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ABSTRACT

The paper presents a novel learning-based framework to
identify tables from scanned document images. The ap-
proach is designed as a structured labeling problem, which
learns the layout of the document and labels its various en-
tities as table header, table trailer, table cell and non-table
region. We develop features which encode the foreground
block characteristics and the contextual information. These
features are provided to a fixed point model which learns the
inter-relationship between the blocks. The fixed point model
attains a contraction mapping and provides a unique label to
each block. We compare the results with Condition Random
Fields(CRFs). Unlike CRFs, the fixed point model captures
the context information in terms of the neighbourhood lay-
out more efficiently. Experiments on the images picked from
UW-III (University of Washington) dataset, UNLV dataset
and our dataset consisting of document images with multi-
column page layout, show the applicability of our algorithm
in layout analysis and table detection.
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1. INTRODUCTION
Tables present in documents are often used to compactly

communicate important information in rows and columns.
To automatically extract this information by digitization of
paper documents, the tabular structures need to be identi-
fied and the layout and inter-relationship between the table
elements need to be preserved for subsequent analysis. The
problem of table detection is challenging due to a wide range
of layouts and random positioning of table elements. Algo-
rithms for table detection have been proposed by authors in
the past, but the problem of correctly localizing the tabu-
lar structure from a wide variety of documents, remains a
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challenging task.
In this work we learn the layout of a document image

by extracting the attributes of foreground and background
regions and modeling the correlations between them. Us-
ing these attributes, a fixed point model captures the con-
text and learns the inter-relationships between different fore-
ground and background document entities to assign them a
unique label which can be, table header, table trailer, table
cell and non-table region. Regions which get table related
labels are clustered together to extract a table.

The Fixed Point Model as proposed by Li et al [18] has
been used for the task of structured labeling by capturing
the correlation between the observed data. The structured
input is denoted as a graph with nodes and edges. The ob-
jective of structured labeling task is to jointly assign the
labels to all the nodes of a graph. In computer vision, the
structured input comprises the set of inputs of all the pixels
and the structured output constitutes the set of labels as-
signed to those pixels. Edges between the nodes are used to
model the correlations among the nodes. The Fixed point
model captures the neighborhood information and models
the correlation between the different nodes to predict the
label of each node. Markov random fields (MRF) [10] and
conditional random fields (CRF) [17] are also used to model
the inter-relationships of structural labels. However, due
to heavy computational burden in the training and testing
stages, MRF and CRF are often modeled to capture a few
neighborhood interactions, limiting their modeling capabil-
ities. The motivation to use fixed point model for the prob-
lem of table detection arises from the need to model the spa-
tial inter-dependencies of different elements of a document
image. The fixed point model utilizes the context informa-
tion and attains a contraction mapping to assign a unique
label to each element of document image. The final labeling
helps extract the table regions. This can facilitate applica-
tions such as searching, indexing and information retrieval.
A subset of the authors have previously used a fixed point
model for article extraction [1].

1.1 Related Work
Several interesting survey papers [11] [7] [23] [20] [28] [36]

[27] have been published on table structure analysis and lay-
out analysis related work in the last two decades. Layout
analysis is a major step in identifying any physical or log-
ical document entity. In this section, we review the litera-
ture related to the use of machine learning-based methods
for layout analysis, specifically for extracting tables. Table
extraction has been attempted on scanned images [13] [32]



[31] [34] [3] [26] [21] [14] [29], OCR’d images [25] [30] and
electronic text documents [6] [19] [16]. Various approaches
for table detection and layout analysis can be categorized
as machine-learning based [33] [24] [15] [35] [6] [9] [5] [14],
rule-based [12] [21] and model/template based [25] [30].

Fang et al. [9] proposed a method to detect table headers
from an already extracted table. They designed a set of fea-
tures which differentiate table header and table rows. Based
on these features similarity between consecutive table rows
is calculated to classify them as table header or table row.
Wang et al [31, 32, 34] have used binary decision tree to de-
velop a top-down approach for localizing tables. Document
zones delimited by blank areas are classified as table candi-
dates. The table candidate zones are then segmented and
the probability of the table being consistent is estimated,
based on attributes such as, percentage of area occupied by
non-blank parts of the table, its width, and the justifica-
tion of cells within their columns. The table boundary is
then refined by considering the improvement in probability
if the table’s upper and lower neighboring zones were in-
cluded with it. Liu [19] has used the sparse line property of
table rows to identify tables in PDF documents. The table
border is validated by combining the sparse lines with the
table keyword. The extracted table is represented with a
unique table metadata file, and is made indexable so that
the end-users can search for tables. Their system, named
TableSeer, extracts tables from online documents, such as
PDF, HTML, Word, Powerpoint, etc. It can be used for
document images only if the OCR’d text is available. How-
ever, in the case of old degraded documents, OCR results
may be wrong and may not identify table caption related
keywords.

