
[14:50 2/2/2011 Bioinformatics-btq671.tex] Page: 718 718–719

BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 5 2011, pages 718–719
doi:10.1093/bioinformatics/btq671

Sequence analysis Advance Access publication January 5, 2011

Tabix: fast retrieval of sequence features from generic
TAB-delimited files
Heng Li
Program in Medical Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
Associate Editor: Dmitrij Frishman

ABSTRACT

Summary: Tabix is the first generic tool that indexes position sorted
files in TAB-delimited formats such as GFF, BED, PSL, SAM and
SQL export, and quickly retrieves features overlapping specified
regions. Tabix features include few seek function calls per query, data
compression with gzip compatibility and direct FTP/HTTP access.
Tabix is implemented as a free command-line tool as well as a library
in C, Java, Perl and Python. It is particularly useful for manually
examining local genomic features on the command line and enables
genome viewers to support huge data files and remote custom tracks
over networks.
Availability and Implementation: http://samtools.sourceforge.net.
Contact: hengli@broadinstitute.org

Received on October 14, 2010; revised and accepted on December
1, 2010

1 INTRODUCTION
When we examine local genomic features on the command line
or via a genome viewer, we frequently need to perform interval
queries, retrieving features overlapping specified regions. We may
read through the entire data file if we only perform interval queries
a few times, or preload the file in memory if interval queries are
frequently performed (e.g. by genome viewers). However, reading
the entire file makes both strategies inefficient given huge datasets.
A solution to the efficiency problem is to build a database for the
data file (Kent et al., 2002; Stein et al., 2002), but this is not
optimal, either, because generic database indexing algorithms are
not specialized for biological data (Alekseyenko and Lee, 2007). The
technical complexity of setting up databases and designing schemas
also hampers the adoption of the database approach for an average
end user.

Under the circumstances, a few specialized binary formats
including bigBed/bigWig (Kent et al., 2010) and BAM (Li et al.,
2009) have been developed very recently to achieve efficient random
access to huge datasets while supporting data compression and
remote file access, which greatly helps routine data processing and
data visualization. At present, these advanced indexing techniques
are only applied to BED, Wiggle and BAM. Nonetheless, as most
TAB-delimited biological data formats (e.g. PSL, GFF, SAM, VCF
and many UCSC database dumps) contain chromosomal positions,
one can imagine that a generic tool that indexes for all these formats
is feasible. And this tool is Tabix. In this article, I will explain the
technical advances in Tabix indexing, describe the algorithm and
evaluate its performance on biological data.

2 METHODS
Tabix indexing is a generalization of BAM indexing for generic TAB-
delimited files. It inherits all the advantages of BAM indexing, including
data compression and efficient random access in terms of few seek function
calls per query.

2.1 Sorting and BGZF compression
Before being indexed, the data file needs to be sorted first by sequence name
and then by leftmost coordinate, which can be done with the standard Unix
sort. The sorted file should then be compressed with the bgzip program
that comes with the Tabix package. Bgzip compresses the data file in the
BGZF format, which is the concatenation of a series of gzip blocks with each
block holding at most 216 bytes of uncompressed data. In the compressed
file, each uncompressed byte in the text data file is assigned a unique 64-bit
virtual file offset where the higher 48 bits keep the real file offset of the start
of the gzip block the byte falls in, and the lower 16 bits store the offset of
the byte inside the gzip block. Given a virtual file offset, one can directly
seek to the start of the gzip block using the higher 48 bits, decompress
the block and retrieve the byte pointed by the lower 16 bits of the virtual
offset. Random access can thus be achieved without the help of additional
index structures. As gzip works with concatenated gzip files, it can also
seamlessly decompress a BGZF file. The detailed description of the BGZF
format is described in the SAM specification.

2.2 Coupled binning and linear indices
Tabix builds two types of indices for a data file: a binning index and a
linear index. We can actually achieve fast retrieval with only one of them.
However, using the binning index alone may incur many unnecessary seek
calls, while using the linear index alone has bad worst-case performance
(when some records span very long distances). Using them together avoids
their weakness.

2.2.1 The binning index The basic idea of binning is to cluster records
into large intervals, called bins. A record is assigned to bin k if k is the bin
of the smallest size that fully contains the record. For each bin, we keep
in the index file the virtual file offsets of all records assigned to the bin.
When we search for records overlapping a query interval, we first collect
bins overlapping the interval and then test each record in the collected bins
for overlaps.

In principle, bins can be selected freely as long as each record can be
assigned to a bin. In the Tabix binning index, we adopt a multilevel binning
scheme where bins at same level are non-overlapping and of the same size. In
Tabix, each bin k, 0≤k ≤37449, represents a half-close-half-open interval
[(k−ol)sl,(k−ol +1)sl), where l=�log2(7k+1)/3� is the level of the bin,
sl =229−3l is the size of the bin at level l and ol = (23l −1)/7 is the offset at l.
In this scheme, bin 0 spans 512 Mb, 1–8 span 64 Mb, 9–72 8 Mb, 73–584
1 Mb, 585–4680 128 kb and 4681–37449 span 16 kb intervals. The scheme
is very similar to the UCSC binning (Kent et al., 2002) except that in UCSC,
0≤k ≤4681 and therefore the smallest bin size is 128 kb.

