reasonable, but far below human performance. Thus, we believe that
the proposed table-based fact verification task can serve as an important new benchmark towards the
goal of building powerful AI that can reason over both soft linguistic form and hard symbolic forms.
To facilitate future research, we released all the data, code with the intermediate results.

2In contrast to the database tables, where each column has strong type constraint, the cell records in our
semi-structured tables can be string/data/integer/floating/phrase/sentences.

3we leave out NEUTRAL due to its low inter-worker agreement, which is easily confused with REFUTED.

2

Published as a conference paper at ICLR 2020

2 TABLE FACT VERIFICATION DATASET

First, we follow the previous Table-based Q&A datasets (Pasupat & Liang, 2015; Zhong et al., 2017)
to extract web tables (Bhagavatula et al., 2013) with captions from WikiTables4. Here we filter out
overly complicated and huge tables (e.g. multirows, multicolumns, latex symbol) and obtain 18K
relatively clean tables with less than 50 rows and 10 columns.

For crowd-sourcing jobs, we follow the human subject research protocols5 to pay Amazon Mechani-
cal Turk6 workers from the native English-speaking countries “US, GB, NZ, CA, AU” with approval
rates higher than 95% and more than 500 accepted HITs. Following WikiTableQuestion (Pasupat &
Liang, 2015), we provide the annotators with the corresponding table captions to help them better
understand the background. To ensure the annotation quality, we develop a pipeline of “positive
two-channel annotation” → “negative statement rewriting” → “verification”, as described below.

2.1 POSITIVE TWO-CHANNEL COLLECTION & NEGATIVE REWRITING STRATEGY

To harvest statements of different difficulty levels, we design a two-channel collection process:

Low-Reward Simple Channel: the workers are paid 0.45 USD for annotating one Human Intel-
ligent Task (HIT) that requires writing five statements. The workers are encouraged to produce
plain statements meeting the requirements: (i) corresponding to a single row/record in the table with
unary fact without involving compound logical inference. (ii) mention the cell values without dra-
matic modification or paraphrasing. The average annotation time of a HIT is 4.2 min.

High-Reward Complex Channel: the workers are paid 0.75 USD for annotating a HIT (five state-
ments). They are guided to produce more sophisticated statements to meet the requirements: (i)
involving multiple rows in the tables with higher-order semantics like argmax, argmin, count, differ-
ence, average, summarize, etc. (ii) rephrase the table records to involve more semantic understand-
ing. The average annotation time of a HIT is 6.8 min. The data obtained from the complex channel
are harder in terms of both linguistic and symbolic reasoning, the goal of the two-channel split is to
help us understand the proposed models can reach under different levels of difficulty.

As suggested in (Zellers et al., 2018), there might be annotation artifacts and conditional stylistic
patterns such as length and word-preference biases, which can allow shallow models (e.g. bag-of-
words) to obtain artificially high performance. Therefore, we design a negative rewriting strategy to
minimize such linguistic cues or patterns. Instead of letting the annotators write negative statements
from scratch, we let them rewrite the collected entailed statements. During the annotation, the
workers are explicitly guided to modify the words, phrases or sentence structures but retain the
sentence style/length to prevent artificial cues. We disallow naive negations by adding “not, never,
etc” to revert the statement polarity in case of obvious linguistic patterns.

2.2 QUALITY CONTROL

To control the quality of the annotation process, we review a randomly sampled statement from each
HIT to decide whether the whole annotation job should be rejected during the annotation process.
Specifically, a HIT must satisfy the following criteria to be accepted: (i) the statements should
contain neither typos nor grammatical errors. (ii) the statements do not contain vague claims like
might, few, etc. (iii) the claims should be explicitly supported or contradicted by the table without
requiring the additional knowledge, no middle ground is permitted. After the data collection, we
re-distribute all the annotated samples to further filter erroneous statements, the workers are paid
0.05 USD per statement to decide whether the statement should be rejected. The criteria we apply
are similar: no ambiguity, no typos, explicitly supported or contradictory. Through the post-filtering
process, roughly 18% entailed and 27% refuted instances are further abandoned due to poor quality.

4http://websail-fe.cs.northwestern.edu/wikiTables/about/
5https://en.wikipedia.org/wiki/Minimum_wage_in_the_United_States
6https://www.mturk.com/

3

http://websail-fe.cs.northwestern.edu/wikiTables/about/
https://en.wikipedia.org/wiki/Minimum_wage_in_the_United_States
https://www.mturk.com/

Published as a conference paper at ICLR 2020

0

20

40

AGGREGATION NEGATE SUPERLATIVE COUNT COMPATIVE ORDINAL UNIQUE ALL

P
e

rc
e

n
t

Proportion of different Higher-order Operations

Simple Complex Overall

Figure 2: Proportion of different higher-order operations from the simple/complex channels.

Channel #Sentence #Table Len(Ent) Len(Ref) Split #Sentence Table Row Col

Simple 50,244 9,189 13.2 13.1 Train 92,283 13,182 14.1 5.5
Complex 68,031 7,392 14.2 14.2 Val 12,792 1,696 14.0 5.4
Total 118,275 16,573 13.8 13.8 Test 12,779 1,695 14.2 5.4

Table 1: Basic statistics of the data collected from the simple/complex channel and the division of
Train/Val/Test Split in the dataset, where “Len” denotes the averaged sentence length.

2.3 DATASET STATISTICS

Inter-Annotator Agreement: After the data collection pipeline, we merged the instances from two
different channels to obtain a diverse yet clean dataset for table-based fact verification. We sample
1000 annotated (table, statement) pairs and re-distribute each to 5 individual workers to re-label them
as either ENTAILED or REFUTED. We follow the previous works (Thorne et al., 2018; Bowman
et al., 2015) to adopt the Fleiss Kappa (Fleiss, 1971) as an indicator, where Fleiss κ = p̄c−p̄e

1−p̄e

is

computed from from the observed agreement p̄c and the agreement by chance p̄e. We obtain a Fleiss
κ = 0.75, which indicates strong inter-annotator agreement and good-quality.

Dataset Statistics: As shown in Table 1, the amount of data harvested via the complex channel
slightly outnumbers the simple channel, the averaged length of both the positive and negative sam-
ples are indistinguishable. More specifically, to analyze to which extent the higher-order operations
are included in two channels, we group the common higher-order operations into 8 different cate-
gories. As shown in Figure 2, we sample 200 sentences from two different channels to visualize
their distribution. We can see that the complex channel overwhelms the simple channel in terms
of the higher-order logic, among which, count and superlatives are the most frequent. We split
the whole data roughly with 8:1:1 into train, validation7, and test splits and shows their statistics
in Table 1. Each table with an average of 14 rows and 5-6 columns corresponds to 2-20 different
statements, while each cell has an average of 2.1 words. In the training split, the positive instances
slightly outnumber the negative instances, while the validation and test split both have rather bal-
anced distributions over positive and negative instances.

3 MODELS

With the collected dataset, we now formally define the table-based fact verification task: the dataset
is comprised of triple instances (T, S, L) consisting of a table T, a natural language statement
S = s1, · · · , sn and a verification label L ∈ {0, 1}. The table T = {Ti,j |i ≤ RT , j ≤ CT } has
RT rows and CT columns with the Tij being the content in the (i, j)-th cell. Tij could be a word,
a number, a phrase, or even a natural language sentence. The statement S describes a fact to be
verified against the content in the table T. If it is entailed by T, then L = 1, otherwise the label
L = 0. Figure 1 shows some entailed and refuted examples. During training, the model and the
learning algorithm are presented with K instances like (T, S, L)Kk=1

from the training split. In the

testing stage, the model is presented with (T, S)K
′

k=1
and supposed to predict the label as L̂. We

measure the performance by the prediction accuracy Acc = 1

K′

∑K′

1
I(L̂k = Lk) on the test set.

Before building the model, we first perform entity linking to detect all the entities in the statements.
Briefly, we first lemmatize the words and search for the longest sub-string matching pairs between
statements and table cells/captions, where the matched phrases are denoted as the linked entities. To
focus on statement verification against the table, we do not feed the caption to the model and simply

7We filter roughly 400 sentences from abnormal tables including hyperlinks, math symbols, etc

4

Published as a conference paper at ICLR 2020

mask the phrases in the statements which link to the caption with placeholders. The details of the
entity linker are listed in the Appendix. We describe our two proposed models as follows.