Ramel et al [25] proposed a cognitive approach which hy-
pothesizes that readers detect the presence of tables by per-
ceiving different types of regularities. They analyze rect-
angular grid lines and assess regularity of text blocks, e.g.
non-overlapping rectangles, alignment, and relative proxim-
ity of blocks.

Costa e Silva [6] used Hidden Markov Models (HMMs)
for extracting table regions from PDF documents. Text is
extracted from PDF using pdftotext Linux utility. Features
are computed using white space between the extracted text.
Cesari et al [3] analyzed modified X-Y trees to identify sub-
images that correspond to tables. Regions surrounded by
lines are considered as candidates and then parallel lines
and white spaces are searched. Sub-tables that satisfy a set
of geometric properties are searched and merged to form ta-
bles. Mandal et al [21] have identified tables on the basis of
substantially larger gaps between columns and rows. Their
approach works even in the absence of any horizontal or ver-
tical rulings. However, they have not addressed the issue of
tables present in documents with multi-column page layout.

Shaifat et al [26] and Smith [29] have used tab-stops for
doing the layout-analysis of document images and then used
the alignment information (left, right or center) of columns
for table detection. Their algorithm works fine for images
containing both table and text but gives erroneous results
when full-page tables are present. Tersteegen and Wenzel
[30] have presented a system ScanTab for table recognition
in scanned and OCR’d German business letters. The sys-
tem identifies a table header by comparing it with the table
headers of known reference tables. The table header detec-
tion tries to locate the table header by relating the positions

of the keywords (obtained from OCR) with a reference table
header. Horizontal lines, if present, verifies the boundary of
the table header. Hu et al [13] have presented a table recog-
nition system for single column documents (images or text)
on the basis of a merit function. Merit functions analyze a
group of lines and identify it as a table if it maximizes the
merit value above a certain limit. These functions consider
the resemblance among the lines by considering a weighted
average of the number of white spaces with the same posi-
tion and the number of overlapping word bounding boxes
with similar sizes.

Kieninger et al [16] proposed a bottom-up approach of ta-
ble analysis. They developed a system called T-Recs which
works for ASCII file. The system takes word bounding box
information as input. These word boxes are clustered with
a bottom-up approach into distinct regions which are desig-
nated as tables if they satisfy certain heuristic rules.

Harit and Bansal [12] detected tables in document images
by searching for table-header and trailer patterns. The ap-
proach is applicable to multi-column page layouts, but it
assumes that the header and trailer patterns do not vary
within a single document. So, if a document has tables with
varying header and trailer patterns, then the different types
of tables present on a document image may not be iden-
tified properly. Chen et al [5] proposed a learning-based
framework for table detection in Handwritten documents.
Handwritten text regions are first identified using SVM and
then tables are identified on the basis of correlation score of
neighboring text lines. Kasar et al [14] proposed a method
to detect tables from document images using the properties
of intersecting row and column line separators. SVM clas-
sifier is used to classify line separators if they belong to a
table or not. The applicability of this method is restricted
to documents which have line separators. Pinto et al [24]
have used CRF to extract tables from HTML pages. They
provide labels to table elements such as line heading, sub-
heading, caption, etc.

1.2 Contributions of this work
From the past work, we see that the approaches which

work on recognizing tables from scanned document images
are mostly rule-based. For each new type of layout, new
rules need to be designed and implemented. Furthermore,
there are so many different and varied ways in which tables
can be created. Thus, rule based methods fail in terms of
scalability and robustness. Context based machine learn-
ing methods learn the layout of a document more efficiently
and are capable of recognizing unseen patterns and layouts.
Besides this, these methods are comparatively scalable and
robust. Machine learning based approaches which are re-
ported in literature mostly work on OCR’d scanned docu-
ment images, PDFs or HTML pages.

In the present work, we develop a set of foreground and
background features to be used for training a fixed point
model, which learns the layout and contextual features for
identifying tables, and assigns labels to different document
elements. The foreground features are the features extracted
from the text blocks and the background features describe
attributes related to white spaces and ruling lines. We use a
context-based model to extract tables from the scanned doc-
ument images. It learns the contextual layout of a variety of
tabular structures without using any user-defined heuristic
rules. The design of appearance and contextual features for



training the fixed point model to learn the layout for iden-
tifying the tabular structures is the key contribution of this
paper.