718 © The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/5/718/262743 by U
.S. D

epartm
ent of Justice user on 16 August 2022

http://samtools.sourceforge.net


[14:50 2/2/2011 Bioinformatics-btq671.tex] Page: 719 718–719

Sequence feature retrieval

Table 1. Performance of Tabix

ESTa Short readsb

Original file size (GB) 1.23 50.00
Bgzip compressed file size (GB) 0.35 11.20
Index file size (MB) 1.39 0.36
Indexing time (CPU in s) 15.34 509.72
Time on 1000 queriesc (CPU s) 0.71 17.97
Bytes read from disk (MB)d 30.41 446.26
Data retrieved in plain text (MB) 3.50 113.24
No. of lseek calls per queryd 1.06 1.01
No. of lseek calls per query without linear indexd 6.15 13.17

aAll human EST alignments from UCSC hg19 (Rhead et al., 2010), sorted by the Unix
sort utility.
bNA18507 chr1 40X short-read alignment from Bentley et al. (2008).
c1000 random intervals ranged from 1–1000 bp; index loaded once.
dMeasured by the strace Linux command.

When the data files are sorted by coordinates, records assigned to the same
bin tend to be adjacent. Thus in the index file, we do not need to keep the
virtual file offset of each record, but only to keep the start offset of a chunk
of records assigned to the same bin.

2.2.2 The linear index With the binning index alone, we frequently need
to seek to records assigned to bins at lower levels, in particular bin 0, the bin
spanning the entire sequence. However, frequently records at lower levels do
not overlap the query interval, which leads to unsuccessful seeks and hurts
performance especially when data are transferred over network. The linear
index is to reduce unnecessary seek calls in this case (Table 1).

In the linear index, we keep for each tiling 16 kb window the virtual
file offset of the leftmost record (i.e. having the smallest start coordinate)
that overlaps the window. When we search for records overlapping a query
interval, we will know from the index the leftmost record that possibly
overlaps the query interval. Records having smaller coordinates than this
leftmost record can be skipped and unsuccessful seek calls can be saved.

3 RESULTS
The Tabix algorithm is implemented in C and Java with Perl and
Python bindings to the C library. When the input file name is a URL
starting with ‘http://’ or ‘ftp://’, Tabix will retrieve data directly from
the remote file. The Tabix package is distributed under the MIT/X11
license, free to both academic and commercial uses.

To evaluate the performance of Tabix, I applied it to two datasets:
all human EST alignments and 40X short-read alignments (Table 1).
On both datasets, the bgzip compression reduces file sizes by a
factor of 3–5 and Tabix only invokes one seek function call for each
interval query. Tabix is slower on the short-read alignments because
each 16 kb interval contains more data. Nonetheless, Tabix is still
fast enough for a genome viewer. Data retrieval, especially retrieval
over network, is I/O bounded rather than CPU bounded. Invoking
fewer seek calls and reading fewer data from disk/network have a
bigger impact on the practical performance.

4 DISCUSSIONS
Tabix is a stand-alone, lightweight (compact disk space and low
memory usage) and efficient (few seek function calls) software
package to achieve random access to a generic TAB-delimited file
located locally or on a remote FTP/HTTP site. It is a valuable tool for
researchers who frequently perform interval queries, for graphical
viewer developers who want to display large data files in limited
memory, and for genome database developers who intend to support
large remote custom tracks.

Another closely related file format is bigBed (Kent et al.,
2010). Both Tabix and bigBed support data compression and
direct FTP/HTTP access. While bigBed further has the standing
advantages of HTTPS support, explicit caching, integrated index
and data file and partial index loading, Tabix works with many
more text formats. It provides the first generic solution for common
TAB-delimited format. Tabix also invokes fewer seek function calls
partly as a result of loading the full index into memory, though
at the cost of larger memory footprint. On the BED file converted
from human EST alignments (Table 1), the Bio::DB::BigBed Perl
module requires 4.19 seeks per interval query, as is opposed to 1.04
seeks per query by the Tabix Perl module. In addition, another
advantage of Tabix is it does not change the text format and the
compression is gzip compatible. It may potentially turn a FTP/HTTP
file server into a minimal database. The 1000 genomes project
(http://1000genomes.org) is providing SNPs in the Tabix indexed
Variant Call Format.

ACKNOWLEDGEMENTS
I thank Bob Handsaker for the proposal of adding the linear index
and the initial implementation of the C BGZF library, Petr Danecek
for various bug fixes, Lincoln Stein for the suggestion of direct
FTP/HTTP access and Jim Kent, James Bonfield and Richard Durbin
for their helpful discussions on general indexing techniques.

Funding: NIH 1U01HG005208-01.

Conflict of Interest: none declared.

REFERENCES
Alekseyenko,A.V. and Lee,C.J. (2007) Nested containment list (NCList): a new

algorithm for accelerating interval query of genome alignment and interval
databases. Bioinformatics, 23, 1386–1393.

Bentley,D.R. et al. (2008) Accurate whole human genome sequencing using reversible
terminator chemistry. Nature, 456, 53–59.

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res., 12,
996–1006.

Kent,W.J. et al. (2010) BigWig and BigBed: enabling browsing of large distributed
datasets. Bioinformatics, 26, 2204–2207.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics,
25, 2078–2079.

Rhead,B. et al. (2010) The UCSC Genome Browser database: update 2010. Nucleic
Acids Res., 38, D613–D619.

Stein,L.D. et al. (2002) The generic genome browser: a building block for a model
organism system database. Genome Res., 12, 1599–1610.

719

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/5/718/262743 by U
.S. D

epartm
ent of Justice user on 16 August 2022

http://1000genomes.org