3.1 LATENT PROGRAM ALGORITHM (LPA)

In this approach, we formulate the table fact verification as a program synthesis problem, where the
latent program algorithm is not given in TABFACT. Thus, it can be seen as a weakly supervised
learning problem as discussed in Liang et al. (2017); Lao et al. (2011). Under such a setting, we
propose to break down the verification into two stages: (i) latent program search, (ii) discriminator
ranking. In the first program synthesis step, we aim to parse the statement into programs to represent
its semantics. We define the plausible API set to include roughly 50 different functions like min, max,
count, average, filter, and and realize their interpreter with Python-Pandas. Each API is defined to
take arguments of specific types (number, string, bool, and view (e.g sub-table)) to output specific-
type variables. During the program execution, we store the generated intermediate variables to
different-typed caches N ,R,B,V (Num, Str, Bool, View). At each execution step, the program can
fetch the intermediate variable from the caches to achieve semantic compositionality. In order to
shrink the search space, we follow NSM (Liang et al., 2017) to use trigger words to prune the API
set and accelerate the search speed. The definitions of all API, trigger words can be found in the
Appendix. The comprehensive the latent program search procedure is summarized in Algorithm 1,

Algorithm 1 Latent Program Search with Comments

1: Initialize Number Cache N , String Cache R, Bool Cache B, View Cache V → ∅
2: Push linked numbers, strings from the given statement S into N ,R, and push T into V
3: Initialize the result collector P → ∅ and an empty program trace P = ∅
4: Initialize the Queue Q = [(P,N ,R,B,V)], we use Q to store the intermediate states
5: Use trigger words to find plausible function set F , for example, more will trigger Greater function.
6: while loop over time t = 1 → MAXSTEP do:
7: while (P,N ,R,B,V) = Q.pop() do:
8: while loop over function set f ∈ F do:
9: if arguments of f are in the caches then

10: Pop out the required arguments arg1, arg2, · · · , argn for different cachess.
11: Execute A = f(arg1, · · · , argn) and concatenate the program trace P .
12: if Type(A)=Bool then
13: if N = S = B = ∅ then
14: P.push((P,A)) # The program P is valid since it consumes all the variables.
15: P = ∅ # Collect the valid program P into set P and reset P
16: else
17: B.push(A) # The intermediate boolean value is added to the bool cache
18: Q.push((P,N ,R,B,V)) # Add the refreshed state to the queue again

19: if Type(A) ∈ {Num, Str, View} then
20: if N = S = B = ∅ then
21: P = ∅;break # The program ends without consuming the cache, throw it.
22: else
23: push A into N or S or V # Add the refreshed state to the queue for further search
24: Q.push((P,N ,R,B,V))

25: Return the triple (T, S,P) # Return (Table, Statement, Program Set)

and the searching procedure is illustrated in Figure 3.

After we collected all the potential program candidates P = {(P1, A1), · · · , (Pn, An)} for a given
statement S (where (Pi, Ai) refers to i-th candidate), we need to learn a discriminator to iden-
tify the “appropriate” traces from the set from many erroneous and spurious traces. Since we do
not have the ground truth label about such discriminator, we use a weakly supervised training al-
gorithm by viewing all the label-consistent programs as positive instances {Pi|(Pi, Ai);Ai = L}
and the label-inconsistent program as negative instances {Pi|(Pi, Ai);Ai 6= L} to minimize the
cross-entropy of discriminator pθ(S, P) with the weakly supervised label. Specifically, we build
our discriminator with a Transformer-based two-way encoder (Vaswani et al., 2017), where the
statement encoder encodes the input statement S as a vector EncS(S) ∈ R

n×D with dimen-
sion D, while the program encoder encodes the program P = p1, · · · , pm as another vector
EncP (P) ∈ R

m×D, we concatenate these two vectors and feed it into a linear projection layer

5

Published as a conference paper at ICLR 2020

There are more democrats than republicans in the election.

incumbent democratic

incumbent republican

V1=Filter(T, incumbent==democratic))

Feature-based Entity Linking

V2=Filter(T, incumbent==republican))

String

incumbent republicanSub V1

Sub V2

Sub V1

View

pop

3=Count(V1)

pop

Count 3

Sub V1

Sub V2

View

Num

2=Count(V2) Count 2

Count 3

Num

Greater(3, 2) Bool TrueBool

pop

Table

LISP Engine

Entailed

Search

Figure 3: The program synthesis procedure for the table in Figure 1. We link the entity (e.g. demo-
cratic, republican), and then composite functions on the fly to return the values from the table.

Game Date Opponent Score

51 February 3 , 2009 Florida 3-4

52 February 4 , 2009 Buffalo 0-5

53 February 7 , 2010 Montreal 5-2

Type

Position

Word February 3 , 2009 [SEP][CLS] 51 [SEP]

1 0 1 2 3 4 00

game TOK date date date date TOKTOK TOK

0

[SEP]Florida is playing

1 2 3

S S S

12-Layer BERT-Base Model

one game is 51 ; date[CLS] is February 3 2019 ; [SEP]

1 2 3 4 5 6 70 8 9 10 11 12 20Position

Word row

Label

Florida

13

C
o
n
c
a
t

T
e
m
p
la
te

Figure 4: The diagram of Table-BERT with horizontal scan, two different linearizations are depicted.

to compute pθ(S, P) = σ(vTp [EncS(S);EncP (P)]) as the relevance between S and P with weight

vp ∈ R
D. At test time, we use the discriminator pθ to assign confidence pθ(S, P) to each candidate

P ∈ P , and then either aggregate the prediction from all hypothesis with the confidence weights or
rank the highest-confident hypothesis and use their outputs as the prediction.

3.2 TABLE-BERT

In this approach, we view the table verification problem as a two-sequence binary classification
problem like NLI or MPRC (Wang et al., 2018) by linearizing a table T into a sequence and treating
the statement as another sequence. Since the linearized table can be extremely long surpassing the
limit of sequence models like LSTM, Transformers, etc. We propose to shrink the sequence by only
retaining the columns containing entities linked to the statement to alleviate such a memory issue.
In order to encode such sub-table as a sequence, we propose two different linearization methods, as
is depicted in Figure 4. (i) Concatenation: we simply concatenate the table cells with [SEP] tokens
in between and restart position counter at the cell boundaries; the column name is fed as another
type embedding to the input layer. Such design retains the table information in its machine format.
(ii) Template: we adopt simple natural language templates to transform a table into a “somewhat
natural” sentence. Taking the horizontal scan as an example, we linearize a table as “row one’s
game is 51; the date is February; ..., the score is 3.4 (ot). row 2 is ...”. The isolated cells are
connected with punctuations and copula verbs in a language-like format.

After obtaining the linearized sub-table T̃, we concatenate it with the natural language state-
ment S and prefix a [CLS] token to the sentence to obtain the sequence-level representation

H = fBERT ([T̃, S]), with H ∈ R
768 from pre-trained BERT (Devlin et al., 2019). The rep-

resentation is further fed into multi-layer perceptron fMLP to obtain the entailment probability

pθ(T̃, S) = σ(fMLP (H)), where σ is the sigmoid function. We finetune the model θ (including the

parameters of BERT and MLP) to minimize the binary cross entropy L(pθ(T̃, S), L) on the training
set. At test time, we use the trained BERT model to compute the matching probability between the

(table, statement) pair, and classify it as ENTAILED statement when pθ(T̃, S) is greater than 0.5.