Our work motivates from [24] in the sense that we also
use context dependent learning based framework to recog-
nize tables and assign labels to different document elements.
But our input is a scanned image, not web pages. There-
fore, instead of using the text-content related features, we
exploit the layout of document entities and context infor-
mation to recognize tables from document images. Our ap-
proach is able to extract tables present in documents with
non-aligned multi-column page layout. A comparison of our
results with that obtained using Conditional Random Fields
(CRF) which shows that the fixed point model is more effi-
cient in capturing the contextual relationships between the
neighboring blocks.

1.3 Overview of the System
The input to the system is a scanned document image hav-

ing single or multi-column layout. As a pre-processing step,
we binarize the image and create blocks of foreground and
background regions using morphological image processing
techniques [2]. Our approach can be divided into two stages.
In the first stage, we extract the features for each block
by combining its attributes (appearance features) and the
correlation with neighboring blocks (contextual features).
Fixed point model uses these features and labels the fore-
ground text blocks as table header, table trailer, table cell
and non-table region. In the final stage, these labeled blocks
are clustered together to identify the set of blocks which be-
long to the same table.

The organization of the paper is as follows. In Section 2
we describe the mathematical model for table recognition
using fixed point model. Section 3 discusses our approach
in detail. The results of the proposed approach are discussed
in Section 4. Finally we conclude the paper in Section 5.

2. MODEL DESCRIPTION
Li et al. [18] has proposed the fixed point model for the

problem of structured labeling. They introduced a contex-
tual prediction function for each node which takes its fea-
tures and labeling of neighboring nodes as input and gives
the labeling of all the individual nodes as output. The fixed
point function is the vector form of the contextual prediction
function of all the nodes and it is trained with the property
of contraction mapping so that a unique label is obtained
during the iterative prediction process.

The input to our system is the set of blocks obtained after
morphological image processing operations to a document
page, as illustrated in Section 3.1. This structured input
can be denoted as a graph G = (V, E). Each node vi ∈ V
corresponds to a block in the image with its features denoted
as xi. Our approach for table recognition is a structured la-
beling approach, in which our objective is to jointly assign
the labels y = (yi : i = 1 . . . |V|) (yi ∈ L, where L is
the label space) to all blocks V = (vi : i = 1 . . . |V|)
as a joint output. The edges E decide the neighborhood of
each block. We represent an image as a 2D graph. The
neighborhood Ni of block vi is specified by m blocks in each
of the 4 directions: top, bottom, left and right, i.e., Ni =
{v(x−m/2,y), v(x−m/2+1,y), ..., v(x−1,y), v(x+1,y), ..., v(x+m/2,y),

v(x,y−m/2), ..., v(x,y−1), v(x,y+1), ..., v(x,y+m/2)}. Here, m de-
notes the number of neighbors a block can have. The la-

bel space for our model is L = {table-header, table-trailer,
table-cell, non-table}. Note that these labels correspond to
the foreground text content.

Contextual prediction function f is learned to provide la-
bels for the nodes. The function f takes in both vi’s appear-
ance features xi and contextual features qN i. Appearance
features associate each block to a label using the character-
istics of that block. Contextual features, on the other hand,
associate a block to a label using the label of neighboring
blocks. The contextual prediction function is described as
(following the scheme proposed in [18])

qi = f(xi,qN i;θ) (1)

where f is a classification function with parameter θ. Using
Equation 1, the labeling q of all the blocks in a vector form
is given by,

q = f(x1, x2, ..., xn,q;θ), (2)

where q = [q1, q2, ..., qn]
T f(.) =

[f(x1,qN1; θ), f(x2,qN2; θ), ..., f(xn,qNn; θ)]
T

From Equation 2, we see that the vector q appears both as
the output and as part of the input. The parameter set θ is
learned using labeling q and the features {x1, x2, ..., xn} of
the training set.

There are two approaches to obtain the labeling of struc-
tured input G. In the first approach, one has to solve a set
of non-linear equations q = f(x1, x2, ..., xn,q;θ). This ap-
proach is difficult, so, we look for a function f that satisfies
the property of contraction mapping, i.e., having a stable
status for each structured input. When ground-truth label-
ing is used during the training process, that label configu-
ration considered to be the stable status. This stable status
leads to the fixed-point iterations in the prediction process:

qt = f(x1, x2, ..., xn,q
t−1;θ) and qt → q as t → ∞.

The function f with such property is termed as a fixed point
function.

We have performed experiments using two different con-
textual prediction functions: SVM (Support Vector Ma-
chines) and KLR (Kernel Logistic Regression). We train
the function using the appearance features xi and contex-
tual features qN i of each block. In the testing phase, we ap-
ply the learned contraction mapping iteratively to the new
structured inputs. The iterations begin with a randomly
initialized label qi for each block vi ∈ V. Note that qi is
not sensitive to the choice of initialization and so we have
initialized it with zero in our experiments.

3. METHODOLOGY

3.1 Extraction of Blocks
The input image is converted into gray scale and is bina-

rized. Horizontal and vertical ruling lines are then removed
by replacing them with the background pixels. Next we seg-
ment the binarized image into text and graphics regions.
We use the leptonica library1 designed by Bloomberg [2] for
segmenting the document image into homogeneous regions
of text and graphics. A morphological closing operation is
performed on the text regions with a line structuring ele-
ment of length equal to the maximum inter-word gap. This

1http://www.leptonica.com/



results in the formation of text blobs [21], i.e., the charac-
ters and words in a text line get coalesced to form a single
rectangular block. Since normally the column width in a
table is more than the inter-word spacing, the text blobs
do not get merged across the columns. This is the reason
for getting multiple text blocks in the same row for a table.
The structure we obtain after morphological closing can be
considered as a graph with each block as its node. Now we
compute the features as described in next section.

3.2 Feature Set
For the context-based table extraction we compute two

types of features: appearance features and contextual fea-
tures.

3.2.1 Appearance Features

Appearance features represent the characteristics of a fore-
ground text block. The following features are computed to
create the appearance feature vector:

1. Normalized block height.
2. Normalized block width.
3. Average Character Height: Taken as the median of the

histogram of the heights of all connected components.
4. Background color: Colored or white. Here, we assume

that foreground color is always darker than the back-
ground.

5. Foreground/font color: Colored or black.
6. Font Phase: Boldness of a word blob [4].

3.2.2 Contextual Features

The contextual features capture the neighborhood infor-
mation and help in better prediction of block labels. Con-
sider an example of a table present in a single column doc-
ument. Trailer blocks and table cells have similar appear-
ance features but the trailer block will be followed by a line
with larger white space, which in turn is followed by a sin-
gle text block. Thus, the context in the form of the thicker
white space below, helps in identifying the trailer block. In
other words, the labels of neighboring blocks help in cor-
rectly predicting the label of a given block. We formulate
the contextual feature vector, of a given block, to be com-
posed of the set of labels of the neighboring blocks along four
directions: top, bottom, left and right. All the document en-
tities, foreground and background, contribute in designing
the contextual feature vector. We formulate a label space for
document entities and represent it as LD = {Table-header,
Table-Trailer, Table-cell, Non-table, horizontal white space,
ruling lines}. Note that this label space also includes the
background entities − the horizontal white space and the
ruling lines.

3.2.3 Identifying White Space Separators

The white space information is analyzed to identify con-
tiguous runs of white pixels along both the horizontal and
vertical directions. For each white pixel pij its distance dp+ij
to the closest black pixel towards the right side and its dis-
tance dp−ij to the closest black pixel towards the left side
along the same horizontal scan line is computed. The pixel
is then labeled with the distance [dp+ij + dp−ij ] measured in
terms of number of pixels constituting the white space run.
We form a horizontal run map matrix which comprises the
horizontal run values for all the pixels. Each horizontal run
is a horizontal separator. The horizontal run map is refined

Figure 1: Neighborhood Estimation: Current block marked
in blue, neighbors at m = 1 marked in red, neighbors at m

= 2 marked in red and green

in two pruning steps:
1. A separator with a run value higher than the run value

of its immediate neighboring separators on both sides
is retained and all others are ignored.

2. If two adjacent horizontal separators have a significant
overlap and if no text blocks are present between them,
then the smaller one is pruned out.

The prominent horizontal separators are considered as rect-
angular blocks. White space blocks are characterized as
thick or thin by using the method given in [21].