6

Published as a conference paper at ICLR 2020

4 EXPERIMENTS

In this section, we aim to evaluate the proposed methods on TABFACT. Besides the standard valida-
tion and test sets, we also split the test set into a simple and a complex partition based on the channel
from which they were collected. This facilitates analyzing how well the model performs under dif-
ferent levels of difficulty. Additionally, we also hold out a small test set with 2K samples for human
evaluation, where we distribute each (table, statement) pair to 5 different workers to approximate
human judgments based on their majority voting, the results are reported in Table 2.

Model Val Test Test (simple) Test (complex) Small Test

BERT classifier w/o Table 50.9 50.5 51.0 50.1 50.4

Table-BERT-Horizontal-F+T-Concatenate 50.7 50.4 50.8 50.0 50.3
Table-BERT-Vertical-F+T-Template 56.7 56.2 59.8 55.0 56.2
Table-BERT-Vertical-T+F-Template 56.7 57.0 60.6 54.3 55.5
Table-BERT-Horizontal-F+T-Template 66.0 65.1 79.0 58.1 67.9
Table-BERT-Horizontal-T+F-Template 66.1 65.1 79.1 58.2 68.1

NSM w/ RL (Binary Reward) 54.1 54.1 55.4 53.1 55.8
NSM w/ LPA-guided ML + RL 63.2 63.5 77.4 56.1 66.9
LPA-Voting w/o Discriminator 57.7 58.2 68.5 53.2 61.5
LPA-Weighted-Voting 62.5 63.1 74.6 57.3 66.8
LPA-Ranking w/ Discriminator 65.2 65.0 78.4 58.5 68.6
LPA-Ranking w/ Discriminator (Caption) 65.1 65.3 78.7 58.5 68.9

Human Performance - - - - 92.1

Table 2: The results of different models, the numbers are in percentage. T+F means table followed
by fact, while F+T means fact followed by table. NSM is modified from Liang et al. (2017).

NSM We follow Liang et al. (2017) to modify their approach to fit the setting of TABFACT. Specif-
ically, we adopt an LSTM as an encoder and another LSTM with copy mechanism as a decoder
to synthesize the program. However, without any ground truth annotation for the intermediate
programs, directly training with reinforcement learning is difficult as the binary reward is under-
specified, which is listed in Table 2 as ”NSM w/ RL”. Further, we use LPA as a teacher to search the
top programs for the NSM to bootstrap and then use reinforcement learning to finetune the model,
which achieves reasonable performance on our dataset listed as ”NSM w/ ML + RL”.

Table-BERT We build Table-BERT based on the open-source implementation of BERT8 using the
pre-trained model with 12-layer, 768-hidden, 12-heads, and 110M parameters trained in 104 lan-
guages. We use the standard BERT tokenizer to break the words in both statements and tables into
subwords and join the two sequences with a [SEP] token in between. The representation correspond-
ing to [CLS] is fed into an MLP layer to predict the verification label. We finetune the model on
a single TITAN X GPU with a mini-batch size of 6. The best performance is reached after about
3 hours of training (around 10K steps). We implement and compare the following variants of the
Table-BERT model including (i) Concatenation vs. Template: whether to use natural language tem-
plates during linearization. (ii) Horizontal vs. Vertical: scan direction in linearization.

LPA We run the latent program search in a distributed fashion on three 64-core machines to gener-
ate the latent programs. The search terminates once the buffer has more than 50 traces or the path
length is larger than 7. The average search time for each statement is about 2.5s. For the discrimina-
tor model, we design two transformer-based encoders (3 layers, 128-dimension hidden embedding,
and 4 heads at each layer) to encode the programs and statements, respectively. The variants of LPA
models considered include (i) Voting: assign each program with equal weight and vote without the
learned discriminator. (ii) Weighted-Voting: compute a weighted-sum to aggregate the predictions
of all latent programs with the discriminator confidence as the weights. (iii) Ranking: rank all the
hypotheses by the discriminator confidence and use the top-rated hypothesis as the output. (Caption)
means feeding the caption as a sequence of words to the discriminator during ranking.

Preliminary Evaluation In order to test whether our negative rewriting strategy eliminates the ar-
tifacts or shallow cues, we also fine-tune a pre-trained BERT (Devlin et al., 2019) to classify the
statement S without feeding in table information. The result is reported as “BERT classifier w/o

8https://github.com/huggingface/pytorch-pretrained-BERT

7

https://github.com/huggingface/pytorch-pretrained-BERT

Published as a conference paper at ICLR 2020

Table” in Table 2, which is approximately the majority guess and reflects the effectiveness of the
rewriting strategy. Before presenting the experiment results, we first perform a preliminary study to
evaluate how well the entity linking system, program search, and the statement-program discrimi-
nator perform. Since we do not have the ground truth labels for these models, we randomly sample
100 samples from the dev set to perform the human study. For the entity linking, we evaluate its
accuracy as the number of correctly linked sentences / total sentences. For the latent program search,
we evaluate whether the “true” programs are included in the candidate set P as recall score.

Results We report the performance of different methods as well as human performance in Table 2.
First of all, we observe that the naive serialized model fails to learn anything effective (same as the
Majority Guess). It reveals the importance of template when using the pre-trained BERT (Devlin
et al., 2019) model: the “natural” connection words between individual cells is able to unleash the
power of the large pre-trained language model and enable it to perform reasoning on the structured
table form. Such behavior is understandable given the fact that BERT is pre-trained on purely natural
language corpora. In addition, we also observe that the horizontal scan excels in the vertical scan
because it better captures the convention of human expression. Among different LPA methods, we
found that LPA-Ranking performs the best since it can better suppress the spurious programs than
the voting-based algorithm. Overall, the LPA model is on par with Table-BERT on both simple
and test split without any pre-training on external corpus, which reflects the effectiveness of LPA to
leverage symbolic operations in the verification process.

Through our human evaluation, we found that only 58% of sentences have been correctly linked
without missing-link or over-link, while the systematic search has a recall of 51% under the cases
where the sentence is correctly linked. With that being said, the chance for LPA method to cover
the correct program (rationale) is roughly under 30%. After the discriminator’s re-ranking step,
the probability of selecting these particular oracle program is even much lower. However, we still
observe a final overall accuracy of 65%, which indicates that the spurious problem is quite severe in
LPA, where the correct label is predicted based on the wrong reason.

Through our human evaluation, we also observe that Table-BERT exhibits poor consistency as it can
misclassify simple cases but correctly-classify hard cases. These two major weaknesses are yet to
be solved in future studies. In contrast, LPA behaves much more consistently and provides a clear
latent rationale for its decision. But, such a pipeline system requires laborious handcrafting of API
operations and is also very sensitive to the entity linking accuracy. Both methods have pros and
cons; how to combine them still remains an open question.

Program Annotation To further promote the development of different models in our dataset, we
collect roughly 1400 human-annotated programs paired with the original statements. These state-
ments include the most popular logical operations like superlative, counting, comparison, unique,
etc. We provide these annotations in Github9, which can either be used to bootstrap the semantic
parsers or provide the rationale for NLI models.

5 RELATED WORK

Natural Language Inference & Reasoning: Modeling reasoning and inference in human language
is a fundamental and challenging problem towards true natural language understanding. There has
been extensive research on RTE in the early years (Dagan et al., 2005) and more recently shifted
to NLI (Bowman et al., 2015; Williams et al., 2017). NLI seeks to determine whether a natural
language hypothesis h can be inferred from a natural language premise p. With the surge of deep
learning, there have been many powerful algorithms like the Decomposed Model (Parikh et al.,
2016), Enhanced-LSTM (Chen et al., 2017) and BERT (Devlin et al., 2019). Besides the textual ev-
idence, NLVR (Suhr et al., 2017) and NLVR2 (Suhr et al., 2019) have been proposed to use images
as the evidence for statement verification on multi-modal setting. Our proposed fact verification task
is closely related to these inference tasks, where our semi-structured table can be seen as a collection
of “premises” exhibited in a semi-structured format. Our proposed problem hence could be viewed
as the generalization of NLI under the semi-structured domain.