3.2.4 Identifying Horizontal and Vertical Ruling Lines

To identify the ruling lines, colored images are converted
into grayscale images and binarized. Horizontal and vertical
runs of black pixels are identified. A run of black pixels is
considered as a part of a ruling line if the number of contigu-
ous black pixels in the run is greater than or equal to the
average character height. In poor quality document images,
binarization may result in broken lines. A dilation step is
used to join the gap and get complete ruling line. Ruling
lines are also considered as a rectangular block which also
includes the surrounding white space.

3.3 Neighborhood Estimation
The neighborhood of the ith block is defined by all the

adjacent blocks to its right, left, top and bottom. It repre-
sents inter-relationship between different blocks and plays a
significant role in determining the correct label. As seen in
the first image in Figure 3, the header region is represented
by a green colored block, followed by a ruling, followed by
multiple blocks in green color, followed by ruling lines. The
header boundary is defined by black colored text blocks in
the next row. Therefore, to correctly predict the labels
of document elements, considering the immediate neighbor-
hood is not sufficient. We need to extend the neighborhood
to a suitable number so that rich context information can
be captured. We use parameter m to specify the span of the
neighborhood. This can be understood using Figure 1. The
text block highlighted in blue represent the ith block whose
neighborhood has to be estimated. Form = 1, neighborhood
is defined by the labels of all the blocks highlighted in red.
Let us denote this set of blocks by ℓ1. Note that the white
space separators are blocks of background pixels. For m =
2, the neighborhood consists of all the elements of ℓ1 and
the labels of the blocks highlighted in green, i.e., neighbors
of red blocks. Similarly, we keep on extending the neighbor-
hood as specified by parameter m. In our experiments, we



Figure 2: The set of blocks forming input to the block la-
beling process: text blocks (gray), thick whitespace without
ruling (blue), thin whitespace without ruling (red), thick
whitespace with ruling (pink)

empirically choose m = 13.

3.4 Block Labeling
In the block labeling stage all the foreground blocks (i.e.

the blocks containing text) of a document image are assigned
one of the 4 labels: table-header, table-cell, table-trailer and
non-table. The labels of the background blocks (white space,
rulings) are not updated. The set of all the segmented blocks
(foreground and background blocks) of an image (Figure 2)
constitute the structured input G. For each block vi, the fea-
tures mentioned in Section 3.2.1 form the appearance feature
vector xi. A normalized histogram of class labels of neigh-
boring blocks is used as contextual feature qN i. The number
of bins in a histogram is equal to the number of document
entities. The frequency of occurrence of a particular docu-
ment entity within the neighborhood of a block is assigned
to the corresponding bin. For each block vi, this creates a 4
× m × LD dimensional contextual feature vector. Here, LD

is the label space of document entities (see Section 3.2.2),
m is the span of context to be captured and 4 specifies the
neighborhood in the four directions (top, bottom, left and
right).

In the training phase, we learn a contextual prediction
function using both appearance features xi and contextual
features qN i. We use Kernel Logistic Regression (KLR) with
RBF kernel as the contextual prediction function. We have
also experimented with L1 regularized Support Vector Ma-
chine (SVM-L1), provided in the Liblinear software package
[8] as the classifier.

During testing, at each iteration, contraction mapping is
applied to the new structured inputs. When convergence
is achieved, the block labels do not change in subsequent
iterations. We begin the iterations by initializing the labels
qi for all the blocks to be 0. The steps in the testing phase
of block labeling are summarized in Algorithm 1.

The blocks which get labelled with table components (table-
header, table-cell, table-trailer) are clustered (block group-
ing) together to extract the tables. The header and trailer
blocks provide the vertical bound of the table. The left and
the right boundary of the table is established by looking for
transitions in block labels from any of the table components
to a non-table region.

Algorithm 1 The prediction phase of the block labeling

Input The text blocks of new block image G = (V, E);
labels of background blocks (white spaces); the
trained contextual prediction function f ; the
number of iterations T ; a threshold ǫ

Output The labeling q of G
Procedure
1. Initialize t = 1; for each vi ∈ V;
2. Repeat
(a) For each node vi, compute the labeling qti :

qti = f(xi,q
t−1
N i ; θ);

(b) t = t+1;
until t ≥ T or qt − qt−1 ≤ ǫ.
q = [qt1, q

t
2, ..., q

t
n]

T

4. RESULTS AND DISCUSSION

Table 1: Experimental results of block labeling with four
classes

Block Label #
blocks

Accuracy
using
SVM
(in %)

Accuracy
using
KLR
(in %)

Table-Header 1036 89.5 96.2
Table-Trailer 761 78.7 89.4
Table-cell 6053 91.3 95.7
Non-Table 5593 96.1 98.3
Total Blocks 13443 91.5 96.4