Table Question Answering: Another line of research closely related to our task is the table-based

9https://github.com/wenhuchen/Table-Fact-Checking/tree/master/bootstrap

8

https://github.com/wenhuchen/Table-Fact-Checking/tree/master/bootstrap

Published as a conference paper at ICLR 2020

District Incumbent Party Result Candidates

California 3 John E. Moss democratic re-elected John E. Moss (d) 69.9% John Rakus (r) 30.1%

California 5 Phillip Burton democratic re-elected Phillip Burton (d) 81.8% Edlo E. Powell (r) 18.2%

California 8 George Paul Miller democratic lost renomination democratic hold Pete Stark (d) 52.9% Lew M. Warden , Jr. (r) 47.1%

California 14 Jerome R. Waldie republican re-elected Jerome R. Waldie (d) 77.6% Floyd E. Sims (r) 22.4%

California 15 John J. Mcfall republican re-elected John J. Mcfall (d) unopposed

United States House of Representatives Elections, 1972

There are five candidates in total, two of them are democrats and three of them are republicans.

Question: How many of candidates in total?
Answer: 5

Question: How many democrats are there?
Answer: 2

Question: How many republicans are there?
Answer: 3

∧ ∧

Conjunctive

Eq(Count(T), 5)=T Eq(Count(Filter(T, party=‘dem..’)), 2)=F Eq(Count(Filter(T, party=‘rep..’)), 3)=F∧ ∧

outcome date tournament surface partner opponents in the final score in the final

runner - up 1985 bologna , italy clay alberto tous paolo canè simone colombo 5 - 7 , 4 - 6

winner 1986 bordeaux , france clay david de miguel ronald agénor mansour bahrami 7 - 5 , 6 - 4

winner 1989 prague , czechoslovakia clay horst skoff petr korda tomáš šmíd 6 - 4 , 6 - 4

Jordi Arrese achieves better score in 1986 than in 1985.

Jordi Arrese

Jordi Arrese won both of the final games in 1986.

1986: Winner 1986: Runner-up

Linguistic Inference

7 - 5 , 6 - 4

Mathematic Inference

(2)

(1)

Figure 5: The two uniqueness of Table-based fact verification against standard QA problems.

question answering, such as MCQ (Jauhar et al., 2016), WikiTableQuestion (Pasupat & Liang,
2015), Spider (Yu et al., 2018), Sequential Q&A (Iyyer et al., 2017), and WikiSQL (Zhong et al.,
2017), for which approaches have been extended to handle large-scale tables from Wikipedia (Bha-
gavatula et al., 2013). However, in these Q&A tasks, the question types typically provide strong
signals needed for identifying the type of answers, while TABFACT does not provide such speci-
ficity. The uniqueness of TABFACT lies in two folds: 1) a given fact is regarded as a false claim as
long as any part of the statement contains misinformation. Due to the conjunctive nature of verifica-
tion, a fact needs to be broken down into several sub-clauses or (Q, A) pairs to separate evaluate their
correctness. Such a compositional nature of the verification problem makes it more challenging than
a standard QA setting. On one hand, the model needs to recognize the multiple QA pairs and their
relationship. On the other hand, the multiple sub-clauses make the semantic form longer and logic
inference harder than the standard QA setting. 2) some facts cannot even be handled using semantic
forms, as they are driven by linguistic inference or common sense. In order to verify these state-
ments, more inference techniques have to be leveraged to enable robust verification. We visualize
the above two characteristics of TABFACT in Figure 5.

Program Synthesis & Semantic Parsing: There have also been great interests in using program
synthesis or logic forms to solve different natural language processing problems like question
answering (Liang et al., 2013; Berant et al., 2013; Berant & Liang, 2014), visual navigation (Artzi
et al., 2014; Artzi & Zettlemoyer, 2013), code generation (Yin & Neubig, 2017; Dong & Lapata,
2016), SQL synthesis (Yu et al., 2018), etc. The traditional semantic parsing papers (Artzi et al.,
2014; Artzi & Zettlemoyer, 2013; Zettlemoyer & Collins, 2005; Liang et al., 2013; Berant et al.,
2013) greatly rely on rules, lexicon to parse natural language sentences into different forms like
lambda calculus, DCS, etc. More recently, researchers strive to propose neural models to directly
perform end-to-end formal reasoning like Theory Prover (Riedel et al., 2017; Rocktäschel & Riedel,
2017), Neural Turing Machine (Graves et al., 2014), Neural Programmer (Neelakantan et al.,
2016; 2017) and Neural-Symbolic Machines (Liang et al., 2017; 2018; Agarwal et al., 2019). The
proposed TABFACT serves as a great benchmark to evaluate the reasoning ability of different neural
reasoning models. Specifically, TABFACT poses the following challenges: 1) spurious programs
(i.e., wrong programs with the true returned answers): since the program output is only a binary
label, which can cause serious spurious problems and misguide the reinforcement learning with the
under-specified binary rewards. 2) decomposition: the model needs to decompose the statement
into sub-clauses and verify the sub-clauses one by one, which normally requires the longer logic in-
ference chains to infer the statement verdict. 3) linguistic reasoning like inference and paraphrasing.

Fact Checking The problem of verifying claims and hypotheses on the web has drawn significant at-
tention recently due to its high social influence. Different fact-checking pioneering studies have been

9

Published as a conference paper at ICLR 2020

performed including LIAR (Wang, 2017), PolitiFact (Vlachos & Riedel, 2014), FEVER (Thorne
et al., 2018) and AggChecker (Jo et al., 2019), etc. The former three studies are mainly based on
textual evidence on social media or Wikipedia, while AggChecker is closest to ours in using re-
lational databases as the evidence. Compared to AggChecker, our paper proposes a much larger
dataset to benchmark the progress in this direction.

6 CONCLUSION

This paper investigates a very important yet previously under-explored research problem: semi-
structured fact verification. We construct a large-scale dataset and proposed two methods, Table-
BERT and LPA, based on the state-of-the-art pre-trained natural language inference model and pro-
gram synthesis. In the future, we plan to push forward this research direction by inspiring more
sophisticated architectures that can perform both linguistic and symbolic reasoning.

REFERENCES

Rishabh Agarwal, Chen Liang, Dale Schuurmans, and Mohammad Norouzi. Learning to generalize
from sparse and underspecified rewards. International Conference of Machine Learning, 2019.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Association for Computational Linguistics, 1:49–62,
2013.

Yoav Artzi, Dipanjan Das, and Slav Petrov. Learning compact lexicons for ccg semantic parsing.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1273–1283, 2014.

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1415–1425, 2014.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533–1544, 2013.

Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. Methods for exploring and
mining tables on wikipedia. In Proceedings of the ACM SIGKDD Workshop on Interactive Data
Exploration and Analytics, pp. 18–26. ACM, 2013.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 632–642, 2015.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced lstm
for natural language inference. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1657–1668, 2017.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Workshop, pp. 177–190. Springer, 2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of NAACL-HLT, 2019.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 33–43, 2016.

Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psychological bulletin,
76(5):378, 1971.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

10

Published as a conference paper at ICLR 2020

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil Sorokin, Benjamin Schiller, Claudia Schulz, and
Iryna Gurevych. Ukp-athene: Multi-sentence textual entailment for claim verification. arXiv
preprint arXiv:1809.01479, 2018.

Naeemul Hassan, Gensheng Zhang, Fatma Arslan, Josue Caraballo, Damian Jimenez, Siddhant
Gawsane, Shohedul Hasan, Minumol Joseph, Aaditya Kulkarni, Anil Kumar Nayak, et al. Claim-
buster: the first-ever end-to-end fact-checking system. Proceedings of the VLDB Endowment, 10
(12):1945–1948, 2017.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. Search-based neural structured learning for se-
quential question answering. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 1821–1831, 2017.

Sujay Kumar Jauhar, Peter Turney, and Eduard Hovy. Tables as semi-structured knowledge for ques-
tion answering. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pp. 474–483, 2016.

Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi Wang, Cong Yu, Daniel Liu, and Niyati
Mehta. Aggchecker: A fact-checking system for text summaries of relational data sets. Proceed-
ings of the VLDB Endowment, 12(12), 2019.

Jerrold J Katz and Jerry A Fodor. The structure of a semantic theory. language, 39(2):170–210,
1963.

Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pp. 529–539. Association for Computational Linguistics, 2011.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. International Conference of Ma-
chine Learning, 2017.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V Le, and Ni Lao. Memory augmented
policy optimization for program synthesis and semantic parsing. In Advances in Neural Informa-
tion Processing Systems, pp. 9994–10006, 2018.

Percy Liang, Michael I Jordan, and Dan Klein. Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446, 2013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent programs
with gradient descent. International Conference on Learning Representation, 2016.

Arvind Neelakantan, Quoc V Le, Martin Abadi, Andrew McCallum, and Dario Amodei. Learn-
ing a natural language interface with neural programmer. International Conference on Learning
Representation, 2017.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2249–2255, 2016.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
volume 1, pp. 1470–1480, 2015.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of NAACL-HLT,
pp. 2227–2237, 2018.

11

Published as a conference paper at ICLR 2020

Kashyap Popat, Subhabrata Mukherjee, Jannik Strötgen, and Gerhard Weikum. Where the truth lies:
Explaining the credibility of emerging claims on the web and social media. In Proceedings of the
26th International Conference on World Wide Web Companion, pp. 1003–1012. International
World Wide Web Conferences Steering Committee, 2017.

Sebastian Riedel, Matko Bosnjak, and Tim Rocktäschel. Programming with a differentiable forth
interpreter. ICML, 2017.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In Advances in Neural
Information Processing Systems, pp. 3788–3800, 2017.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language for visual
reasoning. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 217–223, 2017.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
reasoning about natural language grounded in photographs. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics, 2019.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-
scale dataset for fact extraction and verification. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), volume 1, pp. 809–819, 2018.

Johan Van Benthem et al. A brief history of natural logic. LondonCollege Publica-
tions9781904987444, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Andreas Vlachos and Sebastian Riedel. Fact checking: Task definition and dataset construction.
In Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social
Science, pp. 18–22, 2014.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. EMNLP 2018,
pp. 353, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. arXiv preprint arXiv:1905.00537, 2019.

William Yang Wang. liar, liar pants on fire: A new benchmark dataset for fake news detection. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 422–426, 2017.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 2019.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696, 2017.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 3911–3921, 2018.

12

Published as a conference paper at ICLR 2020

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pp. 93–104, 2018.

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical form: structured
classification with probabilistic categorial grammars. In Proceedings of the Twenty-First Confer-
ence on Uncertainty in Artificial Intelligence, pp. 658–666. AUAI Press, 2005.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

13

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 FUNCTION DESCRIPTION

We list the detailed function description in Figure 6. We also visualize the functionality of the most

Name Arguments Output Comment

Count View Number Return the	number	 of	rows	in	the	View

Within View,	Header	String,	Cell	

String/Number

Bool Return	whether the	cell	string/number	 exists	under	 the	Header	Column	of	the	given	

view

Without View,	Header	String,	Cell	

String/Number

Bool Return	whether the	cell	string/number	 does	not	exist	under	 the	Header	Column	of	the	

given	view

None String Bool Whether	the	string	represents None,	like	“None”,	“No”,	“-”,	“No	information	 provided”

Before/After Row,	Row Row Returns whether	row1	is	before/after	row2

First/Second/Third/Fourth View,	Row Bool Returns	whether	the	row is	in	the	first/second/third	position	 	of		the	view

Average/Sum/Max/Min View,	Header String Number Returns	the average/summation/max/min	value	under	 the	Header	Column	of	the	given	

view

Argmin/

Argmax

View,	Header	String Row Returns	the	row	with	the	maximum/minimum	 value	under	 the	Header	Column	of	the

given	view

Hop Row, Header	String Number/

String

Returns	the cell	value	under	the	Header	Column	of	the	given	 row

Diff/Add Number,	Number Number Perform	arithmetic	operations	on	two numbers

Greater/Less Number,	Number Bool Returns	whether the	first	number	 is	greater/less	than	the	second	number

Equal/

Unequal

String,	String/

Number, Number

Bool Compare two	numbers	or	strings	to	see	whether	they	are	the	same

Filter_eq/

Filter_greater/

Filter_less/

Filter_greater_or_equal/

Filter_less_or_equal

View,	Header String,	

Number

View Returns the	subview of	 the	given	with	the	cell	values	under	 the	Header	column	

greater/less/eq/… against	the	given	number

All_eq/All_greater/

All_less/All_greater_or_equa

l/All_less_or_equal

View,	Header String,	

Number

Bool Returns the	whether	all	of	the	cell	values	under	the	Header	column	are	

greater/less/eq/… against	the	given	number

And/Or Bool,	Bool Bool Returns	the	Boolean operation	 results	of	two	inputs

Figure 6: The function definition used in TabFact.

typical functions and their input/output examples in Figure 7.

Count

Name Age

() = 2 within (, Name, A) = 𝑇𝑟𝑢𝑒

Name Age

A

B

without (, Name, A) = 𝐹𝑎𝑙𝑠𝑒

Name Age

A

B

None () =𝑇𝑟𝑢𝑒-/Not Given/NA

Before
Name Age

A
() = 𝑇𝑟𝑢𝑒

Name Age

B

First
Name Age

A
() =𝑇𝑟𝑢𝑒

Avg (, Age) = 3

Name Age

A 2

B 4

Argmin (, Age) =

Name Age

A 2

B 4

Name Age

A 2

Filter_eq (, Age, 2) =

Name Age

A 2

B 4

Name Age

A 2

All_eq (, Age, 2) = True

Name Age

A 2

B 2

Hop
Name Age

A
(, Name) = 𝐴 Diff (2, 1) = 1 Greater (2, 1) = 𝑇𝑟𝑢𝑒 Equal (2, 2) = 𝑇𝑟𝑢𝑒

,

Figure 7: The visualization of different functions.

14

Published as a conference paper at ICLR 2020

We list all the trigger words for different functions in Figure 8

Trigger Function

'average' average

'difference',	 'gap',	'than',	'separate' diff

'sum',	 'summation',	 'combine',	 'combined',	 'total',	'add',	'all',	'there	are' ddd,	 sum

'not',	 'no',	'never',	 "didn't",	 "won't",	 "wasn't",	"isn't,"haven't",	 "weren't",	"won't",	 'neither',	 'none',	 'unable,

'fail',	'different',	 'outside',	 'unable',	 'fail'

not_eq,	not_within, Filter_not_eq, none

'not',	 'no',	'none' none

'first',	'top',	'latest',	'most' first

'last',	'bottom',	 'latest',	'most' last

'RBR',	'JJR',	'more',	'than',	 'above',	'after' filter_greater, greater

'RBR',	'JJR',	'less',	'than',	'below',	'under' filter_less,	 less

'all',	'every',	'each' all_eq,	all_less,	all_greater,	

['all',	'every',	'each'],	['not',	'no',	 'never',	"didn't",	 "won't",	"wasn't"] all_not_eq

'at	most',	'than' all_less_eq,	all_greater_eq

'RBR',	'RBS',	'JJR',	'JJS' max,	min

'JJR',	'JJS',	'RBR',	'RBS',	'top', 'first' argmax,	argmin

'within',	 'one',	'of',	 'among' within

'follow',	 'following',	 'followed',	 'after',	'before',	'above',	 'precede' before

'follow',	 'following',	 'followed',	 'after',	'before',	'above',	 'precede' after

’most’ most_freq

ordinal First,	second, third,	 fourth

Figure 8: The trigger words used to shrink the search space.