Table 2: Comparison of block labeling with CRF

#
Blocks

Accuracy
using
SVM
(in %)

Accuracy
using
KLR (in
%)

Accuracy
using
CRF (in
%)

13443 91.5 96.4 85.2

The proposed method for table detection is tested on a
dataset of 50 images which were picked from UW-III dataset,
UNLV dataset and our own dataset consisting of documents
with multi-column page layout. The size of images varies
from 2592 x 3300 to 1275 x 1650 pixels. Both single column
and multi-column layout documents are included. Out of
the 50 images, 44 images contain tables. For the purpose
of block labeling, we manually created the ground truth at
the block level (Figure 4(b)). From 50 images, we got 19334
blocks of both foreground and background pixels. Out of the
19334 blocks, 13443 are text blocks while the rest are non
text and white space blocks. We do a 10-fold cross valida-
tion for evaluating the results of the block labeling method.
Experimental results of our algorithm are summarized in
Table 1.

We have achieved an overall accuracy of around 96% for
assigning a label to each document region. Accuracy for
each class is shown in Table 1. It can be seen that the ac-
curacy for the table-trailer blocks is less in comparison to
other blocks. We notice that when the table trailer com-
prises multiple rows (Figure 4), the blocks in the last row



Figure 3: Results of labeling each document element as table-heading (blue), table-trailer (red), table-cell (green), non-table
regions (yellow).

get labeled as table trailer and others get misclassified as
table-cells. This happened possibly because our dataset has
few tables with multiple rows in the table trailer. How-
ever, this will not have much effect on accurate localization
of tables using header and trailer regions. Table-cells and
non-table blocks are labeled with high accuracy due to their
strong appearance and contextual features.

We compared our results with CRF for labeling document
entities and extracting tables. For CRF, we used the UGM
toolbox [22] and used loopy belief propagation for the in-
ference. Table 2 shows the quantitative comparison of the
performance of both the classifiers on our dataset. In Figure
5 we analyze the labeling results of CRF and the fixed point
model on a document page from our dataset. CRF was not
able to distinguish between table header, table trailer and
table cell. The possible reason could be that since CRF is
a probability-based classifier, it learns the context for ta-
ble rows (which are more in number) better than header or
trailer.

Figure 3 shows the result of our approach on few images
picked from the test set. Single page tables, tables span-
ning multiple columns and tables confined to single columns
are labeled correctly. Different feature combinations have
shown effectiveness in case of different layouts. For example,
in Figure 3(a) the font color of text region and the thickness
of horizontal separators around text provide a strong clue

for the detection of table header and trailer regions. In the
first table, a few rows have the same pattern as that of table
trailer, but the thickness of the horizontal separator helps
in determining the correct labels. Similarly, in Figure 3(e),
presence of the ruling line between table rows differentiates
the table-header blocks from the rest of the table and pro-
vides correct labeling to multi-row header blocks. Our ap-
proach gives correct labeling for tables present in different
page layouts. Thus it is evident that the proposed method
learns the layout with effectively and can be used on images
with complex layouts.

5. CONCLUSION
This paper presents a novel learning-based framework for

the problem of layout analysis and table detection in docu-
ment images with complex layouts. The method contributes
an efficient way of analyzing and labeling different document
elements which in turn defines the table boundary. A com-
bination of foreground and background features is extracted
and used with the fixed model for learning the context in-
formation. This helps in learning the document layout and
labeling the different regions. The experimental results are
promising and our approach works well on a heterogeneous
collection of documents. Unlike other existing techniques,
the method is general and does not rely on heuristic rules



Figure 4: Results with incorrect labeling of table trailer blocks: (a) Original Image (b) Ground truth image with correct
labeling, (c) Results of our approach which misclassified table-trailer blocks as table cell.

(a) (b) (c)

Figure 5: Comparison of Fixed point model and CRF: (a) Original Image (b) Labeling results of Fixed point model, (c)
Labeling results of CRF

such as the presence of horizontal and vertical ruling lines
and their intersection. It provides an alternate to most of
the present rule-based and learning-based systems. While
the method correctly locates the tables one above another,
it merges the tables present side by side. Future work in-
cludes a comprehensive analysis of the applicability of the
proposed approach on other types of images and using addi-
tional clues to handles tables present side by side. We shall
also explore other context-handling approaches like Recur-
rent Neural Networks (RNNs) for this task.
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