B HIGHER-ORDER OPERATIONS

1. Aggregation: the aggregation operation refers to sentences like “the averaged age of all
....”, “the total amount of scores obtained in ...”, etc.

2. Negation: the negation operation refers to sentences like “xxx did not get the best score”,
“xxx has never obtained a score higher than 5”.

3. Superlative: the superlative operation refers to sentences like “xxx achieves the highest
score in”, “xxx is the lowest player in the team”.

4. Comparative: the comparative operation refers to sentences like “xxx has a higher score
than yyy”.

5. Ordinal: the ordinal operation refers to sentences like “the first country to achieve xxx is
xxx”, “xxx is the second oldest person in the country”.

6. Unique: the unique operation refers to sentences like “there are 5 different nations in the
tournament, ”, “there are no two different players from U.S”

7. All: the for all operation refers to sentences like “all of the trains are departing in the
morning”, “none of the people are older than 25.”

8. None: the sentences which do not involve higher-order operations like “xxx achieves 2
points in xxx game”, “xxx player is from xxx country”.

C ERROR ANALYSIS

Before we quantitatively demonstrate the error analysis of the two methods, we first theoretically
analyze the bottlenecks of the two methods as follows:

Symbolic We first provide a case in which the symbolic execution can not deal with theoretically
in Figure 9. The failure cases of symbolic are either due to the entity link problem or function
coverage problem. For example, in the given statement below, there is no explicit mention of ”7-5,
6-4” cell. Therefore, the entity linking model fails to link to this cell content. Furthermore, even

15

Published as a conference paper at ICLR 2020

though we can successfully link to this string, there is no defined function to parse ”7-5, 6-5” as ”won
two games” because it requires linguistic/mathematical inference to understand the implication from
the string. Such cases are the weakness of symbolic reasoning models.

outcome date tournament surface partner opponents in the final score in the final

runner - up 1985 Bologna , Italy clay Alberto Tous Paolo Canè Simone Colombo 5 - 7 , 4 - 6

winner 1986 Bordeaux , France clay David De Miguel Ronald Agénor Mansour Bahrami 7 - 5 , 6 - 4

winner 1989 Prague , Czechoslovakia clay Horst Skoff Petr Korda Tomáš šmíd 6 - 4 , 6 - 4

Jordi Arrese achieves better score in 1986 than in 1985.

Jordi Arrese

Jordi Arrese won both of the final games in 1986.

1986: Winner 1986: Runner-up

Linguistic Inference

7 - 5 , 6 - 4 Mathematic Inference

Figure 9: The error case of symbolic reasoning model

BERT In contrast, Table-BERT model seems to have no coverage problem as long as it can feed
the whole table content. However, due to the template linearization, the table is unfolded into a long
sequence as depicted in Figure 10. The useful information, ”clay” are separated in a very long span
of unrelated words. How to grasp such a long dependency and memorize the history information
poses a great challenge to the Table-BERT model.

outcome date tournament surface partner opponents in the final score in the final

runner - up 1985 Bologna , Italy clay Alberto Tous Paolo Canè Simone Colombo 5 - 7 , 4 - 6

winner 1986 Bordeaux , France clay David De Miguel Ronald Agénor Mansour Bahrami 7 - 5 , 6 - 4

winner 1989 Prague , Czechoslovakia clay Horst Skoff Petr Korda Tomáš šmíd 6 - 4 , 6 - 4

Jordi Arrese

Jordi Arrese played all of his games on clay surface.

Given the table titled “Jordi Arrese”, in row one, the outcome is runner-up, the date is 1985, … , the surface is clay …. …… ,
In row two, the outcome is … , the surface is clay. In row three, the outcome is …, … the surface is clay.

Template

Long Dependency The three “Clay” are separated by more over 20 words

Figure 10: The error case of BERT NLI model

Statistics Here we pick 200 samples from the validation set which only involve single semantic
and divide them into different categories. We denote the above-mentioned cases as ”linguistic in-
ference”, and the sentences which only describe information from one row as ”Trivial”, the rest are
based on their logic operation like Aggregation, Superlative, Count, etc. We visualize the accuracy
of LPA and Table-BERT in Figure 11. From which we can observe that the statements with linguis-
tic inference are much better handled with the BERT model, while LPA achieves an accuracy barely
higher than a random guess. The BERT model can deal with trivial cases well as it uses a horizontal
scan order. In contrast, the LPA model outperforms BERT on higher-order logic cases, especially
when the statement involves operations like Count and Superlative.

16

Published as a conference paper at ICLR 2020

45

50

55

60

65

70

75

80

Linguistic Trivial Aggregation Superlative Count Compare Negation

Error Analysis of LPA/Table-BERT

Table-BERT LPA

Figure 11: The error analysis of two different models

D REASONING DEPTH

Given that our LPA has the breadth to cover a large semantic space. Here we also show the reasoning
depth in terms of how many logic inference steps are required to tackle verify the given claims. We
visualize the histogram in Figure 12 and observe that the reasoning steps are concentrated between
4 to 7. Such statistics indicate the difficulty of fact verification in our TABFACT dataset.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Reasoning Depth Statistics in LPA

1 2 3 4 5 6 7

Figure 12: The histogram of reasoning steps required to verify the claims

E WHETHER TO KEEP WIKIPEDIA CONTEXT

Before crowd-sourcing the annotation for the tables, we observed that the previous WikiTableQues-
tion Pasupat & Liang (2015) provides context (Wikipedia title) during annotation while the Wik-
iSQL Zhong et al. (2017) does not. Therefore, we particularly design ablation annotation tasks to
compare the annotation quality between w/ and w/o Wikipedia title as context. We demonstrate a
typical example in Figure 13, where a Wiki table10 aims to describe the achievements of a tennis
player named Dennis, but itself does not provide any explicit hint about “Tennis Player Dennis”.
Unsurprisingly, the sentence fluency and coherence significantly drop without such information.
Actually, a great portion of these Wikipedia tables requires background knowledge (like sports,
celebrity, music, etc) to understand. We perform a small user study to measure the fluency of an-
notated statements. Specifically, we collected 50 sentences from both annotation w/ and w/o title
context and randomly shuffle them as pairs, which are distributed to the 8 experts without telling
them their source to compare the language fluency. It turns out that the experts ubiquitously agree
that the statements with Wikipedia titles are more human-readable. Therefore, we argue that such
a context is necessary for annotators to understand the background knowledge to write more flu-
ent sentences. On the other end, we also hope to minimize the influence of the textual context in
the table-based verification task, therefore, we design an annotation criterion: the Wikipedia title

10https://en.wikipedia.org/wiki/Dennis_Ralston

17

https://en.wikipedia.org/wiki/Dennis_Ralston

Published as a conference paper at ICLR 2020

is provided to the workers during the annotation, but they are explicitly banned from bringing any
unrelated background information other than the title into the annotation. As illustrated in Figure 13,
the title only acts as a placeholder in the statements to make it sound more natural.

Context

(Title)

Richard Dennis Ralston (born July 27, 1942,

an American former tennis player

No Information is provided

Annotate From 1960 to 1969, Ralston won five major

double championships.

Winner is on the grass surface.

Rafael Osuna is partner in the Wimbeldon

outcome year championship surface partner

winner 1960 Wimbledon championships grass Rafael Osuna

winner 1961 US Championships grass Chuck Mckinley

runner - up 1962 US Championships grass Chuck Mckinley

winner 1963 US Championships (2) grass Chuck Mckinley

Figure 13: Comparison of worker annotation w/ and w/o Wikipedia title as context

F ENTITY LINKING

Here we propose to use the longest string match to find all the candidate entities in the table, when
multiple candidates coexist, we select the one with the minimum edit distances. The visualization is
demonstrated in Figure 14.

District Incumbent Party Result Candidates

California 3 John E. Moss democratic re-elected John E. Moss (d) 69.9% John Rakus (r) 30.1%

California 5 Phillip Burton democratic re-elected Phillip Burton (d) 81.8% Edlo E. Powell (r) 18.2%

california 8 George Paul Miller democratic lost renomination democratic hold Pete Stark (d) 52.9% Lew M. Warden , Jr. (r) 47.1%

California 14 Jerome R. Waldie republican re-elected Jerome R. Waldie (d) 77.6% Floyd E. Sims (r) 22.4%

California 15 John J. Mcfall republican re-elected John J. Mcfall (d) unopposed

Statement: John E. Moss is a democratic who is from California 3 district

John

John E. Moss (d) 69.9% john rakus (r) 30.1%

John E. Moss

John J. Mcfall

John

E. Moss

John E. Moss (d) 69.9% john rakus (r) 30.1%

John E. Moss is

Figure 14: Entity Linking System.

G THE PROGRAM CANDIDATES

Here we demonstrate some program candidates in Figure 15, and show how our proposed discrimi-
nator is designed to compute the matching probability between the statement and program. Specif-
ically, we employ two transformer-based encoder Vaswani et al. (2017), the left one is aimed to
encode the program sequence and the right one is aimed to encode the statement sequence. Their
output from [CLS] position is concatenated and fed into an MLP to classify the verification label.

H HIT INTERFACE

We provide the human intelligent task interface on AMT in the following. Very detailed instructions
on what are trivial statements and what are non-trivial statements. Comprehensive examples have
been given to guide the Turkers to write well-formed while logically plausible statements. In order
to harvest fake statements without statistical cues, we also provide detailed instructions on how to
re-write the ”fake” statements. During the annotation, we hire 8 experts to perform sanity checks on
each of the HIT to make sure that the annotated dataset is clean and meets our requirements.

18

Published as a conference paper at ICLR 2020

Statement: There are more democratic than republican in the election.

Less(Count(Filter(incumbent==democratic)), Count(Filter(incumbent==republican)))=False

Less(Count(Filter(incumbent==republican)), Count(Filter(incumbent==democratic)))=True

Greater(Count(Filter(incumbent==republican)), Count(Filter(incumbent==democratic)))=False

Greater(Count(Filter(incumbent==democratic)),Count(Filter(incumbent==republican)))=True

Within((Filter(incumbent==democratic), incumbent, republican)=False

Within((Filter(incumbent== republican), incumbent, democratic)=False

And(Same(all_rows, incumbent, democratic), Same(all_rows, incumbent, republican))=True

Or(Same(all_rows, incumbent, democratic), Same(all_rows, incumbent, republican))=True

Eq(Count(Filter(incumbent==republican)), Count(Filter(incumbent==democratic)))=False Program Encoder Statement Encoder

Label

Figure 15: We demonstrate the top program candidates and use the discriminator to rank them.

19

11/8/2019 HIT

https://s3.amazonaws.com/mturk_bulk/hits/370501562/uNGk1Dz1zM48BZI6mALfxA.html 1/4

Survey Instructions (Click to expand)

You are given a table with its wikipedia source, your job is to compose non-trivial statements supported
by the table.

- "Trivial": the sentence can be easily generated by looking only a certain row without understanding the
table.
- "Non-trivial": the sentence requires reading multiple rows of the table and understanding of the table
content. For example, the sentences which include summarization, comparative, negation, relational,
inclusion, superlative, aggregational, rephrase or combinations of them are non-trivial. But non-trvial is not
limited to these types, any statement involving understanding and reasoning is accepted.

We list two examples below to help you understand, you are encouraged to open the table wikipedia link to
understand the context of the table. (Everything in the table is lower-cased, you are free to use lower or upper
case in your sentence):

Table Wikipedia Link: Road_Rules_Challenge:_The_Island
(https://en.wikipedia.org/wiki/Real_World/Road_Rules_Challenge:_The_Island)

player original season gender eliminated placing

derrick kosinski rr : x - treme male winner winner

evelyn smith fresh meat female winner winner

johnny devenanzio rw : key west male winner winner

kenny santucci fresh meat male winner winner

jenn grijalva rw : denver female episode 8 runner - up

paula meronek rw : key west female episode 8 runner - up

robin hibbard rw : san diego female episode 8 runner - up

ryan kehoe fresh meat male episode 8 runner - up

dunbar merrill rw : sydney male episode 8 9th place

johanna botta rw : austin female episode 8 10th place

kellyanne judd rw : sydney female episode 8 11th place

dan walsh rr : viewers' revenge male episode 8 12th place

colie edison rw : denver female episode 7 13th place

cohutta grindstaff rw : sydney male episode 6 14th place

tyrie ballard rw : denver male episode 5 15th place

ashli robson rw : sydney female episode 4 16th place

rachel robinson rr : campus crawl female episode 3 17th place

abram boise rr : south pacific male episode 2 18th place

dave malinosky rw : hollywood male episode 2 (quit) 19th place

Rejected ("Trivial") examples:
1. In the TV series "The Island", Derrick Kosinski is a male character. (Easy! You can simply look into first
row to produce this sentence.)
2. Derrick Kosinski has the placing of winner in the TV series.
3. Kenny Santucci is from original season of "Fresh Meat".

11/8/2019 HIT

https://s3.amazonaws.com/mturk_bulk/hits/370501562/uNGk1Dz1zM48BZI6mALfxA.html 2/4

Table Wikipedia Link: AFC_Champions_League (https://en.wikipedia.org/wiki/AFC_Champions_League)

Tips1: We set minimum length to 9, and sentences with more complicated grammar structures are
preferred.
Tips2: Do not limited to only one type of description like superlative or relative.
Tips3: Copying the records from the table is encouraged, which can help avoid typos and mis-spelling as
much as possible, .
Tips4: Do not vague words like "maybe", "perhaps", "good", "excellent", "most", etc.

4. Jenn Grijalva is Runner-Up of the challenge.

Accepted ("Non-Trivial") examples:
(Superlative): In the TV series "The Island", Evelyn Smith is the highest ranked female.
(Comparitive): In the TV series "The Island", Jenn Grijalva appears later than Colie Edison in the series.
(Relational): Ashli Robson appears one episode later than Rachel Robinson in the TV series.
(Summarization): there are three male winners in the challenge.
(Rephrase): Evelyn Smith never eliminated in any episode in the TV series.
(Combination): Derrick Kosinski is the winner and Jenn Grijalva is Runner-Up of the challenge.
(Negation): jenn grijalva is not the female winning the challenge.
(Inclusion): Evelyn smith is one of the four winner for the challenge.

rank member association points group stage play - off afc cup

1 saudi arabia 860.5 4 0 0

2 qatar 838.2 4 0 0

3 iran 813.5 3 1 0

4 uae 750.2 2 2 0

5 uzbekistan 680.8 1 0 0

6 india 106.4 0 0 2

7 jordan 128.7 0 0 2

Rejected ("Trivial") examples:
1. In the rank, it has 0 play - off.
2. ratar is in rank 2.
3. When member association is india, the points is 106.4.

Accepted ("Non-Trivial") examples:
(Negation): iran is one of the two countries getting into the 4th stage. (Average): uae and qatar have an
average of 1 play - off during the champion league.
(Algorithmic): saudi arabia achieves 22.3 more points than qatar.
(Comparison): india got lower points than jordan in the league.
(Summarization): there are two team which have won the afc cup twice.
(Superlative): In the Champions League, saudi arabia achieves the highest points.
(Combination): saudi arabia is the group stage 4 while iran is in group stage 3.

11/8/2019 HIT

https://s3.amazonaws.com/mturk_bulk/hits/370501562/uNGk1Dz1zM48BZI6mALfxA.html 3/4

First Read the following table, then write five diverse non-trivial facts for this given table:

Table Source: athletics at the 1952 summer olympics - men 's pole vault
(https://en.wikipedia.org/wiki/Athletics_at_the_1952_Summer_Olympics_%E2%80%93_Men%27s_pole_vault)
athlete nationality 3.60 3.80 3.95 result

bob richards united states - - o 4.55 or

don laz united states - - o 4.50

ragnar lundberg sweden - - o 4.40

petro denysenko soviet union - - o 4.40

valto olenius finland - - - 4.30

bunkichi sawada japan - o xxo 4.20

volodymyr brazhnyk soviet union - o o 4.20

viktor knyazev soviet union - o o 4.20

george mattos united states - - o 4.20

erkki kataja finland - - o 4.10

tamás homonnay sweden - o o 4.10

lennart lind hungary - o o 4.10

milan milakov yugoslavia - o xo 4.10

rigas efstathiadis greece - o o 3.95

torfy bryngeirsson iceland - o o 3.95

erling kaas norway - o xxx 3.80

theodosios balafas greece o o xxx 3.80

jukka piironen finland - xo xx 3.80

zeno dragomir romania - xo xx 3.80

Please write a non-trivial statement, minimum 9 words

Please write a non-trivial statement, minimum 9 words

Please write a non-trivial statement, minimum 9 words

Please write a non-trivial statement, minimum 9 words

Please write a non-trivial statement, minimum 9 words

11/8/2019 HIT

https://s3.amazonaws.com/mturk_bulk/hits/391922557/v_5b2TrRmw9TnD5hSI_CnA.html 1/3

Survey Instructions (Click to expand)

Please first read a table to understand its content, an example is shown below, which contains the
leaderboard of a competition.

Player Original Season Gender Eliminated Placing

Derrick Kosinski RR: X-Treme Male Winner Winner

Evelyn Smith Fresh Meat Female Winner Winner

Johnny Devenanzio RW: Key West Male Winner Winner

Kenny Santucci Fresh Meat Male Winner Winner

Jenn Grijalva RW: Denver Female Episode 8 Runner-Up

Paula Meronek RW: Key West Female Episode 8 Runner-Up

Robin Hibbard RW: San Diego Female Episode 8 Runner-Up

Ryan Kehoe Fresh Meat Male Episode 8 Runner-Up

Dunbar Merrill RW: Sydney Male Episode 8 9th Place

Johanna Botta RW: Austin Female Episode 8 10th Place

KellyAnne Judd RW: Sydney Female Episode 8 11th Place

Dan Walsh RR: Viewers' Revenge Male Episode 8 12th Place

Colie Edison RW: Denver Female Episode 7 13th Place

Cohutta Grindstaff RW: Sydney Male Episode 6 14th Place

Tyrie Ballard RW: Denver Male Episode 5 15th Place

Ashli Robson RW: Sydney Female Episode 4 16th Place

Rachel Robinson RR: Campus Crawl Female Episode 3 17th Place

Abram Boise RR: South Pacific Male Episode 2 18th Place

Dave Malinosky RW: Hollywood Male Episode 2 (quit) 19th Place

Tonya Cooley RW: Chicago Female Episode 1 20th Place

You are given a sentence to describe a fact in the table, please follow the following two cases to finish the
job:

* If the given sentence is fluent and consistent with the table, then please re-write it to make it
"fake" based on the following criteria:
1. Contradictory: it should still be a fluent and coherent, but it needs be explicitly contrdictory to the
facts in the table.
2. Do not simply add NOT to revert the sentence meaning.
3. Do not write neutral or non-verifiable sentences, you need to confirm it in the table.
3. The fake statement needs to be clear, explicit and natural, do not use vague or ambiguous words like
"bad", "good", "many", etc.
4. try to use diverse fake types during annotatoin.

Example 1. Given statement: Ashli Robson was eliminated in episode 4.
Good Faking: Ashli Robson survives through episode 1 to episode 5.
Good Faking: Ashli Robson is not the only one eliminated in episode 4.
Bad Faking (Simply add not): Ashli Robson was not eliminated on episode 4.

11/8/2019 HIT

https://s3.amazonaws.com/mturk_bulk/hits/391922557/v_5b2TrRmw9TnD5hSI_CnA.html 2/3

Bad Faking (Ambiguous, who is Ashli?): Ashli was not eliminated on episode 4.
Bad Faking (Irrelevant): Ashli was born in Mexico.
Bad Faking (Too subjective, what do you mean by "early"): AshlDerrick Kosinski lost the game very early.
Bad Faking (Not verifiable): AshlDerrick Kosinski was the most popular player.

Example 2. Given statement: Tonya Cooley is in the 20th place.
Good Faking: Tonya Cooley is not the last in placing.
Good Faking: Tonya Cooley is eliminated in episode 1 but not the last in placing.
Bad Faking: (There is nothing larger than 20th) Tonya Cooley is after the 20th place.
Bad Faking: (Half Wrong/half Right) When the gneder is female, the player is Tonya Colley.
Bad Faking (Introduce values outside the table): Tonya Cooley is in the 43th place.
Bad Faking (Typo): Tonya Cooler is in the 20th palace.

* If the given statement is erroneous (see following), please type in N/A in the input box.
1. critical grammar error like missing verbs, nouns, etc. Do not count small errors like tense,
singular/plural, case errors.
2. serious typo, misspelling.
3. the described fact is contradictory to the table.

You can use the highlight button to help you find the mentions in the table, you can use either
upper or lower case, not important

11/8/2019 HIT

https://s3.amazonaws.com/mturk_bulk/hits/391922557/v_5b2TrRmw9TnD5hSI_CnA.html 3/3

Submit

First Read the given tables, then rewrite the statements to make them fake:

Table Source: 2003 - 04 isu junior grand prix
(https://en.wikipedia.org/wiki/2003%E2%80%9304_ISU_Junior_Grand_Prix)
rank nation gold silver bronze total

1 russia 10 14 8 32

2 united states 9 6 7 22

3 canada 4 2 10 16

4 japan 4 5 4 13

5 hungary 4 0 2 6

6 czech republic 2 1 1 4

6 ukraine 1 3 0 4

6 italy 0 1 3 4

7 sweden 1 2 0 3

8 israel 1 1 0 2

9 finland 0 0 1 1

9 france 0 1 0 1

Hightlight Mentions, Click Me!
Given Statement: russia won the most silver medals in the grand prix

Please rewrite a sentence which is contradictory to the table

Hightlight Mentions, Click Me!
Given Statement: france and finland won the least medals in the grand prix

Please rewrite a sentence which is contradictory to the table

Hightlight Mentions, Click Me!
Given Statement: hungary and finland were the only countries that idd not win any silver medals

Please rewrite a sentence which is contradictory to the table

Hightlight Mentions, Click Me!
Given Statement: the united states won more gold medals than canada

Please rewrite a sentence which is contradictory to the table

Hightlight Mentions, Click Me!
Given Statement: canada won the most bronze medals in the grand prix

Please rewrite a sentence which is contradictory to the table

	Introduction
	Table Fact Verification Dataset
	Positive Two-Channel Collection & Negative Rewriting Strategy
	Quality Control
	Dataset Statistics

	Models
	Latent Program Algorithm (LPA)
	Table-BERT

	Experiments
	Related Work
	Conclusion
	Appendix
	Function Description

	Higher-order Operations
	Error Analysis
	Reasoning Depth
	Whether to keep Wikipedia context
	Entity Linking
	The program candidates
	HIT Interface

